WorldWideScience

Sample records for analogue casimir radiation

  1. Casimir Effect, Hawking Radiation and Trace Anomaly

    CERN Document Server

    Setare, M R

    2001-01-01

    The Casimir energy for massless scalar field of two parallel conductor, in two dimensional Schwarzchild black hole background, with Dirichlet boundary conditions is calculated by making use of general properties of renormalized stress tensor. We show that vacuum expectation value of stress tensor can be obtain by Casimir effect, trace anomaly and Hawking radiation. Four-dimensional of this problem, by this method, is under progress by this author.

  2. One-loop radiative corrections to the QED Casimir energy

    Energy Technology Data Exchange (ETDEWEB)

    Moazzemi, Reza; Mojavezi, Amirhosein [University of Qom, Department of Physics, Qom (Iran, Islamic Republic of)

    2016-05-15

    In this paper, we investigate one-loop radiative corrections to the Casimir energy in the presence of two perfectly conducting parallel plates for QED theory within the renormalized perturbation theory. In fact, there are three contributions for radiative corrections to the Casimir energy, up to order α, has been computed by Bordag et. al (Ann. Phys. 165:192, 1985), approximately. Here, up to this order, we consider corrections due to two one-loop terms, i.e., photonic and fermionic loop corrections resulting from renormalized QED Lagrangian, more precisely. Our results show that only the fermionic loop has a very minor correction and the correction of photonic loop vanishes. (orig.)

  3. Evanescent radiation, quantum mechanics and the Casimir effect

    Science.gov (United States)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  4. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  5. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  6. Radiation from an oscillating dipole layer facing a conducting plane: resonances and Dynamical Casimir Effect

    CERN Document Server

    Fosco, César D

    2015-01-01

    We study the properties of the classical electromagnetic (EM) radiation produced by two phys- ically different yet closely related systems, which may be regarded as classical analogues of the Dynamical Casimir Effect (DCE). They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect conductor boundary conditions, while the other performs a rigid oscil- latory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written i...

  7. Casimir Friction and Near-field Radiative Heat Transfer in Graphene Structures

    Science.gov (United States)

    Volokitin, A. I.

    2017-02-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  8. Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings

    Science.gov (United States)

    Liu, Xianglei; Zhao, Bo; Zhang, Zhuomin M.

    2015-06-01

    Based on the scattering theory, simultaneously enhanced energy transport and suppressed momentum exchange are demonstrated by patterning doped-silicon surfaces in the near field. The radiative heat flux between doped-silicon gratings exceeds that between planar surfaces and can be one or even two orders of magnitude higher than what is predicted by the geometry-based Derjaguin proximity approximation (PA). The underlying mechanism is interpreted as due to the excitation of broadband hyperbolic modes that facilitate photon tunneling, especially when the period is small. This is confirmed by a comparison of the results from the scattering theory with those from the effective-medium theory. The Casimir force, which may cause stiction and even failure of mesoscopic devices, is reduced with the grating structures as predicted by both the scattering theory and PA. However, depending on the separation distance, the PA may over- or underpredict the Casimir force.

  9. Doing it with Mirrors Classical analogues for Black Hole radiation

    CERN Document Server

    Srinivasan, K

    1998-01-01

    We construct analogues for the quantum phenomena of black hole radiation in the context of {\\it classical field theory}. Hawking radiation from a (radially) collapsing star is mathematically equivalent to radiation from a mirror moving along a specific trajectory in Minkowski spacetime. We construct a classical analogue for this quantum phenomenon and use it to construct a classical analogue for black hole radiation. The radiation spectrum in quantum field theory has the power spectrum as its classical analogue. Monochromatic light is continually reflected off a moving mirror or the silvered surface of a collapsing star.The reflected light is fourier analysed by the observer and the power spectrum is constructed. For a mirror moving along the standard black hole trajectory,it is seen that the power spectrum has a ``thermal'' nature. Mirror-observer configurations like an inertial mirror observed in an accelerated observer's frame and an accelerated mirror observed in a Rindler frame are investigated and condi...

  10. Critical Casimir forces for colloidal assembly

    NARCIS (Netherlands)

    Nguyen, V.D.; Dang, M.T.; Nguyen, T.A.; Schall, P.

    2016-01-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations

  11. The theory of Hawking radiation in laboratory analogues

    CERN Document Server

    Robertson, Scott

    2015-01-01

    Hawking radiation, despite being known to theoretical physics for nearly forty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from practical and conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to laboratory systems which use moving media to model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon at the cost of a more complicated theoretical framework. This tutorial serves as an introduction to Hawking radiation and its analogues, developing the moving medium analogy for black holes and demonstrating how dispersion can be incorporat...

  12. Stimulated emission and Hawking radiation in black hole analogues

    CERN Document Server

    Belgiorno, F

    2016-01-01

    Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which stimulated radiation is calculated too.

  13. Thermodynamics of the Casimir effect

    CERN Document Server

    Mitter, H

    2000-01-01

    A complete thermodynamic treatment of the Casimir effect is presented. Explicit expressions for the free and the internal energy, the entropy and the pressure are discussed. As an example we consider the Casimir effect with different temperatures between the plates ($T$) resp. outside of them ($T'$). For $T'radiation can eventually compensate the Casimir force and the total pressure can vanish. We consider both an isothermal and an adiabatic treatment of the interior region. The equilibrium point (vanishing pressure) turns out instable in the isothermal case. In the adiabatic situation we have both an instable and a stable equilibrium point, if $T'/T$ is sufficiently small. Quantitative aspects are briefly discussed.

  14. Repulsive Casimir and Casimir-Polder Forces

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A

    2012-01-01

    Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general "Lifshitz" configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capasso's group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be reviewed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, ...

  15. Analogue Hawking Radiation in a dc-SQUID Array Transmission Line

    Science.gov (United States)

    Nation, P. D.; Blencowe, M. P.; Rimberg, A. J.; Buks, E.

    2009-08-01

    We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.

  16. Casimir edge effects

    CERN Document Server

    Gies, H; Gies, Holger; Klingmuller, Klaus

    2006-01-01

    We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

  17. Casimir light: the source.

    OpenAIRE

    1993-01-01

    The release of Casimir energy in filling a dielectric hole is identified as the source of coherent sonoluminescence. Qualitative agreement with recently acquired data is found for the magnitude and shape of the spectrum.

  18. Observation of quantum Hawking radiation and its entanglement in an analogue black hole

    Science.gov (United States)

    Steinhauer, Jeff

    2016-10-01

    We observe spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black hole in an atomic Bose-Einstein condensate. Correlations are observed between the Hawking particles outside the black hole and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. We find that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that excitations with different frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking radiation. The results are consistent with a driven oscillation experiment and a numerical simulation.

  19. Critical Casimir Interactions: New fluctuation forces in colloidal science

    Science.gov (United States)

    Schall, Peter

    2012-02-01

    Casimir forces arise from the confinement of fluctuations between two walls. Critical Casimir forces provide thermodynamic analogues of quantum-mechanical Casimir forces and arise from the confinement of concentration fluctuations of a critical solvent. These forces act also between colloidal particles that are suspended in this solvent, giving rise to temperature-dependent attractive interactions between the particles. We use these temperature-dependent forces to control colloidal phase transitions. In this talk, I will present a new index and density-matched model system that allows direct observation of these phase transitions with confocal microscopy. In three dimensions and real time, we follow how a colloidal gas freezes into a colloidal liquid, and the colloidal liquid freezes into a solid, all driven by critical Casimir forces. We measure the critical Casimir particle pair potential directly from the pair correlation function, and use Monte Carlo simulations to map the complete gas-liquid-solid phase diagram. Excellent agreement with the experimental observations is obtained. Our measurements include microgravity experiments on board the International Space Station (ISS) to elucidate non-equilibrium assembly of the particles achieved by controlled temperature quench.

  20. Finite-temperature Casimir effect in piston geometry and its classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.C. [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor Darul Ehsan (Malaysia); Teo, L.P. [Multimedia University, Faculty of Information Technology, Cyberjaya, Selangor Darul Ehsan (Malaysia)

    2009-03-15

    We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from -{infinity} to 0 when the separation a between the piston and the opposite wall increases from 0 to {infinity}. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan-Boltzmann (or black-body radiation) term which is of order T {sup d+1}, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical {Dirac_h}{yields}0 limit. Explicit formulas for the classical limit are computed. (orig.)

  1. Thermodynamics of the Casimir Effect Asymptotic Considerations

    CERN Document Server

    Mitter, H

    1998-01-01

    We study the Casimir effect with different temperatures between the plates ($T$) resp. outside of them ($T'$). If we consider the inner system as the black body radiation for a special geometry, then contrary to common belief the temperature approaches a constant value for vanishing volume during isentropic processes. This means: the reduction of the degrees of freedom can not be compensated by a concentration of the energy during an adiabatic contraction of the two-plate system. Looking at the Casimir pressure, we find one unstable equilibrium point for isothermal processes with $T > T'$. For isentropic processes there is additionally one stable equilibrium point for larger values of the distances between the two plates.}

  2. Collective properties of quantum matter: from Hawking radiation analogues to quantum Hall effect in graphene

    CERN Document Server

    de Nova, J R M

    2015-01-01

    The work is divided in three parts. We devote the first part to the study of analog Hawking radiation in Bose-Einstein condensates. We study numerically the birth of a sonic black hole in an outcoupled Bose-Einstein condensate after relaxing the confinement provided by an optical lattice. We also study possible signatures of spontaneous Hawking radiation. We propose that the violation of CS inequalities is a smoking gun of the presence of the Hawking effect. We compare this criterion with the presence of entaglement, finding that both are equivalent under usual assumptions. Finally, we study a different gravitational analogue: the so-called black-hole laser. The most interesting result is the appearance of a regime of continuous and periodic emission of solitons, providing the most strong analogue with optical lasers. In the second part, we analyze the effect of the introduction of a short Bragg pulse in a thermal cloud. We show that the induced periodic density pattern decays to the equilibrium profile. Howe...

  3. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP

    Energy Technology Data Exchange (ETDEWEB)

    Kimler, B.F.; Leeper, D.B.; Snyder, M.H.; Rowley, R.; Schneiderman, M.H. (Thomas Jefferson Univ., Philadelphia, PA (USA). Hospital)

    1982-01-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of x-radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 ..mu..g/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 ..mu..g/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 ..mu..g/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 ..mu..g/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered.

  4. The radiation chemistry of Hoechst 33258 and its potential radiosensitizing analogues

    Energy Technology Data Exchange (ETDEWEB)

    Nel, P. [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemistry]|[Peter McCallum Cancer Institute, Reserach Division, East Melbourne, VIC (Australia); Cooper, R. [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemistry; Martin, R.F. [Peter McCallum Cancer Institute, East Melbourne, VIC, (Australia)

    1996-12-31

    Collaborative research between Peter MacCallum Cancer Institute and The University of Melbourne is aimed to investigate the photochemistry and radiation chemistry of the halogenated analogues m-I Hoechst and o-I Hoechst (which are being developed as potential radiosensitizers). Studies were conducted on Hoechst 33258, phenyl Hoechst, m-I Hoechst and o-I Hoechst. The chemical interaction between the Hoechst analogues and the radiolysis products of water (the hydroxy radical and the aqueous electron) were investigated by saturating aqueous solutions with nitrogen or nitrous oxide (an electron scavenger) and using 2-propanol as a hydroxy radical scavenger. Hoechst 33258 was investigated at pH 5 and pH 9. Transient absorption spectra of micromolar solutions saturated with nitrogen or nitrous oxide suggest the formation of hydroxyl radical adduct(s). The rate of formation of these transient spectra was observed to be dependent on the concentration of Hoechst 33258. Phenyl Hoechst, m- I Hoechst and o-I Hoechst were studied at pH 5. Spectra again suggest the formation of hydroxy radical adducts and that both m-I Hoechst and o-I Hoechst react with aqueous electrons.

  5. Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy.

    Science.gov (United States)

    Hye Khan, Md Abdul; Fish, Brian; Wahl, Geneva; Sharma, Amit; Falck, John R; Paudyal, Mahesh P; Moulder, John E; Imig, John D; Cohen, Eric P

    2016-04-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by CYP epoxygenases, and EETs are kidney protective in multiple pathologies. We determined the ability of an EET analogue, EET-A, to mitigate experimental radiation nephropathy. The kidney expression of the EET producing enzyme CYP2C11 was lower in rats that received total body irradiation (TBI rat) compared with non-irradiated control. At 12 weeks after TBI, the rats had higher systolic blood pressure and impaired renal afferent arteriolar function compared with control, and EET-A or captopril mitigated these abnormalities. The TBI rats had 3-fold higher blood urea nitrogen (BUN) compared with control, and EET-A or captopril decreased BUN by 40-60%. The urine albumin/creatinine ratio was increased 94-fold in TBI rats, and EET-A or captopril attenuated that increase by 60-90%. In TBI rats, nephrinuria was elevated 30-fold and EET-A or captopril decreased it by 50-90%. Renal interstitial fibrosis, tubular and glomerular injury were present in the TBI rats, and each was decreased by EET-A or captopril. We further demonstrated elevated renal parenchymal apoptosis in TBI rats, which was mitigated by EET-A or captopril. Additional studies revealed that captopril or EET-A mitigated renal apoptosis by acting on the p53/Fas/FasL (Fas ligand) apoptotic pathway. The present study demonstrates a novel EET analogue-based strategy for mitigation of experimental radiation nephropathy by improving renal afferent arteriolar function and by decreasing renal apoptosis.

  6. Response to the recent note concerning the observation of quantum Hawking radiation and its entanglement in an analogue black hole

    CERN Document Server

    Steinhauer, Jeff

    2016-01-01

    The observation of quantum Hawking radiation and its entanglement in an analogue black hole was recently reported. A subsequent note (arXiv:1609.03803) criticized the study. We answer all of the comments in the note and show that the criticisms are not valid. We also answer a comment made by the author of the note in a different forum.

  7. Casimir experiments showing saturation effects

    CERN Document Server

    Sernelius, Bo E

    2009-01-01

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a 87 Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can exp...

  8. Negative Entropies in Casimir and Casimir-Polder Interactions

    CERN Document Server

    Milton, Kimball A; Kalauni, Pushpa; Parashar, Prachi; Guérout, Romain; Ingold, Gert-Ludwig; Lambrecht, Astrid; Reynaud, Serge

    2016-01-01

    It has been increasingly becoming clear that Casimir and Casimir-Polder entropies may be negative in certain regions of temperature and separation. In fact, the occurrence of negative entropy seems to be a nearly ubiquitous phenomenon. This is most highlighted in the quantum vacuum interaction of a nanoparticle with a conducting plate or between two nanoparticles. It has been argued that this phenomenon does not violate physical intuition, since the total entropy, including the self-entropies of the plate and the nanoparticle, should be positive. New calculations, in fact, seem to bear this out at least in certain cases.

  9. Impact of an angiotensin analogue in treating thermal and combined radiation injuries

    Science.gov (United States)

    Jadhav, Sachin Suresh

    Background: In recent years there has been a growing concern regarding the use of nuclear weapons by terrorists. Such incidents in the past have shown that radiation exposure is often accompanied by other forms of trauma such as burns, wounds or infection; leading to increased mortality rates among the affected individuals. This increased risk with combined radiation injury has been attributed to the delayed wound healing observed in this injury. The Renin-Angiotensin System (RAS) has emerged as a critical regulator of wound healing. Angiotensin II (A-II) and Angiotensin (1-7) [A(1-7)] have been shown to accelerate the rate of wound healing in different animal models of cutaneous injury. Nor-Leu3-Angiotensin (1-7) [Nor-Leu3-A (1-7)], an analogue of A(1-7), is more efficient than both A-II and A(1-7) in its ability to improve wound healing and is currently in phase III clinical trials for the treatment of diabetic foot ulcers. Aims: The three main goals of this study were to; 1) Develop a combined radiation and burn injury (CRBI) model and a radiation-induced cutaneous injury model to study the pathophysiological effects of these injuries on dermal wound healing; 2) To treat thermal and CRBI injuries using Nor-Leu 3-A (1-7) and decipher the mechanism of action of this peptide and 3) Develop an in-vitro model of CRBI using dermal cells in order to study the effect of CRBI on individual cell types involved in wound healing. Results: CRBI results in delayed and exacerbated apoptosis, necrosis and inflammation in injured skin as compared to thermal injury by itself. Radiation-induced cutaneous injury shows a radiation-dose dependent increase in inflammation as well as a chronic inflammatory response in the higher radiation exposure groups. Nor-Leu3-A (1-7) can mitigate thermal and CRBI injuries by reducing inflammation, oxidative stress and DNA damage while increasing the rate of proliferation of dermal stem cells and re-epithelialization of injured skin. The in

  10. Schwinger's Dynamical Casimir Effect Bulk Energy Contribution

    CERN Document Server

    Carlson, C E; Pérez-Mercader, J; Visser, M; Carlson, C E; Carlson, Carl E.; Molina-Paris, Carmen; Perez-Mercader, Juan; Visser, Matt

    1997-01-01

    Schwinger's Dynamical Casimir Effect is one of several candidate explanations for sonoluminescence. Recently, several papers have claimed that Schwinger's estimate of the Casimir energy involved is grossly inaccurate. In this letter, we show that these calculations omit the crucial volume term. When the missing term is correctly included one finds full agreement with Schwinger's result for the Dynamical Casimir Effect. We have nothing new to say about sonoluminescence itself except to affirm that the Casimir effect is energetically adequate as a candidate explanation. Schwinger's Dynamical Casimir Effect is one of several candidate explanations for sonoluminescence. Recently, several papers have claimed that Schwinger's estimate of the Casimir energy involved is grossly inaccurate. In this letter, we show that these calculations omit the crucial volume term. When the missing term is correctly included one finds full agreement with Schwinger's result for the Dynamical Casimir Effect. We have nothing new to say...

  11. Single-interface Casimir torque

    Science.gov (United States)

    Morgado, Tiago A.; Silveirinha, Mário G.

    2016-10-01

    A different type of Casimir-type interaction is theoretically predicted: a single-interface torque at a junction of an anisotropic material and a vacuum or another material system. The torque acts to reorient the polarizable microscopic units of the involved materials near the interface, and thus to change the internal structure of the materials. The single-interface torque depends on the zero-point energy of the interface localized and extended modes. Our theory demonstrates that the single-interface torque is essential to understand the Casimir physics of material systems with anisotropic elements and may influence the orientation of the director of nematic liquid crystals.

  12. Advances in the Casimir Effect

    CERN Document Server

    Bordag, Michael; Mohideen, Umar; Mostepanenko, Vladimir Mikhaylovich

    2009-01-01

    The subject of this book is the Casimir effect, a manifestation of zero-point oscillations of the quantum vacuum resulting in forces acting between closely spaced bodies. For the benefit of the reader, the book assembles field-theoretical foundations of this phenomenon, applications of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force with a comparison between experiment and theory. There is an urgentneed for a book of this type, given the increase of interest in forces originating from the quantum vacuum. Numerous

  13. Archimedes Force on Casimir Apparatus

    CERN Document Server

    Shevchenko, Vladimir

    2016-01-01

    We address a problem of Casimir apparatus in dense medium and weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle, with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  14. Casimir Effect for Dielectric Plates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectrics, where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived perfect metallic plates will the evanescent modes become unimportant.

  15. Experiment and theory in the Casimir effect

    CERN Document Server

    Klimchitskaya, G L

    2006-01-01

    Casimir effect is the attractive force which acts between two plane parallel, closely spaced, uncharged, metallic plates in vacuum. This phenomenon was predicted theoretically in 1948 and reliably investigated experimentally only in recent years. In fact, the Casimir force is similar to the familiar van der Waals force in the case of relatively large separations when the relativistic effects come into play. We review the most important experiments on measuring the Casimir force by means of torsion pendulum, atomic force microscope and micromechanical torsional oscillator. Special attention is paid to the puzzle of the thermal Casimir force, i.e., to the apparent violation of the third law of thermodynamics when the Lifshitz theory of dispersion forces is applied to real metals. Thereafter we discuss the role of the Casimir force in nanosystems including the stiction phenomenon, actuators, and interaction of hydrogen atoms with carbon nanotubes. The applications of the Casimir effect for constraining predictio...

  16. Finite Temperature Casimir Effect for Corrugated Plates

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan; SHAO Cheng-Gang; LUO Jun

    2006-01-01

    @@ Using the path-integral method, the corrections to the Casimir energy due to the combined effect of surface roughness and the finite temperature are calculated. For the specific case of two sinusoidally corrugated plates,the lateral Casimir force at finite temperature is obtained. The amplitude of the lateral Casimir force has a maximum at an optimal wavelength of λ≈ 2H with the mean plate distance H. This optimal parameter relation is almost independent of temperature.

  17. The electromagnetic Casimir effect of spherical cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casimir effect of a single sphere is included in our results.

  18. A novel experimental approach for the detection of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Ferrara Univ. (Italy). Dipt. di Fisica; Bressi, G. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Carugno, G.; Del Noce, C. [Istituto Nazionale di Fisica Nucleare, Padova (Italy); Galeazzi, G.; Lombardi, A.; Palmieri, A.; Ruoso, G. [Istituto Nazionale di Fisica Nucleare, LNL, Legnaro (Italy); Zanello, D. [Istituto Nazionale di Fisica Nucleare, Rome (Italy)

    2005-06-01

    In order to observe the Casimir radiation we propose a new experimental scheme with no mechanically moving mirror. In fact we estimate that the power required for a sustained mechanical vibration would be beyond present experimental possibilities. Our apparatus consists of a superconducting electromagnetic resonant cavity with a wall covered by a semiconductor layer whose reflectivity is driven by a laser at giga-hertz frequencies. The semiconductor thus acts as a moving mirror. Preliminary laboratory tests showed that a semiconductor can indeed reflect microwaves as efficiently as a conductor. In this paper we present the complete scheme that we intend to set up for the detection of the Casimir radiation. (authors)

  19. The Reality of Casimir Friction

    CERN Document Server

    Milton, K A; Brevik, I

    2015-01-01

    For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum fluctuations. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Because of the lack of contact with phenomena, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  20. The Reality of Casimir Friction

    Directory of Open Access Journals (Sweden)

    Kimball A. Milton

    2016-04-01

    Full Text Available For more than 35 years theorists have studied quantum or Casimir friction, which occurs when two smooth bodies move transversely to each other, experiencing a frictional dissipative force due to quantum electromagnetic fluctuations, which break time-reversal symmetry. These forces are typically very small, unless the bodies are nearly touching, and consequently such effects have never been observed, although lateral Casimir forces have been seen for corrugated surfaces. Partly because of the lack of contact with observations, theoretical predictions for the frictional force between parallel plates, or between a polarizable atom and a metallic plate, have varied widely. Here, we review the history of these calculations, show that theoretical consensus is emerging, and offer some hope that it might be possible to experimentally confirm this phenomenon of dissipative quantum electrodynamics.

  1. Archimedes force on Casimir apparatus

    Directory of Open Access Journals (Sweden)

    Shevchenko V.

    2016-01-01

    Full Text Available The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded by a dense medium. The falling of the apparatus has to be governed by the equivalence principle, taking into account proper contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general ex pression for the corresponding force in terms of the effective action. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  2. Archimedes force on Casimir apparatus

    Science.gov (United States)

    Shevchenko, V.; Shevrin, E.

    2016-11-01

    The talk addresses a problem of Casimir apparatus in weak gravitational field, surrounded by a dense medium. The falling of the apparatus has to be governed by the equivalence principle, taking into account proper contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general ex pression for the corresponding force in terms of the effective action. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  3. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mohideen, Umar [Univ. of California, Riverside, CA (United States)

    2015-04-14

    Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to only those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.

  4. Casimir effect in the presence of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kort-Kamp, W.J.M.; Pinheiro, F.A.; Maia Neto, P.A.; Farina, C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Rosa, F.S.S. [Universite Paris-Sud (France). Lab. Charles Fabry

    2011-07-01

    Full text: The Casimir effect was theoretically predicted in 1948 by H. G. B. Casimir. In its original form, it is the attraction between two parallel plates made of perfectly conductors in vacuum. The novelty in the Casimir result was the method used and not the fact that two neutral bodies attract each other, since the force between two neutral, but polarizable, atoms was previously treated by London in 1930. Casimir demonstrated that the force between the plates could be calculated from the variation in the zero-point energy of the quantized electromagnetic field caused by the presence of the plates. Nowadays there is no doubt about the existence of this effect, which has been observed in the last decade in experiments of great precision. Casimir forces play an important role in nanotechnology, in particular in the study of micro- and nano-electromechanical systems, because these forces become dominant in the nanoscopic scale. Casimir forces are responsible for an attraction of individual parts of these devices, making them eventually to stick together. As a result, attractive Casimir forces constitute a nuisance for practical applications. Therefore the investigation of a repulsive Casimir force is of great current interest. It has been recently argued that Casimir repulsion could be obtained by an adequate choice of artificial materials, the so-called metamaterials, with engineered electromagnetic properties [R. Zhao et al, PRL 103, 103602 (2009)]. In this work we investigate the interaction between an atom and a chiral metamaterial plate. Using realistic parameters, obtained from recent experiments and computer simulations, we show that state-of-the-art chiral metamaterials are not able generate Casimir repulsive forces. We also investigate the possibility of magneto-optical metamaterials to exhibit a repulsive Casimir force. To accomplish this, we discuss the dispersive interaction between a magneto-optical sphere and a chiral surface or a magneto

  5. Casimir light: field pressure.

    OpenAIRE

    1994-01-01

    The electromagnetic field is assigned a self-consistent role in which abrupt slowing of the collapse produces radiation and the pressure of the radiation produces abrupt slowing. A simple expression is introduced for the photon spectrum. Conditions for light emission are proposed that imply a high degree of spatial localization. Some numerical checks are satisfied. A study of the mechanical equations of motion suggests an explanation of the very short time scale in terms of oppositely directe...

  6. Mode Contributions to the Casimir Effect

    Science.gov (United States)

    Intravaia, F.; Henkel, C.

    2010-04-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  7. Mode contributions to the Casimir effect

    CERN Document Server

    Intravaia, Francesco

    2009-01-01

    Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.

  8. Casimir effect for Elko spinor field

    CERN Document Server

    Pereira, S H; Santos, Rubia dos

    2016-01-01

    The Casimir effect for the Elko spinor field in $3+1$ dimension is obtained using Dirichlet boundary conditions. It is shown the existence of a repulsive force four times greater than the case of the scalar field. The precise reason for such differences are highlighted and interpreted, as well as the right parallel of the Casimir effect due to scalar and fermionic fields.

  9. Zeta Functions and the Casimir Energy

    CERN Document Server

    Blau, Steven K; Wipf, Andreas; 10.1016/0550-3213(88)90059-4

    2009-01-01

    We use zeta function techniques to give a finite definition for the Casimir energy of an arbitrary ultrastatic spacetime with or without boundaries. We find that the Casimir energy is intimately related to, but not identical to, the one-loop effective energy. We show that in general the Casimir energy depends on a normalization scale. This phenomenon has relevance to applications of the Casimir energy in bag models of QCD. Within the framework of Kaluza-Klein theories we discuss the one-loop corrections to the induced cosmological and Newton constants in terms of a Casimir like effect. We can calculate the dependence of these constants on the radius of the compact dimensions, without having to resort to detailed calculations.

  10. Scalar Casimir effect between two concentric spheres

    CERN Document Server

    Ozcan, Mustafa

    2012-01-01

    The Casimir effect giving rise to an attractive force between the closely spaced two concentric spheres that confine the massless scalar field is calculated by using a direct mode summation with contour integration in the complex plane of eigenfrequencies. We devoleped a new approach appropriate for the calculation of the Casimir energy for spherical boundary conditions. The Casimir energy for a massless scalar field between the closely spaced two concentric spheres coincides with the Casimir energy of the parallel plates for a massless scalar field in the limit when the dimensionless parameter {\\eta}, ({\\eta}=((a-b)/(\\surd(ab))) where a (b) is inner (outer) radius of sphere), goes to zero. The efficiency of new approach is demonstrated by calculation of the Casimir energy for a massless scalar field between the closely spaced two concentric half spheres. PACS number(s): 03.70.+k, 12.20.DS, 11.10.Gh

  11. La force de Casimir et les plasmons de surface

    Science.gov (United States)

    Intravaia, F.; Lambrecht, A.; Reynaud, S.

    2004-11-01

    La présence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreux effets bien connus, dont l'archétype est la force de Casimir apparaîssant entre deux miroirs placés dans le vide par suite de la pression de radiation du vide. Elle a été récemment mesurée avec une précision de l'ordre du %. De nombreux travaux sont consacrés à l'évaluation théorique de cette force en visant une précision du même ordre. Ici nous étudions la force de Casimir dans la configuration de deux miroirs métalliques plans parallèles à température nulle. En supposant les miroirs décrits par un modèle plasma nous interprétons la force de Casimir comme le résultat de l'interaction entre les plasmons de surface des deux miroirs.

  12. The holographic supersymmetric Casimir energy

    CERN Document Server

    Genolini, Pietro Benetti; Martelli, Dario; Sparks, James

    2016-01-01

    We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.

  13. The holographic supersymmetric Casimir energy

    Science.gov (United States)

    Benetti Genolini, Pietro; Cassani, Davide; Martelli, Dario; Sparks, James

    2017-01-01

    We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, which are dual to superconformal field theories on curved backgrounds S1×M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S1×R4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory supersymmetric relation between charges.

  14. Optimizing Casimir torque between corrugated metallic plates

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Robson B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Maia Neto, Paulo A. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: The Casimir effect plays a major role in micro- and nano-electromechanical systems (MEMS and NEMS). Besides the normal Casimir force between metallic or dielectric plates, the observation of the lateral Casimir force between corrugated plates opens novel possibilities of micro-mechanical control. The lateral force results from breaking the translational symmetry along directions parallel to the plates by imprinting periodic corrugations on both metallic plates. As the rotational symmetry is broken by this geometry, a Casimir torque arises when the corrugations are not aligned. We calculate the Casimir torque between two parallel metallic plates with surface profiles in the form of 'fans' with arbitrary relative spatial orientation. As compared to the case of anisotropic dielectric plates, the torque per unit area is increased by up to three orders of magnitude for a given separation distance. The experiment proposed here can be performed with torsion pendulum techniques for separation distances as large as 1 μm. From the point of view of fundamental physics, this torque makes possible a precise experimental investigation of the non-trivial geometry dependence of the Casimir effect. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We investigate the experimental conditions that optimize the effect. (author)

  15. Self-similar plates: Casimir energies

    CERN Document Server

    Shajesh, K V; Cavero-Peláez, Inés; Parashar, Prachi

    2016-01-01

    We construct various self-similar configurations using parallel $\\delta$-function plates and show that it is possible to evaluate the Casimir interaction energy of these configurations using the idea of self-similarity alone. We restrict our analysis to interactions mediated by a scalar field, but the extension to electromagnetic field is immediate. Our work unveils an easy and powerful method that can be easily employed to calculate the Casimir energies of a class of self-similar configurations. As a highlight, in an example, we determine the Casimir interaction energy of a stack of parallel plates constructed by positioning $\\delta$-function plates at the points constituting the Cantor set, a prototype of a fractal. This, to our knowledge, is the first time that the Casimir energy of a fractal configuration has been reported. Remarkably, the Casimir energy of some of the configurations we consider turn out to be positive, and a few even have zero Casimir energy. For the case of positive Casimir energy that ...

  16. MIR status report: an experiment for the measurement of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Agnesi, A; Pirzio, F; Reali, G [Dipartimento di Elettronica, Universita di Pavia, Via Ferrata 1, 27100 Pavia (Italy); Braggio, C; Carugno, G [INFN-Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Bressi, G [INFN-Sezione di Pavia, Via U. Bassi 6, 27100 Pavia (Italy); Galeazzi, G; Ruoso, G [INFN-Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro (Italy); Zanello, D [INFN-Sezione di Roma, P.le A. Moro 2, 00185 Roma (Italy)], E-mail: Giuseppe.Ruoso@lnl.infn.it

    2008-04-25

    In this paper, the status of the experiment MIR (motion induced radiation) is reported. This experiment aims at measuring for the first time the dynamical Casimir effect by using an effective motion of a wall of a superconducting microwave resonant cavity. Effective motion is produced by periodic illumination of a semiconductor slab by means of an ultra-high-frequency amplitude modulated laser.

  17. Purine and its analogues and radiation damage in Bacillus megaterium spores

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1986-12-01

    As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation.

  18. Repulsive Casimir Force using metamaterials

    Science.gov (United States)

    Pappakrishnan, Venkatesh K.; Mundru, Pattabhiraju C.; Genov, Dentcho A.

    We investigate conditions for Casimir Force (CF) reversal between two parallel half-space metamaterial plates separated by air or vacuum at ambient temperatures. Practically, the Casimir effect can lead to stiction in nanoscale devices, degradation and decreased performance. While material realizations of repulsive CF has been proposed for high dielectric host materials, so far the CF reversal with air/vacuum as intermediate medium remain challenging. Here, we propose a two plate design based on artificial electromagnetic materials known as metamaterials. This configuration allows a simple analytical treatment that accurately describes the large and short distance asymptotics of CF and allows extraction of important parameters such as lower and upper cutoff gap distances that define the repulsive force window. A parametric study has been performed in terms of the plate's dielectric and magnetic plasma frequencies, plate separation distance and temperature. The parametric domain for achieving CF reversal is identified. If successfully implemented the proposed design could potentially result in frictionless bio-fluid transport devices, quantum levitation and coating for ultra-clean room environment.

  19. Casimir Force Correction Between Parallel Polysilicon Plates

    Institute of Scientific and Technical Information of China (English)

    丁建宁; 孟永钢; 温诗铸

    2002-01-01

    Both the size of the components and the separation between them in some microelectromechanical systems (MEMS) are already in the sub-micrometer regime, where quantum mechanical effects such as the Casimir effect will need to be considered. This paper theoretically analyzes the roughness, electrical conductivity, and temperature corrections due to the Casimir force between two parallel polysilicon plates. The theoretical results show that the combined effects of roughness, conductivity and temperature cause a maximum relative error of the Casimir force per unit area of 26.2% between parallel polysilicon plates separated by 1 μm. Therefore, the surface roughness and finite conductivity corrections should be taken into account when calculating precise Casimir forces with separations on the order of 1 μm.

  20. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  1. Synthesis, biological distribution and radiation dosimetry of Te-123m analogues of hexadecenoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Basmadjian, G.P.; Ice, R.D. (Oklahoma Univ., Oklahoma City (USA). College of Pharmacy); Mills, S.L. (Tennessee Univ., Memphis (USA). College of Pharmacy)

    1982-06-01

    The synthesis and biological distribution of four Te-123m analogues of hexadecenoic acid in rats, rabbits and dogs were described for use as possible myocardial imaging agents. The heart-to-blood ratios ranged from 0.13 for 3-telluranonadecenoic acid in rats at 5 mins to 6.25 for 18-methyl-17-tellura-9-nonadecenoic acid in dogs at 24 hrs. The biological half-life of the Te-123m labelled fatty acids ranged from 26 to 583 hrs in the hearts of the test animals. These Te-123m fatty acids were retained in the heart longer than radioiodinated fatty acids and have acceptable absorbed doses to the various target organs.

  2. Acoustic Casimir Pressure for Arbitrary Media

    CERN Document Server

    Barcenas, J; Esquivel-Sirvent, R

    2004-01-01

    In this paper we derive a general expression for the acoustic Casimir pressure between two parallel slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The formalism is based on the calculation of the local density of modes using a Green's function approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate configuration using the proximity theorem

  3. Stability of suspended graphene under Casimir force

    Science.gov (United States)

    Chudnovsky, E. M.; Zarzuela, R.

    2016-08-01

    We consider a graphene sheet suspended above a conducting surface. Treating graphene as an elastic membrane subjected to Casimir force, we study its stability against sagging towards the conductor. There exists a critical elevation at the edges below which the central part of the suspended graphene nucleates a trunk that sinks under the action of the Casimir force. The dependence of the critical elevation on temperature, dimensions, and the elastic stress applied to the graphene sheet is computed.

  4. Casimir-Polder forces: A nonperturbative approach

    Science.gov (United States)

    Buhmann, Stefan Yoshi; Knöll, Ludwig; Welsch, Dirk-Gunnar; Dung, Ho Trung

    2004-11-01

    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.

  5. PREFACE: International Workshop '60 Years of the Casimir Effect'

    Science.gov (United States)

    Barton, Gabriel; Carugno, Giovanni; Dodonov, Victor; Man'ko, Margarita

    2009-07-01

    consists of work devoted to the current status of the theory and measurements related to Casimir forces. Readers must be warned that some topics in this field of research remain controversial (especially the dependence on temperature): they can and do generate debates that sometimes become quite heated. These controversies are reflected in the papers. We believe that at present it is not the business of conference organisers to adjudicate such issues, and hope that detailed expositions of different approaches and different points of view will help readers to formulate their own, and will eventually lead to a better understanding of the problems and of the solutions proposed. The other three groups contain contributions bearing on (1) topics related to causes and consequences of Casimir effects in quantum field theory and gravitation; (2) the so-called dynamical (or nonstationary) Casimir effect and motion-induced radiation, (3) some new manifestations and applications of the Casimir effect. We are grateful to the authors for making their papers so interesting; to the referees for their careful reading of the initial versions, and for their many helpful comments and suggestions; to the Institute of Physics for its kindness in offering to publish these Proceedings in Journal of Physics: Conference Series; and to the Institute of Physics office at the Lebedev Physical Institute in Moscow for essential help in the preparation of this volume. On behalf of the participants of the workshop, we thank the direction and staff of the ICCMP for their splendid organization of the event. Finally we acknowledge the support of the Brazilian scientific funding agencies FAP-DF and CNPQ, which covered the local and travel expenses of many participants. The Editors Gabriel Barton (University of Sussex, Brighton, UK) Giovanni Carugno (INFN - Sezione di Padova, Italy) Victor Dodonov (University of Brasilia, Brazil) Margarita Man'ko (Lebedev Physical Institute, Moscow, Russia) Workshop

  6. Dispersive Casimir Pressure Effect from Surface Plasmon Quanta by Quasi 1D Metal Wires in Ferrite Disks and The Josephson Frequencies and Currents

    CERN Document Server

    Obol, Mahmut

    2013-01-01

    Ferrites are distinct material for electromagnetic applications due to its unique spin precession. In this paper, Casimir pressure effect by deploying magnetically tunable surface plasmon quanta in stratified structure of using ferrite and metal wires is presented. Previously, oscillating surface plasmon quanta were successfully included to modify first reflection and first transmission characteristics. The oscillating surface plasmon quanta in the modified reflection in such a system, not only does resolve in a typical matter in metamaterial, but also provide new applications such as creating Casimir pressure effects through the metamaterial composite shown in this paper. The Casimir pressure flips from attractive state to repulsive state is referred to actual cause mechanism of radiation from surface plasmon quanta. Both Casimir force analysis and the measured data of radiations indicate us the system develops quantized states by electric flux induced by ferromagnetic resonance, so we also carried quantum a...

  7. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  8. Casimir effect in Extended Theories of Gravity

    CERN Document Server

    Lambiase, G; Stabile, An

    2016-01-01

    We study the Casimir vacuum energy density and the Casimir pressure for a massless scalar field confined between two nearby parallel plates in a slightly curved, static spacetime background, employing the weak field approximation in the framework of Extended Theories of Gravity (ETG). Following a perturbative approach upto second order, we find the gravity correction in the ETG to Casimir vacuum energy density and pressure. The corrections to the vacuum energy density in presence of curved spacetime in the framework of General Relativity (GR) are small and today they are still undetected with the current technology. However, future sensitivity improvement in gravitational interferometer experiments will give an useful tool to detect such effect induced by gravity. For these reason we retain interesting from a theoretical point of view generalize the outcomes of GR in the context of ETG. Finally, we find the general relation to constraining the free parameters of the ETG.

  9. Finite temperature Casimir effect for graphene

    CERN Document Server

    Fialkovsky, Ignat V; Vassilevich, Dmitri V

    2011-01-01

    We adopt the Dirac model for quasiparticles in graphene and calculate the finite temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature the Casimir interaction in such system is just one half of that for two ideal conductors separated by the same distance. In this limit single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while one of the TM mode saturates the ideal metal value. Behaviour of the Casimir interaction for intermediate temperatures and separations accessible for an experiment is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine structure constant and the Fermi velocity.

  10. Probing the Casimir force with optical tweezers

    CERN Document Server

    Ether, D S; Umrath, S; Martinez, D; Ayala, Y; Pontes, B; Araújo, G R de S; Frases, S; Ingold, G -L; Rosa, F S S; Viana, N B; Nussenzveig, H M; Neto, P A Maia

    2015-01-01

    We propose to use optical tweezers to probe the Casimir interaction between microspheres inside a liquid medium for geometric aspect ratios far beyond the validity of the widely employed proximity force approximation. This setup has the potential for revealing unprecedented features associated to the non-trivial role of the spherical curvatures. For a proof of concept, we measure femtonewton double layer forces between polystyrene microspheres at distances above $400$ nm by employing very soft optical tweezers, with stiffness of the order of fractions of a fN/nm. As a future application, we propose to tune the Casimir interaction between a metallic and a polystyrene microsphere in saline solution from attraction to repulsion by varying the salt concentration. With those materials, the screened Casimir interaction may have a larger magnitude than the unscreened one. This line of investigation has the potential for bringing together different fields including classical and quantum optics, statistical physics an...

  11. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen;

    2012-01-01

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...... that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude...... of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T

  12. Observation of the dynamical Casimir effect in a superconducting circuit.

    Science.gov (United States)

    Wilson, C M; Johansson, G; Pourkabirian, A; Simoen, M; Johansson, J R; Duty, T; Nori, F; Delsing, P

    2011-11-16

    One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences--for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process.

  13. Casimir Forces between Nanoparticles and Substrates

    CERN Document Server

    Román-Velázquez, C E; Villarreal, C; Esquivel-Sirvent, R; Noguez, Cecilia

    2002-01-01

    We study the Casimir force between a nanoparticle and a substrate. We consider the interaction of metal nanoparticles with different substrates within the dipolar approximation. We study the force as a function of the distance for gold and potassium spheres, which are over a substrate of titanium dioxide, sapphire and a perfect conductor. We show that Casimir force is important in systems at the nanometer scale. We study the force as a function of the material properties, radii of the spheres, and the distance between the sphere and the substrate.

  14. Nonequilibrium Tuning of the Thermal Casimir Effect

    CERN Document Server

    Dean, David S; Maggs, A C; Podgornik, Rudolf

    2016-01-01

    In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.

  15. Casimir stress on lossy magnetodielectric spheres

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Knoell, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    An expression for the Casimir stress on arbitrary dispersive and lossy linear magnetodielectric matter at finite temperature, including left-handed material, is derived and applied to spherical systems. To cast the relevant part of the scattering Green tensor for a general magnetodielectric sphere in a convenient form, classical Mie scattering is reformulated.

  16. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  17. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; J. Zhou; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  18. Repulsive Casimir Force in Chiral Metamaterials

    Science.gov (United States)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  19. Schwinger's Method for the Massive Casimir Effect

    OpenAIRE

    1994-01-01

    We apply to the massive scalar field a method recently proposed by Schwinger to calculate the Casimir effect. The method is applied with two different regularization schemes: the Schwinger original one by means of Poisson formula and another one by means of analytical continuation.

  20. Casimir light: pieces of the action.

    OpenAIRE

    1993-01-01

    More realistic dynamics for the collapsing dielectric fluid are introduced in stages by adding contributions to the Lagrangian that forms the action. The elements are kinetic energy, Casimir potential energy, air pressure potential energy, and electromagnetic coupling to the moving dielectric. There are successful tests of partial collapse time and of minimum radius.

  1. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  2. The Casimir Torque on a Cylindrical Gear

    CERN Document Server

    Vaidya, Varun

    2013-01-01

    We utilize Effective Field Theory(EFT) techniques to calculate the casimir torque on a cylindrical gear in the presence of a polarizable but neutral object. We present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  3. Casimir torque on a cylindrical gear

    Science.gov (United States)

    Vaidya, Varun

    2014-08-01

    I utilize effective field theory(EFT) techniques to calculate the Casimir torque on a cylindrical gear in the presence of a polarizable but neutral object and present results for the energy and torque as a function of angle for a gear with multiple cogs, as well as for the case of a concentric cylindrical gear.

  4. Surface impedance and the Casimir force

    CERN Document Server

    Bezerra, V B; Romero, C

    2002-01-01

    The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a shpere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general formulas of the impedance approach to the theory of the Casimir force are given and the formal substitution is found for connecting it with the Lifshitz formula. The range of micrometer separations between the test bodies which is interesting from the experimental point of view is investigated in detail. It is shown that at zero temperature the results obtained on the basis of the surface impedance method are in agreement with those obtained in framework of the Lifshitz theory within a fraction of a percent. The temperature c...

  5. Observation of the thermal Casimir force

    CERN Document Server

    Sushkov, A O; Dalvit, D A R; Lamoreaux, S K

    2010-01-01

    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 $\\mu$m and 7 $\\mu$m. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental resul...

  6. Detecting Chameleons through Casimir Force Measurements

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine; Mota, David F; Shaw, Douglas

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces, however this sheet mask any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behaviour of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter couplin...

  7. Dynamical Casimir Effect in a Leaky Cavity at Finite Temperature

    CERN Document Server

    Schaller, G; Plunien, G; Soff, G

    2002-01-01

    The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of a dispersive mirror into a larger ideal cavity (the reservoir). In the case of parametric resonance the rotating wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles is then calculated using response theory as well as a non-perturbative approach. In addition we study the associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynamical Casimir effect is addressed. Furthermore the generalization to the electromagnetic field is outlined.

  8. Casimir force in the presence of a magnetodielectric medium

    CERN Document Server

    Kheirandish, Fardin; Sarabadani, Jalal

    2010-01-01

    In this article we investigate the Casimir effect in the presence of a medium by quantizing the Electromagnetic (EM) field in the presence of a magnetodielectric medium by using the path integral formalism. For a given medium with definite electric and magnetic susceptibilities, explicit expressions for the Casimir force are obtained which are in agree with the original Casimir force between two conducting parallel plates immersed in the quantum electromagnetic vacuum.

  9. Casimir Forces due to Matters in Compactified Six Dimensions

    CERN Document Server

    Ito, M

    2003-01-01

    We calculate the Casimir energies due to matters with various boundary conditions along two compact directions in six-dimensional $T^{2}$ compactification. We discuss whether the Casimir forces are attractive or repulsive forces. On the theories with extra dimensions, the Casimir energy plays a crucial role in the mechanism for stabilizing the size of extra dimensions. Finally we argue a procedure of the application to $Z_{2}$ orbifold.

  10. The Light Velocity Casimir Effect Does the Velocity of Light Increase when Propagating Between the Casimir Plates?

    CERN Document Server

    Ostoma, T; Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We propose experiments that might be set up to detect the increase in the velocity of light in a vacuum in the laboratory frame for photons travelling between (and perpendicular to) the Casimir plates in a vacuum. The Casimir plates are two closely spaced, conductive plates, where an attractive force is observed to exist between the plates called the 'Casimir Force'. We propose that the velocity of light in a vacuum increases when propagating between two transparent Casimir Plates. We call this effect the 'Light Velocity Casimir Effect' or LVC effect. The LVC effect happens because the vacuum energy density in between the plates is lower than that outside the Casimir plates. The conductive plates disallow certain frequencies of electrically charged virtual particles to exist inside the plates, thus lowering the inside vacuum particle density, compared to the density outside the plates. The reduced (electrically charged) virtual particle density results in fewer photon scattering events inside the plates, whic...

  11. Casimir force between metal plate and dielectric plate

    Institute of Scientific and Technical Information of China (English)

    刘中柱; 邵成刚; 罗俊

    1999-01-01

    The Casimir effect between metal plate and dielectric plate is discussed with 1+1-dimensional potential model without using cut-off method. Calculation shows that the Casimir force between metal plate and dielectric plate is determined not only by the potential V0, the dielectric thickness and the distance α between the metal plate and dielectric plate, but also by the dimension of the vessel. When α is far less than the dimension of the vessel, the Casimir force Fc∝α(-1); conversely Fc∝α-2. This result is significant for Casimir force experiment.

  12. The role of magnetoplasmons in Casimir force calculations

    CERN Document Server

    Esquivel-Sirvent, R; Palomino-Ovando, M A; Cocoletzi, G H

    2009-01-01

    In this paper we review the role of magneto plasmon polaritons in the Casimir force calculations. By applying an external constant magnetic field a strong optical anisotropy is induced on two parallel slabs reducing the reflectivity and thus the Casimir force. As the external magnetic field increases, the Casimir force decreases. Thus, with an an external magnetic field the Casimir force can be controlled.The calculations are done in the Voigt configuration where the magnetic field is parallel to the slabs. In this configuration the reflection coefficients for TE and TM modes do not show mode conversion.

  13. Implications of the Babinet Principle for Casimir Interactions

    CERN Document Server

    Maghrebi, Mohammad F; Jaffe, Robert L

    2011-01-01

    We formulate the Babinet Principle (BP) as a relation between the scattering amplitudes for electromagnetic waves, and combine it with multiple scattering techniques to derive new properties of Casimir forces. We show that the Casimir force exerted by a planar conductor or dielectric on a self- complementary perforated planar mirror is approximately half that on a uniform mirror independent of the distance between them. The BP suggests that Casimir edge effects are anomalously small, supporting results obtained earlier in special cases. Finally, we illustrate how the BP can be used to estimate Casimir forces between perforated planar mirrors.

  14. Matter-screened Casimir force and Casimir-Polder force in planar structures

    CERN Document Server

    Raabe, C; Raabe, Christian; Welsch, Dirk-Gunnar

    2005-01-01

    Using a recently developed theory of the Casimir force (Raabe C and Welsch D-G 2005 Phys. Rev. A 71 013814), we calculate the force that acts on a plate in front of a planar wall and the force that acts on the plate in the case where the plate is part of matter that fills the space in front of the wall. We show that in the limit of a dielectric plate whose permittivity is close to unity, the force obtained in the former case reduces to the ordinary, i.e., unscreened Casimir-Polder force acting on isolated atoms. In the latter case, the theory yields the Casimir-Polder force that is screened by the surrounding matter.

  15. Magnetic Anistropy due to the Casimir Effect

    CERN Document Server

    Metalidis, G

    2009-01-01

    We consider the Casimir interaction between a ferromagnetic and a non-magnetic mirror, and show how the Casimir effect gives rise to a magnetic anisotropy in the ferromagnetic layer. The anisotropy is out-of-plane if the non-magnetic plate is optically isotropic. If the non-magnetic plate shows a uniaxial optical anisotropy (with optical axis in the plate plane), we find an in-plane magnetic anisotropy. In both cases, the energetically most favorable magnetization orientation is given by the competition between polar, longitudinal and transverse contributions to the magneto-optical Kerr effect, and will therefore depend on the interplate distance. Numerical results will be presented for a magnetic plate made out of iron, and non-magnetic plates of gold (optically isotropic), quartz, calcite and barium titanate (all uniaxially birefringent).

  16. Casimir apparatuses in a weak gravitational field

    DEFF Research Database (Denmark)

    Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero;

    2009-01-01

    We review and assess a part of the recent work on Casimir apparatuses in the weak gravitational field of the Earth. For a free, real massless scalar field subject to Dirichlet or Neumann boundary conditions on the parallel plates, the resulting regularized and renormalized energy-momentum tensor...... is covariantly conserved, while the trace anomaly vanishes if the massless field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. These results have been extended to an electromagnetic field subject to perfect...... conductor (hence idealized) boundary conditions on parallel plates, by various authors. The regularized and renormalized energy-momentum tensor has beene valuated up to second order in the gravity acceleration. In both the scalar and the electromagnetic case, studied to first order in the gravity...

  17. Extended Analysis of the Casimir Force

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-04-01

    Full Text Available There are several arguments for the conventional form of the Zero Point Energy fre- quency spectrum to be put in doubt. It has thus to be revised in to that of a self-consistent system in statistical equilibrium where the total energy de nsity and the equivalent pres- sure become finite. An extended form of the Casimir force is th ereby proposed to be used as a tool for determining the local magnitude of the same pressure. This can be done in terms of measurements on the force between a pair po lished plane plates consisting of different metals, the plates having very small or zero air gaps. T his corre- sponds to the largest possible Casimir force. Even then, the re may arise problems with other adhering forces, possibly to be clarified in further experiments.

  18. Casimir interactions between graphene sheets and metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Drosdoff, D.; Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  19. Casimir Effects in Renormalizable Quantum Field Theories

    CERN Document Server

    Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    2002-01-01

    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  20. Casimir Effects in Renormalizable Quantum Field Theories

    Science.gov (United States)

    Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  1. Maxwell-Chern-Simons Casimir Effect

    CERN Document Server

    Milton, K A

    1992-01-01

    In odd-dimensional spaces, gauge invariance permits a Chern-Simons mass term for the gauge fields in addition to the usual Maxwell-Yang-Mills kinetic energy term. We study the Casimir effect in such a (2+1)-dimensional Abelian theory. For the case of parallel conducting lines the result is the same as for a scalar field. For the case of circular boundary conditions the results are completely different, with even the sign of the effect being opposite for Maxwell-Chern-Simons fields and scalar fields. We further examine the effect of finite temperature. The Casimir stress is found to be attractive at both low and high temperature. Possibilities of observing this effect in the laboratory are discussed.

  2. Finite difference computation of Casimir forces

    Science.gov (United States)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  3. Casimir-Polder interaction in second quantization

    Energy Technology Data Exchange (ETDEWEB)

    Schiefele, Juergen

    2011-03-21

    The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)

  4. Casimir effect in de Sitter spacetime

    CERN Document Server

    Saharian, A A

    2011-01-01

    The vacuum expectation value of the energy-momentum tensor and the Casimir forces are investigated for a massive scalar field with an arbitrary curvature coupling parameter in the geometry of two parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch--Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. The vacuum energy-momentum tensor is non-diagonal, with the off-diagonal component corresponding to the energy flux along the direction normal to the plates. It is shown that the curvature of the background spacetime decisively influences the behavior of the Casimir forces at separations larger than the curvature radius of de Sitter spacetime. In dependence of the curvature coupling parameter and the mass of the field, two different regimes are realized, which exhibit monotonic or oscillatory behavior of the forces. The decay of the Casimir force at large plate separation is shown to be power-law, with independence of the value of the...

  5. Chiral metamaterials reduce the attractive Casimir force

    Science.gov (United States)

    Zhao, R.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2010-08-01

    In our previous work [R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)], we demonstrated theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials if the chirality is strong enough. In our recent work [R. Zhao, Th. Koschny, E.N. Economou, and C.M. Soukoulis, Phys. Rev. B 81, 235126 (2010)], we checked some chiral metamaterial designs and found that the artificial chiral metamaterials constructed by passive materials is very difficult to reach the critical chirality to realize repulsive Casimir force. Therefore, in this paper, we give a four-folded rotated Ω-particle chiral metamaterial as an example, use the effective medium approximation to retrieval the constitutive parameters, and take the same procedure as we did before to see how much the chiral metamaterial can reduce the attractive force. It shows that this un-optimized chiral metamaterial can reduce the Casimir attraction by 70%.

  6. Enhancing Casimir repulsion via topological insulator multilayers

    Science.gov (United States)

    Zeng, Ran; Chen, Liang; Nie, Wenjie; Bi, Meihua; Yang, Yaping; Zhu, Shiyao

    2016-08-01

    We propose to observe the enhanced Casimir repulsion between two parallel multilayer walls made of alternating layers of a topological insulator (TI) and a normal insulator. Based on the transfer matrix method, the Fresnel coefficients matrix is generalized to apply to the TI multilayer structure. The Casimir repulsion under the influence of the magnetization orientation in the magnetic coatings on TI layer surfaces, the layer thicknesses, and the topological magnetoelectric polarizability, is investigated. We show that, for the multilayer structures with parallel magnetization on the TI layer surfaces, it is possible to enhance the repulsion by increasing the TI layer number, which is due to the accumulation of the contribution to the repulsion from the polarization rotation effect occurring on each TI layer surface. Generally, in the distance region where there is Casimir attraction between semi-infinite TIs, the force may turn into repulsion in TI multilayer structure, and in the region of repulsion for semi-infinite TI, the repulsive force can be enhanced in magnitude, the enhancement tends to a maximum while the structure contains sufficiently many layers.

  7. Casimir effect in dielectrics Bulk Energy Contribution

    CERN Document Server

    Carlson, C E; Pérez-Mercader, J; Visser, M; Visser, Matt

    1997-01-01

    In a recent series of papers, Schwinger discussed a process that he called the Dynamical Casimir Effect. The key essence of this effect is the change in zero-point energy associated with any change in a dielectric medium. (In particular, if the change in the dielectric medium is taken to be the growth or collapse of a bubble, this effect may have relevance to sonoluminescence.) The kernel of Schwinger's result is that the change in Casimir energy is proportional to the change in volume of the dielectric, plus finite-volume corrections. Other papers have called into question this result, claiming that the volume term should actually be discarded, and that the dominant term remaining is proportional to the surface area of the dielectric. In this communication, which is an expansion of an earlier letter on the same topic, we present a careful and critical review of the relevant analyses. We find that the Casimir energy, defined as the change in zero-point energy due to a change in the medium, has at leading orde...

  8. Casimir effect in dielectrics Surface area contribution

    CERN Document Server

    Molina-Paris, C; Molina-Paris, Carmen; Visser, Matt

    1997-01-01

    In this paper we take a deeper look at the technically elementary but physically robust viewpoint in which the Casimir energy in dielectric media is interpreted as the change in the total zero point energy of the electromagnetic vacuum summed over all states. Extending results presented in previous papers [hep-th/9609195; hep-th/9702007] we approximate the sum over states by an integral over the density of states including finite volume corrections. For an arbitrarily-shaped finite dielectric, the first finite-volume correction to the density of states is shown to be proportional to the surface area of the dielectric interface and is explicitly evaluated as a function of the permeability and permitivity. Since these calculations are founded in an elementary and straightforward way on the underlying physics of the Casimir effect they serve as an important consistency check on field-theoretic calculations. As a concrete example we discuss Schwinger's suggestion that the Casimir effect might be the underlying ph...

  9. Sample dependence of the Casimir forces

    CERN Document Server

    Pirozhenko, I; Svetovoy, V B

    2006-01-01

    We have analyzed available optical data for Au in the mid-infrared range which is important for a precise prediction of the Casimir force. Significant variation of the data demonstrates genuine sample dependence of the dielectric function. We demonstrate that the Casimir force is largely determined by the material properties in the low frequency domain and argue that therefore the precise values of the Drude parameters are crucial for an accurate evaluation of the force. These parameters can be estimated by two different methods, either by fitting real and imaginary parts of the dielectric function at low frequencies, or via a Kramers-Kronig analysis based on the imaginary part of the dielectric function in the extended frequency range. Both methods lead to very similar results. We show that the variation of the Casimir force calculated with the use of different optical data can be as large as 5% and at any rate cannot be ignored. To have a reliable prediction of the force with a precision of 1%, one has to m...

  10. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  11. Surface Stability of Epitaxial Elastic Films by the Casimir Force

    Institute of Scientific and Technical Information of China (English)

    赵亚溥; 李文荣

    2002-01-01

    We investigate the morphological stability of epitaxial thin elastic films on a substrate by the Casimir force between the film surface and a flat plate. Critical undulation wavelengths are derived for two different limit conditions. Consideration of the Casimir force in both limit cases decreases the critical vavelength of the surface perturbation.

  12. Normal and lateral Casimir force: Advances and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G L, E-mail: galina.klimchitskaya@itp.uni-leipzig.d [Department of Physics, North-West Technical University, Millionnaya Street 5, St.Petersburg, 191065 (Russian Federation); Institute for Theoretical Physics, Leipzig University, Postfach 100920, D-04009, Leipzig (Germany)

    2010-11-01

    We discuss recent experimental and theoretical results on the Casimir force between real material bodies made of different materials. Special attention is paid to calculations of the normal Casimir force acting perpendicular to the surface with the help of the Lifshitz theory taking into account the role of free charge carriers. Theoretical results for the thermal Casimir force acting between metallic, dielectric and semiconductor materials are presented and compared with available experimental data. Main attention is concentrated on the possibility to control the magnitude and sign of the Casimir force for applications in nanotechnology. In this respect we consider experiments on the optical modulation of the Casimir force between metal and semiconductor test bodies with laser light. Another option is the use of ferromagnetic materials, specifically, ferromagnetic dielectrics. Under some conditions this allows to get Casimir repulsion. The lateral Casimir force acting between sinusoidally corrugated surfaces can be considered as some kind of noncontact friction caused by zero-point oscillations of the electromagnetic field. Recent experiments and computations using the exact theory have demonstrated the role of diffraction-type effects in this phenomenon and the possibility to get asymmetric force profiles. Conclusion is made that the Casimir force may play important role in the operation of different devices on the nanoscale.

  13. Surface Stability of Epitaxial Elastic Films by the Casimir Force

    Science.gov (United States)

    Zhao, Ya-Pu; Li, Wen J.

    2002-08-01

    We investigate the morphological stability of epitaxial thin elastic films on a substrate by the Casimir force between the film surface and a flat plate. Critical undulation wavelengths are derived for two different limit conditions. Consideration of the Casimir force in both limit cases decreases the critical wavelength of the surface perturbation.

  14. Three dimensional Casimir piston for massive scalar fields

    CERN Document Server

    Lim, S C

    2008-01-01

    We consider Casimir force acting on a three dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy in the interior region and the exterior region separated by the piston. It is shown that the divergent term of the Casimir force acting on the piston due to the interior region cancels with that due to the exterior region, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a -- the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like $1/a^4$ when $a\\to 0^+$ and decays exponentially when $a\\to \\infty$. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand...

  15. Three-dimensional Casimir piston for massive scalar fields

    Science.gov (United States)

    Lim, S. C.; Teo, L. P.

    2009-08-01

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a4 when a→0+ and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  16. Repulsive Casimir force at zero and finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my

    2009-01-15

    We study the zero and finite temperature Casimir force acting on a perfectly conducting piston with arbitrary cross section moving inside a closed cylinder with infinitely permeable walls. We show that at any temperature, the Casimir force always tends to move the piston away from the walls and toward its equilibrium position. In the case of a rectangular piston, exact expressions for the Casimir force are derived. In the high-temperature regime, we show that the leading term of the Casimir force is linear in temperature and therefore the Casimir force has a classical limit. Due to duality, all these results also hold for an infinitely permeable piston moving inside a closed cylinder with perfectly conducting walls.

  17. Ultrastrong optomechanics incorporating the dynamical Casimir effect

    Science.gov (United States)

    Nation, P. D.; Suh, J.; Blencowe, M. P.

    2016-02-01

    We propose a superconducting circuit comprising a dc superconducting quantum interference device with a mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or nondegenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon ultrastrong-coupling regime while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.

  18. Casimir effect in Domain Wall formation

    CERN Document Server

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.

  19. Microscopic origin of Casimir-Polder forces

    OpenAIRE

    2006-01-01

    We establish a general relation between dispersion forces. First, based on QED in causal media, leading-order perturbation theory is used to express both the single-atom Casimir-Polder and the two-atom van der Waals potentials in terms of the atomic polarizabilities and the Green tensor for the body-assisted electromagnetic field. Endowed with this geometry-independent framework, we then employ the Born expansion of the Green tensor together with the Clausius-Mosotti relation to prove that th...

  20. EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yuqian GUO; Daizhan CHENG

    2006-01-01

    In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.

  1. Casimir energies of self-similar plate configurations

    Science.gov (United States)

    Shajesh, K. V.; Brevik, Iver; Cavero-Peláez, Inés; Parashar, Prachi

    2016-09-01

    We construct various self-similar configurations using parallel δ -function plates and show that it is possible to evaluate the Casimir interaction energy of these configurations using the idea of self-similarity alone. We restrict our analysis to interactions mediated by a scalar field, but the extension to the electromagnetic field is immediate. Our work unveils an easy and powerful method that can be easily employed to calculate the Casimir energies of a class of self-similar configurations. As a highlight, in an example, we determine the Casimir interaction energy of a stack of parallel plates constructed by positioning δ -function plates at the points constituting the Cantor set, a prototype of a fractal. This, to our knowledge, is the first time that the Casimir energy of a fractal configuration has been reported. Remarkably, the Casimir energy of some of the configurations we consider turn out to be positive, and a few even have zero Casimir energy. For the case of positive Casimir energy that is monotonically decreasing as the stacking parameter increases, the interpretation is that the pressure of vacuum tends to inflate the infinite stack of plates. We further support our results, derived using the idea of self-similarity alone, by rederiving them using the Green's function formalism. These expositions gives us insight into the connections between the regularization methods used in quantum field theories and regularized sums of divergent series in number theory.

  2. Oscillating Casimir force between two slabs in a Fermi sea

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Weia; Su Guo-Zhen; Chen Jin-Can; Andresen Bjarne

    2012-01-01

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures.It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas.In contrast to the familiar result that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas,the Casimir force in a Fermi gas oscillates as a function of L.The Casimir force can be either attractive or repulsive,depending sensitively on the magnitude of L. In addition,it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature,which also is contrary to the case in a Bose gas,since the bosonic Casimir force increases linearly with the increase of the temperature in the region T < Tc,where Tc is the critical temperature of the Bose-Einstein condensation.

  3. Finite temperature Casimir effect in Kaluza-Klein spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100 Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-10-01

    In this article, we consider the finite temperature Casimir effect in Kaluza-Klein spacetime due the vacuum fluctuation of massless scalar field with Dirichlet boundary conditions. We consider the general case where the extra dimensions (internal space) can be any compact connected manifold or orbifold without boundaries. Using piston analysis, we show that the Casimir force is always attractive at any temperature, regardless of the geometry of the internal space. Moreover, the magnitude of the Casimir force increases as the size of the internal space increases and it reduces to the Casimir force in (3+1)-dimensional Minkowski spacetime when the size of the internal space shrinks to zero. In the other extreme where the internal space is large, the Casimir force can increase beyond all bound. Asymptotic behaviors of the Casimir force in the low and high temperature regimes are derived and it is observed that the magnitude of the Casimir force grows linearly with temperature in the high temperature regime.

  4. Impact of Casimir-Polder interaction on Poisson-spot diffraction at a dielectric sphere

    CERN Document Server

    Hemmerich, Joshua Leo; Reisinger, Thomas; Nimmrichter, Stefan; Fiedler, Johannes; Hahn, Horst; Gleiter, Herbert; Buhmann, Stefan Yoshi

    2016-01-01

    Diffraction of matter-waves is an important demonstration of the fact that objects in nature possess a mixture of particle-like and wave-like properties. Unlike in the case of light diffraction, matter-waves are subject to a vacuum-mediated interaction with diffraction obstacles. Here we present a detailed account of this effect through the calculation of the attractive Casimir-Polder potential between a dielectric sphere and an atomic beam. Furthermore, we use our calculated potential to make predictions about the diffraction patterns to be observed in an ongoing experiment where a beam of indium atoms is diffracted around a silicon dioxide sphere. The result is an amplification of the on-axis bright feature which is the matter-wave analogue of the well-known `Poisson spot' from optics. Our treatment confirms that the diffraction patterns resulting from our complete account of the sphere Casimir-Polder potential are indistinguishable from those found via a large-sphere non-retarded approximation in the discu...

  5. Casimir energy for spherical shell in Schwarzchild black hole background

    CERN Document Server

    Setare, M R

    2004-01-01

    In this paper, we consider the Casimir energy of massless scalar field which satisfy Dirichlet boundary condition on a spherical shell. Outside the shell, the spacetime is assumed to be described by the Schwarzschild metric, while inside the shell it is taken to be the flat Minkowski space. Using zeta function regularization and heat kernel coefficients we isolate the divergent contributions of the Casimir energy inside and outside the shell, then using the renormalization procedure of the bag model the divergent parts are cancelled, finally obtaining a renormalized expression for the total Casimir energy.

  6. Huge Casimir effect at finite temperature in electromagnetic Rindler space

    CERN Document Server

    Zhao, Tian-Ming

    2011-01-01

    We investigate the Casimir effect at finite temperature in electromagnetic Rindler space, and find the Casimir energy is proportional to $\\frac{T^4}{d^2}$ in the high temperature limit, where $T\\approx 27 ^\\circ\\mathrm{C}$ is the temperature and $d\\approx 100nm$ is a small cutoff. We propose to make metamaterials to mimic Rindler space and measure the predicted Casimir effect. Since the parameters of metamaterials we proposed are quite simple, this experiment would be easily implemented in laboratory.

  7. Huge Casimir effect at finite temperature in electromagnetic Rindler space

    Science.gov (United States)

    Zhao, Tian-Ming; Miao, Rong-Xin

    2011-12-01

    We investigate the Casimir effect at finite temperature in electromagnetic Rindler space, and find the Casimir energy is proportional to $\\frac{T^4}{d^2}$ in the high temperature limit, where $T\\approx 27 ^\\circ\\mathrm{C}$ is the temperature and $d\\approx 100nm$ is a small cutoff. We propose to make metamaterials to mimic Rindler space and measure the predicted Casimir effect. Since the parameters of metamaterials we proposed are quite simple, this experiment would be easily implemented in laboratory.

  8. Huge Casimir effect at finite temperature in electromagnetic Rindler space

    OpenAIRE

    Zhao, Tian-Ming; Miao, Rong-Xin

    2011-01-01

    We investigate the Casimir effect at finite temperature in electromagnetic Rindler space, and find the Casimir energy is proportional to $\\frac{T^4}{d^2}$ in the high temperature limit, where $T\\approx 27 ^\\circ\\mathrm{C}$ is the temperature and $d\\approx 100nm$ is a small cutoff. We propose to make metamaterials to mimic Rindler space and measure the predicted Casimir effect. Since the parameters of metamaterials we proposed are quite simple, this experiment would be easily implemented in la...

  9. The covariant electromagnetic Casimir effect for real conducting spherical shells

    CERN Document Server

    Razmi, H

    2016-01-01

    Using the covariant electromagnetic Casimir effect (previously introduced for real conducting cylindrical shells [1]), the Casimir force experienced by a spherical shell, under Dirichlet boundary condition, is calculated. The renormalization procedure is based on the plasma cut-off frequency for real conductors. The real case of a gold (silver) sphere is considered and the corresponding electromagnetic Casimir force is computed. In the covariant approach, there isn't any decomposition of fields to TE and TM modes; thus, we do not need to consider the Neumann boundary condition in parallel to the Dirichlet problem and then add their corresponding results.

  10. The Casimir Effect on the Light-Cone

    CERN Document Server

    Lenz, F

    2003-01-01

    The Casimir effect is investigated in light-cone quantization. It is shown that for spacelike separation of the walls enclosing the system the standard result for the pressure exerted on the walls is obtained. For walls separated in light-cone space direction no regularization of the quantum fluctuations exists which would yield a finite pressure. The origin of this failure and its implications for other vacuum properties are discussed by analyzing the Casimir effect as seen from a moving observer approaching the speed of light. The possibility for calculation of thermodynamic quantities in light-cone quantization via the Casimir effect is pointed out.

  11. What Can We Learn From Analogue Experiments?

    CERN Document Server

    Thebault, Karim P Y

    2016-01-01

    In 1981 Unruh proposed that fluid mechanical experiments could be used to probe key aspects of the quantum phenomenology of black holes. In particular, he claimed that an analogue to Hawking radiation could be created within a fluid mechanical `dumb hole', with the event horizon replaced by a sonic horizon. Since then an entire sub-field of `analogue gravity' has been created. In 2016 Steinhauer reported the experimental observation of quantum Hawking radiation and its entanglement in a Bose-Einstein condensate analogue black hole. What can we learn from such analogue experiments? In particular, in what sense can they provide evidence of novel phenomena such as black hole Hawking radiation?

  12. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  13. Particle creation by a black hole as a consequence of the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Nugayev, R.M.

    1987-08-01

    Particle creation by a blackhole is investigated in terms of temperature corrections to the Casimir effect. The reduction of the Hawking effect to more familiar effects observed in the laboratory enables us to reveal the mechanism of particle creation. The blackbody nature of the Hawking radiation is due to the interaction of virtual particles with the surface of a ''cavity'' formed by the Schwarzschild gravitational field potential barrier. These particles are ''squeezed out'' by the contraction of the potential barrier and appear to an observer at J/sup +/ as the real blackbody ones.

  14. MIR: An experiment for the measurement of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Agnesi, A; Pirzio, F; Reali, G; Scarpa, D [Dipartimento di Elettronica, Universita di Pavia, Via Ferrata 1, 27100 Pavia (Italy); Braggio, C; Galeazzi, G [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Bressi, G [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Valle, F Della; Messineo, G [INFN sez. di Trieste and Dipartimento di Fisica, Universita di Trieste, Via Valerio 2, 34127 Trieste (Italy); Ruoso, G [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Pd) (Italy); Zanello, D, E-mail: Caterina.Braggio@pd.infn.i [INFN sez. di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2009-04-01

    In this paper we report the status of the experiment MIR (Motion Induced Radiation), aimed at the experimental verification of the dynamical Casimir effect. The stringent theoretical requirements to observe the effect are satisfied in a scheme in which the conductivity of a semiconductor inside a superconducting microwave resonant cavity is varied in time. Free carriers in the semiconductor are periodically excited and recombine at 5 GHz. In this process vacuum and thermal photons are parametrically amplified in a time interval of 200-500 ns.

  15. The complete set of Casimirs in Hall-MHD

    Science.gov (United States)

    Kawazura, Yohei; Hameiri, Eliezer

    2012-03-01

    A procedure to determine all Casimir constants of motion in MHDfootnotetextE. Hameiri, Phy. Plasmas, 11, 3423 (2004). is extended to Hall-MHD. We obtain differential equations for the variational derivatives of all Casimirs which must be satisfied for any dynamically accessible motion of Hall-MHD. In an extension of the more commonly considered model, we also include the electron fluid entropy. The most interesting case, usually true for axisymmetric configurations, is when both the electron and ion entropy functions form families of nested toroidal surfaces. The Casimirs are then three functions of each of the entropies, involving fluxes of certain vector fields and the number of particles contained in each torus. If any of the species loses its nested tori, the number of the associated Casimirs is much larger (but physically less relevant).

  16. The complete set of Casimirs in Hall-magnetohydrodynamics

    Science.gov (United States)

    Kawazura, Yohei; Hameiri, Eliezer

    2012-08-01

    A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.

  17. Magnetically controllable Casimir force based on a superparamagnetic metametamaterial

    Science.gov (United States)

    Ma, Junming; Zhao, Qian; Meng, Yonggang

    2014-02-01

    We theoretically investigate the magnetically controllable Casimir force between a parallel metal plate and a superparamagnetic metametamaterial (MMM) plate based on Mie scattering and effective medium theory. A type of MMM composed of superparamagnetic nanoparticles is proposed to fulfill the high frequency magnetic effect to gain Casimir repulsion when interacting with the metal plate. The permeability of such MMM depends on an external magnetic field, which makes it possible to adjust the magnitude of Casimir force. The effects of size, filling ratio, and magnetic property of the superparamagnetic particles on the tuning range are also investigated. Construction of such MMM using the micro/nanofabrication technology is promising to achieve magnetically controllable repulsive Casimir force.

  18. The complete set of Casimirs in Hall-magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kawazura, Yohei [Graduate School of Frontier Sciences, University of Tokyo Kashiwa, Chiba 277-8561 (Japan); Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2012-08-15

    A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.

  19. An ``Anatomic approach" to study the Casimir effect

    Science.gov (United States)

    Intravaia, Francesco; Haakh, Harald; Henkel, Carsten

    2010-03-01

    The Casimir effect, in its simplest definition, is a quantum mechanical force between two objects placed in vacuum. In recent years the Casimir force has been the object of an exponentially growing attention both from theorists and experimentalists. A new generation of experiments paved the way for new challenges and spotted some shadows in the comparison to theory. Here we are going to isolate different contributions to the Casimir interaction and perform a detailed study to shine new light on this phenomenon. As an example, the contributions of Foucault (eddy current) modes will be discussed in different configurations. This ``anatomic approach'' allows to clearly put into evidence special features and to explain unusual behaviors. This brings new physical understanding on the undergoing physical mechanisms and suggests new ways to engineer the Casimir effect.

  20. Scalar Casimir effect between two concentric D-dimensional spheres

    CERN Document Server

    Özcan, Mustafa

    2012-01-01

    The Casimir energy for a massless scalar field between the closely spaced two concentric D-dimensional (for D>3) spheres is calculated by using the mode summation with contour integration in the complex plane of eigenfrequencies and the generalized Abel-Plana formula for evenly spaced eigenfrequency at large argument. The sign of the Casimir energy between closely spaced two concentric D-dimensional spheres for a massless scalar field satisfying the Dirichlet boundary conditions is strictly negative. The Casimir energy between D-1 dimensional surfaces close to each other is regarded as interesting both by itself and as the key to describing of stability of the attractive Casimir force. PACS number(s): 03.70.+k, 11.10.Kk, 11.10.Gh, 03.65.Ge

  1. Casimir effect for two lossy dispersive dielectric slabs

    Science.gov (United States)

    Matloob, R.; Keshavarz, A.; Sedighi, D.

    1999-11-01

    The electromagnetic field is quantized using the Green's-function method for the geometry of a Fabry-Perot cavity, made up of two identical lossy dispersive slabs of finite thickness. The dielectric functions of the slabs are assumed to be an arbitrary complex function of frequency obeying causality requirements. The attractive Casimir force between the two slabs is calculated by the help of the latter field operators, via evaluating the difference between the vacuum pressures on both sides of each slab. Special attention is paid to the limiting case of the Casimir effect for two conducting plates. The Lorentz model of the dielectric function is used to demonstrate the variation of the force in terms of plasma frequency. The Casimir force expression is also related to the imaginary part of the response function. The latter expression is used to introduce the repulsive Casimir force between two conducting plates located inside a Fabry-Perot cavity.

  2. Exact results for Casimir forces using Surface Impedance: Nonlocal Media

    CERN Document Server

    Esquivel-Sirvent, R; Mochán, W L

    2003-01-01

    We show that exact results are obtained for the calculation of Casimir forces between arbitrary materials using the concept of surface impedances, obtaining in a trivial way the force in the limit of perfect conductors and also Lifshitz formula in the limit of semi-infinite media. As an example we present a full and rigorous calculation of the Casimir force between two metallic half-spaces described by a hydrodynamic nonlocal dielectric response.

  3. Casimir Energy and Vacua vor Superconducting Ball in Supergravity

    CERN Document Server

    Burinskii, A

    2002-01-01

    Casimir energy for solid conducting ball is considered on the base of some finite models. One model is physical and built of a battery of parallel metallic plates. Two finite models are based on the Higgs model of superconductivity. One of them is supersymmetric and based on the Witten field model for superconducting strings. Treatment shows that contribution of Casimir energy can be very essential for superdence state in the neutron stars and nuclear matter.

  4. The Casimir effect as a candidate of dark energy

    OpenAIRE

    Matsumoto, Jiro

    2013-01-01

    It is known that the simply evaluated value of the zero point energy of quantum fields is extremely deviated from the observed value of dark energy density. In this paper, we consider whether the Casimir energy, which is the zero point energy brought from boundary conditions, can cause the accelerating expansion of the Universe by using proper renormalization method and introducing the fermions of finite temperature living in $3+n+1$ space-time. We show that the zero temperature Casimir energ...

  5. Gamma ray bursts, neutron star quakes, and the Casimir effect

    CERN Document Server

    Carlson, C; Pérez-Mercader, J; Carlson, C; Goldman, T; Perez-Mercader, J

    1994-01-01

    We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into \\gamma--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

  6. Dynamical Casimir effect in Circuit QED for Nonuniform Trajectories

    CERN Document Server

    Corona-Ugalde, Paulina; Wilson, C M; Mann, Robert B

    2015-01-01

    We propose a generalization of the superconducting circuit simulation of the dynamical Casimir effect where we consider relativistically moving boundary conditions following different trajectories. We study the feasibility of the setup used in the past to simulate the dynamical Casimir effect to reproduce richer relativistic trajectories differing from purely sinusoidal ones. We show how different relativistic oscillatory trajectories of the boundaries of the same period and similar shape produce a rather different spectrum of particles characteristic of their respective motions.

  7. Casimir-Polder forces -- a non-perturbative approach

    CERN Document Server

    Buhmann, S Y; Knöll, L; Welsch, D G; Buhmann, Stefan Yoshi; Dung, Ho Trung; Kn\\"{o}ll, Ludwig; Welsch, Dirk-Gunnar

    2004-01-01

    Within the frame of macroscopic quantum electrodynamics in linear, causal media, the problem of radiation forces acting on excited atomic systems near dispersing and absorbing magnetodielectric bodies is studied. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the Casimir-Polder force. To go beyond perturbation theory, the exact Heisenberg equation of motion for the center-of-mass gross motion is used to derive a very general expression for the force. For a non-driven atomic system in the weak coupling regime the total force as a function of time is a superposition of force components that are related to the intra-atomic density matrix elements at chosen time. It is shown that even the force component associated with the atomic ground state is not exactly derivable from a potential, because of the position dependence of the atomic polarizability. Further, it is found that when the atomic system is initially prepared in a coherent superposition...

  8. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  9. Casimir-Polder Force Reversal with Metamaterials

    Science.gov (United States)

    Pappakrishnan, Venkatesh; Genov, Dentcho

    2010-10-01

    A promising system design aiming to demonstrate Casimir-Polder force (CPF) reversal is proposed. The constraints when using naturally available materials in designing the system with air as an intermediate medium is resolved by using artificial electromagnetic materials. The parametric space in terms of the plate's magnetic and dielectric plasma frequencies, gap thickness and temperature is investigated. The parametric domain for achieving CPF reversal is obtained. Furthermore, a simple analytical expression for the CPF is derived. The analytical expression accurately describes the large and short distance asymptotics and allows extraction of important parameters such as lower and upper cutoff gap distances that define the repulsive force window. This study could possibly lead us to design of quantum levitation system, frictionless bio-fluid transport devices, etc.

  10. Casimir Force at a Knife's Edge

    CERN Document Server

    Graham, Noah; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L; Kardar, Mehran

    2009-01-01

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, $H$ and $\\theta$, and the cylinder's parabolic radius $R$. As $H/R\\to 0$, the proximity force approximation becomes exact. The opposite limit of $R/H\\to 0$ corresponds to the a semi-infinite plate, where the effects of edge and inclination can be probed.

  11. Radiation-Induced Defects in Kaolinite as Tracers of Past Occurrence of Radionuclides in a Natural Analogue of High Level Nuclear Waste Repository

    Science.gov (United States)

    Allard, T.; Fourdrin, C.; Calas, G.

    2007-05-01

    Understanding the processes controlling migrations of radioelements at the Earth's surface is an important issue for the long-term safety assessment of high level nuclear waste repositories (HLNWR). Evidence of past occurrence and transfer of radionuclides can be found using radiation-induced defects in minerals. Clay minerals are particularly relevant because of their widespread occurrence at the Earth's surface and their finely divided nature which provides high contact area with radioactive fluids. Owing to its sensitivity to radiations, kaolinite can be used as natural, in situ dosimeter. Kaolinite is known to contain radiation-induced defects which are detected by Electron Paramagnetic Resonance. They are differentiated by their nature, their production kinetics and their thermal stability. One of these defects is stable at the scale of geological periods and provides a record of past radionuclide occurrence. Based on artificial irradiations, a methodology has been subsequently proposed to determine paleodose cumulated by kaolinite since its formation. The paleodose can be used to derive equivalent radioelement concentrations, provided that the age of kaolinite formation can be constrained. This allows quantitative reconstruction of past transfers of radioelements in natural systems. An example is given for the Nopal I U-deposit (Chihuahua, Mexico), hosted in hydrothermally altered volcanic tufs and considered as analogue of the Yucca Mountain site. The paleodoses experienced by kaolinites were determined from the concentration of defects and dosimetry parameters of experimental irradiations. Using few geochemical assumption, a equivalent U-content responsible for defects in kaolinite was calculated from the paleodose, a dose rate balance and model ages of kaolinites constrained by tectonic phases. In a former study, the ages were assumptions derived from regional tectonic events. In thepresent study, ages of mineralization events are measured from U

  12. Casimir effect for a Cavity in the Spacetime with an Extra Dimension

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2005-01-01

    @@ We reexamine the Casimir effect for the rectangular cavity with two or three equal edges in the presence of compactified universal extra dimension. We derive the expressions for the Casimir energy and discuss the nature of Casimir force. We show analytically the extra-dimension corrections to the standard Casimir effect to put forward a new method of exploring the existence of extra dimensions of the Universe.

  13. Casimir free energy and pressure for magnetic metal films

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-07-01

    We examine the Casimir free energy and pressure of magnetic metal films, which are free standing in vacuum, sandwiched between two dielectric plates and deposited on either nonmagnetic or magnetic metallic plates. All calculations are performed using both the Drude and plasma model approaches to the Lifshitz theory. According to our results, the Casimir free energies and pressures calculated using both theoretical approaches are significantly different in the magnitude and sign even for thin films of several tens of nanometers thickness. Thus, for the Ni film of 47 nm thickness deposited on a Fe plate the obtained magnitudes of the Casimir free energy differ by the factor of 5866. We show that the Casimir free energy and pressure of a magnetic film calculated using the plasma model approach do not possess the classical limit but exponentially fast drop to zero with increasing film thickness. If the Drude model approach is used, the classical limit is reached for magnetic films of about 150 nm thickness, but the Casimir free energy remains nonzero in the limit of ideal metal, contrary to expectations. For the plasma model approach the Casimir free energy of a film vanishes in this case. Numerical computations are performed for the magnetic films made of Ni, nonmagnetic plates made of Cu and Al, and magnetic plates made of Fe using the tabulated optical data for the complex indexes of refraction of all metals. The obtained results can be used for a discrimination between the plasma and Drude model approaches in the Casimir physics and in the investigation of stability of thin films.

  14. A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Baldo Ceolin, M.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gigli Berzolari, A.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Cohen, A.

    2012-01-01

    The OPERA collaboration [1] has claimed evidence of superluminal propagation between CERN and the LNGS with . We find that the neutrino energy distribution of the ICARUS events in LAr agrees with the expectations from the Monte Carlo predictions from an unaffected energy distribution of beam from CERN. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction [2] for a weak currents analog to Cherenkov radiation. In particular no events with a superluminal Cherenkov like e+e- pair or gamma emission have been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting much stricter limits to the value of delta comparable with the one due to the observations from the SN1987A.

  15. Repulsive Casimir force from fractional Neumann boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.C. [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: sclim@mmu.edu.my; Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-08-17

    This Letter studies the finite temperature Casimir force acting on a rectangular piston associated with a massless fractional Klein-Gordon field at finite temperature. Dirichlet boundary conditions are imposed on the walls of a d-dimensional rectangular cavity, and a fractional Neumann condition is imposed on the piston that moves freely inside the cavity. The fractional Neumann condition gives an interpolation between the Dirichlet and Neumann conditions, where the Casimir force is known to be always attractive and always repulsive respectively. For the fractional Neumann boundary condition, the attractive or repulsive nature of the Casimir force is governed by the fractional order which takes values from zero (Dirichlet) to one (Neumann). When the fractional order is larger than 1/2, the Casimir force is always repulsive. For some fractional orders that are less than but close to 1/2, it is shown that the Casimir force can be either attractive or repulsive depending on the aspect ratio of the cavity and the temperature.

  16. Electromagnetic normal modes and Casimir effects in layered structures

    CERN Document Server

    Sernelius, Bo E

    2014-01-01

    We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply this procedure to planar, spherical and cylindrical structures. These normal modes are important in a variety of applications. They are the only input needed in calculations of Casimir interactions. We present explicit expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers are allowed to be two-dimensional so graphene and graphene-like sheets as well as two-dimensional electron gases can be handled within the formalism. Also forces on atoms in layered structures are obtained. One side-result is the van der Waals and Casimir-Polder interaction between two atoms.

  17. Casimir operator dependences of non-perturbative fermionic QCD amplitudes

    CERN Document Server

    Fried, H M; Hofmann, R

    2015-01-01

    In eikonal and quenched approximation, it is argued that the strong coupling fermionic QCD Green's functions and related amplitudes, when based on the newly discovered effective locality property, depart from a sole dependence on the SUc(3) quadratic Casimir operator, evaluated over the fundamental gauge group representation.Though noticed in non-relativistic Quark Models, an additional dependence on the cubic Casimir operator is in contradistinction with perturbation theory, and also with a number of non-perturbative approaches such as the MIT Bag, the Stochastic Vacuum Models and lattice simulations. It accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). We briefly discuss the orders of magnitude of quadratic and cubic Casimir operator contributions.

  18. Casimir operator dependences of nonperturbative fermionic QCD amplitudes

    Science.gov (United States)

    Fried, H. M.; Grandou, T.; Hofmann, R.

    2016-07-01

    In eikonal and quenched approximations, it is argued that the strong coupling fermionic QCD Green’s functions and related amplitudes depart from a sole dependence on the SUc(3) quadratic Casimir operator, C2f, evaluated over the fundamental gauge group representation. Noted in nonrelativistic quark models and in a nonperturbative generalization of the Schwinger mechanism, an additional dependence on the cubic Casimir operator shows up, in contradistinction with perturbation theory and other nonperturbative approaches. However, it accounts for the full algebraic content of the rank-2 Lie algebra of SUc(3). Though numerically subleading effects, cubic Casimir dependences, here and elsewhere, appear to be a signature of the nonperturbative fermionic sector of QCD.

  19. Calculating Casimir Energies in Renormalizable Quantum Field Theory

    CERN Document Server

    Milton, K A

    2003-01-01

    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges have been considered by several authors. Quite recently, Graham et al. have re-examined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well-known that in two dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general dimension $D$...

  20. Finite Casimir Energies in Renormalizable Quantum Field Theory

    CERN Document Server

    Milton, K A

    2004-01-01

    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges have been investigated by several authors. Quite recently, Graham et al. have re-examined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that most of the examples considered in their work are misleading; in particular, it is well-known that in two dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general dim...

  1. Geometry-Temperature Interplay in the Casimir Effect

    CERN Document Server

    Gies, Holger

    2009-01-01

    We discuss Casimir phenomena which are dominated by long-range fluctuations. A prime example is given by "geothermal" Casimir phenomena where thermal fluctuations in open Casimir geometries can induce significantly enhanced thermal corrections. We illustrate the underlying mechanism with the aid of the inclined-plates configuration, giving rise to enhanced power-law temperature dependences compared to the parallel-plates case. In limiting cases, we find numerical evidence even for fractional power laws induced by long-range fluctuations. We demonstrate that thermal energy densities for open geometries are typically distributed over length scales of 1/T. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates such as the proximity-force approximation are expected to become unreliable even at small surface separations.

  2. Casimir Effect in the Kerr Spacetime Surrounded by Quintessence

    CERN Document Server

    Bezerra, V B; Freitas, L F F; Muniz, C R

    2016-01-01

    We calculate the Casimir energy of a massless scalar field in a cavity formed by nearby parallel plates orbiting a rotating spherical body surrounded by quintessence, investigating the influence of the gravitational field on that energy, at zero temperature. This influence includes the effects due to the spacetime dragging caused by the source rotation as well as those ones due to the quintessence. We show that the energy depends on all the involved parameters, as source mass, angular momentum and quintessence state parameter, for any radial coordinate and polar angle. We show that at the north pole the Casimir energy is not influenced by the quintessential matter. At the equatorial plane, when the quintessence is canceled, the result obtained in the literature is recovered. Finally, constraints in the quintessence parameters are obtained from the uncertainty in the current measurements of Casimir effect.

  3. Pressures and Energies in Magnetized Vacuum and in Casimir effect

    CERN Document Server

    Rojas, H P

    2004-01-01

    We study vacuum pressures and energies for electron-positron vacuum zero point energy in a strong magnetic field $B$ and for photon vacuum in Casimir effect, by a common method. Vacuum becomes magnetized, and due to it, the pressure transversal to $B$ is negative, whereas along $B$ an usual positive pressure arises. Similarly, in addition to the usual negative Casimir pressure perpendicular to the plates, the existence of a positive pressure along the plates is predicted. Both vacua bear the property of leading to a negative energy-momentum tensor trace ${\\cal T}_{\\mu}^{\\mu}<0$, which may lead to a repulsive gravity typical of dark energy. By assuming a space distribution of magnetic and/or Casimir domains, cosmological implications are also discussed.

  4. Casimir Force Phase Transitions in the Graphene Family

    CERN Document Server

    Rodriguez-Lopez, Pablo; Dalvit, Diego A R; Woods, Lilia M

    2016-01-01

    The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. The expansion of the graphene family by adding silicene, germanene, and stanene, 2D allotropes of Si, Ge, and Sn, lands itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. We discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling, and externally applied fields. In particular, we find that the interaction energy experiences different power law distance decays, magnitudes, and dependences on characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.

  5. Interplay between geometry and temperature for inclined Casimir plates

    CERN Document Server

    Weber, Alexej

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T^D behavior of the force, we find a T^{D-1} behavior for inclined plates, and a ~T^{D-0.3} behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ~T^{D-2} occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  6. Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.

  7. Finite Temperature Casimir Effect in Randall-Sundrum Models

    CERN Document Server

    Rypestøl, Marianne

    2009-01-01

    The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation $a$ on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.

  8. Dynamical Casimir Effect in a small compact manifold for the Maxwell vacuum

    CERN Document Server

    Zhitnitsky, Ariel R

    2015-01-01

    We study novel type of contributions to the partition function of the Maxwell system defined on a small compact manifold ${\\mathbb{M}}$ such as torus. These new terms can not be described in terms of the physical propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result of tunnelling events when transitions occur between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that if the same system is considered in the background of a small external time-dependent magnetic field, than there will be emission of photons from the vacuum, similar to the Dynamical Casimir Effect (DCE) when real particles are radiated from the vacuum due to the time-dependent boundary conditions. The difference with conventional DCE is that the dynamics of the vacuum in our system is not related to the fluctuations of the conventional degrees of freedom, the virtual phot...

  9. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  10. Non-local thin films in Casimir force calculations

    CERN Document Server

    Esquivel, R

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.

  11. Frequency-dependent Drude damping in Casimir force calculations

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)

    2009-04-01

    The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.

  12. Comparison of chiral metamaterial designs for repulsive Casimir force

    Science.gov (United States)

    Zhao, R.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2010-06-01

    In our previous work [R. Zhao, J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)], we found that repulsive Casimir forces could be realized by using chiral metamaterials if the chirality is strong enough. In this work, we check four different chiral metamaterial designs (i.e., Twisted-Rosettes, Twisted-Crosswires, Four-U-SRRs, and Conjugate-Swastikas) and find that the designs of Four-U-SRRs and Conjugate-Swastikas are the most promising candidates to realize repulsive Casimir force because of their large chirality and the small ratio of structure length scale to resonance wavelength.

  13. Comparison of Chiral Metamaterial Designs for Repulsive Casimir Force

    OpenAIRE

    Zhao, R.; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2009-01-01

    In our previous work [Phys. Rev. Lett. 103, 103602 (2009)], we found that repulsive Casimir forces could be realized by using chiral metamaterials if the chirality is strong enough. In this work, we check four different chiral metamaterial designs (i.e., Twisted-Rosettes, Twisted-Crosswires, Four-U-SRRs, and Conjugate-Swastikas) and find that the designs of Four-U-SRRs and Conjugate-Swastikas are the most promising candidates to realize repulsive Casimir force because of their large chirality...

  14. The Casimir effect in the sphere-plane geometry

    CERN Document Server

    Canaguier-Durand, Antoine; Neto, Paulo A Maia; Lambrecht, Astrid; Reynaud, Serge

    2012-01-01

    We present calculations of the Casimir interaction between a sphere and a plane, using a multipolar expansion of the scattering formula. This configuration enables us to study the nontrivial dependence of the Casimir force on the geometry, and its correlations with the effects of imperfect reflection and temperature. The accuracy of the Proximity Force Approximation (PFA) is assessed, and is shown to be affected by imperfect reflexion. Our analytical and numerical results at ambient temperature show a rich variety of interplays between the effects of curvature, temperature, finite conductivity, and dissipation.

  15. Theory of Casimir Forces without the Proximity-Force Approximation.

    Science.gov (United States)

    Lapas, Luciano C; Pérez-Madrid, Agustín; Rubí, J Miguel

    2016-03-18

    We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation.

  16. Casimir Effect in Horava-Lifshitz-like theories

    CERN Document Server

    Ulion, I J Morales; Petrov, A Yu

    2015-01-01

    In this paper we consider a Lorentz-breaking scalar field theory within the Horava-Lifshtz approach. We investigate the changes that a space-time anisotropy produces in the Casimir effect. A massless real quantum scalar field is considered in two distinct situations: between two parallel plates and inside a rectangular two-dimensional box. In both cases we have adopted specific boundary conditions on the field at the boundary. As we shall see, the energy and the Casimir force strongly depends on the parameter associated with the breaking of Lorentz symmetry and also on the boundary conditions.

  17. Supersymmetric Casimir Energy and $SL(3,\\mathbb{Z})$ Transformations

    CERN Document Server

    Brünner, Frederic; Spiridonov, Vyacheslav P

    2016-01-01

    We provide a recipe to extract the supersymmetric Casimir energy of theories defined on primary Hopf surfaces directly from the superconformal index. It involves an $SL(3,\\mathbb{Z})$ transformation acting on the complex structure moduli of the background geometry. In particular, the known relation between Casimir energy, index and partition function emerges naturally from this framework, allowing rewriting of the latter as a modified elliptic hypergeometric integral. We show this explicitly for $\\mathcal{N}=1$ SQCD and $\\mathcal{N}=4$ supersymmetric Yang-Mills theory for all classical gauge groups, and conjecture that it holds more generally.

  18. Finite temperature Casimir effect in spacetime with extra compactified dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Teo, L.P. [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-02-16

    In this Letter, we derive the explicit exact formulas for the finite temperature Casimir force acting on a pair of parallel plates in the presence of extra compactified dimensions within the framework of Kaluza-Klein theory. Using the piston analysis, we show that at any temperature, the Casimir force due to massless scalar field with Dirichlet boundary conditions on the plates is always attractive and the effect of extra dimensions becomes stronger when the size or number of the extra dimensions increases. These properties are not affected by the explicit geometry and topology of the Kaluza-Klein space.

  19. Casimir-Polder Potential in Thermal Non-Equilibrium

    CERN Document Server

    Ellingsen, Simen Å; Buhmann, Stefan Y; Scheel, Stefan

    2009-01-01

    Different non-equilibrium situations have recently been considered when studying the thermal Casimir--Polder interaction with a body. We show that the Keldysh Green function method provides a very general common framework for such studies where non-equilibrium of either the atom or the body with the environment can be accounted for. We apply the results to the case of ground state polar molecules out of equilibrium with their environment, observing several striking effects. We consider thermal Casimir--Polder potentials in planar configurations, and new results for a molecule in a cylindrical cavity are reported, showing similar characteristic behaviour as found in planar geometry.

  20. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  1. Casimir densities for parallel plate in the Domain Wall background

    CERN Document Server

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in conformally flat domain wall background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries.

  2. Finite temperature Casimir effect in the presence of nonlinear dielectrics

    CERN Document Server

    Kheirandish, Fardin; Soltani, Morteza

    2010-01-01

    Starting from a Lagrangian, electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained and their relation to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature is calculated.

  3. Nonlocal thin films in calculations of the Casimir force

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Svetovoy, V.B.

    2005-01-01

    The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th

  4. Spatial dispersion in Casimir forces: a brief review

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Villarreal, C.; Mochan, W.L.; Contreras-Reyes, A.M.; Svetovoy, V.B.

    2006-01-01

    We present the basic principles of non-local optics in connection with the calculation of the Casimir force between half-spaces and thin films. At currently accessible distances L, non-local corrections amount to about half a per cent, but they increase roughly as 1/L at smaller separations. Self-co

  5. Three-dimensional Casimir force between absorbing multilayer dielectrics

    CERN Document Server

    Raabe, C; Welsch, D G; Raabe, Christian; Kn\\"{o}ll, Ludwig; Welsch, Dirk-Gunnar

    2003-01-01

    Recently the influence of dielectric and geometrical properties on the Casimir force between dispersing and absorbing multilayered plates in the zero-temperature limit has been studied within a 1D quantization scheme for the electromagnetic field in the presence of causal media [R. Esquivel-Sirvent, C. Villarreal, and G.H. Cocoletzi, Phys. Rev. Lett. 64, 052108 (2001)]. In the present paper a rigorous 3D analysis is given, which shows that for complex heterostructures the 1D theory only roughly reflects the dependence of the Casimir force on the plate separation in general. Further, an extension of the very recently derived formula for the Casimir force at zero temperature [M.S. Toma\\v{s}, Phys. Rev. A 66, 052103 (2002)] to finite temperatures is given, and analytical expressions for specific distance laws in the zero-temperature limit are derived. In particular, it is shown that the Casimir force between two single-slab plates behaves asymptotically like $d^{-6}$ in place of $d^{-4}$ ($d$, plate separation).

  6. Materials perspective on Casimir and van der Waals interactions

    Science.gov (United States)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  7. The Casimir Energy in Curved Space and its Supersymmetric Counterpart

    CERN Document Server

    Assel, Benjamin; Di Pietro, Lorenzo; Komargodski, Zohar; Lorenzen, Jakob; Martelli, Dario

    2015-01-01

    We study $d$-dimensional Conformal Field Theories (CFTs) on the cylinder, $S^{d-1}\\times \\mathbb{R}$, and its deformations. In $d=2$ the Casimir energy (i.e. the vacuum energy) is universal and is related to the central charge $c$. In $d=4$ the vacuum energy depends on the regularization scheme and has no intrinsic value. We show that this property extends to infinitesimally deformed cylinders and support this conclusion with a holographic check. However, for $\\mathcal{N}=1$ supersymmetric CFTs, a natural analog of the Casimir energy turns out to be scheme independent and thus intrinsic. We give two proofs of this result. We compute the Casimir energy for such theories by reducing to a problem in supersymmetric quantum mechanics. For the round cylinder the vacuum energy is proportional to $a+3c$. We also compute the dependence of the Casimir energy on the squashing parameter of the cylinder. Finally, we revisit the problem of supersymmetric regularization of the path integral on Hopf surfaces.

  8. Dynamical Casimir effect and minimal temperature in quantum thermodynamics

    OpenAIRE

    Benenti, G.; Strini, G.

    2014-01-01

    We study the fundamental limitations of cooling to absolute zero for a qubit, interacting with a single mode of the electromagnetic field. Our results show that the dynamical Casimir effect, which is unavoidable in any finite-time thermodynamic cycle, forbids the attainability of the absolute zero of temperature, even in the limit of an infinite number of cycles.

  9. The Casimir force control in nano and micro electromechanical systems

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi

    2016-01-01

    In this thesis we deal with the analysis and measurement of dispersive surface forces, specifically the Casimir force. Applying Lifshitz theory makes it possible to take into account the material optical property and consequently the obtained results are more realistic. We used contact mode atomic f

  10. Canonical realization of Bondi-Metzner-Sachs symmetry: Quadratic Casimir

    Science.gov (United States)

    Gomis, Joaquim; Longhi, Giorgio

    2016-01-01

    We study the canonical realization of Bondi-Metzner-Sacks symmetry for a massive scalar field introduced by Longhi and Materassi [J. Math. Phys. 40, 480 (1999)]. We construct an invariant scalar product for the generalized momenta. As a consequence we introduce a quadratic Casimir with the supertranslations.

  11. Self-affine roughness influence on the Casimir effect

    NARCIS (Netherlands)

    Palasantzas, G

    2005-01-01

    In this work we investigate the influence of self-affine roughness on the Casimir energy for plate-plate geometry. The plate roughness is characterized by the rms roughness amplitude w, the lateral correlation length xi, and the roughness exponent H. It is shown that the latter has a prominent effec

  12. Dynamical Casimir Effect for Two Oscillating Mirrors in 3-D

    CERN Document Server

    Yuce, Cem

    2008-01-01

    The generation of photons in a three dimensional rectangular cavity with two moving boundaries is studied by using the Multiple Scale Analysis (MSA). It is shown that number of photons are enhanced for the cavity whose walls oscillate symmetrically with respect to the center of the cavity. The non-stationary Casimir effect is also discussed for the cavity which oscillates as a whole.

  13. Efficient near-field energy transfer and relieved Casimir stiction between sub-wavelength gratings

    Science.gov (United States)

    Liu, Xianglei; Zhao, Bo; Zhang, Zhuomin

    2015-03-01

    The promising applications of near-field heat transfer in thermophotovoltaic devices, thermal imaging, thermal rectifiers, and local thermal management have motivated the search for nanostructures capable of supporting higher efficiency or greater heat flux than simple planar substances. In this work, efficient and delocalized radiative heat transfer between two aligned 1D sub-wavelength gratings is demonstrated based on the scattering theory using the rigorous coupled-wave analysis (RCWA). It is shown that the heat flux can be greatly enhanced and the accurate prediction may differ significantly from that of the geometry-based Derjaguin's proximity approximation (PA). The underlying mechanism is attributed to the excitation of hyperbolic modes that increase the energy transmission by supporting propagation of waves with large parallel wavevectors and. Besides efficient energy transport, the performance is robust, insensitive to the relative lateral shift. In addition, the Casimir stiction considering both quantum and thermal fluctuations is found to be relieved compared with bulks.

  14. First-order correction to the Casimir force within an inhomogeneous medium

    CERN Document Server

    Bao, Fanglin; He, Sailing

    2015-01-01

    For the Casimir piston filled with an inhomogeneous medium, the Casimir energy is regularized and expressed with cylinder kernel coefficients by using the first-order perturbation theory. When the refraction index of the medium is smoothly inhomogeneous (i.e., derivatives of all orders exist), logarithmically cutoff-dependent term in Casimir energy is found. We show that in the piston model this term vanishes in the force and thus the Casimir force is always cutoff-independent, but this term will remain in the force in the half-space model and must be removed by additional regularization. We investigate the inhomogeneity of an exponentially decaying profile, and give the first-order corrections to both free Casimir energy and Casimir force. The present method can be extended to other inhomogeneous profiles. Our results should be useful for future relevant calculations and experimental studies.

  15. A diagrammatic expansion of the Casimir energy in multiple reflections: theory and applications

    CERN Document Server

    Maghrebi, Mohammad F

    2010-01-01

    We develop a diagrammatic representation of the Casimir energy of a multibody configuration. The diagrams represent multiple reflections between the objects and can be organized by a few simple rules. The lowest-order diagrams (or reflections) give the main contribution to the Casimir interaction which proves the usefulness of this expansion. Among some applications of this, we find analytical formulae describing the interaction between "edges", i.e. semi-infinite plates, where we also give a first example of blocking in the context of the Casimir energy. We also find the interaction of edges with a needle and describe analytically a recent model of the repulsion due to the Casimir interaction.

  16. Non-equilibrium Casimir force between vibrating plates.

    Directory of Open Access Journals (Sweden)

    Andreas Hanke

    Full Text Available We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.

  17. Casimir Self-Entropy of an Electromagnetic Thin Sheet

    CERN Document Server

    Li, Yang; Kalauni, Pushpa; Parashar, Prachi

    2016-01-01

    Casimir entropies due to quantum fluctuations in the interaction between electrical bodies can often be negative, either caused by dissipation or by geometry. Although generally such entropies vanish at zero temperature, consistent with the third law of thermodynamics (the Nernst heat theorem), there is a region in the space of temperature and separation between the bodies where negative entropy occurs, while positive interaction entropies arise for large distances or temperatures. Systematic studies on this phenomenon in the Casimir-Polder interaction between a polarizable nanoparticle or atom and a conducting plate in the dipole approximation have been given recently. Since the total entropy should be positive according to the second law of thermodynamics, we expect that the self-entropy of the bodies would be sufficiently positive as to overwhelm the negative interaction entropy. This expectation, however, has not been explicitly verified. Here we compute the self-entropy of an electromagnetic $\\delta$-fun...

  18. A Cosmic-box Casimir Theory of Dark Energy

    CERN Document Server

    Wreszinski, W F

    2006-01-01

    It has been recently remarked by Hollands and Wald that the holistic (local) aspects of quantum field theory fully explain the fact that the cosmological constant does not have the absurdly large value which is commonly assumed. There remains the quite different problem of why the cosmological constant leads to an absurdly SMALL dark energy density when applying the field-theoretic Casimir effect to the Universe as a whole. In this paper we propose a LOCAL theory of the Casimir effect, following work of B.S.Kay and a recent paper with L.Manzoni, as well as the "cosmic-box" idea of E.Harrison. Baryons and neutrinos do not explain the numbers, but axions would.

  19. Cosmology in nonlinear multidimensional gravity and the Casimir effect

    Science.gov (United States)

    Bolokhov, S. V.; Bronnikov, K. A.

    2017-01-01

    We study the possible cosmological models in Kaluza-Klein-type multidimensional gravity with a curvature-nonlinear Lagrangian and a spherical extra space, taking into account the Casimir energy. First, we find a minimum of the effective potential of extra dimensions, leading to a physically reasonable value of the effective cosmological constant in our 4D space-time. In this model, the huge Casimir energy density is compensated by a fine-tuned contribution of the curvature-nonlinear terms in the original action. Second, we present a viable model with slowly evolving extra dimensions and power-law inflation in our space-time. In both models, the results formulated in Einstein and Jordan frames are compared.

  20. On the Casimir Energy of Frequency Dependent Interactions

    CERN Document Server

    Graham, N; Weigel, H

    2014-01-01

    Vacuum polarization (or Casimir) energies can be straightforwardly computed from scattering data for static field configurations whose interactions with the fluctuating field are frequency independent. In effective theories, however,such interactions are typically frequency dependent. As a consequence, the relationship between scattering data and the Green's function is modified, which may or may not induce additional contributions to the vacuum polarization energy. We discuss several examples that naturally include frequency dependent interactions: (i) scalar electrodynamics with a static background potential, (ii) an effective theory that emerges from integrating out a heavy degree of freedom, and (iii) quantum electrodynamics coupled to a frequency dependent dielectric material. In the latter case, we argue that introducing dissipation as required by the Kramers-Kronig relations requires the consideration of the Casimir energy within a statistical mechanics formalism, while in the absence of dissipation we...

  1. Casimir Force on Real Materials - the Slab and Cavity Geometry

    CERN Document Server

    Ellingsen, S A; Brevik, Iver; Ellingsen, Simen A.

    2006-01-01

    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.

  2. Casimir Energy of a Semi-Circular Infinite Cylinder

    CERN Document Server

    Nesterenko, V V; Scarpetta, G

    2001-01-01

    The Casimir energy of a semi-circular cylindrical shell is calculated by making use of the zeta function technique. This shell is obtained by crossing an infinite circular cylindrical shell by a plane passing through the symmetry axes of the cylinder and by considering only a half of this configuration. All the surfaces, including the cutting plane, are assumed to be perfectly conducting. The zeta functions for scalar massless fields obeying the Dirichlet and Neumann boundary conditions on the semi-circular cylinder are constructed exactly. The sum of these zeta functions gives the zeta function for electromagnetic field in question. The relevant plane problem is considered also. In all the cases the final expressions for the corresponding Casimir energies contain the pole contributions. This implies that further renormalization is needed in order for the finite physical values for vacuum energy to be obtained for given boundary conditions.

  3. Casimir energy of a semi-circular infinite cylinder

    Science.gov (United States)

    Nesterenko, V. V.; Lambiase, G.; Scarpetta, G.

    2001-05-01

    The Casimir energy of a semi-circular cylindrical shell is calculated by making use of the zeta function technique. This shell is obtained by crossing an infinite circular cylindrical shell by a plane passing through the symmetry axes of the cylinder and by considering only half of this configuration. All the surfaces, including the cutting plane, are assumed to be perfectly conducting. The zeta functions for scalar massless fields obeying the Dirichlet and Neumann boundary conditions on the semi-circular cylinder are constructed exactly. The sum of these zeta functions gives the zeta function for the electromagnetic field in question. The relevant plane problem is considered also. In all the cases the final expressions for the corresponding Casimir energies contain the pole contributions which are the consequence of the edges or corners in the boundaries. This implies that further renormalization is needed in order for the finite physical values for vacuum energy to be obtained for given boundary conditions.

  4. Spatial dispersion in Casimir forces: A brief review

    CERN Document Server

    Esquivel-Sirvent, R; Mochán, W L; Contreras-Reyes, A M; Svetovoy, V B

    2005-01-01

    We present the basic principles of non-local optics in connection with the calculation of the Casimir force between half-spaces and thin films. At currently accessible distances $L$, non-local corrections amount to about half a percent, but they increase roughly as 1/L at smaller separations. Self consistent models lead to corrections with the opposite sign as models with abrupt surfaces.

  5. On Casimir Forces for Media with Arbitrary Dielectric Properties

    CERN Document Server

    Mochán, W L; Esquivel-Sirvent, R

    2002-01-01

    We derive an expression for the Casimir force between slabs with arbitrary dielectric properties characterized by their reflection coefficients. The formalism presented here is applicable to media with a local or a non-local dielectric response, an infinite or a finite width, inhomogeneous dissipative, etc. Our results reduce to the Lifshitz formula for the force between semi-infinite dielectric slabs by replacing the reflection coefficients by the Fresnel amplitudes.

  6. Microstructure Effects for Casimir Forces in Chiral Metamaterials

    OpenAIRE

    McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.

    2010-01-01

    We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effe...

  7. Effective actions, boundaries, and precision calculations of Casimir energies

    Science.gov (United States)

    Aghababaie, Y.; Burgess, C. P.

    2004-10-01

    We perform the matching required to compute the leading effective boundary contribution to the QED Lagrangian in the presence of a conducting surface, once the electron is integrated out. Our result resolves a confusion in the literature concerning the interpretation of the leading such correction to the Casimir energy. It also provides a useful theoretical laboratory for brane-world calculations in which kinetic terms are generated on the brane, since a lot is known about QED near boundaries.

  8. Van der Waals and Casimir-Polder interactions between neutrons

    Directory of Open Access Journals (Sweden)

    Babb James F.

    2016-01-01

    Full Text Available We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  9. Casimir rack and pinion as a miniaturized kinetic energy harvester.

    Science.gov (United States)

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.

  10. Casimir operators induced by the Maurer-Cartan equations

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, Rutwig [Dpto. GeometrIa y TopologIa, Fac. CC. Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias, 3, E-28040 Madrid (Spain)], E-mail: rutwig@mat.ucm.es

    2008-09-12

    It is shown that for inhomogeneous Lie algebras with only one Casimir operator, the latter can be explicitly constructed from the Maurer-Cartan equations by means of wedge products. It is further proved that this constraint imposes sharp bounds for the dimension of the representation R defining the semidirect product. The procedure is generalized to compute also the rational invariant of some Lie algebras.

  11. Sugawara construction and Casimir operators for Krichever-Novikov algebras

    CERN Document Server

    Schlichenmaier, M; Schlichenmaier, Martin; Sheinman, Oleg K

    1995-01-01

    We show how to obtain from highest weight representations of Krichever-Novikov algebras of affine type (also called higher genus affine Kac-Moody algebras) representations of centrally extended Krichever-Novikov vector field algebras via the Sugawara construction. This generalizes classical results where one obtains representations of the Virasoro algebra. Relations between the weights of the corresponding representations are given and Casimir operators are constructed. In an appendix the Sugawara construction for the multi-point situation is done.

  12. Symmetries and casimir of an extended classical long wave system

    Indian Academy of Sciences (India)

    K M Tamizhmani; R Ilangovane; B Dubrovin

    2013-04-01

    In this paper, we derive Lie point, generalized, master and time-dependent symmetries of a dispersionless equation, which is an extension of a classical long wave system. This equation also admits an infinite-dimensional Lie algebraic structure of Virasoro-type, as in the dispersive integrable systems. We discuss the construction of a sequence of negative ranking symmetries through the property of uniformity in rank. More interestingly, we obtain the conserved quantities directly from the casimir of Poisson pencil.

  13. Proposal for a Casimir-driven parametric amplifier

    CERN Document Server

    Imboden, M; Campbell, D K; Bishop, D J

    2014-01-01

    In this paper, we discuss a design for a MEMS parametric amplifier modulated by the Casimir force. We present the theory for such a device and show that it allows for the implementation of a very sensitive voltage measuring technique, where the amplitude of a high quality factor resonator includes a tenth power dependency on an applied DC voltage. This approach opens up a new and powerful measuring modality, applicable to other measurement types.

  14. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  15. Casimir-Polder intermolecular forces in minimal length theories

    CERN Document Server

    Panella, O

    2007-01-01

    Generalized uncertainty relations are known to provide a minimal length $\\hbar\\sqrt{\\beta}$. The effect of such minimal length in the Casimir-Polder interactions between neutral atoms (molecules) is studied. The first order correction term in the minimal uncertainty parameter is derived and found to describe an attractive potential scaling as $r^{-9}$ as opposed to the well known $r^{-7}$ long range retarded potential.

  16. Dispersion forces in micromechanics: Casimir and Casimir-Polder forces affected by geometry and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Simen Andreas Aadnoey

    2011-01-15

    The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic

  17. The Casimir effect for fields with arbitrary spin

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, Adam; Bennett, Robert, E-mail: r.bennett@leeds.ac.uk

    2015-09-15

    The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.

  18. Proof that Casimir force does not originate from vacuum energy

    Directory of Open Access Journals (Sweden)

    Hrvoje Nikolić

    2016-10-01

    Full Text Available We present a simple general proof that Casimir force cannot originate from the vacuum energy of electromagnetic (EM field. The full QED Hamiltonian consists of 3 terms: the pure electromagnetic term Hem, the pure matter term Hmatt and the interaction term Hint. The Hem-term commutes with all matter fields because it does not have any explicit dependence on matter fields. As a consequence, Hem cannot generate any forces on matter. Since it is precisely this term that generates the vacuum energy of EM field, it follows that the vacuum energy does not generate the forces. The misleading statements in the literature that vacuum energy generates Casimir force can be boiled down to the fact that Hem attains an implicit dependence on matter fields by the use of the equations of motion and to the illegitimate treatment of the implicit dependence as if it was explicit. The true origin of the Casimir force is van der Waals force generated by Hint.

  19. Thermodynamic Casimir effect in films: the exchange cluster algorithm.

    Science.gov (United States)

    Hasenbusch, Martin

    2015-02-01

    We study the thermodynamic Casimir force for films with various types of boundary conditions and the bulk universality class of the three-dimensional Ising model. To this end, we perform Monte Carlo simulations of the improved Blume-Capel model on the simple cubic lattice. In particular, we employ the exchange or geometric cluster cluster algorithm [Heringa and Blöte, Phys. Rev. E 57, 4976 (1998)]. In a previous work, we demonstrated that this algorithm allows us to compute the thermodynamic Casimir force for the plate-sphere geometry efficiently. It turns out that also for the film geometry a substantial reduction of the statistical error can achieved. Concerning physics, we focus on (O,O) boundary conditions, where O denotes the ordinary surface transition. These are implemented by free boundary conditions on both sides of the film. Films with such boundary conditions undergo a phase transition in the universality class of the two-dimensional Ising model. We determine the inverse transition temperature for a large range of thicknesses L(0) of the film and study the scaling of this temperature with L(0). In the neighborhood of the transition, the thermodynamic Casimir force is affected by finite size effects, where finite size refers to a finite transversal extension L of the film. We demonstrate that these finite size effects can be computed by using the universal finite size scaling function of the free energy of the two-dimensional Ising model.

  20. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  1. Nonlocal impedances and the Casimir entropy at low temperatures

    CERN Document Server

    Svetovoy, V

    2005-01-01

    The problem with the temperature dependence of the Casimir force is investigated. Specifically, the entropy behavior in the low temperature limit, which caused debates in the literature, is analyzed. It is stressed that the behavior of the relaxation frequency in the $T\\to0$ limit does not play a physical role since the anomalous skin effect dominates in this range. In contrast with the previous works, where the approximate Leontovich impedance was used for analysis of nonlocal effects, we give description of the problem in terms of exact nonlocal impedances. It is found that the Casimir entropy is going to zero at $T\\to0$ only in the case when $s$ polarization does not contribute to the classical part of the Casimir force. However, the entropy approaching zero from the negative side that, in our opinion, cannot be considered as thermodynamically satisfactory. The resolution of the negative entropy problem proposed in the literature is analyzed and it is shown that it cannot be considered as complete. The cri...

  2. Halving the Casimir force with conductive oxides: experimental details

    CERN Document Server

    de Man, Sven; Iannuzzi, Davide

    2010-01-01

    This work is an extended version of a paper published last year in Physical Review Letters [S. de Man et al., Phys. Rev. Lett. 103, 040402 (2009)], where we presented measurements of the Casimir force between a gold coated sphere and a plate coated with either gold or an indium-tin-oxide (ITO) layer. The experiment, which was performed in air, showed that ITO is sufficiently conducting to prevent charge accumulation, but still transparent enough to halve the Casimir attraction when compared to gold. Here, we report all the experimental details that, due to the limited space available, were omitted in the previous article. We discuss the performance of our setup in terms of stability of the calibration procedure and reproducibility of the Casimir force measurement. We also introduce and demonstrate a new technique to obtain the spring constant of our force sensor. Furthermore, we present a thorough description of the experimental method, a comprehensive explanation of data elaboration and error analysis, and a...

  3. Scattering Theory Calculations of Casimir Energies at High Curvature

    Science.gov (United States)

    Graham, Noah; Emig, Thorsten; Forrow, Aden; Jaffe, Robert; Kardar, Mehran; Maghrebi, Mohammad; Rahi, Jamal; Shpunt, Alex

    2013-03-01

    Scattering theory provides a powerful tool for capturing the response of an object to electromagnetic charge and field fluctuations. Techniques based on scattering theory have made possible a wide range of new calculations of Casimir energies. In this approach, the Casimir interaction energy for a collection of objects can be expressed in terms of the scattering T-matrices for each object individually, combined with universal translation matrices describing the objects' relative positions and orientations. These translation matrices are derived from an expansion of the free Green's function in an appropriate coordinate system, independent of the details of the objects themselves. This method proves particularly valuable for geometries involving high curvature, such as edges and tips. I will describe this approach in general terms and then give results from several problems to which it has been applied successfully. I will also discuss new developments in scattering theory that have been motivated by these problems. I would like to request that this abstract be part of a session on Casimir physics. Supported by the National Science Foundation, the US Department of Energy, the Defense Advanced Research Projects Agency, and the Deutsche Forschungsgemeinschaft

  4. Analogue computing methods

    CERN Document Server

    Welbourne, D

    1965-01-01

    Analogue Computing Methods presents the field of analogue computation and simulation in a compact and convenient form, providing an outline of models and analogues that have been produced to solve physical problems for the engineer and how to use and program the electronic analogue computer. This book consists of six chapters. The first chapter provides an introduction to analogue computation and discusses certain mathematical techniques. The electronic equipment of an analogue computer is covered in Chapter 2, while its use to solve simple problems, including the method of scaling is elaborat

  5. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Anushree Roy; U Mohideen

    2001-02-01

    Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir force.

  6. Casimir Effect at Finite Temperature in the Presence of Compactified Universal Extra Dimensions

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2005-01-01

    @@ We analyse the Casimir effect for parallel plates atfinite temperature in the presence of compactified universal extra dimensions and analytically show the thermal corrections to the effect in detail. The Casimir effect for different sizes of universal extra dimensions is investigated to test the five-dimensional Kaluza-Klein theory.

  7. Influence of materials' optical response on actuation dynamics by Casimir forces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-01-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the f

  8. Casimir interaction between spheres in $\\boldsymbol{(D+1)}$-dimensional Minkowski spacetime

    CERN Document Server

    Teo, L P

    2014-01-01

    We consider the Casimir interaction between two spheres in $(D+1)$-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [IEEE Trans. Antennas Propag. \\textbf{36}, 1078 (1988)]. The result is expressed in terms of an integral over Gegenbauer polynomials. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order $L^{-2D+3}$, $L^{-2D+1}$ and $L^{-2D-1}$ respectively for Dirichlet-Di...

  9. Hide It to See It Better: A Robust Setup to Probe the Thermal Casimir Effect

    Science.gov (United States)

    Bimonte, Giuseppe

    2014-06-01

    We describe a Casimir setup consisting of two aligned sinusoidally corrugated Ni surfaces, one of which is "hidden" by a thin opaque layer of gold with a flat exposed surface. The gold layer acts as a low-pass filter that allows for a clean observation of the controversial thermal Casimir force between the corrugations, with currently available Casimir apparatuses. The proposed scheme of measurement, based on the phase-dependent modulation of the Casimir force, requires no electrostatic calibrations of the apparatus, and is unaffected by uncertainties in the knowledge of the optical properties of the surfaces. This scheme should allow for an unambiguous discrimination between alternative theoretical prescriptions that have been proposed in the literature for the thermal Casimir effect.

  10. Casimir-Foucault interaction: Free energy and entropy at low temperature

    CERN Document Server

    Intravaia, F; Henkel, C

    2010-01-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [Phys. Rev. Lett. 103, 130405 (2009)]. We show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates, are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner in contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, pred...

  11. Geometrical investigations of the Casimir effect: Thickness and corrugation dependencies

    Science.gov (United States)

    Parashar, Prachi

    2011-12-01

    In the quantum theory the vacuum is not empty space. It is considered as a state of infinite energy arising due to zero point fluctuations of the vacuum. Calculation of any physically relevant process requires subtracting this infinite energy using a procedure called normalization. As such the vacuum energy is treated as an infinite constant. However, it has been established beyond doubt that mere subtraction of this infinite constant does not remove the effect of vacuum fluctuations and it cannot be treated just as a mathematical artifact. The presence of boundaries, which restricts the vacuum field, causes vacuum polarization. Any non-trivial space-time topology can cause similar effects. This is manifested as the Casimir effect, whereby the boundaries experience a force due to a change in the energy of the vacuum. To calculate the vacuum energy we treat the boundaries or other restrictive conditions as classical backgrounds, which impose boundary conditions on the solution of the vacuum field equations. Alternatively, we can incorporate the classical background in the Lagrangian of the system as classical potentials, which automatically include the boundary conditions in the field equations. Any change in the boundary conditions changes the vacuum energy and consequently the Casimir force is experienced by the boundaries. In this dissertation we study the geometric aspect of the Casimir effect. We consider both the scalar field and the physically relevant electromagnetic field. After a brief survey of the field in Chapter 1, we derive the energy expression using the Schwinger's quantum action principle in Chapter 2. We present the multiple scattering formalism for calculating the vacuum energy, which allows us to calculate the interaction energy between disjoint bodies and subtract out the divergent terms from the beginning. We then solve the Green's dyadic equation for the electromagnetic field interacting with the planar background surfaces, where we can

  12. Analogue MIMO Detection

    Directory of Open Access Journals (Sweden)

    McNamara Darren

    2006-01-01

    Full Text Available In this contribution we propose an analogue receiver that can perform turbo detection in MIMO systems. We present the case for a receiver that is built from nonlinear analogue devices, which perform detection in a "free-flow" network (no notion of iterations. This contribution can be viewed as an extension of analogue turbo decoder concepts to include MIMO detection. These first analogue implementations report reductions of few orders of magnitude in the number of required transistors and in consumed energy, and the same order of improvement in processing speed. It is anticipated that such analogue MIMO decoder could bring about the same advantages, when compared to traditional digital implementations.

  13. Casimir effect on nontrivial topology spaces in Krein space quantization

    CERN Document Server

    Naseri, M; Takook, M V

    2007-01-01

    Casimir effect of a topologically nontrivial two-dimensional space-time, through Krein space quantization [1,2], has been calculated. In other words, auxiliary negative norm states have been utilized here. Presence of negative norm states play the role of an automatic renormalization device for the theory. The negative norm states (which do not interact with the physical world) could be chosen in two perspective. In the first case our method results in zero or vanishing values for energy. In the second case, however, the result are the same as the renormalization procedure.

  14. Mixing rules and the Casimir force between composite systems

    CERN Document Server

    Esquivel-Sirvent, R

    2011-01-01

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  15. Mixing rules and the Casimir force between composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Schatz, George C.

    2011-04-20

    The Casimir-Lifshitz force is calculated between two inhomogeneous composite slabs, each made of a homogeneous matrix with spherical metallic inclusions. The effective dielectric function of the slabs is calculated using several effective medium approximations and we compare the resulting forces as a function of slab separation and filling fraction. We show that the choice of effective medium approximation is critical in making precise comparisons between theory and experiment. The role that the spectral representation of the effective medium plays in making a Wick rotation to the complex frequency axis is also discussed.

  16. Nonlinear behavior for nanoscale electrostatic actuators with Casimir force

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wenhui [College of Science, China Agricultural University, Beijing 100083 (China); Zhao Yapu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: yzhao@lnm.imech.ac.cn

    2005-03-01

    The influence of Casimir force on the nonlinear behavior of nanoscale electrostatic actuators is studied in this paper. A one degree of freedom mass-spring model is adopted and the bifurcation properties of the actuators are obtained. With the change of the geometrical dimensions, the number of equilibrium point varies from zero to two. Stability analysis shows that one equilibrium point is Hopf point and the other is unstable saddle point when there are two equilibrium points. We also obtain the phase portraits, in which the periodic orbits exist around the Hopf point, and a homoclinic orbit passes through the unstable saddle point.

  17. Repulsive Casimir forces with finite-thickness slabs

    OpenAIRE

    Zhao, R.; Koschny, Th.; Economou, E. N.; C M Soukoulis

    2010-01-01

    We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness magnetic slab with or without substrate. For no substrate, the large distance $d$ dependence of the force is repulsive and goes as $1/d^5$; for the Drude metal substrate, a stable equilibrium point appears at an intermediate distance which can be tuned by the thickness of the ...

  18. Determinantal formulae for the Casimir operators of inhomogeneous Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, Rutwig [Dpto. Geometria y Topologia, Fac CC Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias, 3, E-28040 Madrid (Spain)

    2006-03-10

    Contractions of Lie algebras are combined with the classical matrix method of Gel'fand to obtain matrix formulae for the Casimir operators of inhomogeneous Lie algebras. The method is presented for the inhomogeneous pseudo-unitary Lie algebras Iu(p,q). This procedure is extended to contractions of Iu(p,q) isomorphic to an extension by a derivation of the inhomogeneous special pseudo-unitary Lie algebras Isu(p-1,q), providing an additional analytical method to obtain their invariants. Further, matrix formulae for the invariants of other inhomogeneous Lie algebras are presented.

  19. Positive Casimir and Central Characters of Split Real Quantum Groups

    Science.gov (United States)

    Ip, Ivan C. H.

    2016-06-01

    We describe the generalized Casimir operators and their actions on the positive representations {mathcal{P}_λ} of the modular double of split real quantum groups {mathcal{U}_{qtilde{q}}(mathfrak{g}_mathbb{R})}. We introduce the notion of virtual highest and lowest weights, and show that the central characters admit positive values for all parameters {λ}. We show that their image defines a semi-algebraic region bounded by real points of the discriminant variety independent of q, and we discuss explicit examples in the lower rank cases.

  20. Generalized Bogoliubov Transformation for Confined Fields Applications in Casimir Effect

    CERN Document Server

    Silva, J C; Neto, A M; Santana, A E

    2002-01-01

    The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature quantum-field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and non-zero temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field. This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in the studies of confined fields, including the interacting fields.

  1. The Casimir effect physical manifestations of zero-point energy

    CERN Document Server

    Milton, K A

    2001-01-01

    In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction - which may be either attractive or repulsive - between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically tran

  2. Using boundary methods to compute the Casimir energy

    CERN Document Server

    Lombardo, F C; Villar, P I

    2010-01-01

    We discuss new approaches to compute numerically the Casimir interaction energy for waveguides of arbitrary section, based on the boundary methods traditionally used to compute eigenvalues of the 2D Helmholtz equation. These methods are combined with the Cauchy's theorem in order to perform the sum over modes. As an illustration, we describe a point-matching technique to compute the vacuum energy for waveguides containing media with different permittivities. We present explicit numerical evaluations for perfect conducting surfaces in the case of concentric corrugated cylinders and a circular cylinder inside an elliptic one.

  3. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    Energy Technology Data Exchange (ETDEWEB)

    Seyedzahedi, A. [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Moradian, A., E-mail: a.moradian@uok.ac.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO{sub 2}, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  4. Casimir energy calculations within the formalism of the noncompact lattice QED

    CERN Document Server

    Pavlovsky, Oleg

    2009-01-01

    A new method based on the Monte-Carlo calculation on the lattice is proposed to study the Casimir effect in the noncompact lattice QED. We have studied the standard Casimir problem with two parallel plane surfaces (mirrors) and oblique boundary conditions on those as a test of our method. Physically, this boundary conditions may appear in the problem of modelling of the thin material films interaction and are generated by additional Chern-Simons boundary term. This approach for the boundary condition generation is very suitable for the lattice formulation of the Casimir problem due to gauge invariance.

  5. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  6. Scattering potentials with LS-terms from first-order Casimir operators

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [Inst. of Phys., Tech. Univ. Budapest (Hungary)

    1995-10-21

    Using a first-order Casimir operator calculated in a non-standard realization for the so(3,1) algebra, we obtain a one-dimensional scattering problem with LS-type interaction terms. It is shown that for this realization the square of this operator can be expressed in terms of the usual quadratic Casimir. Due to this constraint the scattering states are completely specified by restricting the possible set of eigenvalues accordingly. The results show that the use of extra Casimir operators can provide additional insight into the group theoretical structure of the scattering problem. A generalization for the so(2n-1,1), n>2 case is also given. The underlying supersymmetry of the resulting Schrodinger equations is pointed out. The supersymmetric charge operators are related to our first-order Casimir operators. (author)

  7. Critical Casimir forces from the equation of state of quantum critical systems

    Science.gov (United States)

    Rançon, Adam; Henry, Louis-Paul; Rose, Félix; Cardozo, David Lopes; Dupuis, Nicolas; Holdsworth, Peter C. W.; Roscilde, Tommaso

    2016-10-01

    The mapping between a classical length and inverse temperature as imaginary time provides a direct equivalence between the Casimir force of a classical system in D dimensions and internal energy of a quantum system in d =D -1 dimensions. The scaling functions of the critical Casimir force of the classical system with periodic boundaries thus emerge from the analysis of the symmetry related quantum critical point. We show that both nonperturbative renormalization group and quantum Monte Carlo analysis of quantum critical points provide quantitative estimates for the critical Casimir force in the corresponding classical model, giving access to widely different aspect ratios for the geometry of confined systems. In light of these results, we propose protocols for the realization of critical Casimir forces for periodic boundaries through state-of-the-art cold-atom and solid-state experiments.

  8. Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces

    Science.gov (United States)

    Sedighi, M.; Broer, W. H.; Palasantzas, G.; Kooi, B. J.

    2013-10-01

    Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation curves of the stationary equilibrium points and the corresponding phase portraits of the actuation dynamics between gold and AIST (Ag5In5Sb60Te30) PCM, where an increase of the Casimir force of up ˜25% has been measured upon crystallization, show strong sensitivity to changes of the Casimir force as the stiffness of the actuating component decreases and/or the effective interaction area of the Casimir force increases, which can also lead to stiction. However, introduction of intrinsic energy dissipation (associated with a finite quality factor of the actuating system) can prevent stiction by driving the system to attenuated motion towards stable equilibrium depending on the PCM state and the system quality factor.

  9. Casimir Effect Near the Future Singularity in Kaluza Klein Viscous Cosmology

    Science.gov (United States)

    Khadekar, G. S.

    2016-02-01

    In this paper we investigate the analytical properties of the scalar expansion θ in the cosmic fluid close to the future singularity, when the fluid possesses a constant bulk viscosity ζ in the framework of Kaluza-Klein theory of gravitation. In addition, we assume the viscous cosmology theories in the sense that the Casimir contributions to the energy density and pressure are both proportional to 1/ a 4, where a being scale factor. We also worked out the series expansion for the scalar expansion θ under the condition that the Casimir influence is small. However, near to the big rip singularity the Casimir term has to fade away and we obtain the same singularity behavior for the scalar expansion θ, energy density ρ, the scale factor a as in the Casimir-free viscous case.

  10. Role of surface states in the Casimir force between semiconducting films

    CERN Document Server

    Govoni, Marco; Benassi, Andrea

    2010-01-01

    We present results of first principle calculations of the Casimir force between Si films of nanometric size, which show that it depends significantly upon the configuration of the surface atoms, and give evidence of the importance of surface states.

  11. Finite-temperature Casimir pistons for an electromagnetic field with mixed boundary conditions and its classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: lpteo@mmu.edu.my

    2009-03-13

    In this paper, the finite-temperature Casimir force acting on a two-dimensional Casimir piston due to an electromagnetic field is computed. It was found that if mixed boundary conditions are assumed on the piston and its opposite wall, then the Casimir force always tends to restore the piston toward the equilibrium position, regardless of the boundary conditions assumed on the walls transverse to the piston. In contrast, if pure boundary conditions are assumed on the piston and the opposite wall, then the Casimir force always tends to pull the piston toward the closer wall and away from the equilibrium position. The nature of the force is not affected by temperature. However, in the high-temperature regime, the magnitude of the Casimir force grows linearly with respect to temperature. This shows that the Casimir effect has a classical limit as has been observed in other literature.

  12. Spectral representation of the Casimir Force Between a Sphere and a Substrate

    CERN Document Server

    Román-Velázquez, C E; Villarreal, C; Esquivel-Sirvent, R; Noguez, Cecilia

    2003-01-01

    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.

  13. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Shyamal, E-mail: sbsp@uohyd.ac.in [School of Physics, University of Hyderabad, C.R. Rao Road, Gachibowli, Hyderabad-500046 (India)

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  14. Casimir energy in a spherical surface within surface impedance approach: The Drude model

    Science.gov (United States)

    Rosa, Luigi; Trozzo, Lucia

    2016-09-01

    The Casimir Energy of a spherical cavity whose surface is characterized by means of its surface impedance is calculated. The material properties of the boundary are described by means of the Drude model, so that a generalization of a previous result, based on plasma model, is obtained. The limits of the proposed approach are analyzed and a possible solution is suggested. The possibility of modulating the sign of the Casimir force from positive (repulsion) to negative (attraction) is studied.

  15. An experimental apparatus for measuring the Casimir effect at large distances

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, P; Carugno, G; Messineo, G [INFN sez di Padova, via Marzolo 8, 35131 Padova (Italy); Bimonte, G [Dipartimento di Scienze Fisiche Universita di Napoli Federico II Complesso Universitario MSA, Via Cintia, 80126 Napoli, Italy and INFN, Sezione di Napoli, Napoli (Italy); Bressi, G [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Galeazzi, G [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Ruoso, G, E-mail: Giuseppe.Ruoso@lnl.infn.i [INFN Lab. Naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy)

    2009-04-01

    An experimental set-up for the measurement of the Casimir effect at separations larger than a few microns is presented. The apparatus is based on a mechanical resonator and uses a homodyne detection technique to sense the Casimir force in the plane-parallel configuration. First measurements in the 3-10 micrometer range show an unexpected large force probably due to patch effects.

  16. Demonstration of the difference Casimir force for samples with different charge carrier densities

    CERN Document Server

    Chen, F; Mohideen, U; Mostepanenko, V M

    2006-01-01

    A measurement of the Casimir force between a gold coated sphere and two Si plates of different carrier densities is performed using a high vacuum based atomic force microscope. The results are compared with the Lifshitz theory and good agreement is found. Our experiment demonstrates that by changing the carrier density of the semiconductor plate by several orders of magnitude it is possible to modify the Casimir interaction. This result may find applications in nanotechnology.

  17. Investigation of the Casimir force between metal and semiconductor test bodies

    CERN Document Server

    Chen, F; Klimchitskaya, G L; Mostepanenko, V M

    2005-01-01

    The measurement of the Casimir force between a large gold coated sphere and single crystal silicon plate is performed with an atomic force microscope. A rigorous statistical comparison of data with theory is done, without use of the concept of root-mean-square deviation, and excellent agreement is obtained. The Casimir force between metal and semiconductor is demonstrated to be significantly different than between two similar or dissimilar metals.

  18. Carcinogenicity of insulin analogues

    NARCIS (Netherlands)

    Braak, Sebastiaan Johannes ter

    2015-01-01

    There is epidemiological evidence that the use of some insulin analogues by diabetic patients is correlated with an increased cancer risk. In vitro exposure experiments revealed that insulin glargine (LANTUS) was the only commercial insulin analogue with an increased mitogenic potential. In the huma

  19. Survey of analogue spacetimes

    CERN Document Server

    Visser, Matt

    2013-01-01

    Analogue spacetimes, (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole, (mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid --- and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: Analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this introductory chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  20. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    Science.gov (United States)

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    2016-10-01

    We present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to the proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. While these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.

  1. Casimir Function on Leibniz Manifolds%Leibniz流形上Casimir函数

    Institute of Scientific and Technical Information of China (English)

    曾辉; 张福娥

    2012-01-01

    The effects of diffeomorphism and Leibniz mapping on Casimir function of Leibniz manifolds are investigated,which finds the following conclusions:(1) Casimir function C(x) on Leibniz manifolds(M,M),can be induced by diffeomorphism φ∶M→N to a Casimir function(φ-1)*C on N;(2) with invertible Leibniz mapping Ψ∶M→N,the linear combination of No's Casimir functions ∑s i=1λiCion N,can be pulled back into a Casimir function on M.Finally,several formulas concerning Leibniz vector field and Casimir function are presented.%通过研究微分同胚及Leibniz映射对Leibniz流形上Casimir函数的作用,得出了:(1)Leibniz流形(M,[.,.]M)上的Casimir函数C(x),可以由微分同胚φ:M→N诱导为N上的Casimir函数(φ-1)*C;(2)可逆的Leibniz映射ψ:M→N,可以把N上的Casimir函数的线性组合sum (λiCi) from i=1 to s拉回为M上的Casimir函数.最后给出了Leibniz向量场和Casimir函数间的几个公式.

  2. Repulsive and Restoring Casimir Forces Based on Magneto-Optical Effect

    Institute of Scientific and Technical Information of China (English)

    ZENG Ran; YANG Ya-Ping

    2011-01-01

    The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated. The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force. It is found that between the ordinary dielectric slab and magneto-optical material slab, a repulsive force may exist by adjusting the applied magnetic field. The restoring Casimir force can also be obtained if suitable parameter values are taken. For realistic materials, the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems.%@@ The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated.The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force.It is found that between the ordinary dielectric slab and magneto-optical material slab,a repulsive force may exist by adjusting the applied magnetic field.The restoring Casimir force can also be obtained if suitable parameter values are taken.For realistic materials,the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems.

  3. The Casimir effect in light-front quantization

    CERN Document Server

    Hiller, J R

    2014-01-01

    We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.

  4. Microstructure effects for Casimir forces in chiral metamaterials

    Science.gov (United States)

    McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D.; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.

    2010-10-01

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized “omega”-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.

  5. Microstructure Effects for Casimir Forces in Chiral Metamaterials

    CERN Document Server

    McCauley, Alexander P; Reid, M T Homer; Rodriguez, Alejandro W; Zhou, Jiangfeng; Rosa, F S S; Joannopoulos, John D; Dalvit, D A R; Soukoulis, Costas M; Johnson, Steven G

    2010-01-01

    We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. To get observations of chirality free from microstructure effects, one must go to large separations where the effect of chirality is at most $\\sim10^{-4}$ of the total force.

  6. Zeta-function approach to Casimir energy with singular potentials

    CERN Document Server

    Khusnutdinov, N R

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials is analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated and it is shown that the surface contribution appears. The renormalization of the effective action is discussed.

  7. Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces

    CERN Document Server

    Broer, Wijnand; Svetovoy, Vitaly B; Knoester, Jasper; Palasantzas, George

    2015-01-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of micro-electromechanical systems (MEMS) in dry vacuum conditions. For a micron size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, they are of significance for fundamentally motivated experiments performed with MEMS.

  8. Strongly Interacting Fermions and Phases of the Casimir Effect

    CERN Document Server

    Flachi, Antonino

    2013-01-01

    With the intent of exploring how the interplay between boundary effects and chiral symmetry breaking may alter the thermodynamical behavior of a system of strongly interacting fermions, we study the Casimir effect for the set-up of two parallel layers using a four-fermion effective field theory at zero density. This system reveals a number of interesting features. While for infinitely large separation (no boundaries), chiral symmetry is broken/restored via a second order phase transition, in the opposite case of small (and, in general, finite) separation the transition becomes first order, rendering effects of finite size, for the present set-up, similar to those of a chemical potential. Appropriately moving on the separation--temperature plane, it is possible to generate a peculiar behavior in the temperature dependence of the thermodynamic potential and of the condensate, compensating thermal with geometrical variations. A behavior similar to what we find here has been predicted to occur in bilayer graphene...

  9. On the Temperature Dependence of the Casimir Effect

    CERN Document Server

    Brevik, I; Høye, J S; Milton, K A

    2004-01-01

    The temperature dependence of the Casimir force between a real metallic plate and a metallic sphere is analyzed on the basis of optical data concerning the dispersion relation of metals such as gold and copper. Realistic permittivities imply, in accordance with basic thermodynamic considerations, that the transverse electric zero mode does not contribute. This results in observable differences with the conventional prediction, which does not take this physical requirement into account. The results are shown to be consistent with the third law of thermodynamics, as well as with current experiments. However, the predicted temperature dependence should be detectable in future experiments. The inadequacies of approaches based on {\\it ad hoc} assumptions, such as the plasma dispersion relation and the use of surface impedance without transverse momentum dependence, are discussed.

  10. Sympathetic laser cooling of graphene with Casimir-Polder forces

    Science.gov (United States)

    Ribeiro, Sofia; Terças, Hugo

    2016-10-01

    We propose a scheme to actively cool the fundamental flexural (out-of-plane) mode of a graphene sheet via vacuum forces. Our setup consists of a cold-atom cloud placed close to a graphene sheet at distances of a few micrometers. The atoms couple to the graphene membrane via Casimir-Polder forces. By deriving a self-consistent set of equations governing the dynamics of the atomic gas and the flexural modes of the graphene, we show it is possible to cool graphene from room temperatures by actively (laser) cooling an atomic gas. By choosing the right set of experimental parameters we are able to cool a graphene sheet down to ˜60 μ K .

  11. Bubble-wall Casimir interaction in fermionic environments

    CERN Document Server

    Flachi, Antonino

    2015-01-01

    We consider the Casimir interaction, mediated by massless fermions, between a spherical defect and a flat potential barrier, assuming hard (bag-type) boundary conditions at both the barrier and the surface of the sphere. The computation of the quantum interaction energy is carried out using the multiple scattering approach, adapted here to the setup in question. We find an exact integral formula for the energy, from which we extract both the large and short distance asymptotic behaviour. At large distance the fermionic contribution is found to scale as $L^{-3}$, in contrast to that of electromagnetic vacuum fluctuations that, assuming perfectly conducting boundaries, scales as $L^{-4}$. At short distance, we compute the leading and sub-leading contribution to the vacuum energy. The leading one coincides with what it is expected from the proximity force approximation, while the sub-leading term gives, contrary to the electromagnetic case, a positive correction to the proximity force result.

  12. Synthesis of Tonghaosu Analogues

    Institute of Scientific and Technical Information of China (English)

    SUN Hai; LIN Yingjie; WU Yulin; WU Yikang

    2009-01-01

    Several new analogues of natural antifeedant tonghaosu were synthesized via m-CPBA (m-chloroperoxybenzoic acid) oxidation of corresponding 3-(a-furyl)propanols, Luche reduction of the resulting enone, epoxidation, acid-mediated spiroketalization, and radical mediated dehydration.

  13. Comment on "Universal Thermal Radiation Drag on Neutral Objects"

    CERN Document Server

    Maia-Neto, P A

    2004-01-01

    In a recent letter [Phys. Rev. Lett. 91, 220801 (2003)], V. Mkrtchian and co-workers calculated the radiation pressure force on a moving body, assuming the electromagnetic field to be at temperature $T,$ and the velocity to be much smaller than $c.$ They considered both dielectrics and conductors, and related the effect to Casimir dissipative forces. Here we claim that their approach may only apply in the Rayleigh-Ganz scattering regime, which corresponds to very small particles and/or electromagnetically rarefied media. Moreover, we argue that their interpretation in terms of the Casimir effect is misleading, since vacuum fluctuations do not contribute in the (implicitly assumed) regime of uniform motion.

  14. Casimir force on a piston at finite temperature in Randall-Sundrum models

    Institute of Scientific and Technical Information of China (English)

    CHENG Hong-Bo

    2011-01-01

    The Casimir effect for a three-parallel-plate system at finite temperature within the framework of five-dimensional Randall-Sundrum models is studied.In the case of the Randall-Sundrum model involving two branes we find that the Casimir force depends on the plate distance and temperature after one outer plate has been moved to a distant place.Further we discover that the sign of the reduced force is negative if the plate and piston are located close together,but the nature of reduced force becomes repulsive when the plate distance is not very small and finally the repulsive force vanishes with extremely large plate separation.A higher temperature causes a greater repulsive Casimir force.Within the framework of a one-brane scenario the reduced Casimir force between the piston and one plate remains attractive no matter how high the temperature is.It is interesting that a stronger thermal effect leads to a greater attractive Casimir force instead of changing the nature of the force.

  15. Characteristic properties of the Casimir free energy for metal films deposited on metallic plates

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2016-04-01

    The Casimir free energy and pressure of thin metal films deposited on metallic plates are considered using the Lifshitz theory and the Drude and plasma model approaches to the role of conduction electrons. The bound electrons are taken into account by using the complete optical data of film and plate metals. It is shown that for films of several tens of nanometers thickness the Casimir free energy and pressure calculated using these approaches differ by hundreds and thousands percent and can be easily discriminated experimentally. According to our results, the free energy of a metal film does not vanish in the limiting case of ideal metal if the Drude model approach is used in contradiction with the fact that the fluctuating field cannot penetrate in its interior. Numerical computations of the Casimir free energy and pressure of Ag and Au films deposited on Cu and Al plates have been performed using both theoretical approaches. It is shown that the free energy of a film can be both negative and positive depending on the metals used. For a Au film on a Ag plate and vice versa the Casimir energy of a film changes its sign with increasing film thickness. Applications of the obtained results for resolving the Casimir puzzle and the problem of stability of thin films are discussed.

  16. Casimir-Foucault interaction: Free energy and entropy at low temperature

    Science.gov (United States)

    Intravaia, Francesco; Ellingsen, Simen Å.; Henkel, Carsten

    2010-09-01

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.130405 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  17. Influence of van-der-Waals like interactions on the thermodynamic Casimir effect; Einfluss van-der-Waals-artiger Wechselwirkungen auf den thermodynamischen Casimir-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Grueneberg, Daniel

    2008-02-15

    To study how the behavior of the thermodynamic Casimir force changes qualitatively and quantitatively due to the presence of such interactions - compared to systems with purely short-range interactions - is the aim of this work. Considering d-dimensional models belonging to the universality class of the O(n)-symmetrical systems, the thermodynamic Casimir force and its leading corrections are derived for temperatures at and above the transition temperature (T{>=}T{sub c,{infinity}}). The underlying pair potential is assumed to be isotropic and long-ranged, decaying asymptotically proportional to x{sup -(d+{sigma}}{sup )} for large separations x, where the value of the parameter {sigma} is restricted to the interval 2<{sigma}<4. By solving an appropriate spherical model in 2Casimir force and its leading corrections are obtained. To study the case n<{infinity}, which in 2Casimir force and its leading corrections are evaluated to two-loop order. It is shown that both in the spherical model and in the O(n)-symmetrical case with n<{infinity} to two-loop order, the thermodynamic Casimir force in the presence of the long-range interaction decays algebraically {proportional_to}L{sup -(d+{sigma}}{sup )} at fixed temperature T>T{sub c,{infinity}} on sufficiently large length scales. (orig.)

  18. Mode Summation Approach to Casimir Effect Between Two Objects

    Science.gov (United States)

    Teo, L. P.

    2012-10-01

    In the last few years, several approaches have been developed to compute the exact Casimir interaction energy between two nonplanar objects, all lead to the same functional form, which is called the TGTG formula. In this paper, we explore the TGTG formula from the perspective of mode summation approach. Both scalar fields and electromagnetic fields are considered. In this approach, one has to first solve the equation of motion to find a wave basis for each object. The two T's in the TGTG formula are T-matrices representing the Lippmann-Schwinger T-operators, one for each of the objects. Each T-matrix can be found by matching the boundary conditions imposed on the object, and it is independent of the other object. However, it depends on whether the object is interacting with an object outside it, or an object inside it. The two G's in the TGTG formula are the translation matrices, relating the wave basis of an object to the wave basis of the other object. These translation matrices only depend on the wave basis chosen for each object, and they are independent of the boundary conditions on the objects. After discussing the general theory, we apply the prescription to derive the explicit formulas for the Casimir energies for the sphere-sphere, sphere-plane, cylinder-cylinder and cylinder-plane interactions. First the T-matrices for a plane, a sphere and a cylinder are derived for the following cases: the object is imposed with Dirichlet, Neumann or general Robin boundary conditions; the object is semitransparent; and the object is a magnetodielectric object immersed in a magnetodielectric media. Then the operator approach developed by R. C. Wittman [IEEE Trans. Antennas Propag.36, 1078 (1988)] is used to derive the translation matrices. From these, the explicit TGTG formula for each of the scenarios can be written down. On the one hand, we have summarized all the TGTG formulas that have been derived so far for the sphere-sphere, cylinder-cylinder, sphere-plane and

  19. L'effet Casimir : théorie et expériences

    Science.gov (United States)

    Lambrecht, A.; Genet, C.; Intravaia, F.; Reynaud, S.

    2004-11-01

    L'existence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreuses conséquences observables comme l'effet Casimir, qui est maintenant mesuré avec une bonne précision et un bon accord avec la théorie, pourvu que celle-ci tienne compte des différences entre les expériences rélles et la situation idéale considérée par H.G.B. Casimir. Nous présenterons quelqu'unes des expériences récentes et discuterons les principales corrections à la force de Casimir liées à la situation expérimentale.

  20. Modifying the Casimir force between indium tin oxide film and Au sphere

    CERN Document Server

    Banishev, A A; Castillo-Garza, R; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U; 10.1103/PhysRevB.85.045436

    2012-01-01

    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the un...

  1. Constraints on axion and corrections to Newtonian gravity from the Casimir effect

    CERN Document Server

    Klimchitskaya, G L

    2015-01-01

    Axion is a light pseudoscalar particle of much interest for physics of elementary particles and for astrophysics. We review the recently obtained constraints on axion to nucleon coupling constants following from different experiments on measuring the Casimir interaction. These constraints are compared with those following from other laboratory experiments within the wide range of masses of axion-like particles from 10^{-10} to 20 eV. We also collect the most strong constraints on the Yukawa-type and power-type corrections to the Newton law of gravitation which follow from measurements of the Casimir interaction, Eotvos- and Cavendish-type experiments. The possibility to obtain stronger constraints on an axion from the Casimir effect is proposed.

  2. Non-contact gears: II. Casimir torque between concentric corrugated cylinders for the scalar case

    CERN Document Server

    Cavero-Pelaez, Ines; Parashar, Prachi; Shajesh, K V

    2008-01-01

    The Casimir interaction between two concentric corrugated cylinders provides the mechanism for non-contact gears. To this end, we calculate the Casimir torque between two such cylinders, described by $\\delta$-potentials, which interact through a scalar field. We derive analytic expressions for the Casimir torque for the case when the corrugation amplitudes are small in comparison to the corrugation wavelengths. We derive explicit results for the Dirichlet case, and exact results for the weak coupling limit, in the leading order. The results for the corrugated cylinders approach the corresponding expressions for the case of corrugated parallel plates in the limit of large radii of cylinders (relative to the difference in their radii) while keeping the corrugation wavelength fixed.

  3. On the Casimir energy for a 2N-piece relativistic string

    CERN Document Server

    Brevik, I

    1997-01-01

    The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of 2N pieces of equal length, of alternating type I and type II material, and is taken to be relativistic in the sense that the velocity of sound always equals the velocity of light. By means of a new recursion formula we manage to calculate the Casimir energy for arbitrary integers N. Agreement with results obtained in earlier works on the string is found in all special cases. As basic regularization method we use the contour integration method. As a check, agreement is found with results obtained from the \\zeta function method (the Hurwitz function) in the case of low N (N = 1-4). The Casimir energy is generally negative, and the more so the larger is the value of N. We illustrate the results graphically in some cases. The generalization to finite temperature theory is also given.

  4. Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations

    CERN Document Server

    Weber, Alexej

    2010-01-01

    We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low temperatures. As a consequence, the temperature dependence strongly differs from naive expectations. Most prominently, thermal forces can develop non-monotonic behavior below a critical temperature. We perform a comprehensive study of such geothermal phenomena in these Casimir geometries, using analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

  5. Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect

    CERN Document Server

    Decca, R S; Fischbach, E; Klimchitskaya, G L; Krause, D E; Mostepanenko, V M

    2007-01-01

    We present supplementary information on the recent indirect measurement of the Casimir pressure between two parallel plates using a micromachined oscillator. The equivalent pressure between the plates is obtained by means of the proximity force approximation after measuring the force gradient between a gold coated sphere and a gold coated plate. The data are compared with a new theoretical approach to the thermal Casimir force based on the use of the Lifshitz formula, combined with a generalized plasma-like dielectric permittivity which takes into account interband transitions of core electrons. The theoretical Casimir pressures calculated using the new approach are compared with those computed in the framework of the previously used impedance approach and also with the Drude model approach. The latter is shown to be excluded by the data at a 99.9% confidence level within a wide separation range from 210 to 620 nm. The level of agreement between the data and theoretical approaches based on the generalized pla...

  6. Measurement of the Casimir force with a ferrule-top sensor

    CERN Document Server

    Zuurbier, P; Gruca, G; Heeck, K; Iannuzzi, D

    2011-01-01

    We present a Casimir force setup based on an all-optical ferrule-top sensor. We demonstrate that the instrument can be used to measure the gradient of the Casimir force between a gold coated sphere and a gold coated plate with results that are comparable to those achieved by similar atomic force microscope experiments. Thanks to the monolithic design of the force sensor (which does not require any optical triangulation readout) and to the absence of electronics on the sensing head, the instrument represents a significant step ahead for future studies of the Casimir effect under engineered conditions, where the intervening medium or the environmental conditions might be unsuitable for the use of more standard setups.

  7. Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions

    CERN Document Server

    Klimchitskaya, G L; Fischbach, E; Krause, D E; López, D; Mostepanenko, V M

    2005-01-01

    We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error ($\\sim 0.5$%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other exte...

  8. Inhomogeneity-related cutoff dependence of the Casimir energy and stress

    CERN Document Server

    Bao, F; Fang, M; He, S

    2015-01-01

    The cutoff dependence of the Casimir energy and stress is studied using the Green's function method for a system that is piecewise-smoothly inhomogeneous along one dimension. The asymptotic cylinder kernel expansions of the energy and stress are obtained, with some extra cutoff terms that are induced by the inhomogeneity. Introducing interfaces to the system one by one shows how those cutoff terms emerge and illuminates their physical interpretations. Based on that, we propose a subtraction scheme to address the problem of the remaining cutoff dependence in the Casimir stress in an inhomogeneous medium, and show that the nontouching Casimir force between two separated bodies is cutoff independent. The cancellation of the electric and magnetic contributions to the surface divergence near a perfectly conducting wall is found to be incomplete in the case of inhomogeneity.

  9. Light-front analysis of the Casimir effect

    CERN Document Server

    Chabysheva, Sophia S

    2013-01-01

    The Casimir force between conducting plates at rest in an inertial frame is usually computed in equal-time quantization, the natural choice for the given boundary conditions. We show that the well-known result obtained in this way can also be obtained in light-front quantization. This differs from a light-front analysis where the plates are at "rest" in an infinite momentum frame, rather than an inertial frame; in that case, as shown by Lenz and Steinbacher, the result does not agree with the standard result. As is usually done, the analysis is simplified by working with a scalar field and periodic boundary conditions, in place of the complexity of quantum electrodynamics. The two key ingredients are a careful implementation of the boundary conditions, following the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density. The analysis demonstrates that the physics of the effect is independent of the coordinate choice...

  10. Repulsive Casimir forces with finite-thickness slabs

    Science.gov (United States)

    Zhao, R.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2011-02-01

    We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness magnetic slab with or without substrate. For no substrate, the large distance d dependence of the force is repulsive and goes as 1/d5; for the Drude metal substrate, a stable equilibrium point appears at an intermediate distance that can be tuned by the thickness of the slab. We then study the interaction between two identical chiral metamaterial slabs, with and without substrate. For no substrate, the finite thickness of the slabs D does not significantly influence the repulsive character of the force at short distances, while the attractive character at large distances becomes weaker and behaves as 1/d6; for the Drude metal substrate, the finite thickness of the slabs D does not influence the repulsive force too much at short distances until D=0.05λ0.

  11. Casimir-Polder repulsion: Three-body effects

    CERN Document Server

    Milton, Kimball A; Parashar, Prachi; Pourtolami, Nima; Brevik, Iver; Ellingsen, Simen A; Buhmann, Stefan Yoshi; Scheel, Stefan

    2015-01-01

    In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small, and are dominated by three- and four-scattering terms....

  12. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  13. Electromagnetic Casimir effect for conducting plates in de Sitter spacetime

    CERN Document Server

    Kotanjyan, A S; Nersisyan, H A

    2015-01-01

    Two-point functions, the mean field squared and the vacuum expectation value (VEV) of the energy-momentum tensor are investigated for the electromagnetic field in the geometry of parallel plates on background of $(D+1)$% -dimensional dS spacetime. We assume that the field is prepared in the Bunch-Davies vacuum state and on the plates a boundary condition is imposed that is a generalization of the perfectly conducting boundary condition for an arbitrary number of spatial dimensions. It is shown that for $D\\geq 4$ the background gravitational field essentially changes the behavior of the VEVs at separations between the plates larger than the curvature radius of dS spacetime. At large separations, the Casimir forces are proportional to the inverse fourth power of the distance for all values of spatial dimension $D\\geq 3$. For $D\\geq 4$ this behavior is in sharp contrast with the case of plates in Minkowski bulk where the force decays as the inverse $(D+1)$th power of the distance.

  14. Casimir Effect at finite temperature for the CPT-even extension of QED

    CERN Document Server

    Silva, L M; Helayël-Neto, J A

    2016-01-01

    By the thermofield dynamics (TFD) formalism we obtain the energy-momentum tensor for the Electromagnetism with Lorentz Breaking Even term of the Standard Model Extended (SME) Sector in a topology $S^{1}\\times S^{1}\\times R^{2}$. We carry out the compactification by a generalized TFD-Bogoliubov transformation that is used to define a renormalized energy-momentum tensor, and the Casimir energy and pressure at finite temperature are then derived. A comparative analysis with the electromagnetic case is developed, and we remark the influence of the background in the traditional Casimir effect.

  15. Standard Model Extension and Casimir effect for fermions at finite temperature

    Science.gov (United States)

    Santos, A. F.; Khanna, Faqir C.

    2016-11-01

    Lorentz and CPT symmetries are foundations for important processes in particle physics. Recent studies in Standard Model Extension (SME) at high energy indicate that these symmetries may be violated. Modifications in the lagrangian are necessary to achieve a hermitian hamiltonian. The fermion sector of the standard model extension is used to calculate the effects of the Lorentz and CPT violation on the Casimir effect at zero and finite temperature. The Casimir effect and Stefan-Boltzmann law at finite temperature are calculated using the thermo field dynamics formalism.

  16. Pull-in control due to Casimir forces using external magnetic fields

    CERN Document Server

    Esquivel-Sirvent, R; Cocoletzi, G H

    2009-01-01

    We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.

  17. Influence of materials' optical response on actuation dynamics by Casimir forces

    Science.gov (United States)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  18. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    Science.gov (United States)

    Sedighi, Mehdi; Palasantzas, George

    2015-04-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled using the Drude and Plasma models. Indeed, for metallic systems, which have strong Casimir attraction, the details of the modeling of the low optical frequency regime can be dramatic, leading to predictions of either stable motion or stiction instability. However, this difference is strongly minimized for weakly conductive systems as are the doped insulators making actuation modeling more certain to predict.

  19. Casimir and hydrodynamic force influence on microelectromechanical system actuation in ambient conditions

    Science.gov (United States)

    Sedighi, Mehdi; Palasantzas, George

    2014-02-01

    Casimir and hydrodynamic dissipation forces can strongly influence the actuation of microelectromechanical systems in ambient conditions. The dissipative and stiction dynamics of an actuating system is shown to depend on surface physical processes related to fluid slip and the size of the actuating components. Using phase change materials the Casimir force magnitude can be modulated via amorphous-crystalline phase transitions. The dissipative motion between amorphous coated phase change material components can be changed towards stiction upon crystallization and suitable choice of restoring spring constants. By contrast, amorphization can augment switching from stiction to dissipative dynamics.

  20. The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    CERN Document Server

    Bao, Y; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-01-01

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material.

  1. Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions

    CERN Document Server

    Chernodub, M N; Molochkov, A V

    2016-01-01

    We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result.

  2. Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions

    Science.gov (United States)

    Chernodub, M. N.; Goy, V. A.; Molochkov, A. V.

    2016-11-01

    We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result.

  3. ACTINOMYCIN D ANALOGUES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to new compounds being structurally and functionally similar to Actinomycin D and to combinatorial libraries of such compounds. The Actinomycin D analogues according to the present invention comprise two linear or cyclic peptide moieties constituted by $g...

  4. Influence of Combination of Casimir Force and Residual Stress on the Behaviour of Micro- and Nano-Electromechanical Systems

    Science.gov (United States)

    Zheng, Mao-Sheng; Gen, -Shu, Zhou; Zhao, Wen-Zhen; Gu, Hai-Cheng

    2002-06-01

    Casimir force and residual stresses actually appear in over-layers or films simultaneously. The study of the behaviour of micro- and nano-electromechanical systems in the presence of Casimir force and residual stress is of significance to the design of the relevant devices. We derive analytical expressions of the deflection of a bridge-shaped device under the mutual actions of Casimir force and residual stress in films. It is shown that the tensile residual stress enhances wavy behaviour of the deflection, while the compressive residual stress increases the deflection value and reduces the wavy behaviour.

  5. Influence of Combination of Casimir Force and Residual Stress on the Behaviour of Micro- and Nano-Electromechanical Systems

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 周根树; 赵文轸; 顾海澄

    2002-01-01

    Casimir force and residual stresses actually appear in over-layers or films simultaneously. The study of the behaviour of micro- and nano-electromechanical systems in the presence of Casimir force and residual stress is of significance to the design of the relevant devices. We derive analytical expressions of the deflection of a bridge-shaped device under the mutual actions of Casimir force and residual stress in films. It is shown that the tensile residual stress enhances wavy behaviour of the deflection, while the compressive residual stress increases the deflection value and reduces the wavy behaviour.

  6. 9th Alexander Friedmann International Seminar on Gravitation and Cosmology and 3rd Satellite Symposium on the Casimir Effect

    CERN Document Server

    Petrov, V M

    2016-01-01

    The objective of the meeting is to promote contacts between scientists working in the field of Relativity, Gravitation and Cosmology and related fields. It is well known that the important role in Gravitation and Cosmology is played by the Casimir effect. To underline this, special Satellite Symposia devoted to this effect have been included in the Programs of the 7th and 8th Friedmann Seminars. The Casimir effect is a multidisciplinary subject. Its applications extend from gravitation and cosmology to the van der Waals forces, materials properties and nanotechnology. All these subjects are traditionally touched at the Satellite Simposia on the Casimir effect.

  7. Uma introdução aos métodos de cálculo da energia de Casimir

    Directory of Open Access Journals (Sweden)

    Passos Sobrinho J.J.

    2001-01-01

    Full Text Available O efeito Casimir é um dos aspectos mais intrigantes da física moderna. A previsão da existência de uma força macroscópica de origem quântica entre condutores neutros e sua posterior comprovação experimental é sem dúvida um dos triunfos da teoria quântica dos campos. Complementando uma introdução conceitual publicada recentemente nesta revista, apresentamos alguns métodos de cálculo da energia de Casimir, que é a grandeza fundamental que origina o efeito Casimir.

  8. Dirichlet Casimir Energy for a Scalar Field in a Sphere: An Alternative Method

    CERN Document Server

    Valuyan, M A

    2009-01-01

    In this paper we compute the leading order of the Casimir energy for a free massless scalar field confined in a sphere in three spatial dimensions, with the Dirichlet boundary condition. When one tabulates all of the reported values of the Casimir energies for two closed geometries, cubical and spherical, in different space-time dimensions and with different boundary conditions, one observes a complicated pattern of signs. This pattern shows that the Casimir energy depends crucially on the details of the geometry, the number of the spatial dimensions, and the boundary conditions. The dependence of the \\emph{sign} of the Casimir energy on the details of the geometry, for a fixed spatial dimensions and boundary conditions has been a surprise to us and this is our main motivation for doing the calculations presented in this paper. Moreover, all of the calculations for spherical geometries include the use of numerical methods combined with intricate analytic continuations to handle many different sorts of diverge...

  9. Casimir effect as a source of chiral symmetry breaking in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Floratos, E. (Crete Univ., Iraklion (Greece). Physics Dept.; European Organization for Nuclear Research, Geneva (Switzerland)); Papantonopoulos, E. (Ethnikon Metsovion Polytechneion, Athens (Greece). Physics Dept.); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1985-02-21

    The vacuum of QCD, defined on a space-time topology T/sup 3/ x R, breaks chiral symmetry. The physical mechanism responsible is the formation of fermionic condensates due to Casimir forces. Representations of coloured fermions, which possess asymptotic freedom, stabilize the formation of these condensates through their gauge interactions. Estimates of ratios of the order parameters are given for various representations.

  10. Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics

    NARCIS (Netherlands)

    Broer, W.; Palasantzas, G.; Knoester, J.; Svetovoy, V.B.

    2012-01-01

    So far there has been no reliable method to calculate the Casimir force at separations comparable to the root-mean square of the height fluctuations of the surfaces. Statistical analysis of rough gold samples has revealed the presence of peaks considerably higher than the root-mean-square roughness.

  11. Kramers-Kronig relations for plasma-like permittivities and the Casimir force

    CERN Document Server

    Klimchitskaya, G L; Mostepanenko, V M

    2007-01-01

    The Kramers-Kronig relations are derived for the permittivity of the usual plasma model which neglects dissipation and of a generalized model which takes into account the interband transitions. The generalized plasma model is shown to be consistent with all precision experiments on the measurement of the Casimir force.

  12. Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Broer, W. H.; Palasantzas, G.; Kooi, B. J.

    2013-01-01

    Amorphous to crystalline phase transitions in phase change materials (PCM) can have strong influence on the actuation of microelectromechanical systems under the influence of Casimir forces. Indeed, the bifurcation curves of the stationary equilibrium points and the corresponding phase portraits of

  13. Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Palasantzas, Georgios

    2015-01-01

    The role of the Casimir force on the analysis of microactuators is strongly influenced by the optical properties of interacting materials. Bifurcation and phase portrait analysis were used to compare the sensitivity of actuators when the optical properties at low optical frequencies were modeled usi

  14. Casimir and hydrodynamic force influence on microelectromechanical system actuation in ambient conditions

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Palasantzas, Georgios

    2014-01-01

    Casimir and hydrodynamic dissipation forces can strongly influence the actuation of microelectromechanical systems in ambient conditions. The dissipative and stiction dynamics of an actuating system is shown to depend on surface physical processes related to fluid slip and the size of the actuating

  15. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    CERN Document Server

    Wei, Qun

    2011-01-01

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  16. Weak localization as a definitive test of diffusive models in the Casimir effect

    Science.gov (United States)

    Allocca, Andrew; Wilson, Justin; Galitski, Victor

    2015-03-01

    Results from many measurements of the Casimir effect suggest that the metallic plates in these experiments should be modeled with the plasma model of free electrons as opposed to the naive diffusive Drude model, while other experiments seem to indicate the exact opposite, with results more in line with a diffusive model. We study the Casimir effect at low temperatures between a thick disordered plate and purely two-dimensional disordered system where the Drude conductivity decreases logarithmically at low temperatures due to weak localization. This effect can be tuned with either temperature or applied magnetic field leading to a measurable change in the Casimir force. On the other hand, a ballistic model cannot experience such an effect and is only weakly dependent on temperature and magnetic field. As a result, we propose that an experiment would unambiguously differentiate between diffusive and ballistic models by measuring the effect at low temperatures with an applied magnetic field. Additionally, we calculate the impact that fluctuations in the disorder distribution have on the Casimir effect. Assuming the validity of a diffusive model, we find that the Drude model is a good approximation of a more exact treatment of disorder. This work was supported by the DOE-BES (Grant No. DESC0001911) (A.A. and V.G.), the JQI-PFC (J.W.), and the Simons Foundation.

  17. Gastric inhibitory polypeptide analogues

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2002-01-01

    of GIP and GLP-1 receptors, the incretin effect is essential for normal glucose tolerance. In patients with type 2 diabetes mellitus it turns out that the incretin effect is severely impaired or abolished. The explanation seems to be that both the secretion of GLP-1 and the effect of GIP are impaired...... (whereas both the secretion of GIP and the effect of GLP-1 are near normal). The impaired GLP-1 secretion is probably a consequence of diabetic metabolic disturbances. The known genetic variations in the GIP receptor sequence are not associated with type 2 diabetes mellitus, but a defective insulinotropic...... and its analogues are attractive as therapeutic agents for type 2 diabetes mellitus, analogues of GIP are unlikely to be effective. On the other hand, GIP seems to play an important role in lipid metabolism, promoting the disposal of ingested lipids, and mice with a targeted deletion of the GIP receptor...

  18. Aspartame and Its Analogues

    Science.gov (United States)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  19. Quantum analogue computing.

    Science.gov (United States)

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  20. Analogue gravitational phenomena in Bose-Einstein condensates

    CERN Document Server

    Finazzi, Stefano

    2012-01-01

    Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which...

  1. Analogue Methods in Palaeoecology: Using the analogue Package

    OpenAIRE

    Simpson, Gavin L.

    2007-01-01

    Palaeoecology is an important branch of ecology that uses the subfossil remains of organisms preserved in lake, ocean and bog sediments to inform on changes in ecosystems and the environment through time. The analogue package contains functions to perform modern analogue technique (MAT) transfer functions, which can be used to predict past changes in the environment, such as climate or lake-water pH from species data. A related technique is that of analogue matching, which is concerned with i...

  2. Casimir Dark Energy, Stabilization of the Extra Dimensions and Gauss-Bonnet Term

    CERN Document Server

    Wongjun, Pitayuth

    2013-01-01

    Casimir dark energy model in five-dimensional and six-dimensional spacetime including non-relativistic matter and Gauss-Bonnet term is investigated. The Casimir energy can play the role of dark energy to drive the late-time acceleration of the universe while the radius of the extra dimensions can be stabilized. The qualitative analysis in radion picture in four-dimensional spacetime shows that the contribution from Gauss-Bonnet term will effectively slows down the radion field at the beginning time. Therefore, the radion field does not pass minimum point of the effective potential before the minimum the potential exists. This leads to the stabilizing mechanism of the extra dimensions eventually.

  3. Casimir-Polder interaction of neutrons with metal or dielectric surfaces

    CERN Document Server

    Gebhart, Valentin; Buhmann, Stefan Yoshi

    2016-01-01

    We predict a repulsive Casimir-Polder-type dispersion interaction between a single neutron and a metal or dielectric surface. Our model scenario assumes a single neutron subject to an external magnetic field. Due to its intrinsic magnetic moment, the neutron then forms a magnetisable two-level system which can exchange virtual photons with a nearby surface. The resulting dispersion interaction between a purely magnetic object (neutron) and a purely electric one (surface) is found to be repulsive. Its magnitude is considerably smaller than than the standard atom-surface Casimir-Polder force due to the magnetic nature of the interaction and the smallness of the electron-to-neutron mass ratio. Nevertheless, we show that it can be comparable to the gravitational potential of the same surface.

  4. Temperature control of colloidal phases by Critical Casimir forces -- a simulation study

    Science.gov (United States)

    Triet Dang, Minh; Nguyen, Van Duc; Vila Verde, Ana; Bolhuis, Peter; Schall, Peter

    2012-02-01

    Critical Casimir forces arising from the confinement of critical solvent fluctuations between the surfaces of colloidal particles have recently been shown a promising route to control colloidal assembly. Such forces are strongly temperature dependent, and thus allow for direct temperature control of colloidal interactions. However, colloidal phase transitions controlled by this highly temperature-dependent potential are still poorly understood. Here, we report Monte Carlo simulations of critical Casimir-driven colloidal phase behavior using input potentials directly measured in experiments. We map the gas-liquid coexistence region using Gibbs ensemble simulations and the solid-fluid coexistence boundaries using Gibbs-Duhem integration, and determine the gas-liquid critical point by applying scaling theory. The constructed gas-liquid-solid phase diagram agrees quantitatively with that observed in experiments. Remarkably, the simulated gas-liquid coexistence curve exhibits 3D Ising scaling despite the strong temperature dependence of the pair potentials.

  5. Surface-impedance approach solves problems with the thermal Casimir force between real metals

    CERN Document Server

    Geyer, B; Mostepanenko, V M

    2003-01-01

    The surface impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradiction...

  6. Critical Casimir forces between defects in the 2D Ising model

    Science.gov (United States)

    Nowakowski, P.; Maciołek, A.; Dietrich, S.

    2016-12-01

    An exact statistical mechanical derivation is given of the critical Casimir interactions between two defects in a planar lattice-gas Ising model. Each defect is a finite group of nearest-neighbor spins with modified coupling constants. Such a system can be regarded as a model of a binary liquid mixture with the molecules confined to a membrane and the defects mimicking protein inclusions embedded into the membrane. As suggested by recent experiments, certain cellular membranes appear to be tuned to the proximity of a critical demixing point belonging to the two-dimensional Ising universality class. Therefore one can expect the emergence of critical Casimir forces between membrane inclusions. These forces are governed by universal scaling functions, which we derive for simple defects. We prove that the scaling law appearing at criticality is the same for all types of defects considered here.

  7. Corrections to the Casimir Force Due to Interactions of Plasmons and Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Considering the interaction between the electromagnetic field and matter field, a concise method is used to calculate the ground-state energy of the interacting system. With the assumption of squeezed-like state, a new vacuum state is obtained for the interacting system. The energy of the new vacuum state is obviously lower than that of unperturbed vacuum state. Based on the new vacuum state, the correction to the Casimir force is obtained.The result shows that the contribution of the interaction is a repulsive one and the Casimir effect is attributed to both electromagnetic field and matter field. On the basis of the obtained results, the recent experimental data can be explained reasonably.

  8. Virtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, R [Dpto. GeometrIa y TopologIa, Fac. CC. Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias, 3, E-28040 Madrid (Spain); Low, S G [Austin, TX (United States)], E-mail: rutwig@mat.ucm.es, E-mail: Stephen.Low@alumni.utexas.net

    2009-02-13

    Given a semidirect product g=s oplus{sup {yields}} r of semisimple Lie algebras s and solvable algebras r, we construct polynomial operators in the enveloping algebra U(g) of g that commute with r and transform like the generators of s, up to a functional factor that turns out to be a Casimir operator of r. Such operators are said to generate a virtual copy of s in U(g), and allow us to compute the Casimir operators of g in a closed form, using the classical formulae for the invariants of s. The behavior of virtual copies with respect to contractions of Lie algebras is analyzed. Applications to the class of Hamilton algebras and their inhomogeneous extensions are given.

  9. Finite temperature Casimir effect for massive scalars in a magnetic field

    CERN Document Server

    Erdas, Andrea

    2013-01-01

    The finite temperature Casimir effect for a charged, massive scalar field confined between very large, perfectly conducting parallel plates is studied using the zeta function regularization technique. The scalar field satisfies Dirichlet boundary conditions at the plates and a magnetic field perpendicular to the plates is present. Four equivalent expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength, temperature, scalar field mass, and plate distance. The zeta function is used to calculate the Helmholtz free energy of the scalar field and the Casimir pressure on the plates, in the case of high temperature, small plate distance, strong magnetic field and large scalar mass. In all cases, simple analytic expressions of the zeta function, free energy and pressure are obtained, which are very accurate and valid for practically all values of temperature, plate distance, magnetic field and mass.

  10. Casimir energy in a small volume multiply connected static hyperbolic pre-inflationary Universe

    CERN Document Server

    Müller, D; Opher, R; Muller, Daniel; Fagundes, Helio V.; Opher, Reuven

    2001-01-01

    A few years ago, Cornish, Spergel and Starkman (CSS), suggested that a multiply connected ``small'' Universe could allow for classical chaotic mixing as a pre-inflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller Universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected flat space-times. Due to the interest in small volume hyperbolic Universes (e.g. CSS), we generalize the DHI calculation by making a a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static Universe, whose spatial sections are the Weeks manifold, the smallest Universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.

  11. Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    CERN Document Server

    Svetovoy, V B

    2003-01-01

    Temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease the mean free path for electrons becomes larger than the field penetration depth. In this condition description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero frequency limit the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the $n=0$ term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force.

  12. Theory confronts experiment in the Casimir force measurements: quantification of errors and precision

    CERN Document Server

    Chen, F; Mohideen, U; Mostepanenko, V M

    2004-01-01

    We compare theory and experiment in the Casimir force measurement between gold surfaces performed with the atomic force microscope. Both random and systematic experimental errors are found leading to a total absolute error equal to 8.5 pN at 95% confidence. In terms of the relative errors, experimental precision of 1.75% is obtained at the shortest separation of 62 nm at 95% confidence level (at 60% confidence the experimental precision of 1% is confirmed at the shortest separation). An independent determination of the accuracy of the theoretical calculations of the Casimir force and its application to the experimental configuration is carefully made. Special attention is paid to the sample-dependent variations of the optical tabulated data due to the presence of grains, contribution of surface plasmons, and errors introduced by the use of the proximity force theorem. Nonmultiplicative and diffraction-type contributions to the surface roughness corrections are examined. The electric forces due to patch potent...

  13. On the Difference Between the Vacuum Casimir Energies for Grounded and Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We study the vacuum (i.e., zero-temperature) Casimir energy for a system of neutral conductors which are isolated, as opposed to grounded. The former is meant to describe a situation where the total charge on each conductor, as well as all of its fluctuations, vanishes, while the latter describes a situation where the conductors are connected to a charge reservoir. We compute the difference between the vacuum energies for a given system of conductors, but subjected to the two different conditions stated above. The results can be written in terms of a generalized, frequency-dependent capacitance matrix of the system. Using a multipolar expansion, we show that the grounded Casimir energy includes a monopole-monopole interaction term that is absent in the isolated case in the large distance limit

  14. A Short Term Analogue Memory

    DEFF Research Database (Denmark)

    Shah, Peter Jivan

    1992-01-01

    A short term analogue memory is described. It is based on a well-known sample-hold topology in which leakage currents have been minimized partly by circuit design and partly by layout techniques. Measurements on a test chip implemented in a standard 2.4 micron analogue CMOS process show a droop...

  15. Van der Waals and Casimir interactions between atoms and carbon nanotubes

    OpenAIRE

    Klimchitskaya, G. L.(Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140, St. Petersburg, Russia); Blagov, E. V.; Mostepanenko, V. M.

    2008-01-01

    The van der Waals and Casimir interactions of a hydrogen atom (molecule) with a single-walled and a multiwalled carbon nanotubes are compared. It is shown that the macroscopic concept of graphite dielectric permittivity is already applicable for nanotubes with only two or three walls. The absorption of hydrogen atoms by a nanotube at separations below one nanometer is considered. The lateral force due to exchange repulsion moves the atom to a position above the cell center, where it is absorb...

  16. Poisson structure and Casimir functions for a noncentral dynamical system in four-dimensional phase space

    Institute of Scientific and Technical Information of China (English)

    Lou Zhi-Mei; Chen Zi-Dong; Wang Wen-Long

    2005-01-01

    In this paper, we express the differential equations of a noncentral dynamical system in Ermakov formalism to obtain the Ermakov invariant. In term of Hamiltonian theories and using the Ermakov invariant as the Hamiltonian,the Poisson structure of a noncentral dynamical system in four-dimensional phase space are constructed. The result indicates that the Poisson structure is degenerate and the noncentral dynamical system possesses four invariants: the Hamiltonian, the Ermakov invariant and two Casimir functions.

  17. High-multipolar effects on the Casimir force: the non-retarded limit

    CERN Document Server

    Noguez, C; Esquivel-Sirvent, R; Villarreal, C; Noguez, Cecilia; Roman-Velazquez, Carlos E.; Esquivel-Sirvent, Raul; Villarreal, Carlos

    2003-01-01

    We calculate exactly the Casimir force or dispersive force, in the non-retarded limit, between a spherical nanoparticle and a substrate beyond the London's or dipolar approximation. We find that the force is a non-monotonic function of the distance between the sphere and the substrate, such that, it is enhanced by several orders of magnitude as the sphere approaches the substrate. Our results do not agree with previous predictions like the Proximity theorem approach.

  18. Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors

    Science.gov (United States)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2014-10-01

    We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations.

  19. Casimir energy of massive MIT fermions in a Bohm-Aharonov background

    CERN Document Server

    Beneventano, C G; Kirsten, K; Santangelo, E M

    2000-01-01

    We study the effect of a background flux string on the vacuum energy of massive Dirac fermions in 2+1 dimensions confined to a finite spatial region through MIT boundary conditions. We treat two admissible self-adjoint extensions of the Hamiltonian and compare the results. In particular, for one of these extensions, the Casimir energy turns out to be discontinuous at integer values of the flux.

  20. Casimir-Polder interaction of neutrons with metal or dielectric surfaces

    OpenAIRE

    Gebhart, Valentin; Klatt, Juliane; Buhmann, Stefan Yoshi

    2016-01-01

    We predict a repulsive Casimir-Polder-type dispersion interaction between a single neutron and a metal or dielectric surface. Our model scenario assumes a single neutron subject to an external magnetic field. Due to its intrinsic magnetic moment, the neutron then forms a magnetisable two-level system which can exchange virtual photons with a nearby surface. The resulting dispersion interaction between a purely magnetic object (neutron) and a purely electric one (surface) is found to be repuls...

  1. Casimir force between two parallel semiconductor slabs: Magnetic field effects in the Voigt geometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, R.; Palomino-Ovando, M. [Facultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Martinez, G.; Hernandez, P.H.; Cocoletzi, Gregorio H. [Instituto de Fisica, Universidad Autonoma de Puebla, Puebla (Mexico)

    2009-06-15

    We investigate the Casimir force F between two parallel semiconductor slabs taking into account magnetoplasmon effects. For our calculations we consider an external magnetic field applied in the Voigt geometry. Studies are carried out using the formula of F, which is written in terms of the reflectivities of the incident electromagnetic (EM) waves onto the surfaces of the semiconductor slabs, in the vacuum gap between slabs. Results show that the Casimir force depends strongly on the slab thickness as well as on the magnetic-field strength (or equivalently on the cyclotron frequency). At a constant cyclotron frequency and for small slab thickness F/F{sub 0} (F{sub 0} is the ideal force) displays a dip at small separation distances L between slabs. F/F{sub 0} increases with L up to saturation as the slab thickness increases. The curve with the strongest value of F/F{sub 0} corresponds to the semi-infinite medium geometry. For a constant slab thickness and small cyclotron frequency, F/F{sub 0} as a function of L shows a monotonic increase as L increases, and eventually reaches saturation. At high cyclotron frequency F/F{sub 0} displays a dip. The curve of F/F{sub 0} with no applied external field corresponds to the one with the strongest Casimir force. Therefore, magnetoplasmon effects, with an applied magnetic field in the Voigt geometry may inhibit the Casimir force. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Casimir energies and special dimensions in a toy model for branes

    Science.gov (United States)

    Cohen, Isaac

    1988-12-01

    We consider a generalization to branes of the old action for the strings without reparamentrization invariance. These actions admit natural supplementary mass-shell conditions. By regularizing the Casimir energies we calculate the special dimensions at which these toy branes show vector massless states in its spectrum. They all turn out to be non-integers. On sabbatical leave from Departamento de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 66961, Caracas 1061A, Venezuela.

  3. Algebraic approach to multiple defects on the line and application to Casimir force

    CERN Document Server

    Mintchev, M

    2007-01-01

    An algebraic framework for quantization in presence of arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away of them. As an application we compute the Casimir force both at zero and finite temperature. We derive also the charge density in the Gibbs state of a complex scalar field with defects. The example of two delta-defects is treated in detail.

  4. Casimir Effect of Massive Scalar Field with Hybrid Boundary Condition in (1+1)-Dimensional Spacetime

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Kai; LIU Wen-Biao; QIU Wei-Gang

    2009-01-01

    The Casimir energy of maesive scalar field with hybrid (Dirichlet-Neumann) boundary condition is calcu-lated. In order to regularize the model, the typical methods named as mode summation method and Green's function method are used respectively. It is found that the regularized zero-point energy density depends on the scalar field's mass. When the field is massless, the result is consistent with previous literatures.

  5. Do the precise measurements of the Casimir force agree with the expectations?

    CERN Document Server

    Svetovoy, V B

    2000-01-01

    An upper limit on the Casimir force is found using the dielectric functions of perfect crystalline materials which depend only on well defined material constants. The force measured with the atomic force microscope is larger than this limit at small separations between bodies and the discrepancy is significant. The simplest modification of the experiment is proposed allowing to make its results more reliable and answer the question if the discrepancy has any relation with the existence of a new force.

  6. Vorticity in analogue gravity

    CERN Document Server

    Cropp, Bethan; Turcati, Rodrigo

    2015-01-01

    In the analogue gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in a curved spacetime. This description is possible only when the fluid under consideration is barotropic, inviscid and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric which depends algebrically on the local speed of sound, density and the background flow velocity, the latter assumed to be vorticity free. In this work we provide an straightforward extension in order to go beyond the irrotational constraint. Using a charged --- relativistic and non-relativistic --- Bose--Einstein condensate as a physical system, we show that in the low momentum limit and performing the eikonal approximation we can derive a d'Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on a flow velocity in the presence of vorticity.

  7. Vacuum fluctuations and moving atoms/detectors: from the Casimir-Polder to the Unruh-Davies-DeWitt-Fulling effect

    Energy Technology Data Exchange (ETDEWEB)

    Hu, B L; Roura, A; Shresta, S [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2004-08-01

    In this note we review some recent results on corrections to the Casimir-Polder retardation force due to atomic motion and present a preliminary critique on one recently proposed cavity QED scheme for detection of the Unruh-Davies-DeWitt-Fulling effect. These two well-known effects arise from the interaction between a moving atom or detector and a quantum field under some boundary conditions introduced by a conducting mirror/cavity or dielectric wall. The Casimir-Polder force is a retardation force on the atom due to the dressing of the atomic ground state by the vacuum electromagnetic field in the presence of a conducting mirror or dielectric wall. We have recently provided an improved calculation by treating the mutual influence of the atom and the (constrained) field in a self-consistent way. For an atom moving adiabatically, perpendicular to a mirror, our result finds a coherent retardation correction up to twice the stationary value. The Unruh-Davies-DeWitt-Fulling effect refers loosely to the fact that a uniformly accelerated detector feels hot. Two prior schemes have been proposed for the detection of 'Unruh radiation', based on charged particles in linear accelerators and storage rings. Here we are interested in a third scheme proposed recently by Scully et al involving the injection of accelerated atoms into a microwave or optical cavity. We analyse two main factors instrumental to the purported success in this scheme, the cavity factor and the sudden switch-on factor. We conclude that the effects engendered from these factors are unrelated to the Unruh-Davies-DeWitt-Fulling effect.

  8. Scalar cylinder-plate and cylinder-cylinder Casimir interaction in higher dimensional spacetime

    CERN Document Server

    Teo, L P

    2015-01-01

    We study the cylinder-plate and the cylinder-cylinder Casimir interaction in the $(D+1)$-dimensional Minkowski spacetime due to the vacuum fluctuations of massless scalar fields. Different combinations of Dirichlet (D) and Neumann (N) boundary conditions are imposed on the two interacting objects. For the cylinder-cylinder interaction, we consider the case where one cylinder is inside the other, and the case where the two cylinders are outside each other. By computing the transition matrices of the objects and the translation matrices that relate different coordinate systems, the explicit formulas for the Casimir interaction energies are derived. Using perturbation technique, we compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. The leading terms coincide with the respective results obtained using proximity force approximation, which is of order $d^{-D+1/2}$, where $d$ is the distance between the two objects. The results on the next-to...

  9. Critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results.

    Science.gov (United States)

    Dantchev, Daniel; Krech, Michael

    2004-04-01

    We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature T(c). We verify our arguments via exact results for the force in the two-dimensional Ising model, d -dimensional Gaussian, and mean spherical model with 2Monte Carlo simulations for three-dimensional Ising, XY, and Heisenberg models we demonstrate that the standard deviation of the Casimir force F(C) in a slab geometry confining a critical substance in-between is k(b) TD(T) (A/ a(d-1) )(1/2), where A is the surface area of the plates, a is the lattice spacing, and D(T) is a slowly varying nonuniversal function of the temperature T. The numerical calculations demonstrate that at the critical temperature T(c) the force possesses a Gaussian distribution centered at the mean value of the force = k(b) T(c) (d-1)Delta/ (L/a)(d), where L is the distance between the plates and Delta is the (universal) Casimir amplitude.

  10. Casimir interaction between normal or superfluid grains in the Fermi sea

    CERN Document Server

    Wirzba, A; Magierski, P; Wirzba, Andreas; Bulgac, Aurel; Magierski, Piotr

    2005-01-01

    We report on a new force that acts on cavities (literally empty regions of space) when they are immersed in a background of non-interacting fermionic matter fields. The interaction follows from the obstructions to the (quantum mechanical) motions of the fermions caused by the presence of bubbles or other (heavy) particles in the Fermi sea, as, for example, nuclei in the neutron sea in the inner crust of a neutron star or superfluid grains in a normal Fermi liquid. The effect resembles the traditional Casimir interaction between metallic mirrors in the vacuum. However, the fluctuating electromagnetic fields are replaced by fermionic matter fields. We show that the fermionic Casimir problem for a system of spherical cavities can be solved exactly, since the calculation can be mapped onto a quantum mechanical billiard problem of a point-particle scattered off a finite number of non-overlapping spheres or disks. Finally we generalize the map method to other Casimir systems, especially to the case of a fluctuating...

  11. Casimir type effects as a source of Dark Energy. Deformed QCD as a toy model

    CERN Document Server

    Thomas, Evan

    2011-01-01

    We study a Casimir-like behaviour in the so-called "deformed QCD". We demonstrate that for the system defined on a manifold size \\mathbb L the \\theta- dependent portion of the energy shows the Casimir-like scaling E = - A\\cdot [1 + \\frac{B}{\\mathbb L} +{\\cal O}(\\frac{1}{\\mathbb L^2})] despite the presence of a mass gap in the system, in contrast with naive expectation E = - A\\cdot [1 + {B}\\exp(-m{\\mathbb L})] which would normally originate from any physical massive propagating degrees of freedom consequent to conventional dispersion relations. The Casimir-like behaviour in our system comes instead from non-dispersive ("contact") term which is not related to any physical propagating degrees of freedom, such that the naive argument is simply not applicable. These ideas can be explicitly tested as the "deformations" bring QCD into weakly coupled regime, such that all computations are under complete theoretical control, while retaining the essential properties of real strongly coupled QCD. We speculate that the p...

  12. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

    Science.gov (United States)

    Behunin, R. O.; Dalvit, D. A. R.; Decca, R. S.; Genet, C.; Jung, I. W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.; Voisin, G.; Zeng, Y.

    2014-12-01

    Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure Pres(D ) in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. The result of this calculation, using the currently available knowledge, is that Pres(D ) does not explain the magnitude or the separation dependence of the difference Δ P (D ) between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au. We discuss in the conclusions the points which have to be checked out by future work, including the influence of pressure and a more accurate determination of the patch distribution, in order to confirm these results.

  13. NASA/ESMD Analogue Mission Plans

    Science.gov (United States)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  14. Intrinsic formulae for the Casimir operators of semidirect products of the exceptional Lie algebra G{sub 2} and a Heisenberg Lie algebra

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, Rutwig [Depto. Geometria y Topologia, Fac. cc. Matematicas UCM, E-28040 Madrid (Spain)

    2004-10-08

    We show that the Casimir operators of the semidirect products G{sub 2} {rvec {circle_plus}}{sub 2{gamma}{sub (a,b){circle_plus}{Lambda}{sub (0,0)}}}h of the exceptional Lie algebra G{sub 2} and a Heisenberg algebra h can be constructed explicitly from the Casimir operators of G{sub 2}.

  15. On the Holographic Principle in a Radiation Dominated Universe

    CERN Document Server

    Verlinde, Erik

    2000-01-01

    The holographic principle is studied in the context of a $n+1$ dimensional radiation dominated closed Friedman-Robertson-Walker (FRW) universe. The radiation is represented by a conformal field theory with a large central charge. Following recent ideas on holography, it is argued that the entropy density in the early universe is bounded by a multiple of the Hubble constant. The entropy of the CFT is expressed in terms of the energy and the Casimir energy via a universal Cardy formula that is valid for all dimensions. A new purely holographic bound is postulated which restricts the sub-extensive entropy associated with the Casimir energy. Unlike the Hubble bound, the new bound remains valid throughout the cosmological evolution. When the new bound is saturated the Friedman equation exactly coincides with the universal Cardy formula, and the temperature is uniquely fixed in terms of the Hubble parameter and its time-derivative.

  16. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  17. Regularization of Casimir free energy for p-dimensional Hypercubic Cavities inside D+1-dimensional Minkowski Spacetime

    Directory of Open Access Journals (Sweden)

    LIN Ruihui

    2014-02-01

    Full Text Available We reconsider the thermal scalar Casimir effect for p-dimensional hypercubic cavity inside D+1-dimensional Minkowski space-time.The thermal Casimir free energy can be divided into the divergent zero-temperature part and the automatically finite temperature-dependent part through standard quantum field theory treatments.Due to the finiteness,the regularization of the temperature-dependent part,which is also required for the convergency of the Casimir energy and the vanishing of the Casimir force with the separation increasing to infinity,is neglected in some literatures.We derive rigorously the regularization of the zero temperature part as well as the temperature-dependent part of the free energy by making use of the zeta function technique and the Abel-Plana formula.In the cases of D=3,p=1 and D=3,p=3,we precisely recover the results of parallel plates and three-dimensional box in the literature.And explicit expressions of the Casimir free energy in both low temperature (small separations and high temperature (large separations regimes are given,through which we find that after the regularization of both parts,with the side length going to infinity the force always tends to zero for different boundary conditions.Our study may be helpful in providing a comprehensive and complete understanding of this old problem.

  18. Making precise predictions of the Casimir force between metallic plates via a generalized Kramers-Kronig transform

    CERN Document Server

    Bimonte, Giuseppe

    2010-01-01

    The possibility of making precise predictions for the Casimir force is essential for addressing the striking contradiction that has arisen between the a new large distance Casimir experiment with gold plates, that has been interpreted as being consistent with the so-called Drude prescription and to rule out the plasma prescription, and a series of older precise short distance experiments, which were instead interpreted as being consistent with the plasma prescription and to rule out the Drude one. In a previous paper by the author [Phys. Rev. A {\\bf 81}, 062501 (2010)] it was shown that a precise prediction of the Casimir force is possible in principle by a simple modification of the standard Kramers-Kronig relations, involving suitable analytic window functions, solely on the basis of experimental optical data in the frequency interval where they are available, without using uncontrolled data extrapolations towards zero frequency that are necessary with standard Kramers-Kronig relations. In the present paper...

  19. Critical Casimir effect in the Ising strips with standard normal and ordinary boundary conditions and the grain boundary

    Science.gov (United States)

    Borjan, Z.

    2016-09-01

    We consider critical Casimir force in the Ising strips with boundary conditions defined by standard normal and ordinary surface universality classes containing also the internal grain boundary. Using exact variational approach of Mikheev and Fisher we have elaborated on behaviors of Casimir amplitudes Δ++(g) , ΔOO(g) and Δ+O(g) , corresponding to normal-normal, ordinary-ordinary and mixed normal-ordinary boundary conditions, respectively, with g as a strength of the grain boundary. Closed analytic results describe Casimir amplitudes Δ++(g) and ΔOO(g) as continuous functions of the grain boundary's strength g, changing the character of the Casimir force from repulsive to attractive and vice versa for certain domains of g. Present results reveal a new type of symmetry between Casimir amplitudes Δ++(g) and ΔOO(g) . Unexpectedly simple constant result for the Casimir amplitude Δ+O(g) = π/12 we have comprehensively interpreted in terms of equilibrium states of the present Ising strip as a complex interacting system comprising two sub-systems. Short-distance expansions of energy density profiles in the vicinity of the grain boundary reveal new distant-wall correction amplitudes that we examined in detail. Analogy of present considerations with earlier more usual short-distance expansions near one of the (N), (O) and (SB) boundaries, as well as close to surfaces with variable boundary conditions refers to the set of scaling dimensions appearing in the present calculations but also to the discovery of the de Gennes-Fisher distant wall correction amplitudes.

  20. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G.L.; Mostepanenko, V.M. [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, St. Petersburg (Russian Federation); St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg (Russian Federation)

    2015-04-01

    We obtain improved constraints on the coupling constants of axion-like particles to nucleons from a recently performed Casimir-less experiment. For this purpose, the differential force between a Au-coated sphere and either the Au or the Si sector of a rotating disc, arising due to two-axion exchange, is calculated. Over a wide region of axion masses, from 1.7 x 10{sup -3} eV to 0.9 eV, the obtained constraints are up to a factor of 60 stronger than the previously known ones following from the Cavendish-type experiment and measurements of the effective Casimir pressure. (orig.)

  1. The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

    CERN Document Server

    Boyer, Timothy H

    2011-01-01

    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero-temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spect...

  2. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rolleman, Edgar J.; Melis, Marleen; Valkema, Roelf; Krenning, Eric P.; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, V 220, Rotterdam (Netherlands); Boerman, Otto C. [Radboud University Hospital, Department of Nuclear Medicine, Nijmegen (Netherlands)

    2010-05-15

    This review focuses on the present status of kidney protection during peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues. This treatment modality for somatostatin receptor-positive tumours is limited by renal reabsorption and retention of radiolabelled peptides resulting in dose-limiting high kidney radiation doses. Radiation nephropathy has been described in several patients. Studies on the mechanism and localization demonstrate that renal uptake of radiolabelled somatostatin analogues largely depends on the megalin/cubulin system in the proximal tubule cells. Thus methods are needed that interfere with this reabsorption pathway to achieve kidney protection. Such methods include coadministration of basic amino acids, the bovine gelatin-containing solution Gelofusine or albumin fragments. Amino acids are already commonly used in the clinical setting during PRRT. Other compounds that interfere with renal reabsorption capacity (maleic acid and colchicine) are not suitable for clinical use because of potential toxicity. The safe limit for the renal radiation dose during PRRT is not exactly known. Dosimetry studies applying the principle of the biological equivalent dose (correcting for the effect of dose fractionation) suggest that a dose of about 37 Gy is the threshold for development of kidney toxicity. This threshold is lower when risk factors for development of renal damage exist: age over 60 years, hypertension, diabetes mellitus and previous chemotherapy. A still experimental pathway for kidney protection is mitigation of radiation effects, possibly achievable by cotreatment with amifostine (Ethylol), a radiation protector, or with blockers of the renin-angiotensin-aldosterone system. Future perspectives on improving kidney protection during PRRT include combinations of agents to reduce renal retention of radiolabelled peptides, eventually together with mitigating medicines. Moreover, new somatostatin analogues with lower

  3. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    Science.gov (United States)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  4. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  5. Casimir force between $\\delta-\\delta^{\\prime}$ mirrors transparent at high frequencies

    CERN Document Server

    Braga, Alessandra N; Alves, Danilo T

    2016-01-01

    We investigate, in the context of a real massless scalar field in $1+1$ dimensions, models of partially reflecting mirrors simulated by Dirac $\\delta-\\delta^{\\prime}$ point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified $\\delta-\\delta^{\\prime}$ point interaction that enables to achieve full transparency in the limit of high frequencies. Taking this modified $\\delta-\\delta^{\\prime}$ model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  6. The Spectrum of the Thermal Correction to the Casimir Force between Metallic Films

    CERN Document Server

    Torgerson, J R

    2003-01-01

    The frequency spectrum of the finite temperature correction to the Casimir force is determined by use of the Lifshitz formalism for metallic plates of finite conductivity. We show that the correction for the $TE$ electromagnetic modes is dominated by low frequencies, where low is defined by the transverse dimensions of the plates. Through a heuristic argument, we apply our result to the much more complicated case where one "plate" has a spherical surface. Our result brings the thermal correction into agreement with experimental results that were previously obtained. We also address issues relating to the behavior of electromagnetic fields at the surfaces and within metallic conductors.

  7. NC plane waves, Casimir effect and flux tube potential with L\\"uscher terms

    CERN Document Server

    Kováčik, Samuel

    2016-01-01

    We analyze plane waves in a model of quantum mechanics in a three dimensional noncommutative (NC) space $R^3_{\\lambda}$. Signature features of NC models are impossibility of probing distances smaller than a certain length scale {\\lambda} and a presence of natural energetic cut-off at energy scale of order $1/{\\lambda}^2$ (in convenient units). We analyze consequences of such restrictions on a 1 dimensional Casimir effect. The result shows resemblance to flux tube potential for quark-antiquark pairs and to effective bosonic string theories with L\\"uscher terms. Such behavior might effect the radius of possible compact (fuzzy) dimensions.

  8. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    Science.gov (United States)

    Santos, A. F.; Khanna, Faqir C.

    2016-12-01

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  9. Precision Measurement of the Casimir Force for Au Using a Dynamic Afm

    Science.gov (United States)

    Chang, C.-C.; Banishev, A. A.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-07-01

    The gradient of the Casimir force between carefully cleaned Au surfaces of a sphere and a plate is measured using a dynamic atomic force microscope in the frequency modulation regime in high vacuum. The electrostatic calibration of the setup did not reveal any effect of patches or surface contaminants. The experimental data for the force gradient are found to be consistent with theory using the plasma model approach over the entire measurement range. The Drude model approach is excluded by the data at separations from 235 to 400 nm at a 67% confidence level.

  10. Efficient Evaluation of Casimir Force in Arbitrary Three-dimensional Geometries by Integral Equation Methods

    CERN Document Server

    Xiong, Jie L; Atkins, Phillip; Chew, Weng Cho

    2010-01-01

    In this paper, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problem is well-studied in classical computational electromagnetics. This paper demonstrates that this quantum electrodynamic phenomena can be studied using the knowledge and techniques of classical electrodynamics.

  11. Tuning Casimir-Polder interactions in atom-metamaterial hybrid devices

    CERN Document Server

    Chan, Eng Aik; Adamo, Giorgio; Laliotis, Athanasios; Ducloy, Martial; Wilkowski, David

    2016-01-01

    We report on the coupling of a surface plasmonic mode with a thermal vapor of cesium atoms. The plasmonic resonance is created using a nano-structured metallic surface. By changing the geometrical properties of the metamaterial, we tune the plasmonic resonance wavelength with respect to the D2 line of cesium. When the two resonances are close, we observe a strong modification of the Casimir-Polder interaction accompanied by a change of the atomic lifetime. A proper tuning leads to an almost suppression of the frequency shift of the cesium transition. This result paves the way for precision atomic spectroscopy in the vicinity of a material surface.

  12. Self-adjointness and the Casimir effect with confined quantized spinor matter

    CERN Document Server

    Sitenko, Yurii A

    2015-01-01

    A generalization of the MIT bag boundary condition for spinor matter is proposed basing on the requirement that the Dirac hamiltonian operator be self-adjoint. An influence of a background magnetic field on the vacuum of charged spinor matter confined between two parallel material plates is studied. Employing the most general set of boundary conditions at the plates in the case of the uniform magnetic field directed orthogonally to the plates, we find the pressure from the vacuum onto the plates. In physically plausible situations, the Casimir effect is shown to be repulsive, independently of a choice of boundary conditions and of a distance between the plates.

  13. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  14. Experiments on Sphere Cylinder Geometry Dependence in the Electromagnetic Casimir Effect

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Noruzifar, Ehsan; Wagner, Jeffrey; Zandi, Roya; Mohideen, Umar

    2013-03-01

    We report on ongoing experimental investigations on the geometry dependence of the electromagnetic Casimir force in the sphere-cylinder configuration. A gold coated hollow glass sphere which forms one surface is attached to a Silicon AFM cantilever. The cylinder, which is constructed from tapered optical fiber is also gold coated. The resonance frequency shift of the cantilever is measured as a function of the sphere-cylinder surface separation. The sphere-cylinder electrostatic force is used for alignment of the sphere and the cylinder and also for calibrating the system. The results are compared to numerical simulations in the framework of the Proximity Force Approximation (PFA).

  15. Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic mirrors

    Science.gov (United States)

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2016-02-01

    We examine the conditions of validity for the Lifshitz-Matsubara sum formula for the Casimir pressure between magnetic metallic plane mirrors. As in the previously studied case of nonmagnetic materials [Guérout et al., Phys. Rev. E 90, 042125 (2014), 10.1103/PhysRevE.90.042125], we recover the usual expression for the lossy model of optical response, but not for the lossless plasma model. We also show that the modes associated with the Foucault currents play a crucial role in the limit of vanishing losses, in contrast to expectations.

  16. Thermal corrections to the Casimir energy in a general weak gravitational field

    Science.gov (United States)

    Nazari, Borzoo

    2016-12-01

    We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.

  17. Pull-in voltage of microswitch rough plates in the presence of electromagnetic and acoustic Casimir forces

    NARCIS (Netherlands)

    Palasantzas, George

    2007-01-01

    In this work, we investigate the combined influence of electromagnetic and acoustic Casimir forces on the pull-in voltage of microswitches with self-affine rough plates. It is shown that for plate separations within the micron range the acoustic term arising from pressure fluctuations can influence

  18. Measurements of the Critical Casimir Effect and Superfluid Density in Saturated Helium-4 Films near T(lambda)

    Science.gov (United States)

    Abraham, John Bishoy Sam

    Saturated thick films of 4Helium adsorbed on a copper substrate are studied experimentally. The film thickness is measured with an ultra-sensitive capacitance bridge capable of resolving sub-Angstrom changes in film thickness. Through the use of this capacitance bridge, the critical Casimir effect in the films is studied in the vicinity of the lambda transition. Additionally, the copper substrate assembly is used to generate and detect third sound in the film. Measurements are made of the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-Thouless transition in the films. The position of the Kosterlitz-Thouless transition relative to the critical Casimir effect in the films is identifieded. It is discovered that the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thickness due to the critical Casimir effect. When the temperature of the system is swept extremely slowly across the lambda transition, a step in film thickness is observed. This step is possibly a non-universal critical Casimir effect. A model of thermal second sound excitations is developed to describe this new observation.

  19. Introduction to electronic analogue computers

    CERN Document Server

    Wass, C A A

    1965-01-01

    Introduction to Electronic Analogue Computers, Second Revised Edition is based on the ideas and experience of a group of workers at the Royal Aircraft Establishment, Farnborough, Hants. This edition is almost entirely the work of Mr. K. C. Garner, of the College of Aeronautics, Cranfield. As various advances have been made in the technology involving electronic analogue computers, this book presents discussions on the said progress, including some acquaintance with the capabilities of electronic circuits and equipment. This text also provides a mathematical background including simple differen

  20. Analogue Methods in Palaeoecology: Using the analogue Package

    Directory of Open Access Journals (Sweden)

    Gavin L. Simpson

    2007-08-01

    Full Text Available Palaeoecology is an important branch of ecology that uses the subfossil remains of organisms preserved in lake, ocean and bog sediments to inform on changes in ecosystems and the environment through time. The analogue package contains functions to perform modern analogue technique (MAT transfer functions, which can be used to predict past changes in the environment, such as climate or lake-water pH from species data. A related technique is that of analogue matching, which is concerned with identifying modern sites that are floristically and faunistically similar to fossil samples. These techniques, and others, are increasingly being used to inform public policy on environmental pollution and conservation practices. These methods and other functionality in analogue are illustrated using the Surface Waters Acidification Project diatom:pH training set and diatom counts on samples of a sediment core from the Round Loch of Glenhead, Galloway, Scotland. The paper is aimed at palaeoecologists who are familiar with the techniques described but not with R.

  1. Vacuum Energy Density Fluctuations in Minkowski and Casimir States via Smeared Quantum Fields and Point Separation

    CERN Document Server

    Phillips, N G; Phillips, Nicholas. G.

    2000-01-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universe, and for examining the design feasibility of real-life `time-machines'. For the Minkowski vacuum we find that the ratio of the var...

  2. Correction to the Casimir force due to the anomalous skin effect

    CERN Document Server

    Esquivel, R

    2004-01-01

    The surface impedance approach is discussed in connection with the precise calculation of the Casimir force between metallic plates. It allows to take into account the nonlocal connection between the current density and electric field inside of metals. In general, a material has to be described by two impedances $Z_{s}(\\omega,q)$ and $Z_{p}(\\omega,q)$ corresponding to two different polarization states. In contrast with the approximate Leontovich impedance they depend not only on frequency $\\omega$ but also on the wave vector along the plate $q$. In this paper only the nonlocal effects happening at frequencies $\\omega<\\omega_{p}$ (plasma frequency) are analyzed. We refer to all of them as the anomalous skin effect. The impedances are calculated for the propagating and evanescent fields in the Boltzmann approximation. It is found that $Z_p$ significantly deviates from the local impedance as a result of the Thomas-Fermi screening. The nonlocal correction to the Casimir force is calculated at zero temperature....

  3. Discontinuous bundling transition in semiflexible polymer networks induced by Casimir interactions

    Science.gov (United States)

    Kachan, Devin; Müller, Kei W.; Wall, Wolfgang A.; Levine, Alex J.

    2016-09-01

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. We investigate the role of fluctuation-based or thermal Casimir interactions between cross linkers in a semiflexible network. One finds that, by integrating out the polymer degrees of freedom, there is an attractive logarithmic potential between nearest-neighbor cross linkers in a bundle, with a significantly weaker next-nearest-neighbor interaction. Here we show that a one-dimensional gas of these strongly interacting linkers in equilibrium with a source of unbound ones admits a discontinuous phase transition between a sparsely and a densely bound bundle. This discontinuous transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. We support these calculations with the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross linkers.

  4. Casimir Energy of the Universe and New Regularization of Higher Dimensional Quantum Field Theories

    CERN Document Server

    Ichinose, Shoichi

    2010-01-01

    Casimir energy is calculated for the 5D electromagnetism and 5D scalar theory in the {\\it warped} geometry. It is compared with the flat case. A new regularization, called {\\it sphere lattice regularization}, is taken. In the integration over the 5D space, we introduce two boundary curves (IR-surface and UV-surface) based on the {\\it minimal area principle}. It is a {\\it direct} realization of the geometrical approach to the {\\it renormalization group}. The regularized configuration is {\\it closed-string like}. We do {\\it not} take the KK-expansion approach. Instead, the position/momentum propagator is exploited, combined with the {\\it heat-kernel method}. All expressions are closed-form (not KK-expanded form). The {\\it generalized} P/M propagators are introduced. We numerically evaluate $\\La$(4D UV-cutoff), $\\om$(5D bulk curvature, warp parameter) and $T$(extra space IR parameter) dependence of the Casimir energy. We present two {\\it new ideas} in order to define the 5D QFT: 1) the summation (integral) regio...

  5. Impact of Casimir-Polder interaction on Poisson-spot diffraction at a dielectric sphere

    Science.gov (United States)

    Hemmerich, Joshua L.; Bennett, Robert; Reisinger, Thomas; Nimmrichter, Stefan; Fiedler, Johannes; Hahn, Horst; Gleiter, Herbert; Buhmann, Stefan Yoshi

    2016-08-01

    Diffraction of matter waves is an important demonstration of the fact that objects in nature possess a mixture of particlelike and wavelike properties. Unlike in the case of light diffraction, matter waves are subject to a vacuum-mediated interaction with diffraction obstacles. Here we present a detailed account of this effect through the calculation of the attractive Casimir-Polder potential between a dielectric sphere and an atomic beam. Furthermore, we use our calculated potential to make predictions about the diffraction patterns to be observed in an ongoing experiment where a beam of indium atoms is diffracted around a silicon-dioxide sphere. The result is an amplification of the on-axis bright feature, which is the matter-wave analog of the well-known "Poisson spot" from optics. Our treatment confirms that the diffraction patterns resulting from our complete account of the sphere Casimir-Polder potential are indistinguishable from those found via a large-sphere nonretarded approximation in the discussed experiments, establishing the latter as an adequate model.

  6. CALL FOR PAPERS: Topical issue on the nonstationary Casimir effect and quantum systems with moving boundaries

    Science.gov (United States)

    Barton, Gabriel; Dodonov, Victor V.; Man'ko, Vladimir I.

    2004-05-01

    The past few years have seen a growing interest in quantum mechanical systems with moving boundaries. One of its manifestations was the First International Workshop on Problems with Moving Boundaries organized by Professor J Dittrich in Prague in October 2003. Another event in this series will be the (first) International Workshop on the Dynamical Casimir Effect in Padua in June 2004, organized by Professor G Carugno (see webpage www.pd.infn.it/casimir/ for details). As Guest Editors we invite researchers working in any area related to moving boundaries to contribute to a Topical Issue of Journal of Optics B: Quantum and Semiclassical Optics on the nonstationary Casimir effect and quantum systems with moving boundaries. Our intention is to cover a wide range of topics. In particular, we envisage possible contributions in the following areas: Theoretical and experimental studies on quantum fields in cavities with moving boundaries and time-dependent media. This area includes, in particular, various manifestations of the nonstationary (dynamical) Casimir effect, such as creation of quanta and modifications of Casimir force due to the motion of boundaries. Other relevant subjects are: generation and evolution of nonclassical states of fields and moving mirrors; interaction between quantized fields and atoms in cavities with moving boundaries; decoherence and entanglement due to the motion of boundaries; field quantization in nonideal cavities with moving boundaries taking into account losses and dispersion; nano-devices with moving boundaries. Quantum particles in domains confined with moving boundaries. This area includes: new exact and approximate solutions of the evolution equations (Schrödinger, Klein-Gordon, Dirac, Fokker-Planck, etc); quantum carpets and revivals; escape and tunnelling through moving barriers; evolution of quantum packets in the presence of moving boundaries; ultracold atoms (ions) in traps with moving boundaries. The topical issue is scheduled

  7. Stimulated emission in black holes and in analogue gravity

    Science.gov (United States)

    Belgiorno, F.; Cacciatori, S. L.

    2016-11-01

    Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which examples of stimulated radiation are considered.

  8. Measuring Mental Imagery with Visual Analogue Scales.

    Science.gov (United States)

    Quilter, Shawn M.; Band, Jennie P.; Miller, Gary M.

    1999-01-01

    Investigates some of the psychometric characteristics of the results from visual-analogue scales used to measure mental imagery. Reports that the scores from visual-analogue scales are positively related to scores from longer pencil-and-paper measures of mental imagery. Implications and limitations for the use of visual-analogue scales to measure…

  9. Reply to 'Comment on 'Temperature dependence of the Casimir force for lossy bulk media''

    Energy Technology Data Exchange (ETDEWEB)

    Yampol' skii, V. A.; Maizelis, Z. A.; Apostolov, S. S. [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); A. Ya. Usikov Institute for Radiophysics and Electronics, NASU, 61085 Kharkov (Ukraine); Savel' ev, Sergey [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Nori, Franco [Advanced Science Institute, RIKEN, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2011-09-15

    Here, we present an estimate of the characteristic wavelengths of the evanescent modes, which define the main contribution to the thermal part of the Casimir force. This estimate is more precise than the one in the preceding Comment by Bimonte et al.[Phys. Rev. A 84, 036501 (2011)]. The wavelengths we derive are indeed smaller than the sizes of the interacting bodies. We also discuss the results of several experiments on the thermal effects in the Casimir force.

  10. Casimir force between a half-space and a plate of finite thickness

    Science.gov (United States)

    Høye, Johan S.; Brevik, Iver

    2016-05-01

    Zero-frequency Casimir theory is analyzed from different viewpoints, with the aim of obtaining further insight into the delicate Drude-plasma issue that turns up when one considers thermal corrections to the Casimir force. The problem is essentially that the plasma model, physically inferior in comparison to the Drude model since it leaves out dissipation in the material, apparently gives the best results when comparing with recent experiments. Our geometric setup is quite conventional, namely, a dielectric plate separated from a dielectric half-space by a vacuum gap, both media being made of the same material. Our investigation is divided into the following categories: (1) Making use of the statistical-mechanical method developed by J. S. Høye and I. Brevik [Physica A (Amsterdam, Neth.) 259, 165 (1998), 10.1016/S0378-4371(98)00249-0], implying that the quantized electromagnetic field is replaced by interaction between dipole moments oscillating in harmonic potentials, we first verify that the Casimir force is in agreement with the Drude prediction. No use of Fresnel's reflection coefficients is made at this stage. (2) Then turning to the field-theoretic description implying use of the reflection coefficients, we derive results in agreement with the forgoing when first setting the frequency equal to zero, before letting the permittivity become large. With the plasma relation the reflection coefficient for TE zero-frequency modes depends on the component of the wave vector parallel to the surfaces and lies between 0 and 1. This contradicts basic electrostatic theory. (3) Turning to high-permeability magnetic materials, the TE zero-frequency mode describes the static magnetic field in the same way the TM zero-frequency modes describe the static electric fields in electrostatics. With the plasma model magnetic fields, except for a small part, cannot pass through metals; that is, metals effectively become superconductors. However, recent experimental results clearly

  11. Classical and fluctuation-induced electromagnetic interactions in micronscale systems: designer bonding, antibonding, and Casimir forces

    CERN Document Server

    Rodriguez, Alejandro W; Woolf, David N; Johnson, Steven G; Loncar, Marko; Capasso, Federico

    2014-01-01

    Whether intentionally introduced to exert control over particles and macroscopic objects, such as for trapping or cooling, or whether arising from the quantum and thermal fluctuations of charges in otherwise neutral bodies, leading to unwanted stiction between nearby mechanical parts, electromagnetic interactions play a fundamental role in many naturally occurring processes and technologies. In this review, we survey recent progress in the understanding and experimental observation of optomechanical and quantum-fluctuation forces. Although both of these effects arise from exchange of electromagnetic momentum, their dramatically different origins, involving either real or virtual photons, lead to different physical manifestations and design principles. Specifically, we describe recent predictions and measurements of attractive and repulsive optomechanical forces, based on the bonding and antibonding interactions of evanescent waves, as well as predictions of modified and even repulsive Casimir forces between n...

  12. Casimir-Polder forces in the presence of thermally excited surface modes

    CERN Document Server

    Laliotis, Athanasios; Maurin, Isabelle; Ducloy, Martial; Bloch, Daniel

    2014-01-01

    The temperature dependence of the Casimir-Polder interaction addresses fundamental issues for understanding vacuum and thermal fluctuations. It is highly sensitive to surface waves which, in the near field, govern the thermal emission of a hot surface. Here we use optical reflection spectroscopy to monitor the atom-surface interaction between a Cs*(7D3/2) atom and a hot sapphire surface at a distance ~ 100 nm. In our experiments, that explore a large range of temperatures (500-1000K) the hot surface is at thermal equilibrium with the vacuum. The observed increase of the interaction with temperature, by up to 50 %, relies on the coupling between atomic virtual transitions in the infrared range and thermally excited surface-polariton modes. We extrapolate our findings to a broad distance range, from the isolated free atom to the short distances relevant to physical chemistry. Our work also opens the prospect of controlling atom surface interactions by engineering thermal fields.

  13. Constraining axion coupling constants from measuring the Casimir interaction between polarized test bodies

    CERN Document Server

    Bezerra, V B; Mostepanenko, V M; Romero, C

    2016-01-01

    We propose an experiment for measuring the effective Casimir pressure between two parallel SiC plates with aligned nuclear spins. The prospective constraints on an axion-neutron coupling constant for both hadronic and GUT axions are calculated using the process of one-axion exchange. For this purpose, a general expression for the additional pressure arising between two polarized plates due to the exchange of one axion between their constituent fermions is derived. We demonstrate that only the polarization component perpendicular to the plates contribute to the pressure. The obtained pressure can be both repulsive and attractive depending on whether the polarizations of both plates are unidirectional or directed in opposite directions. It is shown that although the constraints on an axion-electron coupling obtained in the case of magnetized plates are not competitive, the constraints on an axion-neutron coupling found for plates with polarized nuclear spins are of the same order of magnitude of those obtained ...

  14. Casimir interaction energies for magneto-electric \\delta-function plates

    CERN Document Server

    Milton, Kimball A; Schaden, Martin; Shajesh, K V

    2013-01-01

    We present boundary conditions for the electromagnetic fields on a \\delta-function plate, having both electric and magnetic properties, sandwiched between two magneto-electric semi-infinite half spaces. The optical properties for an isolated \\delta-function plate are shown to be independent of the longitudinal material properties of the plate. The Casimir-Polder energy between an isotropically polarizable atom and a magneto-electric \\delta-function plate is attractive for a purely electric \\delta-function plate, repulsive for a purely magnetic \\delta-function plate, and vanishes for the simultaneous perfect conductor limit of both electric and magnetic properties of the \\delta-function plate. The interaction energy between two identical \\delta-function plates is always attractive. It can be attractive or repulsive when the plates have electric and magnetic properties interchanged and reproduces Boyer's result for the interaction energy between perfectly conducting electric and magnetic plates. The change in t...

  15. Finite temperature Casimir effect for charged massless scalars in a magnetic field

    CERN Document Server

    Erdas, Andrea

    2013-01-01

    The zeta function regularization technique is used to study the finite temperature Casimir effect for a charged and massless scalar field confined between parallel plates and satisfying Dirichlet boundary conditions at the plates. A magnetic field perpendicular to the plates is included. Three equivalent expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength, temperature and plate distance. These expressions of the zeta function are used to calculate the Helmholtz free energy of the scalar field and the pressure on the plates, in the case of high temperature, small plate distance and strong magnetic field. In all cases, simple analytic expressions are obtained for the free energy and pressure which are accurate and valid for practically all values of temperature, plate distance and magnetic field.

  16. New signatures of the dynamical Casimir effect in a superconducting circuit

    CERN Document Server

    Rego, Andreson L C; Alves, Danilo T; Farina, C

    2014-01-01

    We found new signatures of the dynamical Casimir effect (DCE) in the context of superconducting circuits. We show that if the recent experiment made by Wilson {\\it et al}, which brought the DCE into reality for the first time, is repeated with slight modifications (for instance, different values for the capacitance of the SQUID), three remarkable results will show up, namely: {\\it (i)} a quite different spectral distribution for the created particles, deviating from the typical parabolic shape; {\\it (ii)} an enhancement by a factor of approximately $5 \\times 10^3 $ in the number of created particles with half driven frequency of the effective moving mirror and {\\it (iii)} an enhancement by a factor of $3 \\times 10^2$ in the particle creation rate. These results may guide the experimentalists in their search for alternative routes to observe the DCE in future experiments.

  17. Electromagnetic Casimir Forces of Parabolic Cylinder and Knife-Edge Geometries

    CERN Document Server

    Graham, Noah; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L; Kardar, Mehran

    2011-01-01

    An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the "knife-edge" limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.

  18. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration

    CERN Document Server

    Almasi, Attaallah; Iannuzzi, Davide; Sedmik, René I P

    2015-01-01

    The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions between parallel plates kept at constant separation could be measured as a function of the pressure of an ambient gas, thereby identifying chameleon interactions by their unique inverse dependence on the local mass density. During the past years we have been developing a new kind of setup complying with the high requirements of the proposed experiment. In this article we present the first and most important part of this setup -- the force sensor. We discuss its design, fabrication, and characterization. From the results of the latter we derive limits on chameleon interaction parameters that could be set by the forthcoming experiment. Finally, we describe the opportunity to use the same setup to measure Casimir for...

  19. The thermal Casimir-Polder interaction of an atom with spherical plasma shell

    CERN Document Server

    Khusnutdinov, Nail R

    2012-01-01

    The van der Waals and Casimir-Polder interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach at finite temperature. The Lifshits approach is used to find the free energy. We find the close expression for the free energy and make the analysis of it for i) high and low temperatures, ii) large radii of sphere and ii) short distance from sphere. At low temperatures the thermal part of the free energy tends to zero as forth power of the temperature while for high temperatures it is proportional to the first degree of the temperature. We show that the entropy of this system is positive for small radii of sphere and it becomes negative at low temperatures and for large radii of the sphere.

  20. Van der Waals-Casimir-Polder interaction of an atom with a composite surface

    CERN Document Server

    Eizner, Elad; Henkel, Carsten

    2012-01-01

    We study the dispersion interaction of the van der Waals and Casimir-Polder (vdW-CP) type between a neutral atom and the surface of a metal by allowing for nonlocal electrodynamics, i.e. electron diffusion. We consider two models: (i) bulk diffusion, and (ii) diffusion in a surface charge layer. In both cases the transition to a semiconductor is continuous as a function of the conductivity, unlike the case of a local model. The relevant parameter is the electric screening length and depends on the carrier diffusion constant. We find that for distances comparable to the screening length, vdW-CP data can distinguish between bulk and surface diffusion, hence it can be a sensitive probe for surface states.

  1. Casimir micro-sphere diclusters and three-body effects in fluids

    CERN Document Server

    Varela, Jaime; McCauley, Alexander P; Johnson, Steven G

    2010-01-01

    Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.

  2. Fuerza de Casimir 1D en semiconductores excitónicos

    OpenAIRE

    A. D. Hernández de la Luz; M. A. Rodríguez Moreno; J. Olvera Hernández; G. Hernández Cocoletzi

    2006-01-01

    Se presentan cálculos de la fuerza de Casimir unidimensional entre placas paralelas semiconductoras excitónicas no locales homogéneas y no homogéneas. Los efectos no locales se generan por las transiciones excitónicas An=1 y Bn=1 en CdS. La fuerza se calcula, en el caso homogéneo, como una función de los espesores de las placas d1 = d2 = d y del ancho de la región de vacío L entre ellas. Asimismo, para el caso inhomogéneo se consideran placas construidas por superredes semiinfinitas con celda...

  3. The Casimir effect with quantized charged spinor matter in background magnetic field

    CERN Document Server

    Sitenko, Yu A

    2014-01-01

    We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in a foreseen future.

  4. Sympathetic laser-cooling of graphene with Casimir-Polder forces

    CERN Document Server

    Ribeiro, Sofia

    2016-01-01

    We propose a scheme to actively cool the fundamental flexural (out-of-plane) mode of a graphene sheet via vacuum forces. Our setup consists in a cold atom cloud placed close to a graphene sheet at distances of a few micrometers. The atoms couple to the graphene membrane via Casimir-Polder forces. By deriving a self-consistent set of equations governing the dynamics of the atomic gas and the flexural modes of the graphene, we show to be possible to cool graphene from room temperatures by actively (laser) cooling an atomic gas. By choosing the right set of experimental parameter we are able to cool a graphene sheet down to ~ 60 microkelvin.

  5. Critical Casimir force scaling functions of the two-dimensional Ising model for various boundary conditions

    CERN Document Server

    Hobrecht, Hendrik

    2016-01-01

    We present a systematic method to calculate the scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $L\\times M$ square lattice, wrapped around a torus with aspect ratio $\\rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2\\times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $\\rho\\to 0$. Additionally, for the cylinder at criticality our result confirms the predictions...

  6. Pronounced minimum of the thermodynamic Casimir forces of O(n) symmetric film systems: analytic theory.

    Science.gov (United States)

    Dohm, Volker

    2014-09-01

    Thermodynamic Casimir forces of film systems in the O(n) universality classes with Dirichlet boundary conditions are studied below bulk criticality. Substantial progress is achieved in resolving the long-standing problem of describing analytically the pronounced minimum of the scaling function observed experimentally in ^{4}He films (n=2) by Garcia and Chan [Phys. Rev. Lett. 83, 1187 (1999)] and in Monte Carlo simulations for the three-dimensional Ising model (n=1) by O. Vasilyev et al. [Europhys. Lett. 80, 60009 (2007)]. Our finite-size renormalization-group approach describes the film systems as the limit of finite-slab systems with vanishing aspect ratio. This yields excellent agreement with the depth and the position of the minimum for n=1 and semiquantitative agreement with the minimum for n=2. Our theory also predicts a pronounced minimum for the n=3 Heisenberg universality class.

  7. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    Science.gov (United States)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  8. Does the Transverse Electric Zero Mode Contribute to the Casimir Effect for a Metal?

    CERN Document Server

    Høye, J S; Aarseth, J B; Milton, K A

    2003-01-01

    The finite temperature Casimir free energy, entropy, and internal energy are considered anew for a conventional parallel-plate configuration, in the light of current discussions in the literature. In the case of an "ideal" metal, characterized by a refractive index equal to infinity for all frequencies, we recover, via a somewhat unconventional method, conventional results for the temperature dependence, meaning that the zero-frequency transverse electric mode contributes the same as the transverse magnetic mode. For a real metal, however, approximately obeying the Drude dispersive model at low frequencies, we find that the zero-frequency transverse electric mode does not contribute at all. This would appear to lead to an observable temperature dependence and a violation of the third law of thermodynamics. It had been suggested that the source of the difficulty was the behaviour of the reflection coefficient for perpendicular polarization but we show that this is not the case. By introducing a simplified mode...

  9. Neuronal Analogues of Conditioning Paradigms

    Science.gov (United States)

    1984-04-24

    Although the mechanisms of interneuronal communication have been well established, the changes underlying most forms of learning have thus far eluded...stimulating electrodes on one of the connectives was adjusted so as to produce a small excitatory postsynaptic potential ( EPSP ) in the impaled cell...two stimuli would constitute a neuronal analogue of conditioning by producing an increased EPSP in response to the test stimulus alone. If so, then

  10. Novel acetylcholine and carbamoylcholine analogues

    DEFF Research Database (Denmark)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.;

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ......A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity...... for this subtype over alpha 3beta 4, alpha 4beta 4, and alpha 7 nAChRs. The high nAChR activity of carbamoylcholine analogue 5d was found to reside in its R-enantiomer, a characteristic most likely true for all other compounds in the series. Interestingly, the pronounced alpha 4beta 2 selectivities exhibited......AChR agonists published to date. Ligand-protein docking experiments using homology models of the amino-terminal domains of alpha 4beta 2 and alpha 3beta 4 nAChRs identified residues Val111(beta 2)/Ile113(beta 4), Phe119(beta 2)/Gln121(beta 4), and Thr155(alpha 4)/Ser150(alpha 3) as possible key determinants...

  11. Substrate analogues for isoprenoid enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  12. Exact results for the behavior of the thermodynamic Casimir force in a model with a strong adsorption

    Science.gov (United States)

    Dantchev, Daniel M.; Vassilev, Vassil M.; Djondjorov, Peter A.

    2016-09-01

    When massless excitations are limited or modified by the presence of material bodies one observes a force acting between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) relief map of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below but close to the finite-size critical point.

  13. New Vacuum State of the Electromagnetic Field-Matter Coupling System and the Physical Interpretation of Casimir Effect

    Institute of Scientific and Technical Information of China (English)

    李铜忠

    2004-01-01

    A new concise method is presented for the calculation of the ground-state energy of the electromagnetic field and matter field interacting system. With the assumption of squeezed-like state, a new vacuum state is obtained for the interacting system. The energy of the new vacuum state is lower than that given by the second-order perturbation theory in existing theories. In our theory, the Casimir effect is attributed neither to the quantum fluctuation in the zero-point energy of the genuine electromagnetic field nor to that in the zero-point energy of the genuine matter field, but to that in the vacuum state of the interacting system. Both electromagnetic field and matter field are responsible for the Casimir effect.

  14. Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates

    CERN Document Server

    Decca, R S; Klimchitskaya, G L; Krause, D E; López, D; Mostepanenko, V M

    2007-01-01

    A micromechanical torsion oscillator has been used to strengthen the limits on new Yukawa forces by determining the Casimir pressure between two gold-coated plates. By significantly reducing the random errors and obtaining the electronic parameters of the gold coatings, we were able to conclusively exclude the predictions of large thermal effects below 1 $\\mu$m and strengthen the constraints on Yukawa corrections to Newtonian gravity in the interaction range from 29.5 nm to 86 nm.

  15. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)

    2007-09-21

    We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors.

  16. Ecstasy analogues found in cacti.

    Science.gov (United States)

    Bruhn, Jan G; El-Seedi, Hesham R; Stephanson, Nikolai; Beck, Olof; Shulgin, Alexander T

    2008-06-01

    Human interest in psychoactive phenethylamines is known from the use of mescaline-containing cacti and designer drugs such as Ecstasy. From the alkaloid composition of cacti we hypothesized that substances resembling Ecstasy might occur naturally. In this article we show that lophophine, homopiperonylamine and lobivine are new minor constituents of two cactus species, Lophophora williamsii (peyote) and Trichocereus pachanoi (San Pedro). This is the first report of putatively psychoactive phenethylamines besides mescaline in these cacti. A search for further biosynthetic analogues may provide new insights into the structure-activity relationships of mescaline. An intriguing question is whether the new natural compounds can be called "designer drugs."

  17. Antimicrobial evaluation of mangiferin analogues

    Directory of Open Access Journals (Sweden)

    Singh S

    2009-01-01

    Full Text Available The naturally occurring xanthone glycoside mangiferin has been isolated by column chromatography from the ethanol extract of stem bark of Mangifera indica. Mangiferin was further converted to 5-(N-phenylaminomethylenomangiferin, 5-(N-p-chlorophenylaminomethyleno mangiferin, 5-(N-2-methylphenylaminomethyleno mangiferin, 5-(N-p-methoxyphenylaminomethyleno mangiferin, 5-(N,N-diphenylaminomethyleno mangiferin, 5-(N--napthylaminomethyleno mangiferin and 5-(N-4-methylphenylaminomethyleno mangiferin. Mangiferin and its analogues were characterized by melting point and R f value determination and through spectral technique like UV, IR, and NMR spectral analysis. The synthesized compounds were screened for antimicrobial activity.

  18. Antimicrobial Evaluation of Mangiferin Analogues

    Science.gov (United States)

    Singh, S. K.; Kumar, Y.; Kumar, S. Sadish; Sharma, V. K.; Dua, K.; Samad, A.

    2009-01-01

    The naturally occurring xanthone glycoside mangiferin has been isolated by column chromatography from the ethanol extract of stem bark of Mangifera indica. Mangiferin was further converted to 5-(N-phenylaminomethyleno)mangiferin, 5-(N-p-chlorophenylaminomethyleno) mangiferin, 5-(N-2-methylphenylaminomethyleno) mangiferin, 5-(N-p-methoxyphenylaminomethyleno) mangiferin, 5-(N, N-diphenylaminomethyleno) mangiferin, 5-(N--napthylaminomethyleno) mangiferin and 5-(N-4-methylphenylaminomethyleno) mangiferin. Mangiferin and its analogues were characterized by melting point and Rf value determination and through spectral technique like UV, IR, and NMR spectral analysis. The synthesized compounds were screened for antimicrobial activity. PMID:20490307

  19. A graphical approach to analogue behavioural modelling

    OpenAIRE

    Moser, Vincent; Nussbaum, Pascal; Amann, Hans-Peter; Astier, Luc; Pellandini, Fausto

    2007-01-01

    In order to master the growing complexity of analogue electronic systems, modelling and simulation of analogue hardware at various levels is absolutely necessary. This paper presents an original modelling method based on the graphical description of analogue electronic functional blocks. This method is intended to be automated and integrated into a design framework: specialists create behavioural models of existing functional blocks, that can then be used through high-level selection and spec...

  20. The Valles natural analogue project

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, H.; Krumhansl, J.; Ho, C. [Sandia National Labs., Albuquerque, NM (United States); McConnell, V. [Alaska Univ., Fairbanks, AK (United States). Geophysical Inst.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  1. Strategy and methodology of dynamical analogue prediction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to effectively improve numerical prediction level by using current models and data, the strategy and methodology of dynamical analogue prediction (DAP) is deeply studied in the present paper. A new idea to predict the prediction errors of dynamical model on the basis of historical analogue information is put forward so as to transform the dynamical prediction problem into the estimation problem of prediction errors. In terms of such an idea, a new prediction method of final analogue correction of errors (FACE) is developed. Furthermore, the FACE is applied to extra-seasonal prediction experiments on an operational atmosphere-ocean coupled general circulation model. Prediction results of summer mean circulation and total precipitation show that the FACE can to some extent reduce prediction errors, recover prediction variances, and improve prediction skills. Besides, sensitive experiments also show that predictions based on the FACE are evidently influenced by the number of analogues, analogue-selected variables and analogy metric.

  2. The future of somatostatin analogue therapy.

    Science.gov (United States)

    Stewart, P M; James, R A

    1999-10-01

    Since its discovery almost 30 years ago, the mode of action and therapeutic applications of somatostatin have been defined. In particular the cloning and characterization of somatostatin receptor subtypes has facilitated the development of high affinity analogues. In the context of pituitary disease, long-acting somatostatin analogues (octreotide, lanreotide) have been used to treat a variety of pituitary tumours but are most efficacious for the treatment of GH and TSH-secreting adenomas. In patients with acromegaly, depot preparations of these analogues are administered intramuscularly every 10-28 days and provide consistent suppression of GH levels to < 5 mU/l in approximately 50-65% of all cases. Even more specific somatostatin receptor analogues are under development. Finally, radiolabelled somatostatin analogue scintigraphy and, in larger doses, therapy, are now established tools in the evaluation and treatment of neuroendocrine tumours.

  3. Local zeta regularization and the scalar Casimir effect I. A general approach based on integral kernels

    CERN Document Server

    Fermi, Davide

    2015-01-01

    This is the first one of a series of papers about zeta regularization of the divergences appearing in the vacuum expectation value (VEV) of several local and global observables in quantum field theory. More precisely we consider a quantized, neutral scalar field on a domain in any spatial dimension, with arbitrary boundary conditions and, possibly, in presence of an external classical potential. We analyze, in particular, the VEV of the stress-energy tensor, the corresponding boundary forces and the total energy, thus taking into account both local and global aspects of the Casimir effect. In comparison with the wide existing literature on these subjects, we try to develop a more systematic approach, allowing to treat specific configurations by mere application of a general machinery. The present Part I is mainly devoted to setting up this general framework; at the end of the paper, this is exemplified in a very simple case. In Parts II, III and IV we will consider more engaging applications, indicated in the...

  4. Semiconductor microwave mirror for a measurement of the dynamical Casimir effect

    Science.gov (United States)

    Braggio, C.; Bressi, G.; Carugno, G.; Lombardi, A.; Palmieri, A.; Ruoso, G.; Zanello, D.

    2004-11-01

    According to QED a metallic mirror set in motion in quantum vacuum gives rise to "dissipated" energy in the form of real photons. This phenomenon, called dynamical Casimir effect, has never been observed due to unsolved technical difficulties: in order to obtain an experimentally measurable number of photons from vacuum fluctuations a reflecting surface has in fact to vibrate at very high frequencies (≃109 Hz). As these frequencies are too high to be achieved with a purely mechanical oscillation, our idea is to switch an effective microwave mirror on and off at very short intervals of time changing the reflectivity of a semiconductor layer by shining a pulsed laser beam on its surface. The first step to study the feasibility of this technique is to show that a semiconductor slab when illuminated by a laser behaves indeed as a metal. This article presents the measurements that confirm this demand, obtained by uniformly illuminating large (several square centimeters) surfaces of silicon and GaAs.

  5. Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios

    Science.gov (United States)

    Hobrecht, Hendrik; Hucht, Alfred

    2017-02-01

    We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.

  6. Classification of the sign of the critical Casimir force in two dimensional systems

    CERN Document Server

    Rajabpour, M A

    2016-01-01

    We classify the sign of the critical Casimir force between two finite objects separated by a large distance in the two dimensional systems that can be described by conformal field theory (CFT). In particular, we show that as far as the smallest scaling dimension present in the spectrum of the system is smaller than one, the sign of the force is independent of the shape of the objects and can be determined by the elements of the modular $S$-matrix of the CFT. The provided formula for the sign of the force indicates that the force is always attractive for equal boundary conditions independent of the shape of the objects. However, different boundary conditions can lead to attractive or repulsive forces. Using the derived formula, we prove the known results regarding the Ising model and the free bosons. As new examples, we give detailed results regarding the Q=3-states Potts model and the compactified bosons. In particular, for the latter model we show that Dirichlet boundary condition does not always lead to an ...

  7. Radial phononic thermal conductance in thin membranes in the Casimir limit: Design guidelines for devices

    Directory of Open Access Journals (Sweden)

    T. A. Puurtinen

    2014-12-01

    Full Text Available In a previous publication [I. J. Maasilta, AIP Advances 1, 041704 (2011], we discussed the formalism and some computational results for phononic thermal conduction in the suspended membrane geometry for radial heat flow from a central source, which is a common geometry for some low-temperature detectors, for example. We studied the case where only diffusive surface scattering is present, the so called Casimir limit, which can be experimentally relevant at temperatures below ∼ 10 K in typical materials, and even higher for ultrathin samples. Here, we extend our studies to much thinner membranes, obtaining numerical results for geometries which are more typical in experiments. In addition, we interpret the results in terms of the small signal and differential thermal conductance, so that guidelines for designing devices, such as low-temperature bolometric detectors, are more easily obtained. Scaling with membrane dimensions is shown to differ significantly from the bulk scattering, and, in particular, thinning the membrane is shown to lead to a much stronger reduction in thermal conductance than what one would envision from the simplest bulk formulas.

  8. Radial phononic thermal conductance in thin membranes in the Casimir limit: Design guidelines for devices

    Science.gov (United States)

    Puurtinen, T. A.; Maasilta, I. J.

    2014-12-01

    In a previous publication [I. J. Maasilta, AIP Advances 1, 041704 (2011)], we discussed the formalism and some computational results for phononic thermal conduction in the suspended membrane geometry for radial heat flow from a central source, which is a common geometry for some low-temperature detectors, for example. We studied the case where only diffusive surface scattering is present, the so called Casimir limit, which can be experimentally relevant at temperatures below ˜ 10 K in typical materials, and even higher for ultrathin samples. Here, we extend our studies to much thinner membranes, obtaining numerical results for geometries which are more typical in experiments. In addition, we interpret the results in terms of the small signal and differential thermal conductance, so that guidelines for designing devices, such as low-temperature bolometric detectors, are more easily obtained. Scaling with membrane dimensions is shown to differ significantly from the bulk scattering, and, in particular, thinning the membrane is shown to lead to a much stronger reduction in thermal conductance than what one would envision from the simplest bulk formulas.

  9. Critical Casimir interactions around the consolute point of a binary solvent.

    Science.gov (United States)

    Mohry, T F; Kondrat, S; Maciołek, A; Dietrich, S

    2014-08-14

    Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces (CCFs) acting on the confining surfaces. These forces are attractive for like boundary conditions of the order parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in a binary liquid mixture acting as a solvent close to its critical point of demixing, one thus expects the emergence of phase segregation into equilibrium colloidal liquid and gas phases. We analyze how such phenomena occur asymmetrically in the whole thermodynamic neighborhood of the consolute point of the binary solvent. By applying field-theoretical methods within mean-field approximation and the semi-empirical de Gennes-Fisher functional, we study the CCFs acting between planar parallel walls as well as between two spherical colloids and their dependence on temperature and on the composition of the near-critical binary mixture. We find that for compositions slightly poor in the molecules preferentially adsorbed at the surfaces, the CCFs are significantly stronger than at the critical composition, thus leading to pronounced colloidal segregation. The segregation phase diagram of the colloid solution following from the calculated effective pair potential between the colloids agrees surprisingly well with experiments and simulations.

  10. Constraining axion coupling constants from measuring the Casimir interaction between polarized test bodies

    Science.gov (United States)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2016-08-01

    We propose an experiment for measuring the effective Casimir pressure between two parallel silicon carbide (SiC) plates with aligned nuclear spins. The prospective constraints on an axion-neutron coupling constant for both hadronic and grand unified theory (GUT) axions are calculated using the process of one-axion exchange. For this purpose, a general expression for the additional pressure arising between two polarized plates due to the exchange of one axion between their constituent fermions is derived. We demonstrate that only the polarization component perpendicular to the plates contributes to the pressure. The obtained pressure can be both repulsive and attractive depending on whether the polarizations of both plates are unidirectional or directed in opposite directions. It is shown that although the constraints on an axion-electron coupling obtained in the case of magnetized plates are not competitive, the constraints on an axion-neutron coupling found for plates with polarized nuclear spins are of the same order of magnitude as those obtained previously for the GUT axions alone using the process of two-axion exchange. The proposed experiment allows us also to strengthen the presently known constraints on the axion-neutron coupling constants of GUT axions by using both processes of one- and two-axion exchange.

  11. Observation of reduction in Casimir force without change of dielectric permittivity

    CERN Document Server

    Banishev, A A; Castillo-Garza, R; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

    2012-01-01

    Additional information is provided on the effect of the significant (up to 35%) reduction in the magnitude of the Casimir force between an Au-coated sphere and an indium tin oxide film which was observed after UV treatment of the latter. A striking feature of this effect is that the reduction is not accompanied with a corresponding variation of the dielectric permittivity, as confirmed by direct ellipsometry measurements. The measurement data are compared with computations using the Lifshitz theory. It is shown that the data for the untreated sample are in a very good agreement with theory taking into account the free charge carriers in the indium tin oxide. The data for the UV-treated sample exclude the theoretical results obtained with account of free charge carriers. These data are found to be in a very good agreement with theory disregarding the free charge carriers in an indium tin oxide film. A possible theoretical explanation of our observations as a result of phase transition of indium tin oxide from ...

  12. De vette jaren: de Commissie-Casimir en het Nederlandse wetenschapsbeleid 1957-1970

    Directory of Open Access Journals (Sweden)

    David Baneke

    2012-11-01

    Full Text Available The Years of Abundance: the Casimir Committee and Dutch Science Policy 1957–1970 In October 1958, a committee of six prominent Dutch scientists and industrial managers presented a brief report in which they requested a major increase of the science budget. This report has been described as a turning point in the history of science in the Netherlands, signaling the beginning of a decade of rapid growth of funding for ‘pure’ research. Surprisingly little is known about the backgrounds of this report, however. In this paper, I analyze its origin, its relation to contemporary higher education policy, and its consequences. As it turns out, the report was less revolutionary than is usually assumed: it mostly reinforced developments that had already begun earlier. Furthermore, Sputnik and the Cold War were not as important as is often claimed. This paper also suggests a reinterpretation of the justification of the government spending on academic research after the Second World War. Producing skilled researchers for industry was at least as important as produc- ing new knowledge.

  13. Finite size corrections to scaling of the formation probabilities and the Casimir effect in the conformal field theories

    Science.gov (United States)

    Rajabpour, M. A.

    2016-12-01

    We calculate formation probabilities of the ground state of the finite size quantum critical chains using conformal field theory (CFT) techniques. In particular, we calculate the formation probability of one interval in the finite open chain and also formation probability of two disjoint intervals in a finite periodic system. The presented formulas can be also interpreted as the Casimir energy of needles in particular geometries. We numerically check the validity of the exact CFT results in the case of the transverse field Ising chain.

  14. Local and Nonlocal Advected Invariants and Helicities in Magnetohydrodynamics and Gas Dynamics II: Noether's Theorems and Casimirs

    CERN Document Server

    Webb, G M; McKenzie, J F; Hu, Q; Zank, G P

    2013-01-01

    Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabelling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabelling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler Poincar\\'e variational approach is also used to derive conservation laws associated with fluid relabelling symmetries using Noether's second theorem.

  15. Space analogue studies in Antarctica

    Science.gov (United States)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  16. Condensed matter analogues of cosmology

    Science.gov (United States)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  17. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  18. Sulfur analogues of psychotomimetic agents. Monothio analogues of mescaline and isomescaline.

    Science.gov (United States)

    Jacob, P; Shulgin, A T

    1981-11-01

    Two monothio analogues of mescaline and three monothio analogues of 2,3,4-trimethoxyphenethylamine (isomescaline) have been synthesized and characterized. Only the two mescaline analogues (3-and 4-thiomescaline) were found to be psychotomimetics in man, being 6 and 12 times more potent than mescaline, respectively. All five compounds can serve as substrates for bovine plasma monoamine oxidase in vitro, but no positive correlation is apparent between the extent of enzymatic degradation and human psychotomimetic potency.

  19. Heterocyclic chalcone analogues as potential anticancer agents.

    Science.gov (United States)

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties.

  20. Total Synthesis of the Analogue of Icogenin

    Institute of Scientific and Technical Information of China (English)

    Shu Jie HOU; Peng XU; Liang ZHOU; De Quan YU; Ping Sheng LEI; Chuan Chun ZOU

    2006-01-01

    One of the analogues of icogenin, a natural furostanol saponin showing strong cytotoxic effect on cancer cell, was first synthesized via convergent strategy by using diosgenin and available monosaccharides as starting materials,

  1. Second-Generation Fluorescent Quadracyclic Adenine Analogues

    DEFF Research Database (Denmark)

    Dumat, Blaise; Bood, Mattias; Wranne, Moa S.;

    2015-01-01

    Fluorescent base analogues comprise a group of increasingly important molecules for the investigation of nucleic acid structure, dynamics, and interactions with other molecules. Herein, we report on the quantum chemical calculation aided design, synthesis, and characterization of four new putativ...

  2. Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles

    Directory of Open Access Journals (Sweden)

    Michael A. Persinger

    2015-09-01

    Full Text Available The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that ½ of a single electron orbit is real (particle and the other ½ is virtual (wave. The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+ and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. Theoretical and experimental results indicate that components of thixotropy, such as specific domains of intercalated water molecules, could display excess correlations over very large distances. Because the energies of the universal quantity and water converge it may be a special conduit for discrete transformations from virtual to real states.

  3. The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

    Science.gov (United States)

    Dappiaggi, Claudio; Nosari, Gabriele; Pinamonti, Nicola

    2016-06-01

    We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.

  4. The structure activity relationship of discodermolide analogues.

    Science.gov (United States)

    Shaw, Simon J

    2008-03-01

    The marine polyketide discodermolide is a member of a class of natural products that stabilize microtubules. Many analogues have been synthesized suggesting that few changes can be made to the internal carbon backbone. Both ends of the molecule, however, can be modified. The majority of analogues have been generated via modification of the lactone region. This suggests that significant simplifications can be made in this region provided that the lactone moiety is maintained.

  5. Revivals and Casimir energy for a free Maxwell field (spin-1 singleton) on R x S^d for odd d

    CERN Document Server

    Dowker, J S

    2016-01-01

    Earlier work on quantum revivals is extended to Maxwell fields (aka spin-one singletons). An evaluation of the Casimir energy on the generalised Einstein universe is also done to illustrate the utility of the Barnes zeta-function and generalised Bernoulli polynomials. Contact is made with some recent calculations in AdS/CFT.

  6. Casimir energy of the Nambu-Goto string with Gauss-Bonnet term and point-like masses at the ends

    CERN Document Server

    Hadasz, L

    1999-01-01

    We calculate (using zeta function regularization) the Casimir energy of the rotating Nambu-Goto string with the Gauss-Bonnet term in the action and point-like masses at the ends. The resulting value turns out to be negative for all values of the parameters of the model.

  7. Material dependence of Casimir interaction between a sphere and a plate: First analytic correction beyond proximity force approximation

    CERN Document Server

    Teo, L P

    2013-01-01

    We derive analytically the asymptotic behavior of the Casimir interaction between a sphere and a plate when the distance between them, $d$, is much smaller than the radius of the sphere, $R$. The leading order and next-to-leading order terms are derived from the exact formula for the Casimir interaction energy. They are found to depend nontrivially on the dielectric functions of the objects. As expected, the leading order term coincides with that derived using the proximity force approximation. The result on the next-to-leading order term complements that found by Bimonte, Emig and Kardar [Appl. Phys. Lett. \\textbf{100}, 074110 (2012)] using derivative expansion. Numerical results are presented when the dielectric functions are given by the plasma model or the Drude model, with the plasma frequency (for plasma and Drude models) and relaxation frequency (for Drude model) given respectively by 9eV and 0.035eV, the conventional values used for gold metal. It is found that if plasma model is used instead of Drude...

  8. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line.

  9. Existence and numerical simulation of periodic traveling wave solutions to the Casimir equation for the Ito system

    Science.gov (United States)

    Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.

    2015-10-01

    We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.

  10. Between Analogue and Digital Diagrams

    Directory of Open Access Journals (Sweden)

    Zoltan Bun

    2012-10-01

    Full Text Available This essay is about the interstitial. About how the diagram, as a method of design, has lead fromthe analogue deconstruction of the eighties to the digital processes of the turn of the millennium.Specifically, the main topic of the text is the interpretation and the critique of folding (as a diagramin the beginning of the nineties. It is necessary then to unfold its relationship with immediatelypreceding and following architectural trends, that is to say we have to look both backwards andforwards by about a decade. The question is the context of folding, the exchange of the analogueworld for the digital. To understand the process it is easier to investigate from the fields of artand culture, rather than from the intentionally perplicated1 thoughts of Gilles Deleuze. Both fieldsare relevant here because they can similarly be used as the yardstick against which the era itselfit measured. The cultural scene of the eighties and nineties, including performing arts, movies,literature and philosophy, is a wide milieu of architecture. Architecture responds parallel to itsera; it reacts to it, and changes with it and within it. Architecture is a medium, it has always beena medium, yet the relations are transformed. That’s not to say that technical progress, for exampleusing CAD-software and CNC-s, has led to the digital thinking of certain movements ofarchitecture, (it is at most an indirect tool. But the ‘up-to-dateness’ of the discipline, however,a kind of non-servile reading of an ‘applied culture’ or ‘used philosophy’2 could be the key.(We might recall here, parenthetically, the fortunes of the artistic in contemporary mass society.The proliferation of museums, the magnification of the figure of the artist, the existence of amassive consumption of printed and televised artistic images, the widespread appetite for informationabout the arts, all reflect, of course, an increasingly leisured society, but also relateprecisely to the fact

  11. Martian Analogues Emissivity Spectra From the Berlin Emissivity Database (BED)

    Science.gov (United States)

    Maturilli, A.; Helbert, J.; Moroz, L.

    2006-12-01

    Remote sensing infrared spectroscopy is the principal field of investigation for planetary surfaces composition. Past, present and future missions to bodies in the solar system include in their payload instruments measuring the emerging radiation in the infrared range. For the interpretation of the measured data an emissivity spectral library of planetary analog materials is needed. The Berlin Emissivity Database (BED) currently contains emissivity spectra of plagioclase and potassium feldspars, low Ca and high Ca pyroxenes, olivine, elemental sulphur, and Martian analogue minerals, measured in the wavelength range from 7 to 22 microns as a function of particle size. For each sample we measured the spectra of four particle size separates ranging from 0 to 250 microns. The device we used is built at DLR (Berlin) and is coupled to a Fourier transform infrared spectrometer (Bruker IFS 88), purged with dry air and equipped with a cooled detector (MCT). All spectra were acquired with a spectral resolution of 4 cm-1. We present here the results of our analysis on well knew and characterized Martian analogue minerals: JSC Mars-1, Salten Skov, and Palagonite from Mauna Kea, Hawaii. We are currently working to upgrade our emissivity facility. A new spectrometer (Bruker VERTEX 80v) and new detectors will allow us to measure the emissivity of samples in the wavelength range from 1 to 50 microns, even in a vacuum environment.

  12. Intertial Frame Dragging in an Acoustic Analogue spacetime

    CERN Document Server

    Chakraborty, Chandrachur; Majumdar, Parthasarathi

    2015-01-01

    We report an incipient exploration of the Lense-Thirring precession effect in a rotating {\\it acoustic analogue black hole} spacetime. An exact formula is deduced for the precession frequency of a gyroscope due to inertial frame dragging, close to the ergosphere of a `Draining Bathtub' acoustic spacetime which has been studied extensively for acoustic Hawking radiation of phonons and also for `superresonance'. The formula is verified by embedding the two dimensional spatial (acoustic) geometry into a three dimensional one where the similarity with standard Lense-Thirring precession results within a strong gravity framework is well known. Prospects of experimental detection of this new `fixed-metric' effect in acoustic geometries, are briefly discussed.

  13. Geomagnetic properties of Proxima Centauri b analogues

    CERN Document Server

    Zuluaga, Jorge I

    2016-01-01

    The recent discovery of a planet around the closest star, Proxima Centauri, could represent a quantum leap on the testability of models in exoplanet sciences. Unlike any other discovered exoplanet, models of planetary processes in Proxima b could be contrasted against near future telescopic observations and far future in-situ measurements. In this paper we study the geomagnetic properties of Proxima b analogues, namely, solid planets with masses close but larger than Earth's mass, periods of rotation of several days and habitable surface conditions. Assuming different planetary masses, bulk compositions and periods of rotations, we calculate for each planetary analogue its radius, heat flux, time of inner core formation, dynamo lifetime and minimum dipole magnetic moment. We find that most ($\\gtrsim$70\\%) Proxima b analogues develop intrinsic dynamos that last at least 3 Gyr, although only half of them are older than the present age of the host star ($4-6$ Gyr). Relying in our planetary evolution models, we p...

  14. Synthesis and anticancer evaluation of spermatinamine analogues

    KAUST Repository

    Moosa, Basem

    2016-02-04

    Spermatinamine was isolated from an Australian marine sponge, Pseudoceratina sp. as an inhibitor of isoprenylcystiene carboxyl methyltransferase (Icmt), an attractive and novel anticancer target. Herein, we report the synthesis of spermatinamine analogues and their cytotoxic evaluation against three human cancer cell lines i.e. cervix adenocarcinoma (HeLa), breast adenocarcinoma (MCF-7), and prostate carcinoma (DU145). Analogues 12, 14 and 15 were found to be the most potent against one or more cell lines with the IC50 values in the range of 5 - 10 μM. The obtained results suggested that longer polyamine linker along with aromatic oxime substitution provided the most potent analogue compounds against cancer cell lines.

  15. On the Casimir effect. Energy density of the free Klein-Gordon-field in front of static classical backgrounds; Zum Casimir-Effekt. Energiedichte des freien Klein-Gordon-Feldes vor statischen klassischen Hintergruenden

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.J.

    2008-01-15

    We study the Casimir energy density of the Klein-Gordon-field in the case of two static geometries. We model the effect by coupling the free quantum field to a static classical scalar field. We work out the dependence on the coupling {lambda}, including the limit {lambda}={infinity} (Dirichlet boundary condition). The chosen geometries are described by a {delta}-funktion ({sigma}(x)={delta}(x{sub 3})) and a step function of finite height ({sigma}(x)= (1)/(2{epsilon})1{sub [{epsilon},{epsilon}]}(x{sub 3})), respectively. In the area outside the support of the background the density energy converges; calculations for the distorted area lead to divergent surface terms. (orig.)

  16. Benzoylphenylurea sulfur analogues with potent antitumor activity.

    Science.gov (United States)

    Hallur, Gurulingappa; Jimeno, Antonio; Dalrymple, Susan; Zhu, Tao; Jung, M Katherine; Hidalgo, Manuel; Isaacs, John T; Sukumar, Saraswati; Hamel, Ernest; Khan, Saeed R

    2006-04-06

    A novel series of BPU analogues were synthesized and evaluated for antitumor activity. In particular, BPU sulfur analogues 6n and 7d were shown to possess up to 10-fold increased potency, when compared to 1 (NSC-639829), against cancer cell lines. 6n was more effective than 1 in causing apoptosis of MCF-7 cells. When compared to other drugs with a similar mechanism of action, 6n retained significant ability to inhibit tubulin assembly, with an IC(50) of 2.1 microM.

  17. Analogue alternative the electronic analogue computer in Britain and the USA, 1930-1975

    CERN Document Server

    Small, James S

    2013-01-01

    We are in the midst of a digital revolution - until recently, the majority of appliances used in everyday life have been developed with analogue technology. Now, either at home or out and about, we are surrounded by digital technology such as digital 'film', audio systems, computers and telephones. From the late 1940s until the 1970s, analogue technology was a genuine alternative to digital, and the two competing technologies ran parallel with each other. During this period, a community of engineers, scientists, academics and businessmen continued to develop and promote the analogue computer.

  18. Squeezed magnons in an optical lattice: Application to simulation of the dynamical Casimir effect at finite temperature

    Science.gov (United States)

    Zhao, Xing-Dong; Zhao, Xu; Jing, Hui; Zhou, Lu; Zhang, Weiping

    2013-05-01

    We propose to realize controllable squeezing states of ferromagnetic magnons with a spinor Bose-Einstein condensate confined in an optical lattice. We use an external laser field to induce optical dipole-dipole interaction, which leads to magnon excitations of the system. By focusing on the role of the long-range magnetic and the optical dipole-dipole interactions, we show that the existence and properties of the produced squeezed magnons can be well controlled by tuning the transverse trapping widths of the condensates. We also show that the magnon excitations in this system have a close analogy with the dynamical Casimir effect at finite temperature predicted by Plunien [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.84.1882 84, 1882 (2000)] and Jing [Phys. Lett. APYLAAG0375-960110.1016/S0375-9601(00)00165-1 268, 174 (2000)].

  19. Sign of the Casimir-Polder interaction between atoms and oil-water interfaces: Subtle dependence on dielectric properties

    CERN Document Server

    Boström, Mathias; Brevik, Iver; Parsons, Drew F; Sernelius, Bo E

    2012-01-01

    We demonstrate that Casimir-Polder energies between noble gas atoms (dissolved in water) and oil-water interfaces are highly surface specific. Both repulsion (e.g. hexane) and attraction (e.g. glycerol and cyclodecane) is found with different oils. For several intermediate oils (e.g. hexadecane, decane, and cyclohexane) both attraction and repulsion can be found in the same system. Near these oil-water interfaces the interaction is repulsive in the non-retarded limit and turns attractive at larger distances as retardation becomes important. These highly surface specific interactions may have a role to play in biological systems where the surface may be more or less accessible to dissolved atoms.

  20. Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy–Casimir method

    Directory of Open Access Journals (Sweden)

    Yulong Yan

    2016-03-01

    Full Text Available The stability of partly liquid filled spacecraft with flexible attachment was investigated in this paper. Liquid sloshing dynamics was simplified as the spring–mass model, and flexible attachment was modeled as the linear shearing beam. The dynamic equations and Hamiltonian of the coupled spacecraft system were given by analyzing the rigid body, liquid fuel, and flexible appendage. Nonlinear stability conditions of the coupled spacecraft system were derived by computing the variation of Casimir function which was added to the Hamiltonian. The stable region of the parameter space was given and validated by numerical computation. Related results suggest that the change of inertia matrix, the length of flexible attachment, spacecraft spinning rate, and filled ratio of liquid fuel tank have strong influence on the stability of the spacecraft system.

  1. Stability analysis of liquid filled spacecraft system with flexible attachment by using the energy-Casimir method

    Institute of Scientific and Technical Information of China (English)

    Yulong Yan; Baozeng Yue∗

    2016-01-01

    The stability of partly liquid filled spacecraft with flexible attachment was investigated in this paper. Liquid sloshing dynamics was simplified as the spring–mass model, and flexible attachment was modeled as the linear shearing beam. The dynamic equations and Hamiltonian of the coupled spacecraft system were given by analyzing the rigid body, liquid fuel, and flexible appendage. Nonlinear stability conditions of the coupled spacecraft system were derived by computing the variation of Casimir function which was added to the Hamiltonian. The stable region of the parameter space was given and validated by numerical computation. Related results suggest that the change of inertia matrix, the length of flexible attachment, spacecraft spinning rate, and filled ratio of liquid fuel tank have strong influence on the stability of the spacecraft system.

  2. Rotating Casimir systems: magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    CERN Document Server

    Chernodub, M N

    2012-01-01

    Recently, we have demonstrated that for a certain class of Casimir-type systems ("devices") the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about certain axis rather than remains static. This rotational vacuum effect may lead to emergence of permanently rotating objects - philosophically similar to "time crystals" proposed recently by Shapere and Wilczek in classical and quantum mechanical systems - provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular f...

  3. Synthesis and antimicrobial activity of squalamine analogue.

    Science.gov (United States)

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine.

  4. Dumb holes: analogues for black holes.

    Science.gov (United States)

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  5. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Science.gov (United States)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  6. Prussian Blue Analogues of Reduced Dimensionality

    NARCIS (Netherlands)

    Gengler, Regis Y. N.; Toma, Luminita M.; Pardo, Emilio; Lloret, Francesc; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Gournis, Dimitrios; Rudolf, Petra

    2012-01-01

    Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While mol

  7. [Dmt(1)]DALDA analogues modified with tyrosine analogues at position 1.

    Science.gov (United States)

    Cai, Yunxin; Lu, Dandan; Chen, Zhen; Ding, Yi; Chung, Nga N; Li, Tingyou; Schiller, Peter W

    2016-08-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective μ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar μ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.

  8. Dynamic Pull-In Investigation of a Clamped-Clamped Nanoelectromechanical Beam under Ramp-Input Voltage and the Casimir Force

    Directory of Open Access Journals (Sweden)

    Amir R. Askari

    2014-01-01

    Full Text Available The influence of the Casimir excitation on dynamic pull-in instability of a nanoelectromechanical beam under ramp-input voltage is studied. The ramp-input actuation has applications in frequency sweeping of RF-N/MEMS. The presented model is nonlinear due to the inherent nonlinearity of electrostatics and the Casimir excitations as well as the geometric nonlinearity of midplane stretching. A Galerkin based reduced order modeling is utilized. It is found that the calculated dynamic pull-in ramp input voltage leads to dynamic pull-in step input voltage by increasing the slope of voltage-time diagram. This fact is utilized to verify the results of present study.

  9. A q-analogue of the four functions theorem

    OpenAIRE

    Christofides, Demetres

    2009-01-01

    In this article we give a proof of a q-analogue of the celebrated four functions theorem. This analogue was conjectured by Bjorner and includes as special cases both the four functions theorem and also Bjorner's q-analogue of the FKG inequality.

  10. Tryptophan analogues. 1. Synthesis and antihypertensive activity of positional isomers.

    Science.gov (United States)

    Safdy, M E; Kurchacova, E; Schut, R N; Vidrio, H; Hong, E

    1982-06-01

    A series of tryptophan analogues having the carboxyl function at the beta-position was synthesized and tested for antihypertensive activity. The 5-methoxy analogue 46 exhibited antihypertensive activity in the rat via the oral route and was much more potent than the normal tryptophan analogue. The methyl ester was found to be a critical structural feature for activity.

  11. Analogue VLSI for probabilistic networks and spike-time computation.

    Science.gov (United States)

    Murray, A

    2001-02-01

    The history and some of the methods of analogue neural VLSI are described. The strengths of analogue techniques are described, along with residual problems to be solved. The nature of hardware-friendly and hardware-appropriate algorithms is reviewed and suggestions are offered as to where analogue neural VLSI's future lies.

  12. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    Science.gov (United States)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  13. Hawking Radiation in Dispersive Media

    CERN Document Server

    Robertson, Scott James

    2011-01-01

    Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking's prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking em...

  14. Optimization of propafenone analogues as antimalarial leads.

    Science.gov (United States)

    Lowes, David J; Guiguemde, W Armand; Connelly, Michele C; Zhu, Fangyi; Sigal, Martina S; Clark, Julie A; Lemoff, Andrew S; Derisi, Joseph L; Wilson, Emily B; Guy, R Kiplin

    2011-11-10

    Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug's potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogues was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multidrug resistant K1 strain of P. falciparum compared to the 3D7 strain.

  15. Spectroscopic study of solar twins and analogues

    CERN Document Server

    Datson, Juliet; Portinari, Laura

    2014-01-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims. This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48,000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods. The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar ...

  16. Holographic Fluids with Vorticity and Analogue Gravity

    CERN Document Server

    Leigh, Robert G; Petropoulos, P Marios

    2012-01-01

    We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

  17. Confirmation via Analogue Simulation: A Bayesian Analysis

    CERN Document Server

    Dardashti, Radin; Thebault, Karim P Y; Winsberg, Eric

    2016-01-01

    Analogue simulation is a novel mode of scientific inference found increasingly within modern physics, and yet all but neglected in the philosophical literature. Experiments conducted upon a table-top 'source system' are taken to provide insight into features of an inaccessible 'target system', based upon a syntactic isomorphism between the relevant modelling frameworks. An important example is the use of acoustic 'dumb hole' systems to simulate gravitational black holes. In a recent paper it was argued that there exists circumstances in which confirmation via analogue simulation can obtain; in particular when the robustness of the isomorphism is established via universality arguments. The current paper supports these claims via an analysis in terms of Bayesian confirmation theory.

  18. Polyamine analogues targeting epigenetic gene regulation.

    Science.gov (United States)

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  19. Benchmarking analogue models of brittle thrust wedges

    Science.gov (United States)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  20. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  1. Synthesis of constrained analogues of tryptophan

    Directory of Open Access Journals (Sweden)

    Elisabetta Rossi

    2015-10-01

    Full Text Available A Lewis acid-catalysed diastereoselective [4 + 2] cycloaddition of vinylindoles and methyl 2-acetamidoacrylate, leading to methyl 3-acetamido-1,2,3,4-tetrahydrocarbazole-3-carboxylate derivatives, is described. Treatment of the obtained cycloadducts under hydrolytic conditions results in the preparation of a small library of compounds bearing the free amino acid function at C-3 and pertaining to the class of constrained tryptophan analogues.

  2. The Brookhaven electron analogue, 1953--1957

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, M.

    1991-12-18

    The following topics are discussed on the Brookhaven electron analogue: L.J. Haworth and E.L. VanHorn letters; Original G.K. Green outline for report; General description; Parameter list; Mechanical Assembly; Alignment; Degaussing; Vacuum System; Injection System; The pulsed inflector; RF System; Ferrite Cavity; Pick-up electrodes and preamplifiers; Radio Frequency power amplifier; Lens supply; Controls and Power; and RF acceleration summary.

  3. Synthesis of a Cyclic Analogue of Galardin

    Institute of Scientific and Technical Information of China (English)

    马大为; 吴问根; 钱静; 郎深慧; 叶其壮

    2001-01-01

    A cyclic analogue 4 of galardin,a known MMP inhibitor,is designed to improve its selectivity.The synthesis of 4starts from dimethyl(S)-malate using diaselective alkylation and subsequent cyclization and amide formation as key steps.The compound 4 showed MMP inhibitory activity on all MMPs tested with IC50 ranging from 20.1 μM to 104 μM.

  4. Thymidine analogues for tracking DNA synthesis.

    Science.gov (United States)

    Cavanagh, Brenton L; Walker, Tom; Norazit, Anwar; Meedeniya, Adrian C B

    2011-09-15

    Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  5. Thymidine Analogues for Tracking DNA Synthesis

    Directory of Open Access Journals (Sweden)

    Brenton L. Cavanagh

    2011-09-01

    Full Text Available Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in “tagging DNA synthesis” is the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU. The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using ‘Huisgen’s reaction’ (1,3-dipolar cycloaddition or ‘click chemistry’. This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other “unnatural bases”. These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  6. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.

    Science.gov (United States)

    Zhou, Yanguang; Hu, Ming

    2016-10-12

    Thermoelectrics offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Nanoengineering existing low-dimensional thermoelectric materials pertaining to realizing fundamentally low thermal conductivity has emerged as an efficient route to achieve high energy conversion performance for advanced thermoelectrics. In this paper, by performing nonequilibrium and Green-Kubo equilibrium molecular dynamics simulations we report that the thermal conductivity of Si nanowires (NWs) in polycrystalline form can reach a record low value substantially below the Casimir limit, a theory of diffusive boundary limit that regards the direction-averaged mean free path is limited by the characteristic size of the nanostructures. The astonishingly low thermal conductivity of polycrystalline Si NW is 269 and 77 times lower with respect to that of bulk Si and pristine Si NW, respectively, and is even only about one-third of the value of the purely amorphous Si NW at room temperature. By examining the mode level phonon behaviors including phonon group velocities, lifetime, and so forth, we identify the mechanism of breaking the Casimir limit as the strong localization of the middle and high frequency phonon modes, which leads to a prominent decrease of effective mean free path of the heat carriers including both propagons and diffusons. The contribution of the propagons to the overall thermal transport is further quantitatively characterized and is found to be dramatically suppressed in polycrystalline Si NW form as compared with bulk Si, perfect Si NW, and pure amorphous Si NW. Consequently, the diffusons, which transport the heat through overlap with other vibrations, carry the majority of the heat in polycrystalline Si NWs. We also proposed approach of introducing "disorder" in the polycrystalline Si NWs that could eradicate the contribution of propagons to achieve an even lower thermal conductivity than that ever thought possible

  7. Analogue to Digital and Digital to Analogue Converters (ADCs and DACs): A Review Update

    CERN Document Server

    Pickering, J

    2015-01-01

    This is a review paper updated from that presented for CAS 2004. Essentially, since then, commercial components have continued to extend their performance boundaries but the basic building blocks and the techniques for choosing the best device and implementing it in a design have not changed. Analogue to digital and digital to analogue converters are crucial components in the continued drive to replace analogue circuitry with more controllable and less costly digital processing. This paper discusses the technologies available to perform in the likely measurement and control applications that arise within accelerators. It covers much of the terminology and 'specmanship' together with an application-oriented analysis of the realisable performance of the various types. Finally, some hints and warnings on system integration problems are given.

  8. Modelling the warm interglacials: analogues of MIS1

    Science.gov (United States)

    Herold, N.; Yin, Q. Z.; Karami, M. P.; Berger, A.

    2012-04-01

    Determining interglacial diversity, primarily as a function of duration, intensity and unique climate responses to Earth's orbital variations has become a focal point for researchers trying to better understand our current interglacial. Numerous interglacials have been espoused as Marine Isotopic Stage (MIS) 1 analogues or windows into the future of Holocene climate based on their astronomical characteristics, seasonal insolation patterns or their similarity with predicted anthropogenic warming. However, to date there has been little quantitative study of the climate of these interglacials within a physically robust framework. Here we examine the climate response to peak interglacial forcing during MIS1, 5, 9, 11 and 19 using the Community Climate System Model 3. We determine which interglacial provides the closest analogue to peak MIS1 conditions as well as the mechanisms which dominate the surface climate responses of these interglacials. Considering the differences in astronomical parameters and greenhouse gases we discount MIS5 and 9 as analogues to peak MIS1 conditions due to their significant warmth and stronger precipitation and vegetation responses. Conversely, based on seasonal and hemispheric averages of surface temperature, precipitation and sea-ice cover, MIS11 and 19 are most similar to MIS1, with MIS11 actually exhibiting a higher affinity particularly during boreal summer. This is attributed to a greater similarity in the seasonal and latitudinal distribution of insolation over middle latitude Eurasia and North America, which are the regions most sensitive to insolation change given the absence of ice-sheet dynamics in our model. Global ocean overturning circulation during MIS11 is also closer to MIS1 than circulation during MIS19 is, due predominantly to differences in Weddell Sea bottom water formation. Thus, under the assumption of present-day ice-sheets MIS11 appears to be the better climatic analogue to peak MIS1 conditions. In addition to the

  9. A case of laryngeal radionecrosis treated with a prostacyclin (PGI{sub 2}) analogue

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Naoko; Umezaki, Toshiro; Adachi, Kazuo; Koike, Kouji; Hirakawa, Naoya; Komiyama, Sohtaro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    2002-11-01

    Laryngeal necrosis occurs rarely after radiation therapy for laryngeal cancer. We performed radiation therapy with a total dose of 68.2 Gy on a 61-year-old man, whose larynx revealed partial necrosis two months later. Thyroid cartilage was exposed from the inside of the larynx and a piece of cartilage was also destroyed. We performed laryngomicrosurgery to remove the necrotic tissue and to confirm that there was no residual cancer. We administered clarithromycin and beraprost sodium for 102 days. Beraprost sodium is the first orally active prostacyclin analogue, and it has various biological activities including a vasodilation effect and a cytoprotective effect on endothelial cells. As a result, the inside of the larynx was covered by a healthy mucosa six months after radiation therapy. We cured the laryngeal necrosis without using steroids and thus were able to successfully preserve the function of the larynx. (author)

  10. Radiation Protection

    Science.gov (United States)

    ... EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View and download EPA radiation ...

  11. Experimental observations of temperature effects in the near-field regime of the Casimir-Polder interaction

    CERN Document Server

    de Silans, Thierry Passerat; Maurin, Isabelle; Gorza, Marie Pascale; Segundo, Pedro Chaves de Souza; Ducloy, Martial; Bloch, Daniel

    2014-01-01

    We investigate the temperature dependence of the Casimir-Polder interaction in the electrostatic limit. This unusual phenomenon relies on the coupling between a virtual atomic transition and a thermal excitation of surface polariton modes. We first focus on the scenario where a Cs(8P3/2) atom is next to a CaF2 or a BaF2 surface. Our theoretical predictions show a strong temperature dependence of the van der Waals coefficient at experimentally accessible conditions. A series of spectroscopic measurements performed in a specially designed Cs vapour cell containing a CaF2 tube is presented. Our results illustrate the sensitivity of atom surface-interaction experiments to the quality and chemical stability of the surface material and emphasize the need of using more durable materials, such as sapphire. We finally discuss selective reflection experiments on Cs(7D3/2) in an all-sapphire cell that clearly demonstrate a temperature dependent van der Waals coefficient.

  12. Vacuum Fluctuation Force on a Rigid Casimir Cavity in de Sitter and Schwarzschild-De Sitter Space-Time

    Science.gov (United States)

    Chen, Xiang

    2012-11-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.

  13. Vacuum fluctuation force on a rigid Casimir cavity in de Sitter and Schwarzschild-de Sitter spacetime

    CERN Document Server

    Chen, Xiang

    2012-01-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases, de Sitter spacetime, de Sitter spacetime with weak gravitational field and Schwarzschild-de Sitter spacetime. In de Sitter spacetime the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter spacetime, we find the net force now can be splited into two parts, one is the gravitational force due to the induced effective mass between the two plates, the other one is generated by the metric structure of de Sitter spacetime. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform the similar analysis in Schwarzschild-de Sitter spacetime, results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law...

  14. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    Science.gov (United States)

    Chernodub, M. N.

    2013-01-01

    Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.

  15. The Greenland analogue project. Yearly report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.; Brinkerhoff, D.; Johnson, J. [University of Montana, Missoula (United States); Ruskeeniemi, T.; Engstroem, J.; Kukkonen, I. [Geological Survey of Finland (Finland)] [and others

    2012-04-15

    A four-year field and modelling study of the Greenland ice sheet and subsurface conditions, Greenland Analogue Project (GAP), has been initiated collaboratively by SKB, Posiva and NWMO to advance the understanding of processes associated with glaciation and their impact on the long-term performance of a deep geological repository. The study site encompasses a land terminus portion of the Greenland ice sheet, east of Kangerlussuaq, and is in many ways considered to be an appropriate analogue of the conditions that are expected to prevail in much of Canada and Fennoscandia during future glacial cycles. The project begins in 2009 and is scheduled for completion in 2012. Our current understanding of the hydrological, hydrogeological and hydrogeochemical processes associated with cold climate conditions and glacial cycles, and their impact on the long-term performance of deep geological repositories for spent nuclear fuel, will be significantly improved by studying a modern analogue. The GAP will conduct the first in situ investigations of some of the parameters and processes needed to achieve a better understanding of how an ice sheet may impact a deep repository, and will provide measurements, observations and data that may significantly improve our safety assessments and risk analyses of glaciation scenarios. This report was produced by the GAP team members and presents an overview of the activities within the GAP during the interval January 1 to December 31, 2010, as well as research results obtained during this time frame. Research for the GAP is ongoing, and additional results related to the data presented here may become available in the future and will be presented in subsequent annual reports. (orig.)

  16. Technical Considerations in Magnetic Analogue Models

    CERN Document Server

    Adams, Patrick W M

    2016-01-01

    The analogy between vorticity and magnetic fields has been a subject of interest to researchers for a considerable period of time, mainly because of the structural similarities between the systems of equations that govern the evolution of the two fields. We recently presented the analysis of magnetic fields and hydrodynamics vorticity fields and argued for a formal theory of analogue magnetism. This article provides in depth technical details of the relevant considerations for the simulation procedures and extends the analyses to a range of fluids.

  17. Analogues of Euler and Poisson Summation Formulae

    Indian Academy of Sciences (India)

    Vivek V Rane

    2003-08-01

    Euler–Maclaurin and Poisson analogues of the summations $\\sum_{a < n ≤ b}(n)f(n), \\sum_{a < n ≤ b}d(n) f(n), \\sum_{a < n ≤ b}d(n)(n) f(n)$ have been obtained in a unified manner, where (()) is a periodic complex sequence; () is the divisor function and () is a sufficiently smooth function on [, ]. We also state a generalised Abel's summation formula, generalised Euler's summation formula and Euler's summation formula in several variables.

  18. Analogue cosmology in a hadronic fluid

    Directory of Open Access Journals (Sweden)

    Bilić Neven

    2014-01-01

    Full Text Available Analog gravity models of general relativity seem promising routes to providing laboratory tests of the foundation of quantum field theory in curved space-time. In contrast to general relativity, where geometry of a spacetime is determined by the Einstein equations, in analog models geometry and evolution of analog spacetime are determined by the equations of fluid mechanics. In this paper we study the analogue gravity model based on massless pions propagating in a expanding hadronic fluid. The analog expanding spacetime takes the form of an FRW universe, with the apparent and trapping horizons defined in the standard way.

  19. Satellite television analogue and digital reception techniques

    CERN Document Server

    Benoit, Herve

    1999-01-01

    Satellite television is part of the lives of millions of television viewers worldwide and its influence is set to increase significantly with the launch of digital satellite television services.This comprehensive reference book, written by the author of the highly successful 'Digital Television', provides a technical overview of both analogue and digital satellite TV. Written concisely and thoroughly, it covers all aspects of satellite TV necessary to understand its operation and installation. It also covers the evolution of satellite television, and contains a detailed glossary of tec

  20. U.S. Nuclear Regulatory Commission natural analogue research program

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A.; Ott, W.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.