WorldWideScience

Sample records for analogue induces apoptosis-like

  1. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    Science.gov (United States)

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  2. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  3. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Sá-Júnior, Paulo Luiz de; Pasqualoto, Kerly Fernanda Mesquita; Ferreira, Adilson Kleber; Tavares, Maurício Temotheo; Damião, Mariana Celestina Frojuello Costa Bernstorff; Azevedo, Ricardo Alexandre de; Câmara, Diana Aparecida Dias; Pereira, Alexandre; Madeiro de Souza, Dener; Parise Filho, Roberto

    2013-01-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  4. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  5. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  6. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  7. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  8. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  9. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells.

    Directory of Open Access Journals (Sweden)

    Ke-Jia Wu

    Full Text Available The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.

  10. Toll-like receptor 9 is required for opioid-induced microglia apoptosis.

    Directory of Open Access Journals (Sweden)

    Lei He

    2011-04-01

    Full Text Available Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9, a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6, the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or µ-opioid receptor (µOR deficient primary microglia, suggesting an involvement of MAPK and µOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require μOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and µOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of µOR is capable of preventing opioid-induced brain damage.

  11. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  12. Andrographolide Analogue Induces Apoptosis and Autophagy Mediated Cell Death in U937 Cells by Inhibition of PI3K/Akt/mTOR Pathway.

    Directory of Open Access Journals (Sweden)

    Deepak Kumar

    Full Text Available Current chemotherapeutic agents based on apoptosis induction are lacking in desired efficacy. Therefore, there is continuous effort to bring about new dimension in control and gradual eradication of cancer by means of ever evolving therapeutic strategies. Various forms of PCD are being increasingly implicated in anti-cancer therapy and the complex interplay among them is vital for the ultimate fate of proliferating cells. We elaborated and illustrated the underlying mechanism of the most potent Andrographolide analogue (AG-4 mediated action that involved the induction of dual modes of cell death-apoptosis and autophagy in human leukemic U937 cells.AG-4 induced cytotoxicity was associated with redox imbalance and apoptosis which involved mitochondrial depolarisation, altered apoptotic protein expressions, activation of the caspase cascade leading to cell cycle arrest. Incubation with caspase inhibitor Z-VAD-fmk or Bax siRNA decreased cytotoxic efficacy of AG-4 emphasising critical roles of caspase and Bax. In addition, AG-4 induced autophagy as evident from LC3-II accumulation, increased Atg protein expressions and autophagosome formation. Pre-treatment with 3-MA or Atg 5 siRNA suppressed the cytotoxic effect of AG-4 implying the pro-death role of autophagy. Furthermore, incubation with Z-VAD-fmk or Bax siRNA subdued AG-4 induced autophagy and pre-treatment with 3-MA or Atg 5 siRNA curbed AG-4 induced apoptosis-implying that apoptosis and autophagy acted as partners in the context of AG-4 mediated action. AG-4 also inhibited PI3K/Akt/mTOR pathway. Inhibition of mTOR or Akt augmented AG-4 induced apoptosis and autophagy signifying its crucial role in its mechanism of action.Thus, these findings prove the dual ability of AG-4 to induce apoptosis and autophagy which provide a new perspective to it as a potential molecule targeting PCD for future cancer therapeutics.

  13. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  15. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  16. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kulcenty, Katarzyna [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Wierzchowski, Marcin [Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan (Poland); Kaczmarek, Mariusz [Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan (Poland); Murias, Marek [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kwiatkowska-Borowczyk, Eliza [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan (Poland); Jodynis-Liebert, Jadwiga, E-mail: liebert@ump.edu.pl [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland)

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  17. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    International Nuclear Information System (INIS)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja; Kulcenty, Katarzyna; Wierzchowski, Marcin; Kaczmarek, Mariusz; Murias, Marek; Kwiatkowska-Borowczyk, Eliza; Jodynis-Liebert, Jadwiga

    2012-01-01

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC 50 = 0.71 μM) and SKOV-3 (IC 50 = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  18. Curcumin and Its Analogue Induce Apoptosis in Leukemia Cells and Have Additive Effects with Bortezomib in Cellular and Xenograft Models

    Directory of Open Access Journals (Sweden)

    L. I. Nagy

    2015-01-01

    Full Text Available Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.

  19. Andrographolide and analogues in cancer prevention.

    Science.gov (United States)

    Mishra, Siddhartha Kumar; Tripathi, Swati; Shukla, Archana; Oh, Seung Hyun; Kim, Hwan Mook

    2015-01-01

    Andrographis paniculata is a medicinal plant traditionally used for treatment of cough and cold, fever, laryngitis, and several infectious diseases. Extracts of A. paniculata have shown versatile potency against various diseases including cancer. The active biomolecules of A. paniculata mainly are lactone and diterpene. Andrographolide and analogues have been widely used for prevention of different diseases. Andrographolides have shown potent antiinflammatory and anticancer activities. It showed potentials as chemopreventive agents by suppressing growth of cancer cells by inhibiting NF-kappaB, PI3K/AKT and other kinase pathways and by inducing apoptosis. Andrographolide induced both intrinsic and extrinsic apoptosis pathway in different cancer cells via expression of different anti-apoptotic protein like Bax, p53, and activated caspases. Andrographolide was successfully used as an antineoplastic drug in cancer chemotherapy. Andrographolide inhibited the growth of human breast, prostate, and hepatoma tumors. Andrographolide and analogues need to be subjected to further clinical and biomedical studies in cancer chemoprevention. Andrographolide could be potent anticancer agent when used in combination with other chemotherapeutic agents.

  20. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  1. Hypoxia-induced autophagy is inhibited by PADI4 knockdown, which promotes apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis

    Science.gov (United States)

    Fan, Tingting; Zhang, Changsong; Zong, Ming; Fan, Lieying

    2018-01-01

    Impaired apoptosis of rheumatoid arthritis (RA)-fibroblast-like synoviocytes (FLS) is pivotal in the process of RA. Peptidyl arginine deiminase type IV (PADI4) is associated with autoantibody regulation via histone citrullination in RA. The present study aimed to investigate the role of PADI4 in the apoptosis of RA-FLS. FLS were isolated from patients with RA and a rat model. The effects of PADI4 on RA-FLS were investigated in vitro and in vivo. Hypoxia-induced autophagy was induced by 1% O2 and was detected by immunohistochemical and immunofluorescence analysis; in addition, apoptosis was detected by flow cytometry. RA-FLS obtained from RA rat model exhibited significant proliferation under severe hypoxia conditions. Hypoxia also significantly induced autophagy and elevated the expression of PADI4. Subsequently, short hairpin RNA-mediated PADI4 knockdown was demonstrated to significantly inhibit hypoxia-induced autophagy and promote apoptosis in RA-FLS. The results of these in vitro and in vivo studies suggested that PADI4 may be closely associated with hypoxia-induced autophagy, and the inhibition of hypoxia-induced autophagy by PADI4 knockdown may contribute to an increase in the apoptosis of RA-FLS. PMID:29393388

  2. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  3. Apoptosis and radiosensitivity induced by N-acety1 phytosphingosine, in human cancer cell line

    International Nuclear Information System (INIS)

    Kim, Y. H.; Kim, K. S.; Han, Y. S.; Jeon, S. J.; Song, J. Y.; Jung, I. S.; Hong, S. H.; Yun, Y. S.; Park, J. S.

    2004-01-01

    Ceramide is a key lipid molecule in signal transduction with a role in various regulatory pathways including differentiation, proliferation and especially apoptosis. Ionizing radiation-induced apoptosis is associated with accumulation of ceramide, and the sphingomyelinase deficiency results in radioresistance. We investigated the exogenous treatment of N-acetyl-phytosphingosine (NAPS), an analogue of N-acetyl-sphingosine (C 2 -Ceramide), and C 2 -ceramide exert apoptotic effect on human T cell lymphoma Jurkat cells and breast cancer cell line MDA-MB-231. NAPS and C 2 -Ceramide has cytotoxic effect in time- and dose-dependent manner, and increased caspase-3, 8 activity. However, NAPS induced apoptosis more effectively, and increased caspase activity induced by NAPS is more higher than C 2 -ceramide. Moreover, NAPS decreased clonogenicity of irradiated cells and increased radiation-induced apoptosis significantly. Increased cell death by irradiation in the presence of NAPS is owing to the increase of caspase activity. These data suggest that NAPS might be used for lead as a new type of radiosensitizing agent increasing radiation-induced apoptosis

  4. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal

    2018-02-09

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  5. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal; Choudhry, Hani; Razvi, Syed Shoeb; Moselhy, Said Salama; Kumosani, Taha Abduallah; Zamzami, Mazin A.; Omran, Ziad; Halwani, Majed A.; Al-Babili, Salim; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Alhosin, Mahmoud; Asami, Tadao

    2018-01-01

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  6. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    Science.gov (United States)

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  7. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Ujiki, Michael B.; Milam, Ben; Ding Xianzhong; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H.; Gu Wenxin; Silverman, Richard B.; Adrian, Thomas E.

    2006-01-01

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  8. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  9. Novel Indole-based Tambjamine-Analogues Induce Apoptotic Lung Cancer Cell Death through p38 Mitogen-Activated Protein Kinase Activation.

    Science.gov (United States)

    Manuel-Manresa, Pilar; Korrodi-Gregório, Luís; Hernando, Elsa; Villanueva, Alberto; Martínez-García, David; Rodilla, Ananda M; Ramos, Ricard; Fardilha, Margarida; Moya, Juan; Quesada, Roberto; Soto-Cerrato, Vanessa; Pérez-Tomás, Ricardo

    2017-07-01

    Lung cancer has become the leading killer cancer worldwide, due to late diagnosis and lack of efficient anticancer drugs. We have recently described novel natural-derived tambjamine analogues that are potent anion transporters capable of disrupting cellular ion balance, inducing acidification of the cytosol and hyperpolarization of cellular plasma membranes. Although these tambjamine analogues were able to compromise cell survival, their molecular mechanism of action remains largely unknown. Herein we characterize the molecular cell responses induced by highly active indole-based tambjamine analogues treatment in lung cancer cells. Expression changes produced after compounds treatment comprised genes related to apoptosis, cell cycle, growth factors and its receptors, protein kinases and topoisomerases, among others. Dysregulation of BCL2 and BIRC5 /survivin genes suggested the apoptotic pathway as the induced molecular cell death mechanism. In fact, activation of several proapoptotic markers (caspase-9, caspase-3, and PARP) and reversion of the cytotoxic effect upon treatment with an apoptosis inhibitor (Z-VAD-FMK) were observed. Moreover, members of the Bcl-2 protein family suffered changes after tambjamine analogues treatment, with a concomitant protein decrease towards the prosurvival members. Besides this, it was observed cellular accumulation of ROS upon compound treatment and an activation of the stress-kinase p38 MAPK route that, when inhibited, reverted the cytotoxic effect of the tambjamine analogues. Finally, a significant therapeutic effect of these compounds was observed in subcutaneous and orthotopic lung cancer mice models. Taken together, these results shed light on the mechanism of action of novel cytotoxic anionophores and demonstrate the therapeutic effects against lung cancer. Mol Cancer Ther; 16(7); 1224-35. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J

    2006-01-01

    preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta....... In conclusion, suppression of cytokine production by SPIR may be associated with its apoptotic potential, either directly (apoptosis is a consequence of suppressed cytokine production, or vice-versa) or indirectly (suppressed cytokine production and apoptosis are parallel but otherwise unrelated phenomena)....

  11. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    International Nuclear Information System (INIS)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao

    2016-01-01

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L"−"1 (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  12. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Cheng, Mengqian; Wu, Lang; Zhang, Guo; Wang, Zaizhao, E-mail: zzwang@nwsuaf.edu.cn

    2016-10-15

    Highlights: • Adult male G. rarus were exposed to 225 μg/L BPA for 7, 21 and 63 days. • BPA could induce spermatocyte apoptosis in rare minnow testis. • The mitochondrial apoptotic pathway participated in the germ cell apoptosis. • The spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest. - Abstract: Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not’ been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225 μg L{sup −1} (0.99 μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.

  13. The apoptosis of CHO cells induced by X-rays

    International Nuclear Information System (INIS)

    Lu Zhaohong; Zhao Jingyong; Zhu Mingqing; Shi Xijin; Wang Chunlei

    2004-01-01

    The work is to study the mechanism of toxic effects on reproductive system and apoptosis of Chinese hamster ovary (CHO) cells induced by X-rays. CHO cell was exposed to X-rays 2 to 20 Gy. Apoptosis and morphological changes of the cells were observed by fluorescent microscopy and flow cytometry analyzer with double staining with Annexin V/PI. The apoptosis could be observed at 24, 48 and 72h after the exposure, but it was more obvious 48 and 72 h after the exposure. Rate of the apoptosis increased along with radiation dose were elevated. Some morphological changes, such as irregular agglomerate of chromatins, pycnosis and periphery distribution of nuclei, crescent-moon-like cells, small apoptosis body, were observed. Radiation results DNA damage in the CHO cells, and the damage cannot be repaired, hence the induced cell apoptosis. (authors)

  14. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  15. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    Energy Technology Data Exchange (ETDEWEB)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D' Urso, Gennaro; Huberman, Joel A

    2003-11-27

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.

  16. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    International Nuclear Information System (INIS)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D'Urso, Gennaro; Huberman, Joel A.

    2003-01-01

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication

  17. Compound A398, a novel podophyllotoxin analogue: cytotoxicity and induction of apoptosis in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Alethéia L Silveira

    Full Text Available Despite advances in oncology research, cancer is one of the leading causes of death worldwide. Thus, there is a demand for the development of more selective and effective antitumor agents. This study showed that A398, a novel podophyllotoxin analogue, was cytotoxic to the HT-29, MCF-7, MOLT-4 and HL-60 tumor cell lines, being less active in human peripheral blood mononuclear cells and normal cell lines FGH and IEC-6. Tests using the HepG2 lineage indicated that its metabolites do not contribute to its cytotoxicity. In the HL-60 cells, A398 induced apoptosis in a time and concentration-dependent manner, promoting mitochondrial depolarization, inhibition of Bcl-2, phosphatidylserine exposure, activation of caspases -8, -9 and -3, and DNA fragmentation. The production of reactive oxygen species does not seem to be a crucial event for the apoptotic process. Pretreatment with specific inhibitors of kinases ERK1/2, JNK and p38 resulted in an increased percentage of death induced by A398. These results indicate that the compound induced apoptosis through activation of intrinsic and extrinsic death pathways with the mechanism involving the inhibition of the MAPKs and Bcl-2. Taken together, our findings suggest that A398 has an anticancer potential, proving itself to be a candidate for preclinical studies.

  18. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  19. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    Science.gov (United States)

    Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-10

    Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  20. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  1. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  2. Protective effects of veskamide, enferamide, becatamide, and oretamide on H2O2-induced apoptosis of PC-12 cells

    Science.gov (United States)

    Veskamide, enferamide, becatamide, and oretamide are phenolic amides whose analogues are found in plants. In this study, the four amides were prepared by chemical synthesis and their protective effects on H(2)O(2)-induced apoptosis in PC-12 cells were investigated. The syntheses were relatively si...

  3. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    Directory of Open Access Journals (Sweden)

    Anders P Hakansson

    Full Text Available BACKGROUND: Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. METHODOLOGY/PRINCIPAL FINDINGS: We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity to execute cell death. CONCLUSIONS/SIGNIFICANCE: Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  4. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  5. Tamaractam, a New Bioactive Lactam from Tamarix ramosissima, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes.

    Science.gov (United States)

    Yao, Yao; Jiang, Cheng-Shuai; Sun, Na; Li, Wei-Qi; Niu, Yang; Han, Huai-Qin; Miao, Zhen-Hua; Zhao, Xun-Xia; Zhao, Jing; Li, Juan

    2017-01-10

    Chemical investigation of Tamarix ramosissima Ledeb, a traditional herbal medicine used for rheumatoid arthritis (RA) treatment in northwest China, led to the discovery of a new phenolic aromatic rings substituted lactam, tamaractam ( 1 ), together with the previously reported compounds cis - N -feruloyl-3- O -methyldopamine ( 2 ) and trans - N -feruloyl-3- O -methyldopamine ( 3 ). The structures of the compounds were determined by high resolution electrospray ionization mass spectroscopy (HRESIMS) and 1D and 2D-NMR experiments, as well as comparison with the literature data. The effects of the three compounds on the viability of RA fibroblast-like synoviocytes (RA-FLS) were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2- H -tetrazolium bromide (MTT) assay. Pro-apoptosis effect of compound 1 in RA-FLS was further investigated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, activated caspase-3/7 level assessment using luminescence assay, and sub-G₁ fraction measurement using flow cytometry. It was found that these three compounds displayed variable proliferation inhibitory activity in RA-FLS, and compound 1 exhibited the strongest effect. Compound 1 could remarkably induce cellular apoptosis of RA-FLS, increase activated caspase-3/7 levels, and significantly increase sub-G₁ fraction in the cell cycle. The results suggested that compound 1 may inhibit the proliferation of RA-FLS through apoptosis-inducing effect, and these compounds may contribute to the anti-RA effect of T. ramosissima .

  6. Tamaractam, a New Bioactive Lactam from Tamarix ramosissima, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2017-01-01

    Full Text Available Chemical investigation of Tamarix ramosissima Ledeb, a traditional herbal medicine used for rheumatoid arthritis (RA treatment in northwest China, led to the discovery of a new phenolic aromatic rings substituted lactam, tamaractam (1, together with the previously reported compounds cis-N-feruloyl-3-O-methyldopamine (2 and trans-N-feruloyl-3-O-methyldopamine (3. The structures of the compounds were determined by high resolution electrospray ionization mass spectroscopy (HRESIMS and 1D and 2D-NMR experiments, as well as comparison with the literature data. The effects of the three compounds on the viability of RA fibroblast-like synoviocytes (RA-FLS were assessed by 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT assay. Pro-apoptosis effect of compound 1 in RA-FLS was further investigated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay, activated caspase-3/7 level assessment using luminescence assay, and sub-G1 fraction measurement using flow cytometry. It was found that these three compounds displayed variable proliferation inhibitory activity in RA-FLS, and compound 1 exhibited the strongest effect. Compound 1 could remarkably induce cellular apoptosis of RA-FLS, increase activated caspase-3/7 levels, and significantly increase sub-G1 fraction in the cell cycle. The results suggested that compound 1 may inhibit the proliferation of RA-FLS through apoptosis-inducing effect, and these compounds may contribute to the anti-RA effect of T. ramosissima.

  7. Brazilian Red Propolis Induces Apoptosis-Like Cell Death and Decreases Migration Potential in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karine Rech Begnini

    2014-01-01

    Full Text Available Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL. Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  8. Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells.

    Science.gov (United States)

    Begnini, Karine Rech; Moura de Leon, Priscila Marques; Thurow, Helena; Schultze, Eduarda; Campos, Vinicius Farias; Martins Rodrigues, Fernanda; Borsuk, Sibele; Dellagostin, Odir Antônio; Savegnago, Lucielli; Roesch-Ely, Mariana; Moura, Sidnei; Padilha, Francine F; Collares, Tiago; Pêgas Henriques, João Antonio; Seixas, Fabiana Kömmling

    2014-01-01

    Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.

  9. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  10. Glucagon-like peptide-1 analogues: An overview

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2013-01-01

    Full Text Available Abnormalities of the incretin axis have been implicated in the pathogenesis of type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1 and gastroinhibitory intestinal peptide constitutes >90% of all the incretin function. Augmentation of GLP-1 results in improvement of beta cell health in a glucose-dependant manner (post-prandial hyperglycemia and suppression of glucagon (fasting hyperglycemia, amongst other beneficial pleiotropic effects. Native GLP-1 has a very short plasma half-life and novel methods have been developed to augment its half life, such that its anti-hyperglycemic effects can be exploited. They can be broadly classified as exendin-based therapies (exenatide, exenatide once weekly, DPP-4-resistant analogues (lixisenatide, albiglutide, and analogues of human GLP-1 (liraglutide, taspoglutide. Currently, commercially available analogues are exenatide, exenatide once weekly, and liraglutide. This review aims to provide an overview of most GLP-1 analogues.

  11. The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death.

    Directory of Open Access Journals (Sweden)

    Mark Diamond

    Full Text Available The Fusarium genus of fungi is responsible for commercially devastating crop diseases and the contamination of cereals with harmful mycotoxins. Fusarium mycotoxins aid infection, establishment, and spread of the fungus within the host plant. We investigated the effects of the Fusarium mycotoxin deoxynivalenol (DON on the viability of Arabidopsis cells. Although it is known to trigger apoptosis in animal cells, DON treatment at low concentrations surprisingly did not kill these cells. On the contrary, we found that DON inhibited apoptosis-like programmed cell death (PCD in Arabidopsis cells subjected to abiotic stress treatment in a manner independent of mitochondrial cytochrome c release. This suggested that Fusarium may utilise mycotoxins to suppress plant apoptosis-like PCD. To test this, we infected Arabidopsis cells with a wild type and a DON-minus mutant strain of F. graminearum and found that only the DON producing strain could inhibit death induced by heat treatment. These results indicate that mycotoxins may be capable of disarming plant apoptosis-like PCD and thereby suggest a novel way that some fungi can influence plant cell fate.

  12. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karpus, Olga N.; Hsiao, Cheng-Chih; Kort, Hanneke de; Tak, Paul P.; Hamann, Jörg, E-mail: j.hamann@amc.uva.nl

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. - Highlights: • Intracellular poly(I:C) and 3pRNA evoke immune responses in FLS. • Only intracellular delivery of poly(I:C) induces FLS apoptosis. • FLS do not require MDA5 for their response to intracellular poly(I:C). • FLS respond to intracellular poly(I:C) independent of IPS and STING. • An unknown intracellular sensor recognizes linear dsRNA in FLS.

  13. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  14. Study of progesterone mechanisms in radio-induced apoptosis prevention

    International Nuclear Information System (INIS)

    Vares, G.

    2004-10-01

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  15. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Directory of Open Access Journals (Sweden)

    Leonie Harmse

    Full Text Available Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05. Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05, with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  16. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Science.gov (United States)

    Harmse, Leonie; Dahan-Farkas, Nurit; Panayides, Jenny-Lee; van Otterlo, Willem; Penny, Clement

    2015-01-01

    Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  17. Ubiquitin-dependent system controls radiation induced apoptosis

    International Nuclear Information System (INIS)

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  18. Cytotoxicity Study of Cyclopentapeptide Analogues of Marine Natural Product Galaxamide towards Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jignesh Lunagariya

    2017-01-01

    Full Text Available Herein, we report the cytotoxicity of cyclopentapeptide analogues of marine natural product galaxamide towards breast carcinoma cells and the underlying mechanisms. We examined the effect of the novel galaxamide analogues on cancer cell proliferation by MTT assay and also further examined the most active compound for morphological changes using Hoechst33342 staining technique, induction of apoptosis, cell cycle phases, mitochondrial membrane potential (MMP, and reactive oxygen species (ROS generation using flow cytometry in human breast cancer MCF-7 cells in vitro. Galaxamide and its analogues effectively induced toxicity in human hepatocellular carcinoma HepG2, human breast carcinoma MCF-7, human epitheloid cervix carcinoma HeLa, and human breast carcinoma MB-MDA-231 cell lines. Amongst them, compound 3 exhibited excellent toxicity towards MCF-7 cells. This galaxamide analogue significantly induced apoptosis in a dose-dependent manner in MCF-7 cells involves cell cycle arrest in the G1 phase, a reduction of MMP, and a marked increase in generation of ROS. Particularly, compound 3 of galaxamide analogues might be a potential candidate for the treatment of breast cancer.

  19. Sequential activation of proteases in radiation induced apoptosis

    International Nuclear Information System (INIS)

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  20. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    Science.gov (United States)

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  1. Vitamin E analogues and immune response in cancer treatment

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Neužil, Jiří

    2007-01-01

    Roč. 76, - (2007), s. 463-491 ISSN 0083-6729 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : vitamin E analogues * inducers of apoptosis * immune surveillance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.889, year: 2007

  2. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  4. Tempo enhances heat-induced apoptosis by mitochondrial targeting of Bax

    International Nuclear Information System (INIS)

    Zhao, Q.-L.; Fujiwara, Y.; Kondo, T.

    2003-01-01

    A stable membrane-permeable nitroxide, Tempo, exerts an SOD-like antioxidant activity against ROS. Reportedly, Tempo inhibits ROS-induced thymocyte apoptosis, while 10 mM Tempo activates JNK1 to induce apoptosis in breast cancer cells. We have observed that nontoxic 5 mM Tempo enhances suboptimal hyperthermia (44 deg C/10 min)-induced apoptosis in U937 cells. Here we report the enhancing mechanism, focusing on activation and targeting of Bax to mitochondria and cytochrome c release. Methods: U937 cells were treated with either Tempo (5 mM, 37 deg C/10 min), heating (44 deg C/10 min), or Tempo-plus-heating, washed and incubated for various times up to 6 h, until assessing apoptosis, mitochondrial potential (ΔΨ>), and amount of superoxide by flow cytometry using Annexin V-FITC/PI, TMRM, and dihydroethidium, respectively. Bax, Bcl-2 and Bcl-XL, and cytochrome c were detected by western blotting, activated Bax was by immunoprecipitation, and ATP was by a luciferase assay. Bax targeting to and cytochrome c release from mitochorndria were also detected immunocytochemically under fluorescent microscopy. Results and Discussion: Treatment of U937 cells with 5 mM Tempo for 10 min at 37 deg C or suboptimal heating (44 deg C/ 10 min) alone did not induce apoptosis. The combined treatment with 5 mM Tempo and 44 deg C for 10 min dramatically induced ∼90% apoptosis in 6 h, as did the 44 deg C/30 min heating. During the enhanced apoptosis, cytochrome c release progressed. Although signals of Bcl-2, Bcl-XL and Bax in cell lysates were not altered, Bax was specifically activated and translocated to mitochondria after the combined treatment. Further, loss of ΔΨ>and decreases in superoxide and ATP progressed after the combined treatment, suggesting that the treatment may disturb mitochondrial electron transport. Thus, Tempo sensitizes the heat-induced apoptosis through (1) targeting of Bax to mitochondria and releasing cytochrome c, and (2) mitochondrial dysfunction

  5. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  6. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  7. Glucagon-like peptide-1 analogs against antipsychotic-induced weight gain

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn H; Knop, Filip K; Ishøy, Pelle L

    2012-01-01

    between schizophrenia and overweight patients. DISCUSSION: Current interventions against antipsychotic-induced weight gain do not facilitate a substantial and lasting weight loss. GLP-1 analogues used in the treatment of type 2 diabetes are associated with significant and sustained weight loss...... are already compromised in normal weight patients with schizophrenia. Here we outline the current strategies against antipsychotic-induced weight gain, and we describe peripheral and cerebral effects of the gut hormone glucagon-like peptide-1 (GLP-1). Moreover, we account for similarities in brain changes...... in overweight patients. Potential effects of treating schizophrenia patients with antipsychotic-induced weight gain with GLP-1 analogues are discussed. CONCLUSIONS: We propose that adjunctive treatment with GLP-1 analogues may constitute a new avenue to treat and prevent metabolic and cerebral deficiencies...

  8. Mitochondrial dysfunction in lyssavirus-induced apoptosis.

    Science.gov (United States)

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-05-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.

  9. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Directory of Open Access Journals (Sweden)

    Liang Chi-Ming

    2009-01-01

    Full Text Available Abstract Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s. The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK, Akt and glycogen synthase kinase-3β (GSK-3β. Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s of the etiologic agents.

  10. Functional analysis of molecular mechanisms of radiation induced apoptosis, that are not mediated by DNA damages

    International Nuclear Information System (INIS)

    Angermeier, Marita; Moertl, Simone

    2012-01-01

    The effects of low-dose irradiation pose new challenges on the radiation protection efforts. Enhanced cellular radiation sensitivity is displayed by disturbed cellular reactions and resulting damage like cell cycle arrest, DNA repair and apoptosis. Apoptosis serves as genetically determinate parameter for the individual radiation sensitivity. In the frame of the project the radiation-induced apoptosis was mechanistically investigated. Since ionizing radiation induced direct DNA damage and generates a reactive oxygen species, the main focus of the research was the differentiation and weighting of DNA damage mediated apoptosis and apoptosis caused by the reactive oxygen species (ROS).

  11. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  12. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  13. Csk regulates angiotensin II-induced podocyte apoptosis.

    Science.gov (United States)

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  14. Amphetamine-Like Analogues in Diabetes: Speeding towards Ketogenesis

    Directory of Open Access Journals (Sweden)

    Natalia M. Branis

    2015-01-01

    Full Text Available Obesity is common in patients with type 1 and type 2 diabetes. Amphetamine-like analogues comprise the most popular class of weight loss medications. We present a case of a 34-year-old African American female with a history of type 1 diabetes, dyslipidemia, and obesity who developed diabetic ketoacidosis (DKA after starting Diethylpropion for the purpose of weight loss. Shortly after starting Diethylpropion, she developed nausea, vomiting, and periumbilical pain. Blood work revealed glucose of 718 mg/dL, pH 7.32 (7.35–7.45, bicarbonate 16 mmol/L (22–29 mmol/L, and anion gap 19 mmol/L (8–16 mmol/L. Urine analysis demonstrated large amount of ketones. She was hospitalized and successfully treated for DKA. Diethylpropion was discontinued. Amphetamine-like analogues administration leads to norepinephrine release from the lateral hypothalamus which results in the appetite suppression. Peripheral norepinephrine concentration rises as well. Norepinephrine stimulates adipocyte lipolysis and thereby increases nonesterified fatty acids (NEFA availability. It promotes β-oxidation of NEFA to ketone bodies while decreasing metabolic clearance rate of ketones. In the setting of acute insulin deficiency these effects are augmented. Females are more sensitive to norepinephrine effects compared to males. In conclusion, amphetamine-like analogues lead to a release of norepinephrine which can result in a clinically significant ketosis, especially in the setting of insulin deficiency.

  15. Research Advances on Pathways of Nickel-Induced Apoptosis

    Science.gov (United States)

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  16. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  17. Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages.

    Science.gov (United States)

    Yadav, Umesh C S; Kalariya, Nilesh M; Srivastava, Satish K; Ramana, Kota V

    2010-05-15

    This study was designed to investigate the molecular mechanisms by which benfotiamine, a lipid-soluble analogue of vitamin B1, affects lipopolysaccharide (LPS)-induced inflammatory signals leading to cytotoxicity in the mouse macrophage cell line RAW264.7. Benfotiamine prevented LPS-induced apoptosis, expression of the Bcl-2 family of proapoptotic proteins, caspase-3 activation, and PARP cleavage and altered mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor and phosphorylation and subsequent activation of p38-MAPK, stress-activated kinases (SAPK/JNK), protein kinase C, and cytoplasmic phospholipase A2 in RAW cells. Further, phosphorylation and degradation of inhibitory kappaB and consequent activation and nuclear translocation of the redox-sensitive transcription factor NF-kappaB were significantly prevented by benfotiamine. The LPS-induced increased expression of cytokines and chemokines and the inflammatory marker proteins iNOS and COX-2 and their metabolic products NO and PGE(2) was also blocked significantly. Thus, our results elucidate the molecular mechanism of the anti-inflammatory action of benfotiamine in LPS-induced inflammation in murine macrophages. Benfotiamine suppresses oxidative stress-induced NF-kappaB activation and prevents bacterial endotoxin-induced inflammation, indicating that vitamin B1 supplementation could be beneficial in the treatment of inflammatory diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  19. Apoptosis-like death, an extreme SOS response in Escherichia coli.

    Science.gov (United States)

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav; Engelberg-Kulka, Hanna

    2014-07-15

    In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. Importance: The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree

  20. Characterization of radiation-induced Apoptosis in rodent cell lines

    International Nuclear Information System (INIS)

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  1. Effect of pH on radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  2. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  3. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ziwei Miao

    2017-01-01

    Full Text Available d,l-Sulforaphane (SFN, a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment.

  4. Aspartame-induced apoptosis in PC12 cells

    OpenAIRE

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-induc...

  5. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  6. Protective role of benfotiamine, a fat soluble vitamin B1 analogue, in the lipopolysaccharide–induced cytotoxic signals in murine macrophages

    Science.gov (United States)

    Yadav, Umesh C S; Kalariya, Nilesh M; Srivastava, Satish K; Ramana, Kota V

    2010-01-01

    The study has been designed to investigate the molecular mechanisms by which benfotiamine, a lipid-soluble analogue of Vitamin B1 effects lipopolysaccharide (LPS) – induced inflammatory signals leading to cytotoxicity in mouse macrophage cell line RAW264.7. Benfotiamine prevented LPS-induced apoptosis, expression of Bcl-2 family of pro-apoptotic proteins, caspase-3 activation and PARP cleavage, altered mitochondrial membrane potential and release of cytochrome-c and apoptosis inducing factor (AIF), phosphorylation and subsequent activation of p38-MAPK, stress activated kinases (SAPK/JNK), Protein kinase C, and cytoplasmic-phospholipase A2 in RAW cells. Further, phosphorylation and degradation of inhibitory kappa B (IκB) and consequent activation and nuclear translocation of redox-sensitive transcription factor NF-κB was significantly prevented by benfotiamine. The LPS-induced increased expression of cytokines and chemokines and other inflammatory marker proteins iNOS and COX-2 and their metabolic products NO and PGE2 were also blocked significantly. Thus, our results elucidate the molecular mechanism of anti-inflammatory action of benfotiamine in LPS-induced inflammation in murine macrophage. Benfotiamine suppresses oxidative stress-induced NF-κB activation and prevents the bacterial endotoxin-induced inflammation indicating that vitamin B1 supplementation could be beneficial in the treatment of inflammatory diseases. PMID:20219672

  7. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells.

    Science.gov (United States)

    Lian, Jiqin; Karnak, David; Xu, Liang

    2010-11-01

    Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.

  8. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ren-Jie [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Lin, Su-Shuan [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Wu, Wen-Ren [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chen, Lih-Ren [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Division of Physiology, Livestock Research Institute, Council of Agriculture, Taiwan (China); Li, Chien-Feng [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan (China); National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan (China); Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Liang, Shih-Shin [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chien, Shang-Tao [Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan (China); Shiue, Yow-Ling, E-mail: ylshiue@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G{sub 2}/M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G{sub 2}/M cell cycle regulators, ABT-751 induced G{sub 2}/M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. - Highlights: • An anti-microtubule agent, ABT-751, induces autophagy and apoptosis in Huh-7 cells.

  9. The Curcumin Analogue 1,5-Bis(2-hydroxyphenyl-1,4-pentadiene-3-one Induces Apoptosis and Downregulates E6 and E7 Oncogene Expression in HPV16 and HPV18-Infected Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Felicia Paulraj

    2015-06-01

    Full Text Available In an effort to study curcumin analogues as an alternative to improve the therapeutic efficacy of curcumin, we screened the cytotoxic potential of four diarylpentanoids using the HeLa and CaSki cervical cancer cell lines. Determination of their EC50 values indicated relatively higher potency of 1,5-bis(2-hydroxyphenyl-1,4-pentadiene-3-one (MS17, 1.03 ± 0.5 μM; 2.6 ± 0.9 μM and 1,5-bis(4-hydroxy-3-methoxyphenyl-1,4-pentadiene-3-one (MS13, 2.8 ± 0.4; 6.7 ± 2.4 μM in CaSki and HeLa, respectively, with significantly greater growth inhibition at 48 and 72 h of treatment compared to the other analogues or curcumin. Based on cytotoxic and anti-proliferative activity, MS17 was selected for comprehensive apoptotic studies. At 24 h of treatment, fluorescence microscopy detected that MS17-exposed cells exhibited significant morphological changes consistent with apoptosis, corroborated by an increase in nucleosomal enrichment due to DNA fragmentation in HeLa and CaSki cells and activation of caspase-3 activity in CaSki cells. Quantitative real-time PCR also detected significant down-regulation of HPV18- and HPV16-associated E6 and E7 oncogene expression following treatment. The overall data suggests that MS17 treatment has cytotoxic, anti-proliferative and apoptosis-inducing potential in HPV-positive cervical cancer cells. Furthermore, its role in down-regulation of HPV-associated oncogenes responsible for cancer progression merits further investigation into its chemotherapeutic role for cervical cancer.

  10. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    Science.gov (United States)

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    Science.gov (United States)

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  12. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    Science.gov (United States)

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  13. 3,3'-diindolylmethane potentiates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of gastric cancer cells.

    Science.gov (United States)

    Ye, Yang; Miao, Shuhan; Wang, Yan; Zhou, Jianwei; Lu, Rongzhu

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) specifically kills cancer cells without destroying the majority of healthy cells. However, numerous types of cancer cell, including gastric cancer cells, tend to be resistant to TRAIL. The bioactive product 3,3'-diindolylmethane (DIM), which is derived from cruciferous vegetables, is also currently recognized as a candidate anticancer agent. In the present study, a Cell Counting Kit 8 cell growth assay and an Annexin V-fluorescein isothiocyanate apoptosis assay were performed to investigate the potentiating effect of DIM on TRAIL-induced apoptosis in gastric cancer cells, and the possible mechanisms of this potentiation. The results obtained demonstrated that, compared with TRAIL or DIM treatment alone, co-treatment with TRAIL (25 or 50 ng/ml) and DIM (10 µmol/l) induced cytotoxic and apoptotic effects in BGC-823 and SGC-7901 gastric cancer cells. Furthermore, western blot analysis revealed that the protein expression levels of death receptor 5 (DR5), CCAAT/enhancer binding protein homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) were upregulated in the co-treated gastric cancer cells. To the best of our knowledge, the present study is the first to provide evidence that DIM sensitizes TRAIL-induced inhibition of proliferation and apoptosis in gastric cancer cells, accompanied by the upregulated expression of DR5, CHOP and GRP78 proteins, which may be involved in endoplasmic reticulum stress mechanisms.

  14. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways

    International Nuclear Information System (INIS)

    Mu, Shumin; Tian, Xingsong; Ruan, Yongwei; Liu, Yuantao; Bian, Dezhi; Ma, Chunyan; Yu, Chunxiao; Feng, Mei; Wang, Furong; Gao, Ling; Zhao, Jia-jun

    2012-01-01

    Highlights: ► Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. ► Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. ► Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.

  15. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  16. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    Science.gov (United States)

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  17. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  18. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Science.gov (United States)

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  19. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  20. Human immunodeficiency virus envelope protein Gp120 induces proliferation but not apoptosis in osteoblasts at physiologic concentrations.

    Directory of Open Access Journals (Sweden)

    Nathan W Cummins

    Full Text Available Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05, which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism.

  1. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  2. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  3. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    deprivation in animals, including man11. Factor of apoptosis signal (Fas) induces apoptosis in activated T cells when they are repeatedly stimulated by antigen and functions to maintain T cell tolerance by deleting auto reactive cells12. The functional role of Fas (CD95) in the immune system has been examined in a variety ...

  4. Ketamine-induced apoptosis in cultured rat cortical neurons

    International Nuclear Information System (INIS)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-01

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons

  5. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage

    Directory of Open Access Journals (Sweden)

    He Li

    2018-05-01

    Full Text Available Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2, which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases, can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.

  6. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  7. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  8. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  9. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Shumin [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan 250011 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Tian, Xingsong; Ruan, Yongwei [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Liu, Yuantao [The Second Hospital of Shandong University, Jinan 250033 (China); Bian, Dezhi [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Jining Medical College, Jining 272013 (China); Ma, Chunyan [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Yu, Chunxiao [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Feng, Mei [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Wang, Furong [Shandong University of Traditional Chinese Medicine, Jinan 250011 (China); Gao, Ling [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Zhao, Jia-jun, E-mail: jjzhao@medmail.com.cn [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. Black-Right-Pointing-Pointer Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. Black-Right-Pointing-Pointer Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.

  10. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6

    International Nuclear Information System (INIS)

    Pisano, Marina; Palomba, Antonio; Tanca, Alessandro; Pagnozzi, Daniela; Uzzau, Sergio; Addis, Maria Filippa; Dettori, Maria Antonietta; Fabbri, Davide; Palmieri, Giuseppe; Rozzo, Carla

    2016-01-01

    We have previously demonstrated that the hydroxylated biphenyl compound D6 (3E,3′E)-4,4′-(5,5′,6,6′-tetramethoxy-[1,1′-biphenyl]-3,3′-diyl)bis (but-3-en-2-one), a structural analogue of curcumin, exerts a strong antitumor activity on melanoma cells both in vitro and in vivo. Although the mechanism of action of D6 is yet to be clarified, this compound is thought to inhibit cancer cell growth by arresting the cell cycle in G2/M phase, and to induce apoptosis through the mitochondrial intrinsic pathway. To investigate the changes in protein expression induced by exposure of melanoma cells to D6, a differential proteomic study was carried out on D6-treated and untreated primary melanoma LB24Dagi cells. Proteins were fractionated by SDS-PAGE and subjected to in gel digestion. The peptide mixtures were analyzed by liquid chromatography coupled with tandem mass spectrometry. Proteins were identified and quantified using database search and spectral counting. Proteomic data were finally uploaded into the Ingenuity Pathway Analysis software to find significantly modulated networks and pathways. Analysis of the differentially expressed protein profiles revealed the activation of a strong cellular stress response, with overexpression of several HSPs and stimulation of ubiquitin-proteasome pathways. These were accompanied by a decrease of protein synthesis, evidenced by downregulation of proteins involved in mRNA processing and translation. These findings are consistent with our previous results on gene expression profiling in melanoma cells treated with D6. Our findings confirm that the curcumin analogue D6 triggers a strong stress response in melanoma cells, turning down majority of cell functions and finally driving cells to apoptosis. The online version of this article (doi:10.1186/s12885-016-2362-6) contains supplementary material, which is available to authorized users

  11. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  13. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.

    Science.gov (United States)

    Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa

    2017-02-15

    Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  15. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    Science.gov (United States)

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  16. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  17. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  18. Radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Palayoor, S.T.; Coleman, C.N.; Bump, E.A.

    1994-01-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author)

  19. Radiation-induced apoptosis in F9 teratocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R E; Palayoor, S T; Coleman, C N; Bump, E A [Joint Center for Radiation Therapy and Dana Farber Cancer Inst., Boston (United States)

    1994-05-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-[beta]-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author).

  20. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  1. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  2. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  3. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    Science.gov (United States)

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  4. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation.

    Science.gov (United States)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-04-28

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels.

  5. SCGB3A2 Inhibits Acrolein-Induced Apoptosis through Decreased p53 Phosphorylation

    International Nuclear Information System (INIS)

    Kurotani, Reiko; Shima, Reika; Miyano, Yuki; Sakahara, Satoshi; Matsumoto, Yoshie; Shibata, Yoko; Abe, Hiroyuki; Kimura, Shioko

    2015-01-01

    Chronic obstructive pulmonary disease (COPD), a major global health problem with increasing morbidity and mortality rates, is anticipated to become the third leading cause of death worldwide by 2020. COPD arises from exposure to cigarette smoke. Acrolein, which is contained in cigarette smoke, is the most important risk factor for COPD. It causes lung injury through altering apoptosis and causes inflammation by augmenting p53 phosphorylation and producing reactive oxygen species (ROS). Secretoglobin (SCGB) 3A2, a secretory protein predominantly present in the epithelial cells of the lungs and trachea, is a cytokine-like small molecule having anti-inflammatory, antifibrotic, and growth factor activities. In this study, the effect of SCGB3A2 on acrolein-related apoptosis was investigated using the mouse fibroblast cell line MLg as the first step in determining the possible therapeutic value of SCGB3A2 in COPD. Acrolein increased the production of ROS and phosphorylation of p53 and induced apoptosis in MLg cells. While the extent of ROS production induced by acrolein was not affected by SCGB3A2, p53 phosphorylation was significantly decreased by SCGB3A2. These results demonstrate that SCGB3A2 inhibited acrolein-induced apoptosis through decreased p53 phosphorylation, not altered ROS levels

  6. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  7. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  8. Effect of aging on UVC-induced apoptosis of rat splenocytes

    International Nuclear Information System (INIS)

    Radziszewska, E.; Piwocka, K.; Bielak-Zmijewska, A.; Sikora, E.; Skierski, J.

    2000-01-01

    UVC-induced apoptotic symptoms such as morphological changes, DNA fragmentation, Bcl-2 and Bax protein expression were examined in primary splenocyte cultures from young (3 months) and old (24 months) rats. The activities of AP-1 and CRE transcription factors in UVC-irradiated splenocytes were also assessed. At 24 h after UVC irradiation 40% of cells derived from young rats were found to be apoptotic, which was twice as much as in splenocytes from old rats. Apoptosis in cells from old rats did not give typical symptoms like a ''DNA ladder'' and Bcl-2 protein downregulation, in contrast to splenocytes from young rats. No AP-1 transcription factor activity was found in UVC-irradiated splenocytes from old animals and only a trace activity in splenocytes from young animals. This indicates that, UVC-induced apoptosis in rat splenocytes is practically AP-1 independent and that cells from old rats are less sensitive to UVC irradiation than splenocytes from young rats. (author)

  9. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  10. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.

    Science.gov (United States)

    Son, Eun Suk; Kim, Se-Hee; Ryter, Stefan W; Yeo, Eui-Ju; Kyung, Sun Young; Kim, Yu Jin; Jeong, Sung Hwan; Lee, Chang Soo; Park, Jeong-Woong

    2018-04-01

    Recent studies demonstrate that the autophagy-dependent turnover of mitochondria (mitophagy) mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure, and contributes to emphysema development in vivo during chronic cigarette smoke (CS)-exposure, although the underlying mechanisms remain unclear. Here, we investigated the role of mitophagy in regulating apoptosis in CSE-exposed human lung bronchial epithelial cells. Furthermore, we investigated the potential of the polymethoxylated flavone antioxidant quercetogetin (QUE) to inhibit CSE-induced mitophagy-dependent apoptosis. Our results demonstrate that CSE induces mitophagy in epithelial cells via mitochondrial dysfunction, and causes increased expression levels of the mitophagy-regulator protein PTEN-induced putative kinase-1 (PINK1) and the mitochondrial fission protein dynamin-1-like protein (DRP-1). CSE induced epithelial cell death and increased the expression of the apoptosis-related proteins cleaved caspase-3, -8 and -9. Caspase-3 activity was significantly increased in Beas-2B cells exposed to CSE, and decreased by siRNA-dependent knockdown of DRP-1. Treatment of epithelial cells with QUE inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting phospho (p)-DRP-1 and PINK1 expression. QUE suppressed mitophagy-dependent apoptosis by inhibiting the expression of cleaved caspase-3, -8 and -9 and downregulating caspase activity in human bronchial epithelial cells. These findings suggest that QUE may serve as a potential therapeutic in CS-induced pulmonary diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The effects of cysteamine on the radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Choi, Young Min; Cho, Heung Lae; Park, Chang Gyo; Lee, Hyung Sik; Hur, Won Joo

    2000-01-01

    To investigate the pathways of radiation induced apoptosis and the effect of cysteamine (β-mercaptoethylamine), as a radioprotector, on it. HL-60 cells were assigned to control, irradiated, and cysteamine (1 mM, 10 mM) pretreated groups. Irradiation was given in a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaiuate its relation to the radiation induced apoptosis. To evaluate the role of cysteamine in radiation induced apoptosis, the number of viable cells, the expression and activity or caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL cells with cysteamine pretreatment or not. The intracellular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation( p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells in 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was increased by irradialion(p>0.05). However, this increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred, after irradiation, which was attenuated by the pretreatment of 1 mM cysteamine. These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells

  12. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  13. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-01-01

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  14. Apoptosis-induced lymphopenia in sepsis and other severe injuries.

    Science.gov (United States)

    Girardot, Thibaut; Rimmelé, Thomas; Venet, Fabienne; Monneret, Guillaume

    2017-02-01

    Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.

  15. The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.

    Directory of Open Access Journals (Sweden)

    Amanda L Patchett

    Full Text Available The survival of the Tasmanian devil (Sarcophilus harrisii is threatened by devil facial tumour disease (DFTD. This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7 signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.

  16. Angiotensin II protects primary rat hepatocytes against bile salt-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available UNLABELLED: Angiotensin II (AT-II is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R and thereby activates hepatic stellate cells (HSCs. AT-II receptor blockers (ARBs are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-1R blockers may induce hepatocyte injury. Therefore, we investigated the effect of AT-II and its receptor blockers on cytokine-, oxidative stress- and bile salt-induced cell death in hepatocytes. Primary rat hepatocytes were exposed to TNF-α/Actinomycin D, the ROS-generating agent menadione or the bile salts: glycochenodeoxycholic acid (GCDCA and tauro-lithocholic acid-3 sulfate (TLCS, to induce apoptosis. AT-II (100 nmol/L was added 10 minutes prior to the cell death-inducing agent. AT-1R antagonists (Sartans and the AT-2R antagonist PD123319 were used at 1 µmol/L. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (Sytox green staining were quantified. Expression of CHOP (marker for ER stress and AT-II receptor mRNAs were quantified by Q-PCR. AT-II dose-dependently reduced GCDCA-induced apoptosis of hepatocytes (-50%, p<0.05 without inducing necrosis. In addition, AT-II reduced TLCS-induced apoptosis of hepatocytes (-50%, p<0.05. However, AT-II did not suppress TNF/Act-D and menadione-induced apoptosis. Only the AT-1R antagonists abolished the protective effect of AT-II against GCDCA-induced apoptosis. AT-II increased phosphorylation of ERK and a significant reversal of the protective effect of AT-II was observed when signaling kinases, including ERK, were inhibited. Moreover, AT-II prevented the GCDCA-induced expression of CHOP (the marker of the ER-mediated apoptosis. CONCLUSION: Angiotensin II protects hepatocytes from bile salt-induced apoptosis through a combined activation of PI3-kinase, MAPKs, PKC pathways and inhibition of bile salt-induced ER stress. Our results suggest a mechanism for the observed hepatocyte

  17. Pharmacological manipulation of radiation induced apoptosis in a cervical carcinoma cell line

    International Nuclear Information System (INIS)

    Kamradt, M.; Mohideen, N.; Krueger, E.; Sokolova, I.A.; Khodarev, N.N; Vaughan, A.T.M.

    1997-01-01

    treated and irradiated cells returned DNA laddering levels to that observed in irradiated samples alone. Dexamethasone treatment decreased p53 protein levels by approximately 30% as compared to control cells while Mifepristone treatment alone did not alter p53 levels. However, Mifepristone treatment did not completely antagonize the effect of dexamethasone on p53 levels as those cells treated with both dexamethasone and Mifepristone showed a 10% decrease in p53 protein as compared to untreated cells. Conclusion: It is possible to restrict access to radiation induced apoptosis in C4-1 cervical cells by exposure to dexamethasone and reverse this by exposure to its antagonist Mifepristone. These reactions are likely to be mediated by an increase in E6 and E7 transcription and their subsequent effects on p53 and/or Rb. It is likely that dexamethasone promotes the sequestration and degradation of p53 by the HPV E6 protein which correlates with decreased radiation induced apoptosis in cervical cancer cells. Such a pathway may also operate in women with HPV +ve cervix cancer through action of either normal or artificially administered steroids. Since Mifepristone has been shown to restore radiation induced apoptosis in steroid treated cervical cancer cells, it is possible to consider pharmacological modulation of apoptosis in HPV +ve cervical cancer using steroid antagonists

  18. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  19. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  20. Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis.

    Science.gov (United States)

    Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S

    2015-04-16

    This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination indextrigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.

  1. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  2. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Denamur, Sophie; Boland, Lidvine [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Beyaert, Maxime [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Verstraeten, Sandrine L. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Fillet, Marianne [University of Liege, CIRM, Department of Pharmacy, Laboratory for the Analysis of Medicines, Quartier Hopital, Avenue Hippocrate, 15, B36, Tower 4, 4000 Liège 1 (Belgium); Tulkens, Paul M. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Bontemps, Françoise [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Mingeot-Leclercq, Marie-Paule [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium)

    2016-10-15

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  3. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    International Nuclear Information System (INIS)

    Denamur, Sophie; Boland, Lidvine; Beyaert, Maxime; Verstraeten, Sandrine L.; Fillet, Marianne; Tulkens, Paul M.; Bontemps, Françoise; Mingeot-Leclercq, Marie-Paule

    2016-01-01

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  4. A Novel α-Calcitonin Gene-Related Peptide Analogue Protects Against End-Organ Damage in Experimental Hypertension, Cardiac Hypertrophy and Heart Failure

    DEFF Research Database (Denmark)

    Aubdool, Aisah A; Thakore, Pratish; Argunhan, Fulye

    2017-01-01

    cardiovascular disease in two distinct murine models of hypertension and heart failure in vivoMethods -The ability of the αAnalogue to act selectively via the CGRP pathway was shown in skin using a CGRP receptor antagonist. The effect of the αAnalogue on Angiotensin II (AngII)-induced hypertension......, Western blot and histology. Results -The AngII-induced hypertension was attenuated by co-treatment with the αAnalogue (50nmol/kg/day, s.c., at a dose selected for lack of long term hypotensive effects at baseline). The αAnalogue protected against vascular, renal and cardiac dysfunction, characterised...... failure. It preserved heart function, assessed by echocardiography, whilst protecting against adverse cardiac remodelling and apoptosis. Moreover, treatment with the αAnalogue was well-tolerated with neither signs of desensitisation nor behavioural changes. Conclusions -These findings, in two distinct...

  5. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  6. ING1 induces apoptosis through direct effects at the mitochondria

    DEFF Research Database (Denmark)

    Bose, P; Thakur, S; Thalappilly, S

    2013-01-01

    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear....... Bioinformatic analysis of the yeast interactome indicates that yeast ING proteins interact with 64 mitochondrial proteins. Also, sequence analysis of ING1 reveals the presence of a BH3-like domain. These data suggest a model in which stress-induced cytoplasmic relocalization of ING1 by14-3-3 induces ING1-BAX...

  7. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells.

    Science.gov (United States)

    Mansoor, Tayyab A; Borralho, Pedro M; Luo, Xuan; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-07-15

    Thirteen compounds belonging to different classes of alkaloids (1-9) and lignans (10-13), isolated from the methanol extract of roots of the African medicinal plant Zanthoxylum capense, were assayed for their ability as apoptosis inducers in HCT116 colon carcinoma cells. The cytotoxicity of these compounds was evaluated in HCT116 colon carcinoma cells by the MTS assay. Out of the tested compounds, three benzophenanthridine alkaloids (1, 4, and 7), a dibenzyl butyrolactone lignan (10), and two 2-arylbenzofuran neolignans (12 and 13) displayed significant cytotoxicity to HCT116 cells, confirmed by the Guava ViaCount viability assay. The selected compounds (1, 4, 7, 10, 12, and 13) were further tested for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Morphologic evaluation of HCT116 nuclei following Hoechst staining and fluorescence microscopy revealed that compounds 1, 4, 7, 10, 12, and 13 induced apoptosis in HCT116 colon carcinoma cells, producing similar, or higher, apoptosis levels when compared with 5-fluorouracil (5-FU), the cornerstone cytotoxic used in colon cancer treatment for several decades. In fact, HCT116 cells developed morphological changes characteristic of apoptosis, including chromatin condensation, nuclear fragmentation and formation of apoptotic bodies. Importantly, compounds 4 and 13 at 20 μM were the most promising in this study, inducing respectively ∼11- and 7-fold increases in apoptotic cells as compared to vehicle control, whereas 5-FU increased apoptosis by ∼2-fold. Apoptosis induction for compounds 4 and 13 was further confirmed by caspase-3-like activity assays, which showed respectively ∼2- and 1.5-fold increases in caspase-3-like activity compared to vehicle control. These results suggested that specific benzophenanthridine alkaloids and 2-arylbenzofuran neolignans isolated from Zanthoxylum capense show strong anticancer

  8. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  9. Differences in the rate of oestrogen-induced apoptosis in breast cancer by oestradiol and the triphenylethylene bisphenol

    Science.gov (United States)

    Obiorah, I E; Jordan, V C

    2014-01-01

    Background and Purpose Triphenylethylene (TPE)-like compounds were the first agents to be used in the treatment of metastatic breast cancer in postmenopausal women. Although structurally related to the anti-oestrogen, 4-hydroxytamoxifen, TPEs possess oestrogenic properties in fully oestrogenized breast cancer cells but do not induce apoptosis with short-term treatment in long-term oestrogen-deprived breast cancer cells. This study determined the differential effects of bisphenol, a TPE, on growth and apoptosis based on the modulation of the shape of the ligand–oestrogen receptor complex. Experimental Approach Apoptotic flow cytometric studies were used to evaluate apoptosis over time. Proliferation of the breast cancer cells was assessed using DNA quantification and cell cycle analysis. Real-time PCR was performed to quantify mRNA levels of apoptotic genes. Regulation of cell cycle and apoptotic genes was determined using PCR-based arrays. Key Results Bisphenol induced an up-regulation of cell cycle genes similar to those induced by 17β oestradiol (E2). Unlike the changes induced by E2 that occur after 24 h, the apoptosis evoked by bisphenol occurred after 4 days, with quantifiable apoptotic changes noted at 6 days. A prolonged up-regulation of endoplasmic reticulum stress and inflammatory stress response genes was observed with subsequent activation of apoptosis-related genes in the second week of treatment with bisphenol. Conclusions and Implications The bisphenol: ERα complex induces delayed biological effects on the growth and apoptosis of breast cancer cells. Both the shape of the complex and the duration of treatment control the initiation of apoptosis. PMID:24819221

  10. Micafungin induced apoptosis in Candida parapsilosis independent of its susceptibility to micafungin

    Directory of Open Access Journals (Sweden)

    Fazal Shirazi

    2015-10-01

    Full Text Available We hypothesized that the cell wall inhibitor micafungin (MICA induces apoptosis in both MICA-susceptible (MICA-S and MICA–non-susceptible (MICA-NS Candida parapsilosis. Antifungal activity and apoptosis were analyzed in MICA-S and MICA-NS C. parapsilosis strains following exposure to micafungin for 3 h at 37°C in RPMI 1640 medium. Apoptosis was characterized by detecting phosphatidylserine externalization (PS, plasma membrane integrity, reactive oxygen species (ROS generation, mitochondrial membrane potential changes, adenosine triphosphate (ATP release, and caspase-like activity. Apoptosis was detected in MICA exposed (0.25 to 1 mg/L susceptible C. parapsilosis strains and was associated with apoptosis of 20-52% of analyzed cells versus only 5-30% of apoptosis in MICA-NS cells exposed to micafungin (0.5 to 2 mg/L; P = 0.001. The MICA antifungal activity was correlated with apoptotic cells showing increased dihydrorhodamine-123 staining (indicating ROS production, Rh-123 staining (decreased mitochondrial membrane potential, elevated ATP, and increased metacaspase activity. In conclusion, MICA is pro-apoptotic in MICA-S cells, but still exerts apoptotic effects in MICA –NS C. parapsilosis.

  11. Dose-effect relationship of apoptosis induced by fission-neutron in murine thymocytes

    International Nuclear Information System (INIS)

    Yuan Bin; Li Liang; Xue Wencheng; Sun Jianmin; Wang Baoqin

    2000-01-01

    Objective: To investigate the effectiveness of high LET fission-neutron to induce apoptosis in murine thymocytes and to compare it with that of low LET 60 Co γ-ray. Methods: Apoptosis induction was studied qualitatively by light and transmission electron microscopy and DNA gel electrophoresis,also quantitatively by flow cytometry(FCM) and diphenylamine (DPA)methods. Results: DNA ladders of murine thymocytes were detectable, the typical apoptosis of thymocytes could be observed morphologically by means of light and electron microscopy at 6 h after fission-neutron irradiation with doses ranging from 0.5 to 5.0 Gy, meanwhile the percentages of apoptosis increased with increasing doses. After exposure to γ-rays with doses ranging from 1.0 to 30 Gy, the experimental results were similar to those from neutron radiation. The incidence of apoptosis peaked at about 20 Gy, the percentages did not increase further when doses increased. Conclusion: Apoptosis of murine thymocytes can be induced when mice are exposed to either fission-neutron (0.5-5.0 Gy) or to γ-ray (1-30 Gy). Although the relationship between apoptosis and radiation doses is similar, the percentage of apoptosis induced by neutron irradiation is higher than that induced by γ-irradiation. The RBE values of fission-neutron for inducing apoptosis murine thymocytes are 2.09 (by FCM method) and 2.37 (by DPA method), respectively. These results also suggest that fission-neutron-induced murine immune tissue is more severe than that induced by γ-rays at several hours post-irradiation and this might be the basis for heavy damage to immune tissues induced by fission-neutron-irradiation in later period

  12. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis

    International Nuclear Information System (INIS)

    Li Tie; Lu Luo

    2007-01-01

    CTCF, a nuclear transcriptional factor, is a multifunctional protein and involves regulation of growth factor- and cytokine-induced cell proliferation/differentiation. In the present study, we investigated the role of CTCF in protecting stress-induced apoptosis in various human cell types. We found that UV irradiation and hyper-osmotic stress induced human corneal epithelial (HCE) and hematopoietic myeloid cell apoptosis detected by significantly increased caspase 3 activity and decreased cell viability. The stress-induced apoptotic response in these cells requires down-regulation of CTCF at both mRNA and protein levels, suggesting that CTCF may play an important role in downstream events of stress-induced signaling pathways. Inhibition of NFκB activity prevented stress-induced down-regulation of CTCF and increased cell viability against stress-induced apoptosis. The anti-apoptotic effect of CTCF was further studied by manipulating CTCF activities in HCE and hematopoietic cells. Transient transfection of cDNAs encoding full-length human CTCF markedly suppressed stress-induced apoptosis in these cells. In contrast, knocking down of CTCF mRNA using siRNA specific to CTCF significantly promoted stress-induced apoptosis. Thus, our results reveal that CTCF is a down stream target of stress-induced signaling cascades and it plays a significant anti-apoptotic role in regulation of stress-induced cellular responses in HCE and hematopoietic myeloid cells

  13. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  14. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor

    Directory of Open Access Journals (Sweden)

    Guido Kroemer

    2001-01-01

    Full Text Available Programmed cell death (apoptosis is the physiological process responsible for the demise of superfluous, aged, damaged, mutated, and ectopic cells. Its normal function is essential both for embryonic development and for maintenance of adult tissue homeostasis. Deficient apoptosis participates in cancerogenesis, whereas excessive apoptosis leads to unwarranted cell loss accounting for disparate diseases including neurodegeneration and AIDS. One critical step in the process of apoptosis consists in the permeabilization of mitochondrial membranes, leading to the release of proteins which normally are secluded behind the outer mitochondrial membrane[1]. For example, cytochrome c, which is normally confined to the mitochondrial intermembrane space, is liberated from mitochondria and interacts with a cytosolic protein, Apaf-1, causing its oligomerization and constitution of the so-called apoptosome, a protein complex which activates a specific class of cysteine proteases, the caspases[2]. Another example concerns the so-called apoptosis-inducing factor (AIF, another mitochondrial intermembrane protein which can translocate to the nucleus where it induces chromatin condensation and DNA fragmentation[3].

  15. TNF-Like Weak Inducer of Apoptosis Aggravates Left Ventricular Dysfunction after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Kai-Uwe Jarr

    2014-01-01

    Full Text Available Background. TNF-like weak inducer of apoptosis (TWEAK has recently been shown to be potentially involved in adverse cardiac remodeling. However, neither the exact role of TWEAK itself nor of its receptor Fn14 in this setting is known. Aim of the Study. To analyze the effects of sTWEAK on myocardial function and gene expression in response to experimental myocardial infarction in mice. Results. TWEAK directly suppressed the expression of PGC-1α and genes of oxidative phosphorylation (OXPHOS in cardiomyocytes. Systemic sTWEAK application after MI resulted in reduced left ventricular function and increased mortality without changes in interstitial fibrosis or infarct size. Molecular analysis revealed decreased phosphorylation of PI3K/Akt and ERK1/2 pathways associated with reduced expression of PGC-1α and PPARα. Likewise, expression of OXPHOS genes such as atp5O, cycs, cox5b, and ndufb5 was also reduced. Fn14 -/- mice showed significantly improved left ventricular function and PGC-1α levels after MI compared to their respective WT littermates (Fn14 +/+. Finally, inhibition of intrinsic TWEAK with anti-TWEAK antibodies resulted in improved left ventricular function and survival. Conclusions. TWEAK exerted maladaptive effects in mice after myocardial infarction most likely via direct effects on cardiomyocytes. Analysis of the potential mechanisms revealed that TWEAK reduced metabolic adaptations to increased cardiac workload by inhibition of PGC-1α.

  16. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  17. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  18. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    International Nuclear Information System (INIS)

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  19. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  20. Neem oil limonoids induces p53-independent apoptosis and autophagy

    Science.gov (United States)

    Chandra, Dhyan

    2012-01-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells. PMID:22915764

  1. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  2. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    NARCIS (Netherlands)

    Leszczynska, K.B.; Foskolou, I.P.; Abraham, A.G.; Anbalagan, S.; Tellier, C.; Haider, S.; Span, P.N.; O'Neill, E.E.; Buffa, F.M.; Hammond, E.M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent

  3. Knock-Down of Endogenous Bornavirus-Like Nucleoprotein 1 Inhibits Cell Growth and Induces Apoptosis in Human Oligodendroglia Cells

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-03-01

    Full Text Available Endogenous bornavirus-like nucleoprotein elements (EBLNs have been discovered in the genomes of various animals including humans, whose functions have been seldom studied. To explore the biological functions of human EBLNs, we constructed a lentiviral vector expressing a short-hairpin RNA against human EBLN1, which successfully inhibited EBLN1 expression by above 80% in infected human oligodendroglia cells (OL cells. We found that EBLN1 silencing suppressed cell proliferation, induced G2/M phase arrest, and promoted apoptosis in OL cells. Gene expression profiling demonstrated that 1067 genes were up-regulated, and 2004 were down-regulated after EBLN1 silencing. The top 10 most upregulated genes were PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the top 10 most-downregulated genes were KRTAP2-4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, SUV420H1, ZC3H4, YAE1D1, and NCOA5. Pathway analysis revealed that these differentially expressed genes were mainly involved in pathways related to the cell cycle, the mitogen-activated protein kinase pathway, p53 signaling, and apoptosis. The gene expression profiles were validated by using quantitative reverse transcription polymerase chain reaction (RT-PCR for detecting these 20 most-changed genes. Three genes closely related to glioma, RND3, OSMR, and CREB3L2, were significantly upregulated and might be the key factors in EBLN1 regulating the proliferation and apoptosis of OL cells. This study provides evidence that EBLN1 plays a key role in regulating cell life and death, thereby opening several avenues of investigation regarding EBLN1 in the future.

  4. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  5. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    International Nuclear Information System (INIS)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun; Wu, Biao; Li, Shengnan

    2017-01-01

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  6. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jie; Zhu, Chao; Hong, Yali; Sun, Zongxing; Fang, Xianjun [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China); Wu, Biao, E-mail: wubiao@ncu.edu.cn [Department of Surgery, The First Affiliated Hospital, Nanchang University (China); Li, Shengnan, E-mail: snli@njmu.edu.cn [Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029 (China)

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.

  7. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  8. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  11. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  12. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  13. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    Science.gov (United States)

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  14. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-01-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  15. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  16. Vaccination with IL-6 analogues induces autoantibodies to IL-6 and influences experimentally induced inflammation

    DEFF Research Database (Denmark)

    Galle, Pia; Jensen, Lene; Andersson, Christina

    2007-01-01

    ; yet they appear healthy and do not exhibit overt clinical or laboratory abnormalities. We induced comparable levels of aAb-IL-6 in different mouse strains by vaccination with immunogenic IL-6 analogues. We observed that the induced aAb-IL-6 protected against collagen-induced arthritis and experimental...

  17. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  18. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Cheng [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Sun, Hong [Hubei Maternal and Child Health Hospital, Wuhan 430070 (China); Xie, Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072 (China); Wang, Jianghua; Zhang, Guirong; Chen, Nan [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Yan, Wei, E-mail: Yanwei75126@163.com [Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064 (China); Li, Guangyu, E-mail: ligy2001@163.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China)

    2014-04-01

    Highlights: • MCLR-induced apoptosis in the heart of developing embryos leads to the growth delay in zebrafish. • MCLR-triggered apoptosis might be induced by ROS. • P53–Bax–Bcl-2 and caspase-dependent apoptotic pathway contribute greatly to MCLR-induced apoptosis. Abstract: We previously demonstrated that cyanobacteria-derived microcystin–leucine–arginine (MCLR) is able to induce developing toxicity, such as malformation, growth delay and also decreased heart rates in zebrafish embryos. However, the molecular mechanisms by which MCLR induces its toxicity during the development of zebrafish remain largely unknown. Here, we evaluate the role of apoptosis in MCLR-induced developmental toxicity. Zebrafish embryos were exposed to various concentrations of MCLR (0, 0.2, 0.5, 2, and 5.0 mg L⁻¹ for 96 h, at which time reactive oxygen species (ROS) was significantly induced in the 2 and 5.0 mg L⁻¹ MCLR exposure groups. Acridine orange (AO) staining and terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure resulted in cell apoptosis. To test the apoptotic pathway, the expression pattern of several apoptotic-related genes was examined for the level of enzyme activity, gene and protein expression, respectively. The overall results demonstrate that MCLR induced ROS which consequently triggered apoptosis in the heart of developing zebrafish embryos. Our results also indicate that the p53–Bax–Bcl-2 pathway and the caspase-dependent apoptotic pathway play major roles in MCLR-induced apoptosis in the developing embryos.

  19. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  20. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3

    International Nuclear Information System (INIS)

    Holl, V.P.

    2000-01-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  1. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances vascular and renal damage induced by hyperlipidemic diet in ApoE-knockout mice.

    Science.gov (United States)

    Muñoz-García, Begoña; Moreno, Juan Antonio; López-Franco, Oscar; Sanz, Ana Belén; Martín-Ventura, José Luis; Blanco, Julia; Jakubowski, Aniela; Burkly, Linda C; Ortiz, Alberto; Egido, Jesús; Blanco-Colio, Luis Miguel

    2009-12-01

    Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily of cytokines. TWEAK binds and activates the Fn14 receptor, and may regulate apoptosis, inflammation, and angiogenesis, in different pathological conditions. We have evaluated the effect of exogenous TWEAK administration as well as the role of endogenous TWEAK on proinflammatory cytokine expression and vascular and renal injury severity in hyperlipidemic ApoE-knockout mice. ApoE(-/-) mice were fed with hyperlipidemic diet for 4 to 10 weeks, then randomized and treated with saline (controls), TWEAK (10 microg/kg/d), anti-TWEAK neutralizing mAb (1000 microg/kg/d), TWEAK plus anti-TWEAK antibody (10 microg TWEAK +1000 microg anti-TWEAK/kg/d), or nonspecific IgG (1000 microg/kg/d) daily for 9 days. In ApoE(-/-) mice, exogenous TWEAK administration in ApoE(-/-) mice induced activation of NF-kappaB, a key transcription factor implicated in the regulation of the inflammatory response, in vascular and renal lesions. Furthermore, TWEAK treatment increased chemokine expression (RANTES and MCP-1), as well as macrophage infiltration in atherosclerotic plaques and renal lesions. These effects were associated with exacerbation of vascular and renal damage. Conversely, treatment of ApoE(-/-) mice with an anti-TWEAK blocking mAb decreased NF-kappaB activation, proinflammatory cytokine expression, macrophage infiltration, and vascular and renal injury severity, indicating a pathological role for endogenous TWEAK. Finally, in murine vascular smooth muscle cells or tubular cells, either ox-LDL or TWEAK treatment increased expression and secretion of both RANTES and MCP-1. Furthermore, ox-LDL and TWEAK synergized for induction of MCP-1 and RANTES expression and secretion. Our results suggest that TWEAK exacerbates the inflammatory response associated with a high lipid-rich diet. TWEAK may be a novel therapeutic target to prevent vascular and renal damage associated with

  2. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  3. Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3β pathway in rats.

    Science.gov (United States)

    Chen, Lin; Wei, Xinbing; Hou, Yunfeng; Liu, Xiaoqian; Li, Senpeng; Sun, Baozhu; Liu, Xinyong; Liu, Huiqing

    2014-01-01

    CXC195 showed strongest protective effects among the ligustrazine derivatives in cells and prevented apoptosis induced by H2O2 injury. We recently demonstrated that CXC195 protected against cerebral ischemia/reperfusion (I/R) injury by its antioxidant activity. However, whether the anti-apoptotic action of CXC195 is involved in cerebral I/R injury is unknown. Here, we investigated the role of CXC195 in apoptotic processes induced by cerebral I/R and the possible signaling pathways. Male Wistar rats were submitted to transient middle cerebral artery occlusion for 2h, followed by 24h reperfusion. CXC195 was injected intraperitoneally at 2h and 12h after the onset of ischemia. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related protein cleaved caspase-3, Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of CXC195 at the doses of 3mg/kg and 10mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, CXC195 treatment markedly increased the phosphorylation of Akt and GSK3β. Blockade of PI3K activity by wortmannin, dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Our study firstly demonstrated that CXC195 protected against cerebral I/R injury by reducing apoptosis in vivo and PI3K/Akt/GSK3β pathway involved in the anti-apoptotic effect. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. Effect of a hypoxic cell sensitizer doranidazole on the radiation-induced apoptosis of mouse L5178Y lymphoma cells

    International Nuclear Information System (INIS)

    Aoki, Mizuho; Furusawa, Yoshiya; Shibamoto, Yuta

    2002-01-01

    We investigated the sensitizing effect of the 2-nitroimidazole analogue doranidazole, a new hypoxic radiosensitizer, on radiation-induced apoptosis in L5178Y cells. Apoptosis was assessed by checking DNA ladder formation, the presence of sub-G1 peaks in flow cytometry, and chromation condensation. A radiosensitizing effect of doranidazole was also confirmed by a soft-agar colony assay of surviving cells. In the assay of DNA ladder formation, DNA fragmentation was observed following irradiation under an aerobic or hypoxic condition with or without doranidazole. The proportions of the cells at the sub-G1 peak in a flow cytometric measurement was not very different among the irradiations at 5 Gy under the aerobic condition, 15 Gy under hypoxia, and 10 Gy with 1 mM doranidazole under hypoxia. The fraction of cells with chromatin condensation was found to be significantly increased with doranidazole up to 3 mM when applied under hypoxic irradiation, but did not increase even at 10 mM. The sensitizer enhancement ratio was estimated to be about 1.7 with a concentration of 1 mM. This enhancement ratio was not different from that observed by assaying cell survivals. On the other hand, doranidazole showed no radiosensitizing effect under aerobic conditions with 1 mM. In conclusion, the radiation-induced apoptosis of L5178Y cells was enhanced by doranidazole under hypoxia. (author)

  5. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  6. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Verheij, M.; Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; Blitterswijk, W.J. van; Fuks, Z.; Haimovitz-Friedman, A.

    1998-01-01

    Ionizing radiation, like a variety of other cellular stress factors, initiates apoptosis, or programmed cell death, in many cell systems. This mode of radiation-induced cell kill should be distinguished from clonogenic cell death due to unrepaired DNA damage. Ionizing radiation not only exerts its effect on the nuclear DNA, but also at the plasma membrane level where it may activate multiple signal transduction pathways. One of these pathways is the stress-activated protein kinase (SAPK) cascade which transduces death signals from the cell membrane to the nucleus. This review discusses recent evidence on the critical role of this signaling system in radiation- and stress-induced apoptosis. An improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction

    Directory of Open Access Journals (Sweden)

    Louis Chesler

    2008-11-01

    Full Text Available Chemoresistance in neuroblastoma is a significant issue complicating treatment of this common pediatric solid tumor. MYCN-amplified neuroblastomas are infrequently mutated at p53 and are chemosensitive at diagnosis but acquire p53 mutations and chemoresistance with relapse. Paradoxically, Myc-driven transformation is thought to require apoptotic blockade. We used the TH-MYCN transgenic murine model to examine the role of p53-driven apoptosis on neuroblastoma tumorigenesis and the response to chemotherapy. Tumors formed with high penetrance and low latency in p53-haploinsufficient TH-MYCN mice. Cyclophosphamide (CPM induced a complete remission in p53 wild type TH-MYCN tumors, mirroring the sensitivity of childhood neuroblastoma to this agent. Treated tumors showed a prominent proliferation block, induction of p53 protein, and massive apoptosis proceeding through induction of the Bcl-2 homology domain-3-only proteins PUMA and Bim, leading to the activation of Bax and cleavage of caspase-3 and -9. Apoptosis induced by CPM was reduced in p53-haploinsufficient tumors. Treatment of MYCN-expressing human neuroblastoma cell lines with CPM induced apoptosis that was suppressible by siRNA to p53. Taken together, the results indicate that the p53 pathway plays a significant role in opposing MYCN-driven oncogenesis in a mouse model of neuroblastoma and that basal inactivation of the pathway is achieved in progressing tumors. This, in part, explains the striking sensitivity of such tumors to chemotoxic agents that induce p53-dependent apoptosis and is consistent with clinical observations that therapy-associated mutations in p53 are a likely contributor to the biology of tumors at relapse and secondarily mediate resistance to therapy.

  8. Molecular mechanism of X-ray-induced p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hisako [Tokyo Metropolitan Inst. of Medical Center (Japan)

    1999-03-01

    Radiation-induced cell death has been classified into the interphase- and mitotic-ones, both of which apoptosis involving. This review described the molecular mechanism of the apoptosis, focusing on its p53-dependent process. It is known that there are genes regulating cell death either negatively or positively and the latter is involved in apoptosis. As an important factor in the apoptosis, p53 has become remarkable since it was shown that X-ray-induced apoptosis required RNA and protein syntheses in thymocytes and those cells of p53 gene-depleted mouse were shown to be resistant to gamma-ray-induced apoptosis. Radiation sensitivity of MOLT-4 cells derived from human T cell leukemia, exhibiting the typical X-ray-induced p53-dependent apoptosis, depends on the levels of p53 mRNA and protein. p53 is a gene suppressing tumor and also a transcription factor. Consequently, mutation of p53 conceivably leads to the failure of cell cycle regulation, which allows damaged cells to divide without both repair and exclusion due to loss of the apoptotic mechanism, and finally results in carcinogenesis. The radiation effect occurs in the order of the cell damage, inhibition of p53-Mdm2 binding, accumulation of p53, activation of mdm2 transcription, Mdm2 accumulation, p53-protein degradation and recovery to the steady state level. Here, the cystein protease (caspases) plays an important role as a disposing mechanism for cells scheduled to die. However, many are unknown to be solved in future. (K.H.) 119 refs.

  9. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    Science.gov (United States)

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  10. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  11. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  12. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    Science.gov (United States)

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  13. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    International Nuclear Information System (INIS)

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  14. Ischemia leads to apoptosis--and necrosis-like neuron death in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Stadelmann, Christine; Bastholm, Lone

    2004-01-01

    necrosis; its expression peaked on days 3 to 4. Silver staining for nucleoli, which are a substrate for caspase-3, revealed a profound loss of nucleoli in cells with apoptosis-like morphology, whereas cells with necrosis-like morphology showed intact nucleoli. Overall, cells with apoptosis-like morphology...

  15. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  16. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  17. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  18. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  19. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  20. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    Science.gov (United States)

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  1. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  2. Glucagon-like peptide-1 analogue prevents nonalcoholic steatohepatitis in non-obese mice.

    Science.gov (United States)

    Yamamoto, Takaya; Nakade, Yukiomi; Yamauchi, Taeko; Kobayashi, Yuji; Ishii, Norimitsu; Ohashi, Tomohiko; Ito, Kiyoaki; Sato, Ken; Fukuzawa, Yoshitaka; Yoneda, Masashi

    2016-02-28

    To investigate whether a glucagon-like peptide-1 (GLP-1) analogue inhibits nonalcoholic steatohepatitis (NASH), which is being increasingly recognized in Asia, in non-obese mice. A methionine-choline-deficient diet (MCD) along with exendin-4 (20 μg/kg per day, ip), a GLP-1 analogue, or saline was administered to male db/db mice (non-obese NASH model). Four or eight weeks after commencement of the diet, the mice were sacrificed and their livers were excised. The excised livers were examined by histochemistry for evidence of hepatic steatosis and inflammation. Hepatic triglyceride (TG) and free fatty acid (FFA) content was measured, and the expression of hepatic fat metabolism- and inflammation-related genes was evaluated. Oxidative stress-related parameters and macrophage recruitment were also examined using immunohistochemistry. Four weeks of MCD feeding induced hepatic steatosis and inflammation and increased the hepatic TG and FFA content. The expression of fatty acid transport protein 4 (FATP4), a hepatic FFA influx-related gene; macrophage recruitment; and the level of malondialdehyde (MDA), an oxidative stress marker, were significantly augmented by a 4-wk MCD. The levels of hepatic sterol regulatory element-binding protein-1c (SREBP-1c) mRNA (lipogenesis-related gene) and acyl-coenzyme A oxidase 1 (ACOX1) mRNA (β-oxidation-related gene) had decreased at 4 wk and further decreased at 8 wk. However, the level of microsomal triglyceride transfer protein mRNA (a lipid excretion-related gene) remained unchanged. The administration of exendin-4 significantly attenuated the MCD-induced increase in hepatic steatosis, hepatic TG and FFA content, and FATP4 expression as well as the MCD-induced augmentation of hepatic inflammation, macrophage recruitment, and MDA levels. Additionally, it further decreased the hepatic SREBP-1c level and alleviated the MCD-mediated inhibition of the ACOX1 mRNA level. These results suggest that GLP-1 inhibits hepatic steatosis and

  3. Apoptosis induced by high- and low-LET radiations

    International Nuclear Information System (INIS)

    Hendry, J.H.; Potten, C.S.; Merritt, A.

    1995-01-01

    Cell death after irradiation occurs by apoptosis in certain cell populations in tissues. The phenomenon also occurs after high linear energy transfer (LET) irradiation, and the relative biological effectiveness (RBE) is 3 to 4 (with respect to low-LET radiation and apoptosis in intestinal crypts) for neutrons with energies of 14 MeV and up to 600 MeV. It is thought that p53 plays a role in the phenomenon, as radiation-induced apoptosis is not observed in p53-null animals. (orig.)

  4. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis.

    Science.gov (United States)

    Perrone, Erin E; Jung, Enjae; Breed, Elise; Dominguez, Jessica A; Liang, Zhe; Clark, Andrew T; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia-induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus-induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid-/- mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand-/- mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.

  5. [Roles of KLF5 in inhibition TNFα-induced SK-BR-3 breast cancer cell apoptosis].

    Science.gov (United States)

    Shi, Jianhong; Liu, Caiyun; Zhang, Anyi; Cui, Naipeng; Wang, Bing; Chen, Baoping; Ma, Zhenfeng

    2014-07-08

    To explore the expression levels and roles of Krüpple-like factor 5 (KLF5) in tumor necrosis factor α (TNFα)-induced SK-BR-3 breast cancer cells. SK-BR-3 breast cancer cells were stimulated by TNFα at different concentrations (0, 1, 5, 10, 20 µg/L) for specified durations (0, 6, 12, 24, 36 h). Western blot was performed to detect KLF5 protein levels. Then Western blot and quantitative real-time PCR (qRT-PCR) were used to detect the expression levels of apoptosis genes. Flow cytometry and qRT-PCR were used to observe the effects of exogenous KLF5 on TNFα-induced apoptosis of SK-BR-3 breast cancer cell. KLF5 expression levels significantly decreased in TNFα-stimulated SK-BR-3 breast cancer cells in a concentration- and time-dependent manner. Quantitative RT-PCR results showed that TNFα up-regulate apoptosis gene caspase 3, caspase 9 and bax expression levels and down-regulate bcl-1 level in SK-BR-3 cells. Adenovirus expression vectors of pAd-GFP and pAd-GFP-KLF5 were constructed and used to infect SK-BR-3 breast cancer cells. Over-expression of GFP-KLF5 inhibited apoptosis in TNFα-stimulated SK-BR-3 breast cancer cells. TNFα reduces KLF5 expression in SK-BR-3 breast cancer cells and KLF5 participates in TNFα-induced SK-BR-3 cell apoptosis.

  6. The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice.

    Science.gov (United States)

    Lue, YanHe; Swerdloff, Ronald; Wan, Junxiang; Xiao, Jialin; French, Samuel; Atienza, Vince; Canela, Victor; Bruhn, Kevin W; Stone, Brian; Jia, Yue; Cohen, Pinchas; Wang, Christina

    2015-12-01

    Humanin is a peptide that is cytoprotective against stresses in many cell types. We investigated whether a potent humanin analogue S14G-humanin (HNG) would protect against chemotherapy-induced damage to normal cells without interfering with the chemotherapy-induced suppression of cancer cells. Young adult male mice were inoculated iv with murine melanoma cells. After 1 week, cancer-bearing mice were randomized to receive either: no treatment, daily ip injection of HNG, a single ip injection of cyclophosphamide (CP), or CP+HNG and killed at the end of 3 weeks. HNG rescued the CP-induced suppression of leucocytes and protected germ cell from CP-induced apoptosis. Lung metastases were suppressed by HNG or CP alone, and further suppressed by CP+HNG treatment. Plasma IGF-1 levels were suppressed by HNG with or without CP treatment. To investigate whether HNG maintains its protective effects on spermatogonial stem cells, sperm output, and peripheral leucocytes after repeated doses of CP, normal adult male mice received: no treatment, daily sc injection of HNG, 6 ip injections of CP at 5-day intervals, and the same regimens of CP+HNG and killed at the end of 4 weeks of treatment. Cauda epididymal sperm counts were elevated by HNG and suppressed by CP. HNG rescued the CP-induced suppression of spermatogonial stem cells, sperm count and peripheral leucocytes. We conclude that HNG 1) protects CP-induced loss of male germ cells and leucocytes, 2) enhances CP-induced suppression of cancer metastases, and 3) acts as a caloric-restriction mimetic by suppressing IGF-1 levels. Our findings suggest that humanin analogues may be promising adjuvants to chemotherapy.

  7. Serum pentraxin-3 and tumor necrosis factor-like weak inducer of apoptosis (TWEAK predict severity of infections in acute decompensated cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Wen-Chien Fan

    2017-12-01

    Full Text Available Background: Pentraxin-3 (PTX3 and soluble tumor necrosis factor (TNF-like weak inducer of apoptosis (sTWEAK are new candidate prognostic markers for comorbidities and mortality in various inflammatory diseases. Acute decompensation of cirrhosis is characterized by acute exacerbation of chronic systemic inflammation. Recently, increased circulating PTX3 levels have been reported in nonalcoholic steatohepatitis patients and positively correlated with disease severity. This study aims to explore serum PTX3/sTWEAK levels and their relationship with clinical outcomes in cirrhotic patients with acute decompensation. Methods: We analyzed serum PTX3/sTWEAK levels in relation to inhospital and 3-month new clinical events and survivals in cirrhotic patients with acute decompensation. Results: During admission, serum PTX3/sTWEAK levels were significantly higher in acute decompensated cirrhotic patients than controls and positively correlated with protein-energy wasting (PEW, new infections, long hospital stays, high medical costs, and high mortality. During a 3-month follow-up, acute decompensated cirrhotic patients with high serum PTX3/sTWEAK levels had more episodes of unplanned readmission and high 3-month mortality. On multivariate analysis, high PTX3/sTWEAK levels and PEW were independent risk factors for high mortality. Conclusion: High serum PTX3/sTWEAK levels and PEW are common in cirrhotic patients with acute decompensation. As compared with low serum PTX3 and sTWEAK cases, cirrhotic patients with high serum PTX3/sTWEAK levels a have higher probability of new severe infections, severe sepsis, septic shock, type 1 hepatorenal syndrome, in-hospital, and 3-month follow-up mortalities. Therefore, high serum PTX3/sTWEAK levels on hospital admission predict disease severity and case fatality in cirrhotic patients with acute decompensation. Keywords: pentraxin-3, protein-energy wasting, soluble TNF-like weak inducer of apoptosis

  8. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    Full Text Available Ling Ma,1 Yong Jiang,2 Yanan Dong,2 Jun Gao,2 Bin Du,2 Dianwei Liu2 1Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, People’s Republic of China Background: Subarachnoid hemorrhage (SAH can induce apoptosis in many regions of the brain including the cortex and hippocampus. However, few studies have focused on apoptosis in the hypothalamus after SAH. Although some antiapoptotic strategies have been developed for SAH, such as anti-tumor necrosis factor-alpha (TNF-α antibody, the molecular mechanisms underlying this condition have yet to be elucidated. Therefore, the purpose of this study was to evaluate whether SAH could induce apoptosis in the hypothalamus and identify the potential molecular mechanisms underlying the actions of anti-TNF-α antibody, as a therapeutic regimen, upon apoptosis. Materials and methods: SAH was induced in a rat model. Thirty minutes prior to SAH, anti-TNF-α antibody or U0126, an extracellular signal-regulated kinase (Erk inhibitor, was microinjected into the left lateral cerebral ventricle. In addition, phorbol-12-myristate-13-acetate was injected intraperitoneally immediately after the anti-TNF-α antibody microinjection. Then, real-time polymerase chain reaction, Western blotting and immunohistochemistry were used to detect the expression of caspase-3, bax, bcl-2, phosphorylated Erk (p-Erk and Erk. Finally, anxiety-like behavior was identified by using open field. Results: Levels of caspase-3, bax and bcl-2, all showed a temporary rise after SAH in the hypothalamus, indicating the induction of apoptosis in this brain region. Interestingly, we found that the microinjection of anti-TNF-α antibody could selectively block the elevated levels of bax, suggesting the potential role of anti-TNF-α antibody in the inhibition of SAH-induced

  9. Zoledronate induces apoptosis in cells from fibro-cellular membrane of unicameral bone cyst (UBC).

    Science.gov (United States)

    Yu, John; Chang, Seong-Sil; Suratwala, Sanjeev; Chung, Woo-Sik; Abdelmessieh, Peter; Lee, Hahn-Jun; Yang, Jay; Lee, Francis Young-In

    2005-09-01

    Unicameral bone cyst (UBC) is a benign cystic lesion in children which is prone to fracture. Various treatments are available, but recurrence after different types of percutaneous injection therapy can cause bone destruction and pathologic fracture. The potential therapeutic effects of anti-resorptive agents, such as bisphosphonates, have not been investigated for UBC. The objective of this study was to characterize the cells from the fibro-cellular membrane of unicameral bone cyst (UBC cells) and to determine whether zoledronate, a nitrogen-containing bisphosphonate, could induce apoptosis in UBC cells. Flow cytometry and immunoblotting were performed in order to determine whether zoledronate induced apoptosis. Cells derived from normal human trabecular bones were used as controls against UBC cells to compare the effect of zoledronate in inducing apoptosis. Immunohisto/cytochemistry (IHC/ICC) and mini-array analyses were performed on tissues and cultured cells. Isolated peripheral blood mononuclear cells were incubated with conditioned media from the UBC cells to determine whether they are capable of inducing osteoclastogenesis. UBC membrane is composed of cells staining positively with CD68, SDF-1, STRO-1 and RANKL, but in vitro cells showed no staining with antibodies to CD68 and STRO-1, suggesting that there was a clonal selection of stromal cells during cell culture. UBC cells also express RUNX2 (runt-related transcription factor-2, core binding factor-1), a key transcription factor for osteoblastic differentiation. In addition, media collected from UBC cells induced a generation of multi-nucleated osteoclast-like cells of peripheral blood mononuclear cells. Zoledronate induced apoptosis of UBC cells in a dose-dependent manner. Apoptosis was evidenced by induction of the active cleaved form of caspase-3. The baseline apoptotic fractions were similar in UBC cells and trabecular bone cells. However, in the overall apoptotic fractions in this study, trabecular

  10. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation.

    Science.gov (United States)

    Luan, Zhou; He, Ying; He, Fan; Chen, Zhishui

    2015-01-01

    The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.

  11. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    Science.gov (United States)

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  12. Sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC-05.

    Science.gov (United States)

    Zhou, Lan; Yao, Qian; Li, Yan; Huang, Yun-Chao; Jiang, Hua; Wang, Chuan-Qiong; Fan, Lei

    2017-01-01

    Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non-smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL-05) to explore the value of sulforaphane in lung cancer prevention and treatment. Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl-2, and caspase-9 protein expression were detected by Western blotting. Sulforaphane inhibited XWLC-05 cell growth with inhibitory concentration (IC) 50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC-05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl-2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase-9 protein expression (P cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti-apoptotic gene B cl -2, and activation of caspase-9. It may also involve downregulation of the mutant p53 protein. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  13. Alpha-tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system?

    Czech Academy of Sciences Publication Activity Database

    Swettenham, E.; Witting, P. K.; Salvatore, B.A.; Neužil, Jiří

    2005-01-01

    Roč. 94, č. 5 (2005), s. 1448-1456 ISSN 0022-3042 Institutional research plan: CEZ:AV0Z50520514 Keywords : apoptosis * neuroblastoma * vitamin E analogues Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.604, year: 2005

  14. [Study on thaspine in inducing apoptosis of A549 cell].

    Science.gov (United States)

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  15. Wnt1 inhibits hydrogen peroxide-induced apoptosis in mouse cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    Full Text Available BACKGROUND: Because of their regenerative and paracrine abilities, cardiac stem cells (CSCs are the most appropriate, optimal and promising candidates for the development of cardiac regenerative medicine strategies. However, native and exogenous CSCs in ischemic hearts are exposed to various pro-apoptotic or cytotoxic factors preventing their regenerative and paracrine abilities. METHODS AND RESULTS: We examined the effects of H2O2 on mouse CSCs (mCSCs, and observed that hydrogen peroxide (H2O2 treatment induces mCSCs apoptosis via the caspase 3 pathway, in a dose-dependent manner. We then examined the effects of Wnt1 over-expression on H2O2-induced apoptosis in mCSCs and observed that Wnt1 significantly decreased H2O2-induced apoptosis in mCSCs. On the other hand, inhibition of the canonical Wnt pathway by the secreted frizzled related protein 2 (SFRP2 or knockdown of β-catenin in mCSCs reduced cells resistance to H2O2-induced apoptosis, suggesting that Wnt1 predominantly prevents H2O2-induced apoptosis through the canonical Wnt pathway. CONCLUSIONS: Our results provide the first evidences that Wnt1 plays an important role in CSCs' defenses against H2O2-induced apoptosis through the canonical Wnt1/GSK3β/β-catenin signaling pathway.

  16. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  17. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  18. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  19. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  20. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  1. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  2. Rubrene analogues with the aggregation-induced emission enhancement behaviour

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Sørensen, Jakob Kryger; Fu, Xiaowei

    2014-01-01

    In the light of the principle of aggregation-induced emission enhancement (AIEE), the rubrene analogue with orange light-emitting properties is designed and synthesized by substituting the phenyl side groups of rubrene with thienyl groups. To the best of our knowledge, this is the first report on...

  3. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  4. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba.

    Directory of Open Access Journals (Sweden)

    Dorota Rybaczek

    Full Text Available We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD was a secondary result of caffeine (CF induced premature chromosome condensation (PCC in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU [double-stranded breaks (DSBs mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant-DSBs versus alkaline-DSBs or SSBs. The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i extensive vacuolization; (ii abnormal chromatin condensation, its marginalization and concomitant degradation; (iii formation of autophagy-like vesicles (iv protoplast shrinkage (v fragmentation of cell nuclei and (vi extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.

  6. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  7. Radiation-induced apoptosis in different pH environments in vitro

    International Nuclear Information System (INIS)

    Lee, Hyung-Sik; Park, Heon J.; Lyons, John C.; Griffin, Robert J.; Auger, Elizabeth A.; Song, Chang W.

    1997-01-01

    Purpose: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Methods and Materials: Mammary adenocarcinoma cells of A/J mice (SCK cells) were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 deg. C for 24-120 h the extent of apoptosis was determined using agarose gel electrophoresis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The clonogenicity of the cells irradiated in different pH medium was determined, and the progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in SCK cells in pH 7.5 medium within 48 h as judged from the results of four different assays mentioned. Radiation-induced apoptosis declined as the medium pH was lowered from 7.5 to 6.4. Specifically, the radiation-induced degradation of DNA including the early DNA breaks, as determined with the TUNEL method, progressively declined as the medium pH was lowered so that little DNA fragmentation occurred 48 h after irradiation with 12 Gy in pH 6.6 medium. When the cells were irradiated and incubated for 48 h in pH 6.6 medium and the medium was replaced with pH 7.5 medium, DNA fragmentation promptly occurred. DNA fragmentation also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 h or longer post-irradiation before incubation in pH 6.6 medium. The radiation-induced G 2 arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Conclusion: Radiation-induced apoptosis in SCK cells in vitro is reversibly suppressed in an acidic environment. Taking the results of four different assays together, it was concluded that early step(s) in the apoptotic pathway, probably the DNA break or upstream of DNA break, is

  8. Comparative study on 4 quantitative detection methods of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Yang Yepeng; Chen Guanying; Zhou Mei; Shen Qinjian; Shen Lei; Zhu Yingbao

    2004-01-01

    Objective: To reveal the capability of 4 apoptosis-detecting methods to discriminate between apoptosis and necrosis and show their respective advantages and shortcomings through comparison of detected results and analysis of detection mechanism. Methods: Four methods, PI staining-flow cytometric detection (P-F method), TUNEL labeling-flow cytometric detection (T-F method), annexing V-FITC/PI vital staining-flow cytometric detection (A-F method) and Hoechst/PI vital staining-fluorescence microscopic observation (H-O method), were used to determine apoptosis and necrosis in human breast cancer MCF-7 cell line induced by γ-rays. Hydroxycamptothecine and sodium azide were used to induce positive controls of apoptosis and necrosis respectively. Results: All 4 methods showed good time-dependent and dose dependent respondence to apoptosis induced by γ-rays and hydroxycamptothecine. Apoptotic cell ratios and curve slopes obtained from P-F method were minimum and, on the contrary, those from T-F method were maximum among these 4 methods. With A-F method and H-O method, two sets of data, apoptosis and necrosis, could be gained respectively and the data gained from these two methods were close to equal. A-F method and H-O method could distinguish necrosis induced by sodium azide from apoptosis while P-F method and T-F method presented false increase of apoptosis. Conclusions: P-F method and T-F method can not discriminate between apoptosis and necrosis. P-F method is less sensitive but more simple, convenient and economical than T-F method. A-F method and H-O method can distinguish necrosis from apoptosis. A-F method is more costly but more quick and reliable than H-O method. H-O method is economical, practical and morphological changes of cells and nucleus can be observed simultaneously with it. (authors)

  9. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium.

    Science.gov (United States)

    Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2017-08-01

    Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.

  10. Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria

    Directory of Open Access Journals (Sweden)

    Katja C. Zimmermann

    2000-01-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAID reduce the risk for cancer, due to their anti proliferative and apoptosis-inducing effects. A critical pathway for apoptosis involves the release of cytochrome c from mitochondria, which then interacts with Apaf-1 to activate caspase proteases that orchestrate cell death. In this study we found that treatment of a human cancer cell line with aspirin induced caspase activation and the apoptotic cell morphology, which was blocked by the caspase inhibitor zVAD-fmk. Further analysis of the mechanism underlying this apoptotic event showed that aspirin induces translocation of Bax to the mitochondria and triggers release of cytochrome c into the cytosol. The release of cytochrome c from mitochondria was inhibited by overexpression of the antiapoptotic protein Bcl-2 and cells that lack Apaf-1 were resistant to aspirin-induced apoptosis. These data provide evidence that the release of cytochrome c is an important part of the apoptotic mechanism of aspirin.

  11. Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway

    Directory of Open Access Journals (Sweden)

    Bingwu Zhong

    2015-01-01

    Full Text Available Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.

  12. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori [Hokkaido Univ., Graduate School of Veterinary Medicine, Sapporo, Hokkaido (Japan)

    2006-03-15

    In the present study, using inhibitors of ceramide synthase (fumonisin B{sub 1}), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B{sub 1} and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  13. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    International Nuclear Information System (INIS)

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-01-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B 1 ), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B 1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  14. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  15. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    International Nuclear Information System (INIS)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-01-01

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis

  16. Inhibitory Effects of Simvastatin on Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Vascular Endothelial Cells.

    Science.gov (United States)

    Zhang, Guo-Qiang; Tao, Yong-Kang; Bai, Yong-Ping; Yan, Sheng-Tao; Zhao, Shui-Ping

    2018-04-20

    Oxidized low-density lipoprotein (ox-LDL)-induced oxidative stress and endothelial apoptosis are essential for atherosclerosis. Our previous study has shown that ox-LDL-induced apoptosis is mediated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2α-subunit (eIF2α)/CCAAT/enhancer-binding protein homologous protein (CHOP) endoplasmic reticulum (ER) stress pathway in endothelial cells. Statins are cholesterol-lowering drugs that exert pleiotropic effects including suppression of oxidative stress. This study aimed to explore the roles of simvastatin on ox-LDL-induced ER stress and apoptosis in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were treated with simvastatin (0.1, 0.5, or 2.5 μmol/L) or DEVD-CHO (selective inhibitor of caspase-3, 100 μmol/L) for 1 h before the addition of ox-LDL (100 μg/ml) and then incubated for 24 h, and untreated cells were used as a control group. Apoptosis, expression of PERK, phosphorylation of eIF2α, CHOP mRNA level, and caspase-3 activity were measured. Comparisons among multiple groups were performed with one-way analysis of variance (ANOVA) followed by post hoc pairwise comparisons using Tukey's tests. A value of P LDL resulted in a significant increase in apoptosis (31.9% vs. 4.9%, P LDL-induced apoptosis (28.0%, 24.7%, and 13.8%, F = 15.039, all P LDL significantly increased the expression of PERK (499.5%, P LDL-induced expression of PERK (407.8%, 339.1%, and 187.5%, F = 10.121, all P LDL-induced expression of PERK (486.4%) and phosphorylation of eIF2α (418.8%). Exposure of HUVECs to ox-LDL also markedly induced caspase-3 activity together with increased CHOP mRNA level; these effects were inhibited by simvastatin treatment. This study suggested that simvastatin could inhibit ox-LDL-induced ER stress and apoptosis in vascular endothelial cells.

  17. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  18. Isolation and identification of gene mediating radiation-induced apoptosis in human leukemia U937 cells

    International Nuclear Information System (INIS)

    Tong Xin; Luo Ying; Dong Yan; Sun Zhixian

    1998-01-01

    Objective: Increasing evidences suggest that Caspase family proteases play an important role in the effector mechanism of apoptotic cell death. Radiation (IR) can induce apoptosis in tumor cells, so it is very important to isolate and identify the member of the Caspase family proteases involved in IR-induced apoptosis, and this would contribute to the understanding of the mechanism responsible for apoptosis execution. Methods: A PCR approach to isolate genes for IR-induced apoptosis was developed. The approach used degenerated oligonucleotide encoding the highly conserved peptides that were present in all known Caspases. Results: Protease inhibitors special for Caspases could block the apoptotic cell death caused by IR, and Caspase-3 was isolated from irradiated human leukemia U937 cells. Conclusion: Caspases involve in IR-induced apoptosis, and Caspase-3 is the pivotal element of IR-induced apoptosis

  19. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  20. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L.

    2005-01-01

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis

  1. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways.

    Directory of Open Access Journals (Sweden)

    A R M Ruhul Amin

    Full Text Available Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.

  2. Effect of cycloheximide and actinomycin D on radionuclide 235U-induced apoptosis

    International Nuclear Information System (INIS)

    Fu Qiang; Zhang Lansheng; Zhu Shoupeng

    1999-01-01

    Objective: The mechanism of apoptosis induced by radionuclide 235 U was studied. Methods: MTT and JAM assay were used to analyse the cell viability and quantification of fragmented DNA. Results: The inhibitor of protein cycloheximide (CHX), and the inhibitor of RNA synthesis, actinomycin D. cannot inhibit the apoptosis induced by 235 U, but CHX can partly inhibit apoptotic cells DNA fragmentation. Conclusion: The pathway of apoptosis induced by radionuclide 235 U is different from X-and γ-ray external irradiation, protein synthesis is not essential for it, but synthetic endonuclease is necessary for DNA fragmentation of apoptotic cells

  3. Atrazine-induced apoptosis of splenocytes in BALB/C mice

    Directory of Open Access Journals (Sweden)

    Zheng Jing

    2011-10-01

    Full Text Available Abstract Background Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR, is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms. Methods Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL apoptotic pathway were examined from spleen samples. Results Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups. Conclusions ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.

  4. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone

    International Nuclear Information System (INIS)

    Johnson, Timothy E.; Zhang, Xiaohua; Bleicher, Kimberly B.; Dysart, Gary; Loughlin, Amy F.; Schaefer, William H.; Umbenhauer, Diane R.

    2004-01-01

    Statins are widely used to treat lipid disorders. These drugs are safe and well tolerated; however, in <1% of patients, myopathy and/or rhabdomyolysis can develop. To better understand the mechanism of statin-induced myopathy, we examined the ability of structurally distinct statins to induce apoptosis in an optimized rat myotube model. Compound A (a lactone) and Cerivastatin (an open acid) induced apoptosis, as measured by TUNEL and active caspase 3 staining, in a concentration- and time-dependent manner. In contrast, an epimer of Compound A (Compound B) exhibited a much weaker apoptotic response. Statin-induced apoptosis was completely prevented by mevalonate or geranylgeraniol, but not by farnesol. Zaragozic acid A, a squalene synthase inhibitor, caused no apoptosis on its own and had no effect on Compound-A-induced myotoxicity, suggesting the apoptosis was not a result of cholesterol synthesis inhibition. The geranylgeranyl transferase inhibitors GGTI-2133 and GGTI-2147 caused apoptosis in myotubes; the farnesyl transferase inhibitor FTI-277 exhibited a much weaker effect. In addition, the prenylation of rap1a, a geranylgeranylated protein, was inhibited by Compound A in myotubes at concentrations that induced apoptosis. A similar statin-induced apoptosis profile was seen in human myotube cultures but primary rat hepatocytes were about 200-fold more resistant to statin-induced apoptosis. Although the statin-induced hepatotoxicity could be attenuated with mevalonate, no effect was found with either geranylgeraniol or farnesol. In studies assessing ubiquinone levels after statin treatment in rat and human myotubes, there was no correlation between ubiquinone levels and apoptosis. Taken together, these observations suggest that statins cause apoptosis in myotube cultures in part by inhibiting the geranylgeranylation of proteins, but not by suppressing ubiquinone concentration. Furthermore, the data from primary hepatocytes suggests a cell-type differential

  5. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  6. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  7. Susceptibility of different subsets of immature thymocytes to apoptosis induced by anti-TCRmAb

    International Nuclear Information System (INIS)

    Li Hongmei; Zhong Renqian; Yu Jiaping; Kong Xiantao; Chen Weifeng

    2003-01-01

    To analysis the susceptibility of different subsets of immature mice thymocytes to apoptosis induced by anti-TCRmAbs in vitro apoptosis was induced in unfractionated mice thymocytes by anti-TCRmAb. In Vivo apoptosis was induced in BALB/c mice by anti-TCR mAb, and thymocytes were examined by FACS. Results showed that CD4 + CD8 + DP thymocytes and CD4 - CD8 + CD3 - thymocytes were equally sensitive to apoptosis after treatment with the anti-TCR mAb. In sharp contrast, the early migrants or precursor containing thymocytes which are CD4 - CD8 - CD3 - TN have a lower spontaneous apoptosis rate and were relatively resistant to the anti-TCR mAb. The findings showed a breakpoint in thymocyte sensitivity to apoptosis which occurs after the onset of CD4 - CD8 + CD3 expression, suggesting that susceptibility of thymocytes to apoptosis is developmentally regulated

  8. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    Science.gov (United States)

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  9. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  10. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    International Nuclear Information System (INIS)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko; Kondo, Ayami; Mogi, Makio; Nakamura, Hiroshi

    2014-01-01

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7 + hSMSC)-derived osteoblast-like (α7 + hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7 + hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7 + hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7 + hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via ADAM-28

  11. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  12. Norcantharidin (NCTD) induces mitochondria mediated apoptosis in ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... cancer deaths for both sexes being attributable to hepatoma. However ..... Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in ... involvement of the CD95 receptor/ligand. J. Cancer. Res.

  13. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Wu, Peng; Meng, Li; Wang, Hui; Zhou, Jianfeng; Xu, Gang; Wang, Shixuan; Xi, Ling; Chen, Gang; Wang, Beibei; Zhu, Tao; Lu, Yunping; Ma, Ding

    2005-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase holoenzyme as well as the rate-limiting component of the telomerase enzyme complex. However, the role of the hTERT in apoptosis induced by histone deacetylase inhibitor has only been marginally addressed. For the first time, our study demonstrated that trichostatin A (TSA) briefly activated the proliferation of cervical cancer cell lines, HeLa and SiHa, within 12 h, but then inhibited cell growth after that time point. In response to TSA, hTERT expression, telomerase activity, and telomere length also underwent similar changes during the same time frame. Furthermore, the data in our study showed that cells transfected with dominant negative hTERT were more likely to undergo apoptosis induced by TSA than cells transfected with wild-type hTERT. The cyclin/cdk inhibitor p21 waf1 was down-regulated by hTERT without changing the expression of p53. Results from this study suggest that the hTERT might be a primary target of TSA and the anti-apoptosis effect of hTERT might be carried out through a p21 waf1 -dependent and p53-independent pathway

  14. Apoptosis of nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation

    International Nuclear Information System (INIS)

    Liang Ke; He Shaoqin; Feng Yan; Tang Jinhua; Feng Qinfu; Shen Yu; Yin Weibo; Xu Guozhen; Liu Xinfan; Wang Luhua; Gao Li

    1999-01-01

    Objective: To study the apoptotic response of the nasopharyngeal carcinoma cell line (CNE-2) induced by neutron irradiation. Methods: CNE-2 cells were cultured as usual. Using the techniques of DNA agarose gel electrophoresis and DNA special fluorescent staining, the status of apoptosis in CNE-2 cells after neutron irradiation was detected. Results: It was shown that the apoptosis can be induced in CNE-2 cell after neutron radiation. Six hrs, after different doses of neutron (0/0.667/1.333/2.000/2.667/3.333 Gy) and X-ray 0/2/4/6/8/10 Gy) irradiation the apoptotic rates were 2.4%, 6.3%, 7.1%, 9.5%, 13.5%, 14.6% and 2.4%, 3.8%, 5.7%, 7.8%, 10.4%, 11.7%, respectively; at 48 hrs they were 18.3%, 21.5%, 22.8%, 29.3%, 34.2% and 13.7%, 17.6%, 21.3%, 25.6%, 28.9%, respectively. At 10 hrs after neutron irradiation the DNA ladder of apoptosis could be detected between 0.667-3.333 Gy doses in CNE-2 cells by DNA agarose gel electrophoresis. Conclusion: Neutron radiation can induce apoptosis in tumor cells. Compared with the X-ray, neutron induces apoptosis in larger extent than X-ray in the same condition; meanwhile, apoptosis after irradiation is dose and time dependent

  15. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  16. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  17. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  18. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance

    International Nuclear Information System (INIS)

    Martirosyan, Anna; Clendening, James W; Goard, Carolyn A; Penn, Linda Z

    2010-01-01

    Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action. The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches. We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis. The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes

  19. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis

    International Nuclear Information System (INIS)

    Martin, S.J.; Cotter, T.G.

    1991-01-01

    UV radiation is known to be a potent agent for the induction of programmed cell death (apoptosis) in human skin. However, the mechanistic aspects of UV-induced apoptosis remain ill-defined. In this study the effects of varying periods of UV-irradiation on the human leukaemia HL-60 cell line and on five other human cell lines were investigated.HL-60 cells were found to rapidly undergo apoptosis en masse after short periods of UV-irradiation whereas prolonged exposure of these cells to this form of radiation induced a more rapid form of cell death which was suggestive of necrosis, the pathological mode of cell death. UV-induced apoptosis in cell lines was characterized by morphological changes as well as DNA fragmentation into unit multiples of ∼ 200 bp, which was indicative of endogenous endonuclease activation. This DNA fragmentation pattern was not detected in cells immediately after UV-irradiation, and was therefore not the result of direct UV-induced DNA damage. UV-induced apoptosis of the HL-60 cell line was found to require extracellular calcium and to be inhibited in a dose-dependent way by zinc added to the culture medium. (author)

  20. Structure-activity relationship of 9-methylstreptimidone, a compound that induces apoptosis selectively in adult T-cell leukemia cells.

    Science.gov (United States)

    Takeiri, Masatoshi; Ota, Eisuke; Nishiyama, Shigeru; Kiyota, Hiromasa; Umezawa, Kazuo

    2012-01-01

    We previously reported that 9-methylstreptimidone, a piperidine compound isolated from a culture filtrate of Streptomyces, induces apoptosis selectively in adult T-cell leukemia cells. It was screened for a compound that inhibits LPS-induced NF-kappaB and NO production in mouse macrophages. However, 9-methystreptimidone is poorly obtained from the producing microorganism and difficult to synthesize. Therefore, in the present research, we studied the structure-activity relationship to look for new selective inhibitors. We found that the structure of the unsaturated hydrophobic portion of 9-methylstreptimidone was essential for the inhibition of LPS-induced NO production. Among the 9-methylstreptimidone-related compounds tested, (+/-)-4,alpha-diepi-streptovitacin A inhibited NO production in macrophage-like cells as potently as 9-methylstreptimidone and without cellular toxicity. Moreover, this compound selectively induced apoptosis in adult T-cell leukemia MT-1 cells.

  1. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  2. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  3. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells - Relevance to Capsular Opacification.

    Directory of Open Access Journals (Sweden)

    Nina Recek

    Full Text Available Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO due to remaining lens epithelial cells (LECs by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation at a highly targeted cell level compared to treatment on top of the medium (indirect treatment. Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity to the posterior lens capsule and PCO formation.

  4. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death

    OpenAIRE

    Michalak, Ewa M.; Vandenberg, Cassandra J.; Delbridge, Alex R.D.; Wu, Li; Scott, Clare L.; Adams, Jerry M.; Strasser, Andreas

    2010-01-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because...

  6. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  7. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  9. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  10. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  11. Prototheca zopfii Induced Ultrastructural Features Associated with Apoptosis in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid

    2017-07-01

    Full Text Available Prototheca zopfii infections are becoming global concerns in humans and animals. Bovine protothecal mastitis is characterized by deteriorating milk quality and quantity, thus imparting huge economic losses to dairy industry. Previous published studies mostly focused on the prevalence and characterization of P. zopfii from mastitis. However, the ultrastructural pathomorphological changes associated with apoptosis in bovine mammary epithelial cells (bMECs are not studied yet. Therefore, in this study we aimed to evaluate the in vitro comparative apoptotic potential of P. zopfii genotype-I and -II on bMECs using flow cytometry, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The results showed fast growth rate and higher adhesion capability of genotype-II in bMECs as compared with genotype-I. The viability of bMECs infected with P. zopfii genotype-II was significantly decreased after 12 h (p < 0.05 and 24 h (p < 0.01 in comparison with control cells. Contrary, genotype-I couldn't show any significant effects on cell viability. Moreover, after infection of bMECs with genotype-II, the apoptosis increased significantly at 12 h (p < 0.05 and 24 h (p < 0.01 as compared with control group. Genotype-I couldn't display any significant effects on cell apoptosis. The host specificity of P. zopfii was also tested in mouse osteoblast cells, and the results suggest that genotype-I and -II could not cause any significant apoptosis in these cell lines. SEM interpreted the pathomorphological alterations in bMECs after infection. Adhesion of P. zopfii with cells and further disruption of cytomembrane validated the apoptosis caused by genotype-II under SEM. While genotype-1 couldn't cause any significant apoptosis in bMECs. Furthermore, genotype-II induced apoptotic manifested specific ultrastructure features, like cytoplasmic cavitation, swollen mitochondria, pyknosis, cytomembrane disruption, and appearance of apoptotic bodies under

  12. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Aida Rodriguez-Garcia

    2017-08-01

    Full Text Available Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Keywords: Thioredoxin, Thioredoxin reductase, TXNIP, Prostate cancer, Redox signaling, Apoptosis

  13. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis.

    Science.gov (United States)

    Shaw, Catherine A; Webb, David J; Rossi, Adriano G; Megson, Ian L

    2009-05-07

    Nitric oxide (NO) can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-). In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMvarphi), and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP) is able to limit apoptosis in this cell type. Characterisation of the NO-related species generated by (Z)-1- [2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA/NO) and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-, chloride (GEA-3162) was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR) spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMvarphi. Resultant MDMvarphi were treated for 24 h with DETA/NO (100 - 1000 muM) or GEA-3162 (10 - 300 muM) in the presence or absence of BAY 41-2272 (1 muM), isobutylmethylxanthine (IBMX; 1 muM), 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 muM) or 8-bromo-cGMP (1 mM). Apoptosis in MDMvarphi was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO) had no effect on cell viability, but ONOO- (GEA-3162) caused a concentration-dependent induction of apoptosis in MDMvarphi. Preconditioning of MDMvarphi with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX), or the NO-independent stimulator of soluble guanylate cyclase, BAY 41-2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner. These results

  14. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  15. Membranes as sensitive targets in thymocyte apoptosis

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; McClain, D.E.; Catravas, G.N.

    1993-01-01

    The role of cellular membranes in thymocyte apoptosis has been examined. Trolox, a water soluble analogue of vitamin E and inhibitor of membrane damage, inhibits DNA fragmentation in thymocytes exposed to γ-radiation, and is most effective in inhibiting DNA fragmentation when added to cells within 30 min post-irradiation. Exposure to trolox only during irradiation did not prevent DNA fragmentation. Incubation of the irradiated cell suspension with trolox for 2h post-irradiation was sufficient to prevent DNA fragmentation measured at 24 h in irradiated cells, suggesting that trolox irreversibly inhibits a cellular lesion required for apoptosis. The induction of DNA fragmentation appears to be related to a concurrent, pronounced flow of Ca 2+ into the cell. At 3 h post-irradiation the amount of Ca 2+ in irradiated thymocytes was more than twice that of unirradiated thymocytes. Trolox treatment completely blocked the radiation-induced influx of Ca 2+ into the thymocytes. These results suggest that membrane damage is a critical lesion involved in DNA fragmentation in thymocyte apoptosis. (author)

  16. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  17. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  18. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  19. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  20. Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Griffith, Thomas S; Fialkov, Jonathan M; Scott, David L; Azuhata, Takeo; Williams, Richard D; Wall, Nathan R; Altieri, Dario C; Sandler, Anthony D

    2002-06-01

    The lack of effective therapy for disseminated renal cell carcinoma (RCC) has stimulated the search for novel treatments including immunotherapeutic strategies. However, poor therapeutic responses and marked toxicity associated with immunological agents has limited their use. The tumor necrosis factor family member tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2 ligand induces apoptosis in a variety of tumor cell types, while having little cytotoxic activity against normal cells. In this study the activation and regulation of TRAIL-induced apoptosis and TRAIL receptor expression in human RCC cell lines and pathologic specimens was examined. TRAIL induced caspase-mediated apoptotic death of RCC cells with variable sensitivities among the cell lines tested. Compared with TRAIL-sensitive RCC cell lines (A-498, ACHN, and 769-P), the TRAIL-resistant RCC cell line (786-O) expressed lesser amounts of the death-inducing TRAIL receptors, and greater amounts of survivin, an inhibitor of apoptosis. Incubation of 786-O with actinomycin D increased the expression of the death-inducing TRAIL receptors and, concomitantly, decreased the intracellular levels of survivin, resulting in TRAIL-induced apoptotic death. The link between survivin and TRAIL regulation was confirmed when an increase in TRAIL resistance was observed after overexpression of survivin in the TRAIL-sensitive, survivin-negative RCC line A-498. These findings, along with our observation that TRAIL receptors are expressed in RCC tumor tissue, suggest that TRAIL may be useful as a therapeutic agent for RCC and that survivin may partially regulate TRAIL-induced cell death.

  1. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway.

    Science.gov (United States)

    Lin, Jinshun; Jin, Xiuli; Bu, Yiwen; Cao, Deliang; Zhang, Nannan; Li, Shangfu; Sun, Qinsheng; Tan, Chunyan; Gao, Chunmei; Jiang, Yuyang

    2012-12-28

    A novel approach to synthesize RITA by practical palladium-catalyzed C-C bond-forming Suzuki reactions at room temperature was developed, which was used for deriving a series of substituted tricyclic α-heteroaryl (furan/thiophene) analogues of RITA under mild conditions. These novel analogues showed notable antiproliferative activity against cancer cell lines with wild-type p53 (i.e., HCT116, A549, MCF-7 and K562), but much less activity in HCT116/p53(-/-) cells. In particular, compound 1f demonstrated promising antiproliferative activity compared to RITA, with IC(50) = 28 nM in MCF-7 vs. 54 nM for RITA, and cancer cell selectivity. Compound 1f markedly activated p53 in HCT116 cells at 100 nM, triggering apoptosis. Importantly, we found that both RITA and compound 1f induced G(0)/G(1) cell cycle arrest by up-regulating miR-34a, which in turn down-regulated the expression of cell cycle-related proteins CDK4 and E2F1. In summary, this study reports an effective synthetic approach for RITA and its analogues, and elucidates a novel antiproliferative mechanism of these compounds.

  2. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    International Nuclear Information System (INIS)

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-01-01

    Highlights: ► GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. ► NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. ► Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  3. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  4. Molecular Mechanisms of Particle Ration Induced Apoptosis in Lymphocyte

    Science.gov (United States)

    Shi, Yufang

    Space radiation, composed of high-energy charged nuclei (HZE particles) and protons, has been previously shown to severely impact immune homeostasis in mice. To determine the molecular mechanisms that mediate acute lymphocyte depletion following exposure to HZE particle radiation mice were exposed to particle radiation beams at Brookhaven National Laboratory. We found that mice given whole body 5 6Fe particle irradiation (1GeV /n) had dose-dependent losses in total lymphocyte numbers in the spleen and thymus (using 200, 100 and 50 cGy), with thymocytes being more sensitive than splenocytes. All phenotypic subsets were reduced in number. In general, T cells and B cells were equally sensitive, while CD8+ T cells were more senstive than CD4+ T cells. In the thymus, immature CD4+CD8+ double-positive thymocytes were exquisitely sensitive to radiation-induced losses, single-positive CD4 or CD8 cells were less sensitive, and the least mature double negative cells were resistant. Irradiation of mice deficient in genes encoding essential apoptosis-inducing proteins revealed that the mechanism of lymphocyte depletion is independent of Fas ligand and TRAIL (TNF-ralated apoptosis-inducing ligand), in contrast to γ-radiation-induced lymphocyte losses which require the Fas-FasL pathway. Using inhibitors in vitro, lymphocyte apoptosis induced by HZE particle radiation was found to be caspase dependent, and not involve nitric oxide or oxygen free radicals.

  5. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  6. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    Science.gov (United States)

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  7. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  8. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  9. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway

    Science.gov (United States)

    Pérez-Garijo, Ainhoa; Fuchs, Yaron; Steller, Hermann

    2013-01-01

    Apoptotic cells can produce signals to instruct cells in their local environment, including ones that stimulate engulfment and proliferation. We identified a novel mode of communication by which apoptotic cells induce additional apoptosis in the same tissue. Strong induction of apoptosis in one compartment of the Drosophila wing disc causes apoptosis of cells in the other compartment, indicating that dying cells can release long-range death factors. We identified Eiger, the Drosophila tumor necrosis factor (TNF) homolog, as the signal responsible for apoptosis-induced apoptosis (AiA). Eiger is produced in apoptotic cells and, through activation of the c-Jun N-terminal kinase (JNK) pathway, is able to propagate the initial apoptotic stimulus. We also show that during coordinated cell death of hair follicle cells in mice, TNF-α is expressed in apoptotic cells and is required for normal cell death. AiA provides a mechanism to explain cohort behavior of dying cells that is seen both in normal development and under pathological conditions. DOI: http://dx.doi.org/10.7554/eLife.01004.001 PMID:24066226

  10. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  11. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells.

    Science.gov (United States)

    Zhang, Baoyan; Xu, Zhiping; Zhang, Yixi; Shao, Xusheng; Xu, Xiaoyong; Cheng, Jiaogao; Li, Zhong

    2015-03-01

    Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor & Endo-G (endonuclease-G from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.

  13. Insulin-Like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation.

    Science.gov (United States)

    Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F; Drogemuller, Chris J; Coates, P Toby H

    2013-03-15

    The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (Pislet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.

  14. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    International Nuclear Information System (INIS)

    Ota, Kimiko; Nakamura, Jiro; Li, Weiguo; Kozakae, Mika; Watarai, Atsuko; Nakamura, Nobuhisa; Yasuda, Yutaka; Nakashima, Eirtaro; Naruse, Keiko; Watabe, Kazuhiko; Kato, Koichi; Oiso, Yutaka; Hamada, Yoji

    2007-01-01

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS

  15. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  16. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  17. The correlation between spontaneous and radiation-induced apoptosis in T3B bladder cancer (histological grade G3), and the precedence between the two kinds of apoptosis for predicting clinical prognosis

    International Nuclear Information System (INIS)

    Harada, Satoshi; Sato, Ryuichi; Nakamura, Ryuji; Oikawa, Hiroshi; Oikawa, Hirobumi; Ohgi, Shie; Tamakawa, Yoshiharu; Yanagisawa, Toru

    2000-01-01

    Purpose: The correlation between the frequency of spontaneous and radiation-induced apoptosis, and the precedence between those for predicting prognosis were studied at clinical level. Methods and Materials: Twenty-one patients (mean age, 65.8 years; 16 men and 5 women) with bladder cancer (transitional cell carcinoma Grade 3, T3bN0M0, Stage IIIb) underwent intraoperative radiotherapy: single 30-Gy 12-MV electron beam irradiation to bladder, followed by total cystectomy 6 h after irradiation. The specimens of pretreatment and irradiated bladder cancer were assayed for apoptosis, using TUNEL staining with counter staining of hematoxylin. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells and multiplying by 100. The Pearson's linear fitting was used to test the correlation between spontaneous and radiation-induced apoptosis. The Kaplan-Meier product-limit estimation was used for overall survival (OS) and freedom from recurrence (FFR). The precedence between spontaneous and radiation-induced apoptosis for predicting the clinical prognosis was estimated using the proportional hazard regression. Results: The mean AI of spontaneous and radiation-induced apoptosis was 1.18 ± 0.16 and 2.63 ± 0.45, respectively, which was significantly different. There was strong correlation between spontaneous and radiation-induced apoptosis (r 2 = 0.864, adjusted r 2 = 0.857). Radiation-induced apoptosis was estimated by equitation: y (radiation-induced apoptosis) = 2.67 x (spontaneous apoptosis) -0.52. However, the proportional hazard regression test indicated that only spontaneous apoptosis was significant for predicting OS and FFR (vertical bar t vertical bar > 0.2), but radiation-induced apoptosis was not. Conclusion: Estimating AI in radiation-induced apoptosis from AI in spontaneous apoptosis is possible. However, spontaneous apoptosis is more accurate in predicting clinical prognosis

  18. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  19. Nutrient Availability Alters the Effect of Autophagy on Sulindac Sulfide-Induced Colon Cancer Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Shiun-Kwei Chiou

    2012-01-01

    Full Text Available Autophagy is a catabolic process by which a cell degrades its intracellular materials to replenish itself. Induction of autophagy under various cellular stress stimuli can lead to either cell survival or cell death via apoptotic and/or autophagic (nonapoptotic pathways. The NSAID sulindac sulfide induces apoptosis in colon cancer cells. Here, we show that inhibition of autophagy under serum-deprived conditions resulted in significant reductions of sulindac sulfide-induced apoptosis in HT-29 colon cancer cells. In contrast, inhibition of autophagy under conditions where serum is available significantly increased sulindac sulfide-induced apoptosis in HT-29 cells. We previously showed that the apoptosis inhibitor, survivin, plays a role in regulating NSAID-induced apoptosis and autophagic cell death. Here, we show that survivin protein half-life is increased in the presence of autophagy inhibitors under serum-deprived conditions, but not under conditions when serum is available. Thus, the increased levels of survivin may be a factor contributing to inhibition of sulindac sulfide-induced apoptosis under serum-deprived conditions. These results suggest that whether a cell lives or dies due to autophagy induction depends on the balance of factors that regulate both autophagic and apoptotic processes.

  20. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    Science.gov (United States)

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells

    International Nuclear Information System (INIS)

    Park, In Chul; Woo, Sang Hyeok; Park, Myung Jin; Lee, Hyung Chahn; Lee Su Jae; Hong, Young Joon; Lee, Seung Hoon; Hong, Seok II; Rhee, Chang Hun

    2004-01-01

    Fas/CD95/Apo1 is a transmembrane receptor known to trigger apoptotic cell death in several cell types. In the present study, we showed that ionizing radiation (IR) and NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), sensitized Fas-induced apoptotic cell death of HeLa human cervical cancers. Suboptimal dose of IR and SNAP up-regulated cell-surface Fas antigen, detected by FACScan using FITC-anti-Fas antibody. When combined with IR or SNAP, agonistic anti-Fas antibody CH-11 resulted in marked enhancement of apoptosis. This sensitization was completely abrogated by anti-Fas neutralizing antibody ZB4. During the IR and SNAP sensitized Fas-induced apoptosis, mitochondria permeabilization, cytochrome c release, and DNA fragmentation were detected. Furthermore, combined treatment of IR and SNAP additively up-regulated the surface Fas protein expression and sensitized Fas-induced apoptosis. Our finding demonstrate that sensitization of HeLa cervical cells to Fas-mediated apoptosis by IR and NO donor is most likely due to the up-regulation of Fas expression and also provides a means with which to sensitize tumors to the killing effects of cancer therapy via the Fas receptor

  2. Herbal medicine as inducers of apoptosis in cancer treatment.

    Science.gov (United States)

    Safarzadeh, Elham; Sandoghchian Shotorbani, Siamak; Baradaran, Behzad

    2014-10-01

    Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  3. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    Science.gov (United States)

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  4. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  5. Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    Full Text Available Nonsteroidal anti-inflammatory drug (NSAID activated gene-1 (NAG-1 is a divergent member of the transforming growth factor-beta (TGF-β superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.

  6. Radiation-induced apoptosis of lymphocytes in peripheral blood

    International Nuclear Information System (INIS)

    Oh, Yoon Kyeong; Lee, Tae Bum; Nam, Taek Keun; Kee, Keun Hong; Choi, Cheol Hee

    2003-01-01

    This study quantitatively evaluated the apoptosis in human peripheral blood lymphocytes using flow cytometry, and investigated the possibility of using this method, with a small amount of blood, and the time and dose dependence of radiation-induced apoptosis. Peripheral blood lymphocytes were isolated from the heparinized venous blood of 11 healthy volunteers, 8 men and 3 women, with each 10 ml of blood being divided into 15 samples. The blood lymphocytes were irradiated using a linear accelerator at a dose rate of 2.4 Gy/min, to deliver doses of 0.5, 1, 2 and 5 Gy. The control samples, and irradiated cells, were maintained in culture medium for 24, 48 and 72 hours following the irradiation. The number of apoptotic cells after the in vitro X-irradiation was measured by flow cytometry after incubation periods of 24, 48 and 72 hours. We also observed the apoptotic cells using a DNA fragmentation assay and electron microscopy. The rate of spontaneous apoptosis increased in relation to the time interval following irradiation (1.761±0.161, 3.563±0.564, 11.098±2.849, at 24, 48, and 72 hours). The apoptotic cells also increased in the samples irradiated with 0.5, 1, 2 and 5 Gy, in a radiation dose and time interval after irradiation manner, with the apoptosis being too great at 72 hours after irradiation. The dose-response curves were characterized by an initial steep increase in the number of apoptotic cells for irradiation doses below 2 Gy, with a flattening of the curves as the dose approached towards 5 Gy. The flow cytometric assay technique yielded adequate data, and required less than 1 mL of blood. The time and dose dependence of the radiation-induced apoptosis, was also shown. It is suggested that the adequate time interval required for the evaluation of apoptosis would be 24 to 48 hours after blood sampling

  7. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  8. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  9. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    Science.gov (United States)

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  10. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  12. GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines.

    Science.gov (United States)

    Panka, David J; Cho, Daniel C; Atkins, Michael B; Mier, James W

    2008-01-11

    Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.

  13. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53Ser-15 phosphorylation

    International Nuclear Information System (INIS)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-01-01

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser 15 . Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53 Ser-15 phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  14. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.

    Science.gov (United States)

    Li, Y Q; Wong, C S

    2000-09-01

    This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were

  15. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  16. Study on apoptosis of prostate cancer cell induced by 125I seed irradiation

    International Nuclear Information System (INIS)

    Liao Anyan; Wang Junjie; Wang Jidong; Zhuang Hongqing; Zhao Yong

    2007-01-01

    Objective: To explore the mechanism of apoptosis induced by 125 I seed irradiation on PC3 cells. Methods: Human prostate cancer cell line PC3 was treated by irradiation of 125 I (2.77 cGy/h) with various dose. Agarose gel electrophoresis of DNA and flows cytometry were used to detect the apoptosis of PC3 cells and indirect immunofluorescence assay was used to detect the expression of Bcl-2. The activity of Caspase-3 was measured by Caspase Colorimetric Assay Kits. Results: Apoptosis of PC3 cells could be efficiently induced by 125 I seed irradiation. The apoptotic peaks were found by flow cytometry and DNA ladder appeared on 1.8% agarose gel. The activity of Caspase-3 on PC3 cells treated by 125 I seed irradiation was not changed significantly. Bcl-2 gene expression was down-regulated with the sample concentration increased. Conclusion: 125 I irradiation can induce the apoptosis of PC3 cells and the mechanism of apoptosis is related with down regulation of Bcl-2 gene expression and is not related with Caspase-3 activity. (authors)

  17. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*

    Science.gov (United States)

    Mohd Azamai, Emey Suhana; Sulaiman, Suhaniza; Mohd Habib, Shafina Hanim; Looi, Mee Lee; Das, Srijit; Abdul Hamid, Nor Aini; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats. PMID:19198018

  18. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling

    OpenAIRE

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-01-01

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expr...

  19. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Inadomi, Chiaki, E-mail: inadomic@nagasaki-u.ac.jp [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Murata, Hiroaki [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan); Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Ihara, Yoshito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Biochemistry, Wakayama Medical University, Wakayama 641-8509 (Japan); Goto, Shinji; Urata, Yoshishige [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yodoi, Junji [Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Kondo, Takahito [Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Sumikawa, Koji [Department of Anesthesiology, Nagasaki University School of Medicine, Nagasaki 852-8501 (Japan)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  20. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  1. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    Science.gov (United States)

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  2. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  3. The microRNA-302b-inhibited insulin-like growth factor-binding protein 2 signaling pathway induces glioma cell apoptosis by targeting nuclear factor IA.

    Directory of Open Access Journals (Sweden)

    Chin-Cheng Lee

    Full Text Available MicroRNAs are small noncoding RNAs that post-transcriptionally control the expression of genes involved in glioblastoma multiforme (GBM development. Although miR-302b functions as a tumor suppressor, its role in GBM is still unclear. Therefore, this study comprehensively explored the roles of miR-302b-mediated gene networks in GBM cell death. We found that miR-302b levels were significantly higher in primary astrocytes than in GBM cell lines. miR-302b overexpression dose dependently reduced U87-MG cell viability and induced apoptosis through caspase-3 activation and poly(ADP ribose polymerase degradation. A transcriptome microarray revealed 150 downregulated genes and 380 upregulated genes in miR-302b-overexpressing cells. Nuclear factor IA (NFIA, higher levels of which were significantly related to poor survival, was identified as a direct target gene of miR-302b and was involved in miR-302b-induced glioma cell death. Higher NFIA levels were observed in GBM cell lines and human tumor sections compared with astrocytes and non-tumor tissues, respectively. NFIA knockdown significantly enhanced apoptosis. We found high levels of insulin-like growth factor-binding protein 2 (IGFBP2, another miR-302b-downregulated gene, in patients with poor survival. We verified that NFIA binds to the IGFBP2 promoter and transcriptionally enhances IGFBP2 expression levels. We identified that NFIA-mediated IGFBP2 signaling pathways are involved in miR-302b-induced glioma cell death. The identification of a regulatory loop whereby miR-302b inhibits NFIA, leading to a decrease in expression of IGFBP-2, may provide novel directions for developing therapies to target glioblastoma tumorigenesis.

  4. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  5. Correlation of the microculture-kinetic drug-induced apoptosis assay with patient outcomes in initial treatment of adult acute myelocytic leukemia.

    Science.gov (United States)

    Strickland, Stephen A; Raptis, Anastasios; Hallquist, Allan; Rutledge, James; Chernick, Michael; Perree, Mathieu; Talbott, Mahsa S; Presant, Cary A

    2013-03-01

    Overall survival (OS) with acute myeloid leukemia (AML) remains poor. Determining prognostic factors will help in selecting patients for appropriate treatments. Our aim was to determine whether the level of drug-induced apoptosis (chemosensitivity) demonstrated by the microculture-kinetic drug-induced apoptosis (MiCK) assay significantly predicted outcomes after standard AML induction therapy. A total of 109 patients with untreated AML had blood and/or bone marrow aspirate samples analyzed for anthracycline-induced apoptosis using the MiCK assay. The amount of apoptosis observed over 48 h was determined and expressed as kinetic units of apoptosis (KU). Complete remission (CR) was significantly higher (72%) in patients with high idarubicin-induced apoptosis >3 KU compared to patients with apoptosis ≤ 3 KU (p = 0.01). Multivariate analysis showed the only significant variables to be idarubicin-induced apoptosis and karyotype. Median overall survival of patients with idarubicin-induced apoptosis >3 KU was 16.1 months compared to 4.5 months in patients with apoptosis ≤ 3 KU (p = 0.004). Multivariate analysis showed the only significant variable to be idarubicin-induced apoptosis. Chemotherapy-induced apoptosis measured by the MiCK assay demonstrated significant correlation with outcomes and appears predictive of complete remission and overall survival for patients receiving standard induction chemotherapy.

  6. Variation in apoptosis mechanisms employed by malaria parasites: the roles of inducers, dose dependence and parasite stages

    Directory of Open Access Journals (Sweden)

    Matthews Holly

    2012-08-01

    Full Text Available Abstract Background Plasmodium berghei ookinetes exhibit an apoptotic phenotype when developing within the mosquito midgut lumen or when cultured in vitro. Markers of apoptosis increase when they are exposed to nitric oxide or reactive oxygen species but high concentrations of hydrogen peroxide cause death without observable signs of apoptosis. Chloroquine and other drugs have been used to induce apoptosis in erythrocytic stages of Plasmodium falciparum and to formulate a putative pathway involving cysteine protease activation and mitochondrial membrane permeabilization; initiated, at least in the case of chloroquine, after its accumulation in the digestive vacuole causes leakage of the vacuole contents. The lack of a digestive vacuole in ookinetes prompted the investigation of the effect of chloroquine and staurosporine on this stage of the life cycle. Finally, the suggestion that apoptosis may have evolved as a strategy employed by ookinetes to increase the fitness of surviving parasites was explored by determining whether increasing the ecological triggers parasite density and nutrient depletion induced apoptosis. Methods Ookinetes were grown in culture then either exposed to hydrogen peroxide, chloroquine or staurosporine, or incubated at different densities and in different media. The proportion of ookinetes displaying positive markers for apoptosis in treated samples was compared with controls and results were analyzed using analysis of variance followed by a Turkey’s test, or a Kruskal-Wallis test as appropriate. Results Hydrogen peroxide below 50 μM triggered apoptosis but cell membranes were rapidly compromised by higher concentrations, and the mode of death could not be defined. Both chloroquine and staurosporine cause a significant increase in ookinetes with condensed chromatin, caspase-like activity and, in the case of chloroquine, phosphatidylserine translocation and DNA fragmentation (not investigated for staurosporine. However

  7. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  9. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  10. Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway.

    Science.gov (United States)

    Hu, Junzheng; Cui, Weiding; Ding, Wenxiao; Gu, Yanqing; Wang, Zhen; Fan, Weimin

    2017-01-01

    Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Global adiponectin (gAPN), secreted from adipose tissue, possesses potent anti-inflammatory and antiapoptotic properties in various cell types. This study aimed to investigate the role of autophagy induced by gAPN in the suppression of H2O2-induced apoptosis and the potential mechanism of gAPN-induced autophagy in chondrocytes. H2O2 was used to induce apoptotic injury in rat chondrocytes. CCK-8 assay was performed to determine the viability of cells treated with different concentrations of gAPN with or without H2O2. Cell apoptosis was detected by flow cytometry and TUNEL staining. Mitochondrial membrane potential was examined using JC-1 fluorescence staining assay. The autophagy inhibitors 3-MA and Bafilomycin A1 were used to treat cells and then evaluate the effect of gAPN-induced autophagy. To determine the downstream pathway, chondrocytes were preincubated with the AMPK inhibitor Compound C. Beclin-1, LC3B, P62 and apoptosis-related proteins were identified by Western blot analysis. H2O2 (400 µM)-induced chondrocytes apoptosis and caspase-3 activation were attenuated by gAPN (0.5 µg/mL). gAPN increased Bcl-2 expression and decreased Bax expression. The loss of mitochondrial membrane potential induced by H2O2 was also abolished by gAPN. Furthermore, the antiapoptotic effect of gAPN was related to gAPN-induced autophagy by increased formation of Beclin-1 and LC3B and P62 degradation. In particular, the inhibition of gAPN-induced autophagy by 3-MA prevented the protective effect of gAPN on apoptosis induced by H2O2. Moreover, gAPN increased p-AMPK expression and decreased p-mTOR expression. Compound C partly suppressed the expression of autophagy-related proteins and restored the expression of p-mTOR suppressed by gAPN. Thus, the AMPK/mTOR pathway played an important role in the induction of autophagy and protection of H2O2-induced chondrocytes apoptosis by gAPN. g

  11. Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Junzheng Hu

    2017-08-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Global adiponectin (gAPN, secreted from adipose tissue, possesses potent anti-inflammatory and antiapoptotic properties in various cell types. This study aimed to investigate the role of autophagy induced by gAPN in the suppression of H2O2-induced apoptosis and the potential mechanism of gAPN-induced autophagy in chondrocytes. Methods: H2O2 was used to induce apoptotic injury in rat chondrocytes. CCK-8 assay was performed to determine the viability of cells treated with different concentrations of gAPN with or without H2O2. Cell apoptosis was detected by flow cytometry and TUNEL staining. Mitochondrial membrane potential was examined using JC-1 fluorescence staining assay. The autophagy inhibitors 3-MA and Bafilomycin A1 were used to treat cells and then evaluate the effect of gAPN-induced autophagy. To determine the downstream pathway, chondrocytes were preincubated with the AMPK inhibitor Compound C. Beclin-1, LC3B, P62 and apoptosis-related proteins were identified by Western blot analysis. Results: H2O2 (400 µM-induced chondrocytes apoptosis and caspase-3 activation were attenuated by gAPN (0.5 µg/mL. gAPN increased Bcl-2 expression and decreased Bax expression. The loss of mitochondrial membrane potential induced by H2O2 was also abolished by gAPN. Furthermore, the antiapoptotic effect of gAPN was related to gAPN-induced autophagy by increased formation of Beclin-1 and LC3B and P62 degradation. In particular, the inhibition of gAPN-induced autophagy by 3-MA prevented the protective effect of gAPN on apoptosis induced by H2O2. Moreover, gAPN increased p-AMPK expression and decreased p-mTOR expression. Compound C partly suppressed the expression of autophagy-related proteins and restored the expression of p-mTOR suppressed by gAPN. Thus, the AMPK/mTOR pathway played an important role in the induction of autophagy and protection of

  12. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  13. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Tang, C.-H.; Chiu, Y.-C.; Huang, C.-F.; Chen, Y.-W.; Chen, P.-C.

    2009-01-01

    Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.

  14. Biological dosimetry: the potential use of radiation-induced apoptosis in human T-lymphocytes

    International Nuclear Information System (INIS)

    Menz, R.; Andres, R.; Larsson, B.; Ozsahin, M.; Crompton, N.E.A.; Trott, K.

    1997-01-01

    An assay for biological dosimetry based on the induction of apoptosis in human T-lymphocytes is described. Radiation-induced apoptosis was assessed by flow cytometric identification of cells displaying apoptosis-associated DNA condensation. CD4 and CD8 T-lymphocytes were analysed. They were recognized on the basis of their cell-surface antigens. Four parameters were measured for both cell types: cell size, granularity, antigen immunofluorescence and DNA content. Apoptosis was quantified as the fraction of CD4-, or CD8-positive cells with a characteristic reduction of cell size and DNA content. At doses below 1 Gy, levels of radiation-induced apoptosis increased for up to 5 days after irradiation. Optimal dose discrimination was observed 4 days after irradiation, at which time the dose-response curves were linear, with a slope of 8% ± 0.5% per 0.1 Gy. In controlled, dose-response experiments the lowest dose level at which the radiation-induced apoptosis frequency was still significantly above control was 0.05 Gy. After 5 days post-irradiation incubation, intra- and interdonor variations were measured and found to be similar; thus, apoptotic levels depend more on the dose than on the donor. The results demonstrate the potential of this assay as a biological dosimeter. (orig.)

  15. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    Science.gov (United States)

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  16. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  17. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    Science.gov (United States)

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  18. Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells

    Directory of Open Access Journals (Sweden)

    Wing-Keung Liu

    2010-01-01

    Full Text Available Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA, and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH, but suppressed by N-acetylcysteine (NAC, a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.

  19. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL tre...

  1. Caspase-Independent Apoptosis Induced by Reperfusion Following Ischemia without Bile Duct Occlusion in Rat Liver.

    Science.gov (United States)

    Matsui, Nobuaki; Yoshioka, Rie; Nozawa, Asako; Kobayashi, Naonobu; Shichijo, Yukari; Yoshikawa, Tadatoshi; Akagi, Masaaki

    2017-01-01

    The contribution of caspases to hepatic ischemia/reperfusion (I/R)-induced apoptosis has not been completely understood yet. Several studies have demonstrated increased caspase activity during I/R and the protective effect of caspase inhibitors against I/R injuries. However, reports with opposing results also exist. Herein, we examined the contribution of caspases to the I/R-induced hepatic apoptosis in rats using caspase inhibitors and specific substrates of caspases. Hepatic I/R was induced via a 2-h occlusion of the portal vein and the hepatic artery, without conducting bile duct occlusion. DNA laddering and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL)-positive cells were increased at 3 h after reperfusion. Pretreatment with caspase inhibitors (Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-cmk) 2 or 10 mg/kg intravenously (i.v.), 20 mg/kg intraperitoneally (i.p.), Z-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-fmk) 3 mg/kg i.v.) failed to reduce apoptosis induced by I/R. Interestingly, apoptosis induced by the portal triad (hepatic artery, portal vein, and bile duct) occlusion/reperfusion could be marginally attenuated using Z-Asp-cmk (2 mg/kg i.v.). The cleavage activity for Ac-DEVD-α-(4-methylcoumaryl-7-amide) (MCA), a caspase-3/7/8/9 substrate, was significantly increased by I/R. Conversely, the cleavage activities for Ac-DNLD-MCA and MCA-VDQVDGW[K-DNP]-NH 2 , specific substrates for caspase-3 and -7 respectively, were decreased by I/R. Protein expression of the cellular inhibitor of apoptosis protein 2 (c-IAP2), an endogenous caspase inhibitor, was increased by ischemia. Nuclear translocation of the apoptosis-inducing factor (AIF), an initiator protein of caspase-independent apoptosis, was also increased during I/R. These results suggest that caspases are inhibited by c-IAP2 induced during ischemia and that AIF may be involved in initiation of apoptosis induced by hepatic I/R without

  2. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    Directory of Open Access Journals (Sweden)

    Yang C

    2017-02-01

    Full Text Available Chunguang Yang,1,* Xueyou Ma,1,* Zhihua Wang,1 Xing Zeng,1 Zhiquan Hu,1 Zhangqun Ye,1 Guanxin Shen2 1Department of Urology, Tongji Hospital, 2Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Background: Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC cells through its iron-chelating properties.Materials and methods: CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1 and iron regulatory protein 1 (IRP1 were examined by Western blot.Results: Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA] synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin

  3. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  5. P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

    Science.gov (United States)

    Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko

    2017-04-02

    We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    International Nuclear Information System (INIS)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-01-01

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  7. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  8. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional...

  9. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  10. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  11. Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis.

    Science.gov (United States)

    Kunwar, A; Jayakumar, S; Srivastava, A K; Priyadarsini, K I

    2012-04-01

    The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5-50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.

  12. Phytoestrogen bakuchiol exhibits in vitro and in vivo anti-breast cancer effects by inducing S phase arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Li eLi

    2016-05-01

    Full Text Available Phytoestrogen has been proposed as an alternative to hormone replacement therapy, which has been demonstrated to promote a high risk of breast cancer. However, the effect of phytoestrogen on breast cancer development has not been fully understood. Bakuchiol is an active ingredient of a traditional Chinese herbal medicine Fructus Psoraleae, the dried ripe fruit of Psoralea corylifolia L. (Fabaceae. The in vitro and in vivo estrogenic activities and anti-breast cancer effects of bakuchiol have not been well studied. We found that bakuchiol induced the GFP expression in transgenic medaka (Oryzias melastigma, Tg, Chg:GFP dose-dependently (0-1 µg/ml, demonstrating its in vivo estrogenic activity. Low dose of bakuchiol (1 µg/ml induced the cell proliferation and ERα expression in MCF-7 cells, which could be blocked by the antiestrogen ICI 182780, suggesting the in vitro estrogenic activity of bakuchiol. Our data indicated that high doses of bakuchiol (>2 µg/ml inhibited breast cancer cell growth, with a stronger antiproliferative effect than resveratrol, a widely studied analogue of bakuchiol. High doses of bakuchiol (4 µg/ml, 7 µg/ml and 10 µg/ml were used for the further in vitro anti-breast cancer studies. Bakuchiol induced ERβ expression and suppressed ERα expression in MCF-7 cells. It also induced S phase arrest in both MCF-7 and MDA-MB-231 cells, which could be rescued by caffeine. Knock-down of p21 also marginally rescued S phase arrest in MCF-7 cells. The S phase arrest was accompanied by the upregulation of ATM, P-Cdc2 (Tyr15, Myt1, P-Wee1 (Ser642, p21 and Cyclin B1, suggesting that blocking of Cdc2 activation may play an important role in bakuchiol-induced S phase arrest. Furthermore, bakuchiol induced cell apoptosis and disturbed mitochondrial membrane potential in MCF-7 cells. The bakuchiol-induced apoptosis was associated with increased expression of Caspase family and Bcl-2 family proteins, suggesting that bakuchiol may induce

  13. Iron dysregulation combined with aging prevents sepsis-induced apoptosis.

    Science.gov (United States)

    Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M

    2005-09-01

    Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.

  14. Soluble TNF-Like Weak Inducer of Apoptosis as a New Marker in Preeclampsia: A Pilot Clinical Study

    Directory of Open Access Journals (Sweden)

    Zeynep Kayaoglu Yildirim

    2016-01-01

    Full Text Available Introduction. All findings of preeclampsia appear as the clinical consequences of diffuse endothelial dysfunction. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK was recently introduced as a TNF related cytokine in various inflammatory and noninflammatory disorders. sTWEAK was found to be related to endothelial dysfunction in patients with chronic kidney disease. In our study we aimed to compare sTWEAK levels in women with preeclampsia to corresponding levels in a healthy pregnant control group. Materials and Methods. The study was undertaken with 33 patients with preeclampsia and 33 normal pregnant women. The concentration of sTWEAK in serum was calculated with an enzyme linked immunosorbent assay (ELISA kit. Results. Serum creatinine, uric acid, LDH levels, and uPCR were significantly higher in the patient group compared to the control group. sTWEAK levels were significantly lower in preeclamptic patients (332 ± 144 pg/mL than in control subjects (412 ± 166 pg/mL (p=0.04. Discussion. Our study demonstrates that sTWEAK is decreased in patients with preeclampsia compared to healthy pregnant women. There is a need for further studies to identify the role of sTWEAK in the pathogenesis of preeclampsia and to determine whether it can be regarded as a predictor of the development of preeclampsia.

  15. Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells.

    Science.gov (United States)

    Xu, Ying; Gao, Cheng-Cheng; Pan, Zhen-Guo; Zhou, Chuan-Wen

    2018-02-12

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promising value for cancer therapy due to its capacity to induce apoptosis in cancer cells. Nevertheless, TRAIL therapy is greatly hampered by its resistance. Irigenin (Iri), isoflavonoids, can be isolated from the rhizome of Belamcanda chinensis, and has been shown anti-cancer properties. In this study, we explored if Iri could enhance TRAIL-regulated apoptosis in TRAIL resistant gastric cancer cells. Iri significantly potentiated TRAIL-triggered cytotoxicity. Iri alone and TRAIL alone showed no effective role in apoptosis induction, whereas combined treatment with Iri and TRAIL markedly induced apoptosis in cancer cells, as evidenced by the up-regulation of cleaved Caspase-8/-9/-3 and PARP. Additionally, the sensitization to TRAIL was along with the enhancement of pro-apoptotic proteins, including FAS-associated protein with death domain (FADD), death receptor 5 (DR5) and Bax. And suppressing FADD, DR5 and Bax by si RNA significantly reduced the apoptosis and enhanced the cell viability induced by the co-application of Iri and TRAIL. Moreover, the sensitization to TRAIL was accompanied by the decrease of Cellular-FLICE inhibitory protein (c-FLIP), Bcl-2 and Survivin. Additionally, Iri could sensitize TRAIL to produce reactive oxygen species (ROS). Pre-treatment of N-acetyl-cysteine (NAC), ROS scavenger, attenuated Iri plus TRAIL-induced apoptosis and improved cell viability. Finally, combination of Iri and TRAIL inhibited tumor growth in the xenograft model. Collectively, our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. Copyright © 2018. Published by Elsevier Inc.

  16. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Elham Safarzadeh

    2014-12-01

    Full Text Available Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  17. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio

    2002-01-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  18. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  19. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2015-10-13

    Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.

  20. Fungal secondary metabolites rasfonin induces autophagy, apoptosis and necroptosis in renal cancer cell line

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-04-01

    Full Text Available Rasfonin (A304 is a fungal natural product isolated from the fermentation substrate of Talaromyces sp. 3656-A1, which was named according to its activity against the small G-protein Ras. In a former study, we demonstrated that it induced autophagy and apoptosis; however, whether rasfonin activated necroptosis remained unknown. Moreover, the interplay among different cell death processes induced by rasfonin was unexplored. In the present study, we revealed that, in addition of promoting autophagy and caspase-dependent apoptosis, rasfonin also activated necroptosis. Nectrostatin-1 (Nec-1, an inhibitor of necroptosis, affected rasfonin-induced autophagy in a time-dependent manner concurring with an increased caspase-dependent apoptosis. The aforementioned results were confirmed by knockdown of receptor-interacting protein 1 (RIP1, a crucial necrostatin-1-targeted adaptor kinase mediating cell death and survival. Taken together, the data presented indicate that rasfonin activates various cell death pathways, and RIP1 plays a critical role in rasfonin-induced autophagy and apoptosis.

  1. Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs).

    Science.gov (United States)

    Wang, Li; Zhang, Yi; Wang, Weiguo; Zhu, Yunjie; Chen, Yang; Tian, Bole

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3'-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on interaction with mutant p53

  2. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  3. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  4. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    2010-12-01

    Full Text Available Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by

  5. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  6. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    International Nuclear Information System (INIS)

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France

    2005-01-01

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin

  7. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengbo [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Zhao, Bin; Zhang, Yang; Tian, Peng [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Li, Yanjun [Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Han, Zhe [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China)

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  8. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    International Nuclear Information System (INIS)

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-01-01

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats

  9. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan; Chen, Zi; He, Bo

    2017-02-01

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found that vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.

  10. Study of progesterone mechanisms in radio-induced apoptosis prevention; Etude des mecanismes de prevention de l'apoptose radioinduite par la progesterone

    Energy Technology Data Exchange (ETDEWEB)

    Vares, G.

    2004-10-15

    The purpose of this work was to study the modulation of radiation-induced cell death of human mammary tumoral cells by progesterone. On the one hand, we observed that progesterone protects cells against radiation-induced apoptosis and increases the proportion of surviving and proliferating damaged cells. On the other hand, a transcriptome analysis was undertaken in irradiated cells treated by progesterone, using DNA micro-arrays. This let us highlight several transcriptional dis-regulations that are likely to explain the protective effect of the hormone; in particular, we showed that progesterone regulates the expression of genes implicated in apoptosis signaling by death receptors. Knowing the crucial role of hormonal control and of apoptosis regulation in breast cancer initiation, our results may help to achieve a better understanding of the implication of progesterone in mammary carcinogenesis. (author)

  11. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  12. The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels

    Science.gov (United States)

    Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D.; Xia, Weiming; Marcantonio, Edward R.; Culley, Deborah J.; Crosby, Gregory; Tanzi, Rudolph E.; Xie, Zhongcong

    2009-01-01

    Objective: To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and β-amyloid protein (Aβ) levels in vitro and in vivo. Subjects: Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Interventions: Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Aβ levels were assessed. Results: Sevoflurane induced apoptosis and elevated levels of β-site amyloid precursor protein-cleaving enzyme and Aβ in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Aβ. Sevoflurane-induced caspase-3 activation was attenuated by the γ-secretase inhibitor L-685,458 and was potentiated by Aβ. These results suggest that sevoflurane induces caspase activation which, in turn, enhances β-site amyloid precursor protein–cleaving enzyme and Aβ levels. Increased Aβ levels then induce further rounds of apoptosis. Conclusions: These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Aβ. PMID:19433662

  13. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Tae-Wook Chung

    Full Text Available Cisplatin (cis-diamminedichloroplatinum, CDDP is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS, regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl polymerase (PARP. We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.

  14. Novel Triazole linked 2-phenyl benzoxazole derivatives induce apoptosis by inhibiting miR-2, miR-13 and miR-14 function in Drosophila melanogaster.

    Science.gov (United States)

    Mondal, Tanmoy; Lavanya, A V S; Mallick, Akash; Dadmala, Tulshiram L; Kumbhare, Ravindra M; Bhadra, Utpal; Bhadra, Manika Pal

    2017-06-01

    Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.

  15. 1-Amino-4-hydroxy-9,10-anthraquinone - An analogue of anthracycline anticancer drugs, interacts with DNA and induces apoptosis in human MDA-MB-231 breast adinocarcinoma cells: Evaluation of structure-activity relationship using computational, spectroscopic and biochemical studies.

    Science.gov (United States)

    Mondal, Palash; Roy, Sanjay; Loganathan, Gayathri; Mandal, Bitapi; Dharumadurai, Dhanasekaran; Akbarsha, Mohammad A; Sengupta, Partha Sarathi; Chattopadhyay, Shouvik; Guin, Partha Sarathi

    2015-12-01

    The X-ray diffraction and spectroscopic properties of 1-amino-4-hydroxy-9,10-anthraquinone (1-AHAQ), a simple analogue of anthracycline chemotherapeutic drugs were studied by adopting experimental and computational methods. The optimized geometrical parameters obtained from computational methods were compared with the results of X-ray diffraction analysis and the two were found to be in reasonably good agreement. X-ray diffraction study, Density Functional Theory (DFT) and natural bond orbital (NBO) analysis indicated two types of hydrogen bonds in the molecule. The IR spectra of 1-AHAQ were studied by Vibrational Energy Distribution Analysis (VEDA) using potential energy distribution (PED) analysis. The electronic spectra were studied by TDDFT computation and compared with the experimental results. Experimental and theoretical results corroborated each other to a fair extent. To understand the biological efficacy of 1-AHAQ, it was allowed to interact with calf thymus DNA and human breast adino-carcinoma cell MDA-MB-231. It was found that the molecule induces apoptosis in this adinocarcinoma cell, with little, if any, cytotoxic effect in HBL-100 normal breast epithelial cell.

  16. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    Science.gov (United States)

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of TNF-like weak inducer of apoptosis and its receptor on migration of hepatic stellate cells

    Directory of Open Access Journals (Sweden)

    SU Min

    2018-01-01

    Full Text Available Objective To investigate the effect of TNF-like weak inducer of apoptosis (TWAEK and its receptor fibroblast growth factor-inducible 14 (Fn14 on the migration of hepatic stellate cells and the possible mechanism. Methods The human hepatic stellate cell line LX-2 cells were treated with TWEAK or Fn14 specific small interfering RNA (Fn14 siRNA+TWEAK. Transwell chamber was used to observe the migration of hepatic stellate cells, and real-time PCR and Western blot were used to measure the expression of matrix metalloproteinase-9 (MMP9. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with normal LX-2 cells, the TWEAK group had a significant increase in the migration of LX-2 cells (105±8 vs 164±17, t=5.287,P<0.01, and compared with the negative control group, the Fn14 siRNA+TWEAK group had a significant reduction in the number of migrated cells (122±9 vs 58±7, t=9.836, P<0.01. When LX-2 cells were treated with TWEAK, the mRNA and protein expression of MMP9 increased in a time-dependent manner (both P<0.05, while the Fn14 siRNA+TWEAK group had significant reductions in the mRNA and protein expression of MMP9 compared with the TWEAK group (t=5.358, P<0.01. Conclusion TWEAK and its receptor Fn14 can promote the migration of hepatic stellate cells by upregulating MMP9, and blockade of this pathway may become a potential target for the treatment of liver fibrosis.

  18. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ. Medical Center, Maywood, IL (United States); Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Chung, Jen; Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  19. The effects of herbs on the radiation-induced apoptosis in intestinal crypt cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; An, Mi Ra; Nah, Seung Yeol; Lee, Jong Hwan; Kim, Jae Ha; Shin, Dong Ho [Chonnam National Univ., Gwangju (Korea, Republic of); Jo, Sung Kee [KAERI, Daejeon (Korea, Republic of); Jang, Jong Sik [Sangju National Univ., Sangju (Korea, Republic of)

    2001-03-15

    This study was performed to determine the effect of several herbs on radiation-induced apoptosis in jejunal crypt cells. Longyanrou(Euphoris logana), Suanzaoren(Zizyphus vulgaris), Yuanzhi(Polygala tenuifolia), Rensan(Panax ginseng), Fuling(Poria cocos), Muxiang(Saussurea lappa), Chuanxiong(Cnidium offcinale), Baishaoyao(Paeonia lactifolia), Shengma(Cimicifuga heracleifolia), Chaihu(Bupleurum falcatum) and Dongchongxiacao(Paecilomyces japonica) reduced the frequency of radiation-induced apoptosis(p<0.05). Although the mechanisms of this effect remain to be elucidated, these results indicated that Longyanrou, Suanzaoren, Yuanzhi, Rensan, Fuling, Muxiang, Chuanxiong, Baishaoyao, Shengma, Chaihu and Dongchongxiacao might be useful inhibitors of apoptosis, especially since these are relative nontoxic natural products.

  20. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2017-01-01

    Full Text Available We previously found that oxygen-glucose-serum deprivation/restoration (OGSD/R induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase (PERK, eukaryotic initiation factor 2-alpha (eIF2α and activating transcription factor 4 (ATF4. We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone (0.1, 1, 10, 100 μM treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated (p-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response.

  1. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Radiation-induced apoptosis of chicken lymphocyte B-cell line DT40

    International Nuclear Information System (INIS)

    Furusawa, Y.; Aoki, M.; Takakura, K.

    2003-01-01

    Full text: Ionizing radiation causes lesions of DNA, cell cycle arrest, induced cell death, and apoptosis in the irradiated cells. Then it is easy to expect that those events would be increased in a cell line which is defective in DNA repair system. However, induction of apoptosis by irradiation takes so complicated process when the cells are defective of DNA repair system. Indeed by many recent studies it has been clarified that DNA repair gene is also concerned with apoptotic event and some study shows the contrary data. Thus, the relationship between the genetics of apoptosis and that of DNA repair is still unclear. In this study two kinds of DNA repair proteins, Rad54 and Ku70, were focused. Proteins of Rad54 and Ku70 have important role at two type of DNA repair systems called homologous recombination repair and non-homologous end joining repair, respectively. 4 phenotypes of DT40, parent type, ku70-/-, rad54-/- and ku70-/-/rad54-/- were used to study the radiation-induced apoptosis (Previous study shows that survival fraction of 4 phenotypes of DT40 is decreased in the cell line, in which DNA repair gene is defective). From the results in this study, two things are clarifies. One is that the dependence of apoptotic index on phenotypes is so different between at low dose and at high dose irradiation. The other is that Ku70 has effective role to induce apoptosis in DT40 irradiated with high dose X-rays

  3. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor.

    Directory of Open Access Journals (Sweden)

    Anna V Miller

    Full Text Available Paclitaxel (Taxol-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/- MEFs (mouse embryonic fibroblasts, the bim(-/- mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/- MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/- MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.

  4. Dihydrotestosterone (DHT) modulates the ability of NSAIDs to induce apoptosis of prostate cancer cells.

    Science.gov (United States)

    Andrews, Peter; Krygier, Scott; Djakiew, Daniel

    2002-03-01

    Recent evidence indicates that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the treatment and prevention of prostate cancer. In the study reported here, we investigated the ability of the steroid hormone dihydrotestosterone (DHT) to modulate NSAID-induced apoptosis of prostate cancer cells. Using in vitro models of androgen-sensitive and androgen-insensitive human prostate cancer cells, we evaluated the ability of a specific cyclooxygenase-2 inhibitor (NS-398) and a nonspecific cyclooxygenase inhibitor (indomethacin) to induce apoptosis in the presence of various concentrations of DHT. Apoptosis was quantified using the TUNEL method and verified by electron microscopy. We found that increasing concentrations of DHT significantly enhanced the ability of NS-398 and indomethacin to induce apoptosis of androgen-sensitive LNCaP cells. The ability of NSAIDs to induce apoptosis of androgen-insensitive PC-3 cells, however, was not affected by the presence of DHT. Higher levels of DHT in the incubation medium both before as well as following exposure to NSAIDs enhanced apoptosis of LNCaP cells. Another steroid hormone that interacts with the androgen receptor in LNCaP cells (progesterone) also promoted apoptosis of these cells. Increasing concentrations of DHT caused LNCaP cells to shift from the S and G(2)/M to the G(0)/G(1) stages of the cell cycle. These observations support the use of DHT in combination with NSAIDs in the treatment of prostate cancer, and indicate that DHT is an important issue to address in clinical trials of NSAIDs since androgen ablation is a common treatment for prostate cancer.

  5. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides.

    Science.gov (United States)

    Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J

    2011-11-04

    The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  7. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  8. H2O2 INDUCES APOPTOSIS OF RABBIT CHONDROCYTES VIA BOTH THE EXTRINSIC AND THE CASPASE-INDEPENDENT INTRINSIC PATHWAYS

    Directory of Open Access Journals (Sweden)

    CAIPING ZHUANG

    2013-07-01

    Full Text Available Osteoarthritis (OA, one of the most common joint diseases with unknown etiology, is characterized by the progressive destruction of articular cartilage and the apoptosis of chondrocytes. The purpose of this study is to elucidate the molecular mechanisms of H2O2-mediated rabbit chondrocytes apoptosis. CCK-8 assay showed that H2O2 treatment induced a remarkable reduction of cell viability, which was further verified by the remarkable phosphatidylserine externalization after H2O2 treatment for 1 h, the typical characteristics of apoptosis. H2O2 treatment induced a significant dysfunction of mitochondrial membrane potential (ΔΨm, but did not induce casapse-9 activation, indicating that H2O2 treatment induced caspase-independent intrinsic apoptosis that was further verified by the fact that silencing of AIF but not inhibiting caspase-9 potently prevented H2O2-induced apoptosis. H2O2 treatment induced a significant increase of caspase-8 and -3 activation, and inhibition of caspase-8 or -3 significantly prevented H2O2-induced apoptosis, suggesting that the extrinsic pathway played an important role. Collectively, our findings demonstrate that H2O2 induces apoptosis via both the casapse-8-mediated extrinsic and the caspase-independent intrinsic apoptosis pathways in rabbit chondrocytes.

  9. Thymocyte apoptosis induced by p53-dependent and independent pathways

    International Nuclear Information System (INIS)

    Clarke, A.R.; Purdie, C.A.; Harrison, D.J.; Morris, R.G.; Bird, C.C.; Hooper, M.L.; Wyllie, A.H.

    1993-01-01

    The authors studied the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca 2+ -dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage. (Author)

  10. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    International Nuclear Information System (INIS)

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-01-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: → Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. → The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. → The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. → GTN-induced apoptosis is mitochondria- and caspases-mediated.

  12. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  13. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    Science.gov (United States)

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  14. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    International Nuclear Information System (INIS)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-01-01

    Highlights: ► Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. ► G 2 /M phase arrest and chromatin condensation and nuclear fragmentation were induced. ► Noscapine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC 50 = 75 μM). This cytotoxicity was reflected by cell cycle arrest at G 2 /M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  15. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer

    Science.gov (United States)

    Shu, Guangwen; Wan, Dingrong; He, Feng; Loaec, Morgann; Ding, Yali; Li, Jun; Dovat, Sinisa; Yang, Gaungzhong; Song, Chunhua

    2016-01-01

    Chemotherapy is the main treatment for patients with breast cancer metastases, but natural alternatives have been receiving attention for their potential as novel anti-tumor reagents. Amplexicaule A (APA) is a flavonoid glucoside isolated from rhizomes of Polygonum amplexicaule D. Don var. sinense Forb (PADF). We found that APA has anti-tumor effects in a breast cancer xenograft mouse model and induces apoptosis in breast cancer cell lines. APA increased levels of cleaved caspase-3,-8,-9 and PARP, which resulted from suppression of MCL-1 and BCL-2 expression in the cells. APA also inactivated the Akt/mTOR pathway in breast cancer cells. Thus, APA exerts a strong anti-tumor effect on breast cancer cells, most likely through induction of apoptosis. Our study is the first to identify this novel anti-tumor compound and provides a new strategy for isolation and separation of single compounds from herbs. PMID:26943775

  16. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia

  17. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  18. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  19. 15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Mao-Te Chuang

    2011-01-01

    Full Text Available 5,16-dihydrotanshinone I (DHTS is extracted from Salvia miltiorrhiza Bunge (tanshen root and was found to be the most effective compound of tanshen extracts against breast cancer cells in our previous studies. However, whether DHTS can induce apoptosis through an endoplasmic reticular (ER stress pathway was examined herein. In this study, we found that DHTS significantly inhibited the proliferation of human prostate DU145 carcinoma cells and induced apoptosis. DHTS was able to induce ER stress as evidenced by the upregulation of glucose regulation protein 78 (GRP78/Bip and CAAT/enhancer binding protein homologous protein/growth arrest- and DNA damage-inducible gene 153 (CHOP/GADD153, as well as increases in phosphorylated eukaryotic initiation factor 2α (eIF2α, c-jun N-terminal kinase (JNK, and X-box-binding protein 1 (XBP1 mRNA splicing forms. DHTS treatment also caused significant accumulation of polyubiquitinated proteins and hypoxia-inducible factor (HIF-1α, indicating that DHTS might be a proteasome inhibitor that is known to induce ER stress or enhance apoptosis caused by the classic ER stress-dependent mechanism. Moreover, DHTS-induced apoptosis was reversed by salubrinal, an ER stress inhibitor. Results suggest that DHTS can induce apoptosis of prostate carcinoma cells via induction of ER stress and/or inhibition of proteasome activity, and may have therapeutic potential for prostate cancer patients.

  20. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    Science.gov (United States)

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  1. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    Science.gov (United States)

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  2. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  3. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway

    Directory of Open Access Journals (Sweden)

    Lin H

    2014-07-01

    Full Text Available Hao Lin,1,* Bo Wei,1,* Guangsheng Li,1 Jinchang Zheng,1 Jiecong Sun,1 Jiaqi Chu,2 Rong Zeng,1 Yanru Niu21Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China; 2Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Apoptosis of osteoblasts triggered by high-dose glucocorticoids (GCs has been identified as a major cause of osteoporosis. However, the underlying molecular mechanisms accounting for this action remain elusive, which has impeded the prevention and cure of this side effect. Sulforaphane (SFP is a naturally occurring isothiocyanate that has huge health benefits for humans. In this study, by using osteoblastic MC3T3-E1 cells as a model, we demonstrate the protective effects of SFP against dexamethasone (Dex-induced apoptosis and elucidate the underlying molecular mechanisms. The results show that SFP could effectively inhibit the Dex-induced growth inhibition and release of lactate dehydrogenase in MC3T3-E1 cells. Treatment with Dex induced caspase-dependent apoptosis in MC3T3-E1 cells, as evidenced by an increase in the Sub-G1 phase, chromatin condensation, and deoxyribonucleic acid fragmentation, which were significantly suppressed by coincubation with SFP. Mitochondria-mediated apoptosis pathway contributed importantly to Dex-induced apoptosis, as revealed by the activation of caspase-3/-9 and subsequent cleavage of poly adenosine diphosphate ribose polymerase, which was also effectively blocked by SFP. Moreover, treatments of Dex strongly induced overproduction of reactive oxygen species and inhibited the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and the downstream effectors HO1 and NQO1. However, cotreatment with SFP effectively reversed this action of Dex. Furthermore, silencing of Nrf2 by

  4. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Science.gov (United States)

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  5. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  7. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  8. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  9. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  10. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  11. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-01-01

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  12. The pathway of estradiol-induced apoptosis in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Rastin, Maryam; Hatef, Mohammad Reza; Tabasi, Nafisseh; Mahmoudi, Mahmoud

    2012-03-01

    Systemic lupus erythematosus (SLE) is a disease with unknown etiology. The pathologic role of sex hormones and apoptosis in SLE has often been discussed. We studied the effects of estradiol in the pathway of induced apoptosis in Iranian SLE patients. T lymphocytes from 35 SLE patients and 20 age-matched controls were isolated and cultured in the presence of 10(-8) M 17-β estradiol. The expression levels of Fas, Fas ligand (FasL), Bcl-2, caspase-8, and caspase-9 mRNAs were determined semiquantitatively in comparison to the expression level of beta actin RNA. Estradiol exposure did not have any significant effects on the expression levels of Fas, Bcl-2, and caspase-9 in SLE patients and controls. However, the expression levels of FasL and caspase-8 were significantly increased in SLE patients, but not in controls. This suggests the probable involvement of extrinsic apoptosis pathway in estradiol-induced apoptosis in SLE.

  13. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells.

    Science.gov (United States)

    Li, Shuangyue; Guan, Huai; Qian, Zhiqiang; Sun, Yijie; Gao, Chenxue; Li, Guixin; Yang, Yi; Piao, Fengyuan; Hu, Shuhai

    2017-04-07

    2,5-hexanedione (HD) is the ultimate neurotoxic metabolite of hexane, causing the progression of nerve diseases in human. It was reported that HD induced apoptosis and oxidative stress. Taurine has been shown to be a potent antioxidant. In the present study, we investigated the protection of taurine against HD-induced apoptosis in PC12 cells and the underlying mechanism. Our results showed the decreased viability and increased apoptosis in HD-exposed PC12 cells. HD also induced the disturbance of Bax and Bcl-2 expression, the loss of MMP, the release of mitochondrial cytochrome c and caspase-3 activation in PC12 cells. Moreover, HD resulted in an increase in reactive oxygen species (ROS) level and a decline in the activities of superoxidedismutase and catalase in PC12 cells. However, taurine pretreatment ameliorated the increased apoptosis and the alterations in key regulators of mitochondria-dependent pathway in PC12 exposed to HD. The increased ROS level and the decreased activities of the antioxidant enzymes in HD group were attenuated by taurine. These results indicate that pretreatment of taurine may, at least partly, prevent HD-induced apoptosis via inhibiting mitochondria-dependent pathway. It is also suggested that the potential of taurine against HD-induced apoptosis may benefit from its anti-oxidative property.

  14. Microcystin-LR Induces Apoptosis via NF-κB /iNOS Pathway in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Kai Shen

    2011-07-01

    Full Text Available Cyanobacterial toxins, especially the microcystins, are found in eutrophied waters throughout the world, and their potential to impact on human and animal health is a cause for concern. Microcystin-LR (MC-LR is one of the common toxic microcystin congeners and occurs frequently in diverse water systems. Recent work suggested that apoptosis plays a major role in the toxic effects induced by MC-LR in hepatocytes. However, the roles of MC-LR in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of MC-LR on cell apoptosis in the rat insulinoma cell line, INS-1. Our results demonstrated that MC-LR promoted selectively activation of NF-κB (increasing nuclear p50/p65 translocation and increased the mRNA and protein levels of induced nitric oxide synthase (iNOS. The chronic treatment with MC-LR stimulated nitric oxide (NO production derived from iNOS and induced apoptosis in a dose dependent manner in INS-1 cells. Meanwhile, this effect was inhibited by the NF-κB inhibitor PDTC, which reversed the apoptosis induced by MC-LR. Our observations indicate that MC-LR induced cell apoptosis via an iNOS-dependent pathway. A well-known nuclear transcription factor, NF-κB, is activated and mediates intracellular nitric oxide synthesis. We suggest that the apoptosis induced by chronic MC-LR in vivo presents a possible cause of β-cell dysfunction, as a key environmental factor in the development of diabetes mellitus.

  15. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  16. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  17. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    Science.gov (United States)

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  18. Mechanisms of chromium (VI)-induced apoptosis in anterior pituitary cells.

    Science.gov (United States)

    Quinteros, Fernanda A; Machiavelli, Leticia I; Miler, Eliana A; Cabilla, Jimena P; Duvilanski, Beatriz H

    2008-07-30

    Hexavalent chromium (Cr (VI)) is a highly toxic metal. Exposure to Cr (VI) compounds may affect reproductive functions. Due to the importance of anterior pituitary hormones on reproductive physiology we have studied the effects of Cr (VI) on anterior pituitary. We previously demonstrated that, after in vivo Cr (VI) administration, Cr accumulates in the pituitary gland and affects prolactin secretion. In vitro, Cr (VI) causes apoptosis in anterior pituitary cells due to oxidative stress generation. To better understand the mechanisms involved in Cr (VI)-induced apoptosis we studied: (a) whether Cr (VI) affects the intracellular antioxidant response and (b) which of the apoptotic factors participates in Cr (VI) effect. Our results show that Cr (VI) treatment induces a decrease in catalase and glutathione peroxidase (GPx) activity but does not modify glutathione reductase (GR) activity. Cr (VI) exposure causes an increase of GSH levels. p53 and Bax mRNA are also upregulated by the metal. Pifithrin alpha, a p53 transcriptional inhibitor, increases Cr (VI) cytotoxicity, suggesting a role of p53 as a survival molecule. The antioxidant N-acetyl-cysteine (NAC) could prevent Bax mRNA increase and caspase 3 activation, confirming that Cr (VI)-induced apoptosis involves oxidative stress generation.

  19. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  20. Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Iodinated contrast media (ICM) can induce apoptosis (programmed cell death) in renal, myocardial and endothelial cells. Following intravascular injection, circulating immune cells are exposed to high concentrations of ICM. As neutrophils constitutively undergo apoptosis we hypothesized that ICM may adversely affect neutrophil survival. Our aim was to investigate the effect of ICM on neutrophil apoptosis. Neutrophils were isolated from healthy subjects and cultured in vitro with ionic (diatrizoate and ioxaglate) and non-ionic (iohexol and iotrolan) ICM. The effect of ICM on neutrophil apoptosis in both unstimulated and lipopolysaccharide-stimulated neutrophils was determined by annexin V flow cytometry. The influence of physicochemical properties of the different ICM on apoptosis of neutrophils was also studied. We further investigated the effects of ICM on key intracellular signal pathways, including p38 mitogen-activated protein kinase (MAPK) by Western blotting, and mitochondrial depolarization and caspase activity by flow cytometry. Isoiodine concentrations (20 mg ml(-1)) of ionic (diatrizoate 69.6+\\/-2.9%; ioxaglate 58.9+\\/-2.0%) and non-ionic (iohexol 57.3+\\/-2.9%; iotrolan 57.1+\\/-2.6%) ICM significantly induced neutrophil apoptosis over control levels (47.7+\\/-1.4%). The apoptotic effect of ICM was influenced by their chemical structure, with ionic ICM having a more significant (p<0.01) apoptotic effect than non-ionic ICM (p<0.05). Furthermore, ICM reversed the anti-apoptotic effect of lipopolysaccharide (1000 ng ml(-1)) treated neutrophils to control levels (23.0+\\/-3.5% to 61.2+\\/-5.3%; n=4; p<0.05). These agents induce apoptosis through a p38 MAPK independent pathway that results in mitochondrial depolarization, and is dependent on caspase activation. As neutrophils play a central role in host response to infection and injury, ICM, through induction of neutrophil apoptosis, could have a significant deleterious effect on host immune defence and

  1. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  2. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  3. Linear ubiquitin chain induces apoptosis and inhibits tumor growth.

    Science.gov (United States)

    Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei

    2018-01-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.

  4. Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis

    International Nuclear Information System (INIS)

    Lee Jihjong; Huang, M.-S.; Yang, I-C.; Lai, T.-C.; Wang, J.-L.; Pang, V.F.; Hsiao, M.; Kuo, M.Y.P.

    2008-01-01

    In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity

  5. A novel inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-inhibitory function of IAPs by nuclear sequestration

    International Nuclear Information System (INIS)

    Jin, Hyung-Seung; Park, Hyung-Sun; Shin, Jun-Ha; Kim, Dong-Hwan; Jun, Sung-Hun; Lee, Chang-Jun; Lee, Tae H.

    2011-01-01

    Highlights: → We identified a new IAP binding protein Vgl-4. → Vgl-4 is expressed mainly in the nucleus and triggers a relocalization of IAPs from the cytoplasm to the nucleus. → Vgl-4-mediated IAP nuclear localization was blocked by TRAF2 coexpression. → Vgl-4 suppresses the ability of IAPs to prevent cell death, however TRAF2 can revere the effect of Vgl-4. → Vgl-4 functions as an IAP regulator by binding to IAPs and altering their sub-cellular localization. -- Abstract: The inhibitors of apoptosis proteins (IAP), which include cIAP1, cIAP2 and XIAP, suppress apoptosis through the inhibition of caspases, and the activity of IAPs is regulated by a variety of IAP-binding proteins. Herein, we report the identification of a Vestigial-like 4 (Vgl-4), which functions as a transcription cofactor in cardiac myocytes, as a new IAP binding protein. Vgl-4 is expressed predominantly in the nucleus and its overexpression triggers a relocalization of IAPs from the cytoplasm to the nucleus. cIAP1/2-interacting protein TRAF2 (TNF receptor-associated factor 2) prevented the Vgl-4-driven nuclear localization of cIAP2. Accordingly, the forced relocation of IAPs to the nucleus by Vgl-4 significantly reduced their ability to prevent Bax- and TNFα-induced apoptosis, which can be recovered by co-expression with TRAF2. Our results suggest that Vgl-4 may play a role in the apoptotic pathways by regulating translocation of IAPs between different cell compartments.

  6. Function-oriented synthesis: biological evaluation of laulimalide analogues derived from a last step cross metathesis diversification strategy.

    Science.gov (United States)

    Mooberry, Susan L; Hilinski, Michael K; Clark, Erin A; Wender, Paul A

    2008-01-01

    Laulimalide is a potent microtubule stabilizing agent and a promising anticancer therapeutic lead. The identification of stable, efficacious and accessible analogues is critical to clinically exploiting this novel lead. To determine which structural features of laulimalide are required for beneficial function and thus for accessing superior clinical candidates, a series of side chain analogues were prepared through a last step cross metathesis diversification strategy and their biological activities were evaluated. Five analogues, differing in potency from 233 nM to 7.9 muM, effectively inhibit cancer cell proliferation. Like laulimalide, they retain activity against multidrug resistant cells, stabilize microtubules and cause the formation of aberrant mitotic spindles, mitotic accumulation, Bcl-2 phosphorylation and initiation of apoptosis. Structural modifications in the C 23-C 27 dihydropyran side chain can be made without changing the overall mechanism of action, but it is clear that this subunit has more than a bystander role.

  7. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China); Dong, Wei-Guo, E-mail: dongwg1966@yahoo.com.cn [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  8. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  9. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  10. Mechanical stress-induced apoptosis of nucleus pulposus cells: an in vitro and in vivo rat model.

    Science.gov (United States)

    Kuo, Yi-Jie; Wu, Lien-Chen; Sun, Jui-Sheng; Chen, Ming-Hong; Sun, Man-Ger; Tsuang, Yang-Hwei

    2014-03-01

    Un-physiological loads play an important role in the degenerative process of inter-vertebral discs (IVD). In this study, we used an in vitro and in vivo rat model to investigate the mechanism of nucleus pulposus (NP) cells apoptosis induced by mechanical stress. Static compressive load to IVDs of rat tails was used as the in vivo model. For the in vitro model, NP cells were tested under the physiological and un-physiological loading. For histological examination, apoptotic index study, and apoptotic gene expression, we also selected cytokines [bone morphogenetic protein (BMP)-2/7, insulin-like growth factor (IGF)-1, platelet-derived growth factor (PDGF)] to be analyzed. Under mechanical loading, cellular density was significantly decreased, but there was an increase of TUNEL positive cells and apoptosis index. In a dose-dependent manner; the necrosis became apparent in the un-physiologic strain. The selected cytokines (BMP-2/7, IGF-1, PDGF) can significantly reduce the percentage of apoptotic and necrotic cells. We conclude that the intrinsic (mitochondrial) apoptotic pathway plays an important role in the compressive load-induced apoptosis of NP cells. Combination therapy reducing the mechanical load and selected cytokines (BMP-2/7, IGF-1 and PDGF) may have considerable promise in the treatment of spine disc degeneration.

  11. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  12. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  13. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  14. Portulaca oleracea extracts protect human keratinocytes and fibroblasts from UV-induced apoptosis.

    Science.gov (United States)

    Lee, Suyeon; Kim, Ki Ho; Park, Changhoon; Lee, Jong-Suk; Kim, Young Heui

    2014-10-01

    Portulaca oleracea extracts, known as Ma Chi Hyun in the traditional Korean medicine, show a variety of biomedical efficacies including those in anti-inflammation and anti-allergy. In this study, we investigate the protective activity of the P. oleracea extracts against UVB-induced damage in human epithelial keratinocytes and fibroblasts by several apoptosis-related tests. The results suggest that P. oleracea extracts have protective effects from UVB-induced apoptosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway.

    Science.gov (United States)

    Zhang, Hui; Chang, Zhenyu; Mehmood, Khalid; Abbas, Rao Zahid; Nabi, Fazul; Rehman, Mujeeb Ur; Wu, Xiaoxing; Tian, Xinxin; Yuan, Xiaodan; Li, Zhaoyang; Zhou, Donghai

    2018-01-01

    Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40-100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.

  16. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.Y. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, M.S.; Lee, M.K. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, J.S.; Yi, H.K. [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Nam, S.Y. [Department of Alternative Therapy, Jeonju University, Jeonju (Korea, Republic of); Lee, D.Y.; Hwang, P.H. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-01-13

    Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

  17. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  18. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    Science.gov (United States)

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  19. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Diana Marklein

    Full Text Available We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX. We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.

  20. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-10-01

    The massive uptake of compatible osmolytes is a self-protective response shared by lens exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet B-induced cytotoxicity in the lens epithelial cells. Real-time PCR was used to measure osmolytes transport. Radioimmunoassay was used to measure osmolytes uptake. Cell counting kit-8 assays were used to measure cellular viability. Flow cytometry analysis was used to measure apoptosis level. Compared with normotonic stress, hypertonic stress-induced osmolytes uptake into the lens epithelial cells such as betaine, myoinositol and taurine. UVB exposure increased osmolytes transporter mRNA expression together with osmolytes uptake. Moreover, taurine suppressed UVB-induced cell apoptosis in the lens epithelial cells significantly. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  1. Acetyl-CoA Carboxylase-α Inhibitor TOFA Induces Human Cancer Cell Apoptosis

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-fang; Cao, Deliang

    2009-01-01

    Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0–20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. PMID:19450551

  2. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  3. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  4. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  5. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  6. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  7. Insulin analogues and cancer: a note of caution

    Directory of Open Access Journals (Sweden)

    Joseph A.M.J.L. eJanssen

    2014-05-01

    Full Text Available Abstract In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health problem, since these analogues may possibly induce the growth of pre-existing neoplasms. At present, the available data suggest that insulin analogues are safe. In line with these findings, we observed that serum of diabetic patients treated with insulin analogues, compared to that of diabetic patients treated with human insulin, did not induce an increased phosphorylation of tyrosine residues of the insulin-like growth factor-I receptor (IGF-IR. However, the classical model of the IGF-IR signaling may be insufficient to explain (all mitogenic effects of insulin analogues since also non-canonical signaling pathways of the IGF-IR may play a major role in this respect. Although phosphorylation of tyrosine residues of the IGF-IR is generally considered to be the initial activation step within the intracellular IGF-IR signaling pathway, it has been found that cells undergo a signaling switch under hyperglycemic conditions. After this switch, a completely different mechanism is utilized to activate the mitogenic (mitogen-activated protein kinase (MAPK pathways of the IGF-IR that is independent from tyrosine phosphorylation of the IGF-IR. At present it is unknown whether activation of this alternative intracellular pathway of the IGF-IR occurs during hyperglycemia in vivo and whether it is stronger in patients treated with (some insulin analogues than in patients treated with human insulin. In addition, it is unknown whether the insulin receptors (IRs also undergo a signaling switch during hyperglycemia. This should be investigated in future studies. Finally, relative overexpression of IR isoform A (IR-A in (pre cancer tissues may play a key role in the development and progression of human cancers during treatment with insulin (analogues. Further

  8. Inhibition of Topoisomerase IIα and Induction of Apoptosis in Gastric Cancer Cells by 19-Triisopropyl Andrographolide

    Science.gov (United States)

    Monger, Adeep; Boonmuen, Nittaya; Suksen, Kanoknetr; Saeeng, Rungnapha; Kasemsuk, Teerapich; Piyachaturawat, Pawinee; Saengsawang, Witchuda; Chairoungdua, Arthit

    2017-10-26

    Gastric cancer is the most common cancer in Eastern Asia. Increasing chemoresistance and general systemic toxicities have complicated the current chemotherapy leading to an urgent need of more effective agents. The present study reported a potent DNA topoisomerase IIα inhibitory activity of an andrographolide analogue (19-triisopropyl andrographolide, analogue-6) in gastric cancer cells; MKN-45, and AGS cells. The analogue was potently cytotoxic to both gastric cancer cell lines with the half maximal inhibitory concentration (IC50 values) of 6.3±0.7 μM, and 1.7±0.05 μM at 48 h for MKN-45, and AGS cells, respectively. It was more potent than the parent andrographolide and the clinically used, etoposide with the IC50 values of >50 μM in MKN-45 and 11.3±2.9 μM in AGS cells for andrographolide and 28.5±4.4 μM in MKN-45 and 4.08±0.5 μM in AGS cells for etoposide. Analogue-6 at 2 μM significantly inhibited DNA topoisomerase IIα enzyme in AGS cells, induced DNA damage, activated cleaved PARP-1, and Caspase3 leading to late cellular apoptosis. Interestingly, the expression of tumor suppressor p53 was not activated. These results show the importance of 19-triisopropyl-andrographolide in its emerging selectivity to primary target on topoisomerase IIα enzyme, inducing DNA damage and apoptosis by p53- independent mechanism. Thereby, the results provide insights of the potential of 19-triisopropyl andrographolide as an anticancer agent for gastric cancer. The chemical transformation of andrographolide is a promising strategy in drug discovery of a novel class of anticancer drugs from bioactive natural products. Creative Commons Attribution License

  9. Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells

    NARCIS (Netherlands)

    Komdeur, R; Meijer, C; Van Zweeden, M; De Jong, S; Wesseling, J; Hoekstra, HJ; van der Graaf, WTA

    Doxorubicin (DOX) and ifosfamide (IFO) are the most active single agents in soft tissue sarcomas (STS). Tumour necrosis factor-alpha (TNF-alpha) is used for STS in the setting of isolated limb perfusions. Like TNF-alpha, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis. In contrast to

  10. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene

    International Nuclear Information System (INIS)

    Kim, Kyung-Su; Yoon, Joo-Heon; Kim, Jin Kook; Baek, Seung Joon; Eling, Thomas E.; Lee, Won Jae; Ryu, Ji-Hwan; Lee, Jeung Gweon; Lee, Joo-Hwan; Yoo, Jong-Bum

    2004-01-01

    We have investigated whether NAG-1 is induced in oral cavity cancer cells by various NSAIDs and if apoptosis induced by NSAIDs can be linked directly with the induction of NAG-1. NAG-1 expression was increased by diclofenac, aceclofenac, indomethacin, ibuprofen, and sulindac sulfide, in the order of NAG-1 induction, but not by acetaminophen, piroxicam or NS-398. Diclofenac was the most effective NAG-1 inducer. Incubation with diclofenac inhibited cell proliferation and induced apoptosis. The expression of NAG-1 was observed in advance of the induction of apoptosis. Conditioned medium from NAG-1-overexpressing Drosophila cells inhibited SCC 1483 cells proliferation and induced apoptosis. In summary, some NSAIDs induce NAG-1 expression in oral cavity cancer cells and the induced NAG-1 protein appears to mediate apoptosis. Therefore, NSAIDs may be considered as a possible chemopreventive agent against oral cavity cancer

  12. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis

    International Nuclear Information System (INIS)

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Yu, Hak-Sun; Ahn, Soon-Cheol

    2016-01-01

    Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca 2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca 2+ level and ER stress response. Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca 2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer. The online version of this article (doi:10.1186/s12885-016-2516-6) contains supplementary material, which is available to authorized users

  13. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  14. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

    Science.gov (United States)

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-01-01

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI. PMID:21562587

  15. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Maldonado, Carola; Cea, Paola; Adasme, Tatiana; Collao, Andres; Diaz-Araya, Guillermo; Chiong, Mario; Lavandero, Sergio

    2005-01-01

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca 2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca 2+ -dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca 2+ /calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  16. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    International Nuclear Information System (INIS)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-01-01

    NAD + -dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H 2 O 2 . Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H 2 O 2 , Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H 2 O 2 -induced apoptosis through the upregulation of catalase. H 2 O 2 induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H 2 O 2 -induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels

  17. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  18. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  19. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway

    OpenAIRE

    Ayako Tsuchiya; Yoshiko Kaku; Takashi Nakano; Tomoyuki Nishizaki

    2015-01-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species ...

  20. Inhibitory effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation

    International Nuclear Information System (INIS)

    Shi Jianhui; Niu Yuhong; Ge Junbo; Xu Xiaoping; Cheng Wenying; Feng Xiao; Zhang Zongliang

    2002-01-01

    Objective: To explore effects of glucocorticoid on apoptosis and activation of NF-κB in P388 cells induced by radiation. Methods: Apoptosis in P388 cells induced by radiation treatment was detected by TUNEL assay. EMSA was used to detect the activation of NF-κB . Results: The apoptosis and activation of NF-κB in P388 cells could be induced by radiation. Dexamethasone (DXM) which could suppress activation of NF-κB of P388 cells increased significantly the apoptosis induced by radiation. Apoptosis rates in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure increased by 60%, 100%, 129% and 67%, respectively. Activation rates of NF-κB in DXM-treated P388 cells after 2, 4, 6 and 8 Gy exposure decreased by 25%, 45%, 52% and 40%, respectively. Conclusion: Radiation induces apoptosis and activation of NF-κB in P388 cells simultaneously. Glucocorticoid enhances apoptosis in leukemic cells, which may be by means of suppressing activation of NF-κB

  1. Relationship between autophagy and apoptosis of MCF-7 cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Qi Yali; Zhang Zhenyu; Wang Hongyan; Li Jinhua; Gong Shouliang

    2009-01-01

    Objective: To detect the inhibitory effects of ionizing radiation combined with autophagy and apoptosis inhibitors and inducers on the proliferation of human breast cancer cell line. Methods: MTT and flow cytometry (FCM) were used to detect the surviving and proliferation of MCF-7 cells, which were under 0, 2, 4, 8 and 10 Gy X-ray radiation and different dealing methods 4 Gy, 4 Gy + 3-MA, 4 Gy + rapamycin, 4 Gy + z-VAD-fmk, and the relationship of dose-effects and time-effects was analyzed. Results: With the increase of irradiation doses (4, 8 and 10 Gy) and the elongation of irradiation time (48 and 72 h), the inhibitory rates of the proliferation of breast cancer cells were increased, there were significant differences between various groups (P<0.05 or P<0.01). The inhibitory rates of the proliferation of breast cancer cells in 4 Gy+3-MA or 4 Gy+ z-VAD-fmk groups were significantly different from those in 4Gy+rapamycin group (P<0.05 or P<0.01), and there were significant differences after treated for 24, 48 and 72 h between various groups (P<0.05 or P<0.01). Conclusion: Ionizing radiation in combination with autophagy inducer could induced the autophagy in human breast cancer cells and promote the apoptosis; the ionizing radiation in combination with autophagy inhibitor or apoptosis inhibitor could inhibit the apoptosis. Thus, ionizing radiation can induce the autophagy in human breast cancer cells, and promote the apoptosis. (authors)

  2. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  3. Effects of estradiol on radiation-induced apoptosis in immunocytes of mouse

    International Nuclear Information System (INIS)

    Wu Wei; Yang Rujun; Kong Xiantao; Zhang Lingzhen; Li Bolong; Cai Jianming

    2000-01-01

    Objective: To assess the effects of estradiol on 60 Co γ-radiation induced apoptosis of splenic lymphocytes and thymocytes, and surface molecule expression of splenic lymphocytes. Methods: Mice were whole body irradiated with 4.0 Gy γ-rays. By flow cytometry and electrophoretic analysis of DNA, the changes in apoptosis of mouse immunocytes were determined. The splenic lymphocytes were analyzed by flow cytometry with fluorescent monoclonal antibodies. Results: 10 days after administration of estradiol, the characteristic DNA ladder in mice 8h after irradiation was minor than in mice without estradiol administration,indicating that the apoptotic rate reduced on flow cytometry. CD4+ T cells, CD8+ T cells and IgM+ B cells up regulated Fas, CD25 and CD69 expression, but did not so in the estradiol treated mice. Conclusion: Estradiol can block CD25, CD69 and Fas overexpression, thereby inhibiting Fas mediated apoptosis induced by γ-irradiation

  4. Intrinsic Apoptosis Pathway in Fallopian Tube Epithelial Cells Induced by Cladribine

    Directory of Open Access Journals (Sweden)

    Ewelina Wawryk-Gawda

    2014-01-01

    Full Text Available Cladribine is a purine nucleoside analog which initiates the apoptotic mechanism within cells. Moreover, the available data confirms that cladribine, with the participation of the p53 protein, as well as the proapoptotic proteins from the Bcl-2 family, also induces the activation of the intrinsic apoptosis pathway. However, while there has been a lot of research devoted to the effect of cladribine on lymphatic system cells, little is known about the impact of cladribine on the reproductive system. The aim of our study was to evaluate apoptosis in oviduct epithelial cells sourced from 15 different female rats. In so doing, the sections were stained with caspases 3, 9, and 8. Results suggest that cladribine also induces apoptosis in the oviduct epithelial cells by way of the intrinsic pathway. Indeed, the discontinuing of the administration of cladribine leads to a reduction in the amount of apoptotic cells in the oviduct epithelium.

  5. Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells

    International Nuclear Information System (INIS)

    Kwon, Chae Hwa; Yoon, Chang Soo; Kim, Yong Keun

    2008-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been reported to induce apoptosis in a variety of cell types including renal proximal epithelial cells. However, the underlying mechanism of cell death induced by PPARγ agonists has not been clearly defined in renal proximal tubular cells. This study was therefore undertaken to determine the mechanism by which ciglitazone, a synthetic PPARγ agonist, induces apoptosis in opossum kidney (OK) cells, an established renal epithelial cell line. Ciglitazone treatment induced apoptotic cell death in a dose- and time-dependent manner. Ciglitazone caused a transient activation of ERK and sustained activation of p38 MAP kinase. Ciglitazone-mediated cell death was attenuated by the p38 inhibitor SB203580 and transfection of dominant-negative form of p38, but not by the MEK inhibitor U0126, indicating that p38 MAP kinase activation is involved in the ciglitazone-induced cell death. Although ciglitazone-induced caspase-3 activation, the ciglitazone-mediated cell death was not affected by the caspase-3 inhibitor DEVD-CHO. Ciglitazone-induced mitochondrial membrane depolarization and apoptosis-inducing factor (AIF) nuclear translocation and these effects were prevented by the p38 inhibitor. These results suggest that ciglitazone induces caspase-independent apoptosis through p38 MAP kinase-dependent AIF nuclear translocation in OK renal epithelial cells

  6. Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaodan Xu

    2017-01-01

    Full Text Available Objective. To observe the protective effect of edaravone (Eda on astrocytes after prolonged exposure to carbon monoxide (CO and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.

  7. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins.

    Science.gov (United States)

    Finlay, Darren; Teriete, Peter; Vamos, Mitchell; Cosford, Nicholas D P; Vuori, Kristiina

    2017-01-01

    The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.

  8. TanshinoneIIA and cryptotanshinone protect against hypoxia-induced mitochondrial apoptosis in H9c2 cells.

    Directory of Open Access Journals (Sweden)

    Hyou-Ju Jin

    Full Text Available Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have not been investigated. In this study, we examined the effects and molecular mechanisms of two major tanshonones, tanshinone IIA (TIIA and cryptotanshinone (CT on hypoxia induced apoptosis in H9c2 cells. Cultured H9c2 cells were treated with TIIA and CT (0.3 and 3 μΜ 2 hr before and during an 8 hr hypoxic period. Chronic hypoxia caused a significant increase in hypoxia inducible factor 1α expression and the cell late apoptosis rate, which was accompanied with an increase in caspase 3 activity, cytochrome c release, mitochondria membrane potential and expression of pro-apoptosis proteins (Bax and Bak. TIIA and CT (0.3 and 3 μΜ, in concentrations without affecting the cell viability, significantly inhibited the late apoptosis and the changes of caspase 3 activity, cytochrome c release, and mitochondria membrane potential induced by chronic hypoxia. These compounds also suppressed the overexpression of Bax and reduced the ratio of Bax/Bcl-2. The results indicate that TIIA and CT protect against chronic hypoxia induced cell apoptosis by regulating the mitochondrial apoptosis signaling pathway, involving inhibitions of mitochondria hyperpolarization, cytochrome c release and caspase 3 activity, and balancing anti- and pro-apoptotic proteins in Bcl-2 family proteins.

  9. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1.

    Directory of Open Access Journals (Sweden)

    Karine Z Oben

    Full Text Available An understanding of how each individual 5q chromosome critical deleted region (CDR gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs. Early Growth Response 1 (EGR1 is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell quiescence as well as the master regulator of apoptosis-p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.

  10. Prolactin induces apoptosis of lactotropes in female rodents.

    Directory of Open Access Journals (Sweden)

    Jimena Ferraris

    Full Text Available Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR, we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes, suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1-9-G129R-hPRL, providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii partial or total deficiencies in PRLR signaling in the anterior pituitary

  11. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast

    OpenAIRE

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) ...

  12. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma

    International Nuclear Information System (INIS)

    Story, M.D.; Voehringer, D.W.; Malone, C.G.; Hobbs, M.L.; Meyn, R.E.

    1994-01-01

    Cells were isolated from a mouse lymphoma (LY-TH) and grown in vitro. They were susceptible to radiation-induced apoptosis after low doses with the appearance of endonucleolytically fragmented DNA 1 h after irradiation. Four hours after receiving 5 Gy, 80% of the DNA was endonucleolytically cleaved. Apoptosis induction by DNA double-strand break (dsb) formation was more effective compared with induction by single-strand break (ssb) formation. After long-term culturing, LY-TH cultures became refractory to apoptosis. Apoptosis-permissive cells (LY-as, cloned from LY-TH cells) were three times more radiosensitive than clonally expanded apoptosis-refractory cells (LY-ar). Low dose-rate irradiation and maintenance at 25 o C for 5 h postirradiation was sparing in LY-ar but not LY-as cells, suggesting a repair deficiency in LY-as cells. Analysis of dsb rejoining kinetics revealed no difference in the initial phase of dsb rejoining. After 1 h, however, relative dsbs in the LY-as variant increased as endonucleolytic cleavage was initiated. Signalling for radiation-induced apoptosis in LY-as cells was independent of the DNA dsb repair pathway and appeared determined by initial events, whereas in LY-ar cells, because of an inhibition in the apoptotic pathway, survival was enhanced and modifiable by repair processes. (author)

  13. Involvement of Reactive Oxygen Species in Sonodynamically Induced Apoptosis Using a Novel Porphyrin Derivative

    Directory of Open Access Journals (Sweden)

    Nagahiko Yumita, Yumiko Iwase, Koji Nishi, Hajime Komatsu, Kazuyoshi Takeda, Kenji Onodera, Toshio Fukai, Toshihiko Ikeda, Shin-ichiro Umemura, Kazuho Okudaira, Yasunori Momose

    2012-01-01

    Full Text Available In this study, we investigated the induction of apoptosis by ultrasound in the presence of the novel porphyrin derivative DCPH-P-Na(I. HL-60 cells were exposed to ultrasound for up to 3 min in the presence and absence of DCPH-P-Na(I, and the induction of apoptosis was examined by analyzing cell morphology, DNA fragmentation, and caspase-3 activity. Reactive oxygen species were measured by means of ESR and spin trapping technique. Cells treated with 8 μM DCPH-P-Na(I and ultrasound clearly showed membrane blebbing and cell shrinkage, whereas significant morphologic changes were not observed in cells exposed to either ultrasound or DCPH-P-Na(I alone. Also, DNA ladder formation and caspase-3 activation were observed in cells treated with both ultrasound and DCPH-P-Na(I but not in cells treated with ultrasound or DCPH-P-Na(I alone. In addition, the combination of DCPH-P-Na(I and the same acoustical arrangement of ultrasound substantially enhanced nitroxide generation by the cells. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. These results indicate that the combination of ultrasound and DCPH-P-Na(I induced apoptosis in HL-60 cells. The significant reduction in sonodynamically induced apoptosis, nitroxide generation, and caspase-3 activation by histidine suggests active species such as singlet oxygen are important in the sonodynamic induction of apoptosis. These experimental results support the possibility of sonodynamic treatment for cancer using the induction of apoptosis.

  14. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    Science.gov (United States)

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  15. Prohibitin (PHB) acts as a potent survival factor against ceramide induced apoptosis in rat granulosa cells.

    Science.gov (United States)

    Chowdhury, Indrajit; Branch, Alicia; Olatinwo, Moshood; Thomas, Kelwyn; Matthews, Roland; Thompson, Winston E

    2011-08-29

    Ceramide is a key factor in inducing germ cell apoptosis by translocating from cumulus cells into the adjacent oocyte and lipid rafts through gap junctions. Therefore studies designed to elucidate the mechanistic pathways in ceramide induced granulosa cell (GC) apoptosis and follicular atresia may potentially lead to the development of novel lipid-based therapeutic strategies that will prevent infertility and premature menopause associated with chemo and/or radiation therapy in female cancer patients. Our previous studies have shown that Prohibitin (PHB) is intimately involved in GCs differentiation, atresia, and luteolysis. In the present study, we have examined the functional effects of loss-/gain-of-function of PHB using adenoviral technology in delaying apoptosis induced by the physiological ligand ceramide in rat GCs. Under these experimental conditions, exogenous ceramide C-8 (50 μM) augmented the expression of mitochondrial PHB and subsequently cause the physical destruction of GC by the release of mitochondrial cytochrome c and activation of caspase-3. In further studies, silencing of PHB expression by adenoviral small interfering RNA (shRNA) sensitized GCs to ceramide C8-induce apoptosis. In contrast, adenovirus (Ad) directed overexpression of PHB in GCs resulted in increased PHB content in mitochondria and delayed the onset of ceramide induced apoptosis in the infected GCs. Taken together, these results provide novel evidences that a critical level of PHB expression within the mitochondria plays a key intra-molecular role in GC fate by mediating the inhibition of apoptosis and may therefore, contribute significantly to ceramide induced follicular atresia. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  17. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  18. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  19. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    International Nuclear Information System (INIS)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  20. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  1. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption.

    Science.gov (United States)

    Moosavi, Maryam; Zarifkar, Amir Hossein; Farbood, Yaghoub; Dianat, Mahin; Sarkaki, Alireza; Ghasemi, Rasoul

    2014-08-05

    Centrally administered streptozotocin (STZ), is known to cause Alzheimer׳s like memory deterioration. It mainly affects insulin signaling pathways such as PI3/Akt and GSK-3β which are involved in cell survival. Previous studies indicate that STZ increases the ratio of Bax/Bcl-2 and thereby induces caspase-3 activation and apoptosis. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study aimed to assess if agmatine reverses STZ-induced memory deficits, hippocampal Akt/GSK-3β signaling disruption and caspase-3 activation. Adult male Sprague-Dawely rats weighing 200-250 g were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg) and agmatine treatment (40 or 80 mg/kg) was started from day 4 and continued in an every other day manner till day 14. The animal׳s learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies the hippocampi was isolated and the amounts of hippocampal cleaved caspase-3 (the landmark of apoptosis), Bax/Bcl-2 ratio, total and phosphorylated forms of GSK-3β and Akt were analyzed by western blot. The results showed that agmatine in 80 but not 40 mg/kg reversed the memory deterioration induced by STZ. Western blot analysis revealed that STZ prompted elevation of caspase-3; Bax/Bcl-2 ratio and disrupted Akt/GSK-3β signaling in the hippocampus. Agmatine treatment prevented apoptosis and Akt/GSK-3β signaling impairment induced by STZ. This study disclosed that agmatine treatment averts not only STZ-induced memory deterioration but also hippocampal apoptosis and Akt/GSK-3β signaling disruption. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  3. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    Directory of Open Access Journals (Sweden)

    Eric Drago

    Full Text Available Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC, and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  4. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrea Turner

    Full Text Available The Map kinase Activating Death Domain containing protein (MADD isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.

  6. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis.

    Science.gov (United States)

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-04-09

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.

  7. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xue; Kan, Shifeng; Liu, Zhen [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Guang [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 (Singapore); Zhang, Xiaoyan [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Chen, Yingyu [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Center for Human Disease Genomics, Beijing 100191 (China); Bai, Yun, E-mail: baiyun@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.

  8. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    International Nuclear Information System (INIS)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-01-01

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  9. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  10. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  11. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  12. The relationship between radiation-induced apoptosis and the expression of cytokines in the rat's liver

    International Nuclear Information System (INIS)

    An, Eun Joo; Lee, Kyung Ja; Rhee, Chung Sik

    2000-01-01

    To determine the role of cytokines in the apoptosis of rat's liver following irradiation. Sprague-Dawley rats were irradiated to entire body with a single dose of 8 Gy. The rats were divided into 5 groups according to the sacrifice day after irradiation. The liver and blood after 1, 3, 5, 7, and 14 days irradiation were sampled for evaluation of mechanism of apoptosis and role of cytokine in relation to radiation-induced tissue damage. The study was composed of microscopic evaluation of liver tissue, in situ detection method for apoptosis, immunohistochemical stain of IL-1, IL-4, IL-6 and TNF, bioassay and radioimmunoassay of IL-6 in liver tissue and blood. Radiation-induced liver damage was noted from first day of radiation, and most severe parenchymal damage associated with infiltration of chronic inflammatory cells was seen in the groups of 5 days after radiation. A number of apoptosis were observed 1 day after radiation on both light microscope and in situ method. Afterwards, the number of apoptosis was gradually diminished. On immunohistochemical study, IL-1 and TNF were expressed 1, 3 days after radiation, but not expressed after that. IL-4 was not expressed in the entire groups. IL-6 was expressed with strong positivity in 1, 3 days after radiation. Bioassay and RIA of IL-6 in liver tissue and blood showed the highest value in 1 day after radiation, and the value is diminished after then. Apoptosis seemed to be the important mechanism of radiation-induced liver damage, and is possibly induced by the release of cytokines, such as IL-1, IL-6, TNF in view the simultaneously increased appearance of apoptosis and cytokines

  13. Evidence for a Proangiogenic Activity of TNF-Related Apoptosis-Inducing Ligand

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2004-07-01

    Full Text Available Starting from the observation that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo-2L protein is expressed in both malignant and inflammatory cells in some highly vascularized soft tissue sarcomas, the angiogenic potential of TRAIL was investigated in a series of in vitro assays. Recombinant soluble TRAIL induced endothelial cell migration and vessel tube formation to a degree comparable to vascular endothelial growth factor (VEGF, one of the best-characterized angiogenic factors. However, the proangiogenic activity of TRAIL was not mediated by endogenous expression of VEGF. Although TRAIL potentiated VEGF-induced extracellular signal-regulated kinase (ERK phosphorylation and endothelial cell proliferation, the combination of TRAIL + VEGF did not show additive effects with respect to VEGF alone in inducing vessel tube formation. Thus, although TRAIL has gained attention as a potential anticancer therapeutic for its ability to induce apoptosis in a variety of cancer cells, our present data suggest that TRAIL might also play an unexpected role in promoting angiogenesis, which might have therapeutic implications.

  14. [Ca2+]i in exterior of cells effected on apoptosis of HL-60 cells induced by irradiation

    International Nuclear Information System (INIS)

    He Ziyi; Meng Qingyong

    2005-01-01

    Objective: To investigate of the different [Ca 2+ ]i in exterior of cells promotion function on apoptosis of HL-60 cells induced by irradiation. Methods: To put ration dose 32 P and different [Ca 2+ ]i into culture of HL-60 and measure the apoptosis rate with FCM after 24 and 48 hours. Result: Apoptosis rate increased with the increase of [Ca 2+ ]i which shows an obvious function to promote apoptosis, r 24 =0.9001 (P=0.0145); r48=0.9343 (P=0.0063). Conclusion: [Ca 2+ ]i in exterior of cells has a obvious function in promoteing apoptosis induced by irradiation. (authors)

  15. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1

    Science.gov (United States)

    Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756

  16. Benzylidene derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis

    Science.gov (United States)

    Jada, S R; Matthews, C; Saad, M S; Hamzah, A S; Lajis, N H; Stevens, M F G; Stanslas, J

    2008-01-01

    Background and purpose: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death. Experimental approach: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry. Key results: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G1 arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis. Conclusion and implications: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G1 phase cell cycle arrest, coupled with induction of apoptosis. PMID:18806812

  17. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  18. Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells

    International Nuclear Information System (INIS)

    Füllbeck, Melanie; Huang, Xiaohua; Dumdey, Renate; Frommel, Cornelius; Dubiel, Wolfgang; Preissner, Robert

    2005-01-01

    Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10 6 structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs

  19. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  20. Holotoxin A1 Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Seong-Hoon Yun

    2018-04-01

    Full Text Available Marine triterpene glycosides are attractive candidates for the development of anticancer agents. Holotoxin A1 is a triterpene glycoside found in the edible sea cucumber, Apostichopus (Stichopus japonicus. We previously showed that cladoloside C2, the 25(26-dihydro derivative of holotoxin A1, induced apoptosis in human leukemia cells by activating ceramide synthase 6. Thus, we hypothesized that holotoxin A1, which is structurally similar to cladoloside C2, might induce apoptosis in human leukemia cells through the same molecular mechanism. In this paper, we compared holotoxin A1 and cladoloside C2 for killing potency and mechanism of action. We found that holotoxin A1 induced apoptosis more potently than cladoloside C2. Moreover, holotoxin A1 induced apoptosis in K562 cells by activating caspase-8 and caspase-3, but not by activating caspase-9. During holotoxin A1-induced apoptosis, acid sphingomyelinase (SMase and neutral SMase were activated in both K562 cells and human primary leukemia cells. Specifically inhibiting acid SMase and neutral SMаse with chemical inhibitors or siRNAs significantly inhibited holotoxin A1–induced apoptosis. These results indicated that holotoxin A1 might induce apoptosis by activating acid SMase and neutral SMase. In conclusion, holotoxin A1 represents a potential anticancer agent for treating leukemia. Moreover, the aglycone structure of marine triterpene glycosides might affect the mechanism involved in inducing apoptosis.