WorldWideScience

Sample records for analog temperature sensing

  1. Multichannel analog temperature sensing system

    International Nuclear Information System (INIS)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer

  2. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  3. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  4. Remote Sensing and Quantization of Analog Sensors

    Science.gov (United States)

    Strauss, Karl F.

    2011-01-01

    This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.

  5. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  6. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  7. Temperature sensing by primary roots of maize

    Science.gov (United States)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  8. Ratiometric fluorescent nanoparticles for sensing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-Shang, E-mail: hillphs@yahoo.com.cn; Huang, Shi-Hua [Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology (China); Wolfbeis, Otto S. [University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors (Germany)

    2010-10-15

    A ratiometric type of fluorescent nanoparticle was prepared via an encapsulation-reprecipitation method. By introducing an alkoxysilanized dye as a reference, the nanoparticles (NPs) give both a green and a red fluorescence under one single-wavelength excitation. The resulted ratiometric fluorescence is found to be highly temperature-dependent in the physiological range (25-45 {sup o}C), with an intensity temperature sensitivity of -4.0%/{sup o}C. Given the small size (20-30 nm in diameter) and biocompatible nature (silica out layer), such kind of NPs were very promising as temperature nanosensors for cellular sensing and imaging.

  9. C59N Peapods Sensing the Temperature

    Directory of Open Access Journals (Sweden)

    Toshiro Kaneko

    2013-01-01

    Full Text Available We report the novel photoresponse of nanodevices made from azafullerene (C59N-encapsulated single-walled carbon nanotubes (C59N@SWNTs, so called peapods. The photoconducting properties of a C59N@SWNT are measured over a temperature range of 10 to 300 K under a field-effect transistor configuration. It is found that the photosensitivity of C59N@SWNTs depends very sensitively on the temperature, making them an attractive candidate as a component of nanothermometers covering a wide temperature range. Our results indicate that it is possible to read the temperature by monitoring the optoelectronics signal of C59N@SWNTs. In particular, sensing low temperatures would become more convenient and easy by giving a simple light pulse.

  10. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  11. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    Science.gov (United States)

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  12. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  13. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  14. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  15. Study of CMOS-SOI Integrated Temperature Sensing Circuits for On-Chip Temperature Monitoring.

    Science.gov (United States)

    Malits, Maria; Brouk, Igor; Nemirovsky, Yael

    2018-05-19

    This paper investigates the concepts, performance and limitations of temperature sensing circuits realized in complementary metal-oxide-semiconductor (CMOS) silicon on insulator (SOI) technology. It is shown that the MOSFET threshold voltage ( V t ) can be used to accurately measure the chip local temperature by using a V t extractor circuit. Furthermore, the circuit's performance is compared to standard circuits used to generate an accurate output current or voltage proportional to the absolute temperature, i.e., proportional-to-absolute temperature (PTAT), in terms of linearity, sensitivity, power consumption, speed, accuracy and calibration needs. It is shown that the V t extractor circuit is a better solution to determine the temperature of low power, analog and mixed-signal designs due to its accuracy, low power consumption and no need for calibration. The circuit has been designed using 1 µm partially depleted (PD) CMOS-SOI technology, and demonstrates a measurement inaccuracy of ±1.5 K across 300 K⁻500 K temperature range while consuming only 30 µW during operation.

  16. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    Science.gov (United States)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  17. Proof of concept : Temperature sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2015-01-01

    A prototype temperature sensing pair of waders is introduced and tested. The water temperature at the stream-bed is interesting both for scientist studying the hyporheic zone as well as for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated in waders worn by members of

  18. Proof of concept : Temperature-sensing waders for environmental sciences

    NARCIS (Netherlands)

    Hut, R.W.; Tyler, S.; Van Emmerik, T.H.M.

    2016-01-01

    A prototype temperature-sensing pair of waders is introduced and tested. The water temperature at the streambed is interesting both for scientists studying the hyporheic zone and for, e.g., fishers spotting good fishing locations. A temperature sensor incorporated into waders worn by members of the

  19. Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism

    Science.gov (United States)

    Martino, Marcio Dalla Valle; Neves, Felipe; Ghedini Der Agopian, Paula; Martino, João Antonio; Vandooren, Anne; Rooyackers, Rita; Simoen, Eddy; Thean, Aaron; Claeys, Cor

    2015-10-01

    The goal of this work is to study the analog performance of tunnel field effect transistors (TFETs) and its susceptibility to temperature variation and to different dominant transport mechanisms. The experimental input characteristic of nanowire TFETs with different source compositions (100% Si and Si1-xGex) has been presented, leading to the extraction of the Activation Energy for each bias condition. These first results have been connected to the prevailing transport mechanism for each configuration, namely band-to-band tunneling (BTBT) or trap assisted tunneling (TAT). Afterward, this work analyzes the analog behavior, with the intrinsic voltage gain calculated in terms of Early voltage, transistor efficiency, transconductance and output conductance. Comparing the results for devices with different source compositions, it is interesting to note how the analog trends vary depending on the source characteristics and the prevailing transport mechanisms. This behavior results in a different suitability analysis depending on the working temperature. In other words, devices with full-Silicon source and non-abrupt junction profile present the worst intrinsic voltage gain at room temperature, but the best results for high temperatures. This was possible since, among the 4 studied devices, this configuration was the only one with a positive intrinsic voltage gain dependence on the temperature variation.

  20. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  1. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  2. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  3. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    Science.gov (United States)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  4. Temperature dependence of the CP/sup N-1/ model and the analogy with quantum chromodynamics

    International Nuclear Information System (INIS)

    Actor, A.

    1985-01-01

    The two-dimensional CP/sup N-1/ model - a simple field-theoretic analogue of four-dimensional quantum chromodynamics (QCD) - is analysed and reviewed. The major themes are the temperature dependence of the CP/sup N-1/ model, and the analogy between CP/sup N-1/ and QCD. A detailed treatment of the 1/N approximation of the CP/sup N-1/ model is given. The main results emerging from this approximation are discussed at length. These are: asymptotic freedom, dimensional transmutation, confinement and topological charge nonquantization at zero temperature T = 0, screening and topological charge quantization at finite temperature T. The analogy with QCD is explained in detail. A new, qualitative, analysis of the CP/sup N-1/ model at finite temperature is introduced. This approach exploits the conformal invariance of the model to 'heat' an arbitrary CP/sup N-1/ field from T = 0 to finite temperature. This is achieved by conformal-transforming the flat Euclidean space-time of the T = 0 theory to the cylindrical space-time of the finite temperature theory. (author)

  5. Analogy between temperature dependent radiation effects in alkali halide crystals and crystalline ammonia

    International Nuclear Information System (INIS)

    Blum, A.

    1977-01-01

    Pikaev, Ershov, and Makarov recently reported the characteristic shape of Arrhenius-type dependence for F-centers slow part (millisecond) decay in alkali halide crystals irradiated at different temperatures. The decay rate is constant when the temperature is below the limiting value (T/sub lim/) and exhibits constant activation energy (E/sub A/) at temperatures above T/sub lim/ up to the melting point. A similar dependence has been observed for crystalline ammonia radiolysis yields (H 2 and N 2 ) in the temperature range from 77 to 195 0 K (ammonia melting point) with a limiting value of 105 0 K for N 2 and 119 0 K for H 2 . The coincidence between the alkali halide and ammonia data does not seem to be formal and there are indications showing a closer analogy between these two cases

  6. Estimation of the under-surface temperature pattern by dynamic remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, M [Univ. of Tokyo; Tao, R; Katsuma, T; Toyota, H

    1977-10-01

    There are three basic classifications of remote sensing: passive RS, which involves measurement of reflected solar radiation; active RS, which involves the use of microwaves or laser radar; and infrared scanning. These methods make possible the determination of an object's surface temperature, its effective emissivity, and its effective reflectivity. The surface temperature, in effect, contains information concerning the structure below the surface. Fundamental experiments were conducted to extract sub-surface information by means of 'dynamic remote sensing.' Aluminum objects were embedded in a container filled with sand, and the container was heated from below. First, the spatial transfer function of the medium (sand) was determined, the surface temperature pattern was filtered, and the subsurface temperature pattern was calculated, allowing the subsurface forms of the aluminum objects to be estimated. The relationship between the thermal input (bottom temperature) and the thermal output (surface temperature) was expressed in terms of electrical circuit analogs, and the heat capacity and thermal conductivity of the sample were calculated, permitting estimation of its composition. This technique will be useful for groundwater and mineral exploration and for nondestructive testing.

  7. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    Science.gov (United States)

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  8. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  9. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  10. Unmanned Aerial System Aids Dry-season Stream Temperature Sensing

    Science.gov (United States)

    Chung, M.; Detweiler, C.; Higgins, J.; Ore, J. P.; Dralle, D.; Thompson, S. E.

    2016-12-01

    In freshwater ecosystems, temperature affects biogeochemistry and ecology, and is thus a primary physical determinant of habitat quality. Measuring temperatures in spatially heterogeneous water bodies poses a serious challenge to researchers due to constraints associated with currently available methods: in situ loggers record temporally continuous temperature measurements but are limited to discrete spatial locations, while distributed temperature and remote sensing provide fine-resolution spatial measurements that are restricted to only two-dimensions (i.e. streambed and surface, respectively). Using a commercially available quadcopter equipped with a 6m cable and temperature-pressure sensor system, we measured stream temperatures at two confluences at the South Fork Eel River, where cold water inputs from the tributary to the mainstem create thermal refugia for juvenile salmonids during the dry season. As a mobile sensing platform, unmanned aerial systems (UAS) can facilitate quick and repeated sampling with minimal disturbance to the ecosystem, and their datasets can be interpolated to create a three-dimensional thermal map of a water body. The UAS-derived data was compared to data from in situ data loggers to evaluate whether the UAS is better able to capture fine-scale temperature dynamics at each confluence. The UAS has inherent limitations defined by battery life and flight times, as well as operational constraints related to maneuverability under wind and streamflow conditions. However, the platform is able to serve as an additional field tool for researchers to capture complex thermal structures in water bodies.

  11. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  12. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  13. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  14. Nanoscale temperature sensing using single defects in diamond

    International Nuclear Information System (INIS)

    Philipp Neumann

    2014-01-01

    We experimentally demonstrate a novel nanoscale temperature sensing technique that is based on single atomic defects in diamonds, namely nitrogen vacancy color centers. Sample sizes range from millimeter down to a few tens of nanometers. In particular nanodiamonds were used as dispersed probes to acquire spatially resolved temperature profiles utilizing the sensitivity of the optically accessible electron spin level structure we achieve a temperature noise floor of 5mK/Mhz for bulk diamond and 130mK/Mhz for nanodiamonds and accuracies of 1mK. To this end we have developed a new decoupling technique in order to suppress to otherwise limiting effect of magnetic field fluctuations. In addition, high purity isotopically enriched 12C artificial diamonds is used. The high sensitivity to temperature changes adds to the well studied sensitivities to magnetic and electric fields and makes NV diamond a multipurpose nanoprobe. (author)

  15. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics

    Directory of Open Access Journals (Sweden)

    Margaret McCaul

    2016-08-01

    Full Text Available The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8, small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  16. Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics.

    Science.gov (United States)

    McCaul, Margaret; Barland, Jack; Cleary, John; Cahalane, Conor; McCarthy, Tim; Diamond, Dermot

    2016-08-31

    The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation.

  17. MEMPREDIKSI POLA PERUBAHAN TEMPERATUR DALAM RUMAH TROPIS LEMBAB DENGAN MENGGUNAKAN MODEL ANALOGI ELEKTRIK SATU DIMENSI

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2002-01-01

    Full Text Available This study concern in the application of a simplified heat transfer model for simulation of thermal behaviour of tropical buildings. The model is to be integrated to a transient simulation program TRNSYS. The objective of this study is to predict the variable of indoor air temperature due to outdoors environmental climatic. The first case is about the comparison of the model with other model from ASHRAE (i.e. Transfer Function Method. The second case is the application of the model for a thermal simulation of a 7-zones typical tropical house. The simulation results (indoor air temperature and surfaces temperature are to be then compared to the results from field measurement. The comparison shows that there is similarity between those two approaches. Abstract in Bahasa Indonesia : Studi ini diarahkan pada validasi dan penggunaan suatu model perhitungan perpindahan panas sederhana satu dimensi untuk memprediksi perubahan suhu udara dalam ruang rumah beriklim tropis lembab. Model tersebut adalah model analogi elektrik yang dapat dipakai untuk membuat simulasi perpindahan panas pada kondisi tak-stedi.Pada penerapan di kasus pertama, hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap perhitungan dengan model lainnya yaitu model TFM (Transfer Function Method dari ASHRAE (American Society of Heating, Referigerating and Air conditioning Engineers. Pada penerapan di kasus kedua, dilakukan pembandingan terhadap hasil pengukuran pada kasus rumah tinggal 7 zona. Hasilnya menunjukkan bahwa tidak terdapat perbedaan yang signifikan antara hasil perhitungan dengan model sederhana tersebut dibandingkan terhadap hasil perhitungan dengan model TFM maupun terhadap hasil pengukuran di lapangan.

  18. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  19. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  20. Microstrip patch antenna for simultaneous strain and temperature sensing

    Science.gov (United States)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  1. Measuring the Surface Temperature of the Cryosphere using Remote Sensing

    Science.gov (United States)

    Hall, Dorothy K.

    2012-01-01

    A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.

  2. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  3. IR spectroscopy of synthetic glasses with Mercury surface composition: Analogs for remote sensing

    Science.gov (United States)

    Morlok, Andreas; Klemme, Stephan; Weber, Iris; Stojic, Aleksandra; Sohn, Martin; Hiesinger, Harald

    2017-11-01

    In a study to provide ground-truth data for mid-infrared observations of the surface of Mercury with the MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument onboard the ESA/JAXA BepiColombo mission, we have studied 17 synthetic glasses. These samples have the chemical compositions of characteristic Hermean surface areas based on MESSENGER data. The samples have been characterized using optical microscopy, EMPA and Raman spectroscopy. Mid-infrared spectra have been obtained from polished thin sections using Micro-FTIR, and of powdered size fractions of bulk material (0-25, 25-63, 93-125 and 125-250 μm) in the 2.5-18 μm range. The synthetic glasses display mostly spectra typical for amorphous materials with a dominating, single Reststrahlen Band (RB) at 9.5-10.7 μm. RB Features of crystalline forsterite are found in some cases at 9.5-10.2 μm, 10.4-11.2 μm, and at 11.9 μm. Dendritic crystallization starts at a MgO content higher than 23 wt.% MgO. The Reststrahlen Bands, Christiansen Features (CF), and Transparency Features (TF) shift depending on the SiO2 and MgO contents. Also a shift of the Christiansen Feature of the glasses compared with the SCFM (SiO2/(SiO2+CaO+FeO+MgO)) index is observed. This shift could potentially help distinguish crystalline and amorphous material in remote sensing data. A comparison between the degree of polymerization of the glass and the width of the characteristic strong silicate feature shows a weak positive correlation. A comparison with a high-quality mid-IR spectrum of Mercury shows some moderate similarity to the results of this study, but does not explain all features.

  4. Radiolysis of astrophysical ice analogs by energetic ions: the effect of projectile mass and ice temperature.

    Science.gov (United States)

    Pilling, Sergio; Duarte, Eduardo Seperuelo; Domaracka, Alicja; Rothard, Hermann; Boduch, Philippe; da Silveira, Enio F

    2011-09-21

    An experimental study of the interaction of highly charged, energetic ions (52 MeV (58)Ni(13+) and 15.7 MeV (16)O(5+)) with mixed H(2)O : C(18)O(2) astrophysical ice analogs at two different temperatures is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by cosmic rays inside dense, cold astrophysical environments, such as molecular clouds or protostellar clouds as well at the surface of outer solar system bodies. The measurements were performed at the heavy ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a CsI substrate at 13 K and 80 K. In situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. The dissociation cross section at 13 K of both H(2)O and CO(2) is about 3-4 times smaller when O ions are employed. The ice temperature seems to affect differently each species when the same projectile was employed. The formation cross section at 13 K of molecules such as C(18)O, CO (with oxygen from water), and H(2)O(2) increases when Ni ions are employed. The formation of organic compounds seems to be enhanced by the oxygen projectiles and at lower temperatures. In addition, because the organic production at 13 K is at least 4 times higher than the value at 80 K, we also expect that interstellar ices are more organic-rich than the surfaces of outer solar system bodies.

  5. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  6. Photoionization in Ultraviolet Processing of Astrophysical Ice Analogs at Cryogenic Temperatures

    Science.gov (United States)

    Woon, David E.

    2004-01-01

    Two recent experimental studies have demonstrated that amino acids or amino acid precursors are generated when astrophysical ice analogs are subjected to ultraviolet (UV) irradiation at cryogenic temperatures. Understanding the complete phenomenology of photoprocessing is critical to elucidating chemical reaction mechanisms that can function within an ice matrix under very cold conditions. Pushing beyond the much better characterized study of photolytic dissociation of chemical bonds through electronic excitation, this work explored the ability of UV radiation present in the interstellar medium to ionize small molecules embedded in ices. Quantum chemical calculations, including bulk solvation effects, were used to study the ionization of hydrogen (H2), water, and methanol (CH3OH) bound in small clusters of water. Ionization potentials were found to be much smaller in the condensed phase than in the gas phase; even a small cluster can account for large changes in the ionization potentials in ice, as well as the known formation of an OH--H3O+ pair in the case of H2O photoionization. To gauge the impact of photoionization on subsequent grain chemistry, the reaction between OH and CO in the presence of H3O+ was studied and compared with the potential energy surface without hydronium present, which is relevant to chemistry following photolysis. The differences indicate that the reaction is somewhat more likely to proceed to products (H + CO2) in the case of photoionization.

  7. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    Science.gov (United States)

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  8. A closer look at temperature changes with remote sensing

    Science.gov (United States)

    Metz, Markus; Rocchini, Duccio; Neteler, Markus

    2014-05-01

    Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In

  9. Measuring artificial recharge with fiber optic distributed temperature sensing.

    Science.gov (United States)

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  10. Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2016-10-01

    Full Text Available We evaluated the potential of a fiber optic cable connected to distributed temperature sensing (DTS technology to withstand wildland fire conditions and quantify fire behavior parameters. We used a custom-made ‘fire cable’ consisting of three optical fibers coated with three different materials—acrylate, copper and polyimide. The 150-m cable was deployed in grasslands and burned in three prescribed fires. The DTS system recorded fire cable output every three seconds and integrated temperatures every 50.6 cm. Results indicated the fire cable was physically capable of withstanding repeated rugged use. Fiber coating materials withstood temperatures up to 422 °C. Changes in fiber attenuation following fire were near zero (−0.81 to 0.12 dB/km indicating essentially no change in light gain or loss as a function of distance or fire intensity over the length of the fire cable. Results indicated fire cable and DTS technology have potential to quantify fire environment parameters such as heat duration and rate of spread but additional experimentation and analysis are required to determine efficacy and response times. This study adds understanding of DTS and fire cable technology as a potential new method for characterizing fire behavior parameters at greater temporal and spatial scales.

  11. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  12. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  13. High Resolution Mapping of Wind Speed Using Active Distributed Temperature Sensing

    Science.gov (United States)

    Sayde, C.; Thomas, C. K.; Wagner, J.; Selker, J. S.

    2013-12-01

    We present a novel approach to continuously measure wind speed simultaneously at thousands of locations using actively heated fiber optics with a distributed temperature sensing system (DTS). Analogous to a hot-wire anemometer, this approach is based on the principal of velocity-dependent heat transfer from a heated surface: The temperature difference between the heated surface and ambient air is a function of the convective cooling of the air flowing past the surface. By knowing the thermal properties of the heated surface, the heating input, and ambient temperature, wind speed can be calculated. In our case, the heated surface consists of a thin stainless steel tube that can exceed several km in length. A fiber optic is enclosed within the stainless steel tube to report the heated tube temperature, which in this case was sampled every 0.125 m. Ambient temperature were measured by an independent fiber optic cable located proximally to the stainless steel tube. We will present the theoretical bases of measuring wind speed using heated fiber optic as well as validation of this method in the field. In the field testing, more than 5000 simultaneous wind speed measurements were obtained every 5.5 second at 3 elevations (2m, 1m, and 0.5 m) every 0.125 m along a 230 m transects located across a shallow gulley in Nunn, CO. This method, which provides both air temperature and wind speed spanning four orders of magnitude in spatial scale (0.1 - 1,000m) opens up many important opportunities for testing basic theories in micro-meteorology regarding spatial scales of turbulent length scales as a function of distance from the earth, development of internal boundary layers, applicability of Taylors hypothesis, etc. The equipment employed, including the heating system, which is available to all US scientists, was provided by CTEMPs.org thanks to the generous grant support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or

  14. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration projects require avionic systems, components, and controllers that are capable of operating in the extreme temperature and radiation...

  15. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  16. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections

    NARCIS (Netherlands)

    Nienhuis, J.; De Haan, C.; Langeveld, J.G.; Klootwijk, M.; Clemens, F.H.L.R.

    2012-01-01

    Distributed Temperature Sensing (DTS) with fiber-optic cables is a powerful tool to detect illicit connections in storm sewer systems. High frequency temperature measurements along the in-sewer cable create a detailed representation of temperature anomalies due to illicit discharges. The detection

  17. A plastic optical fiber sensor for the dual sensing of temperature and oxygen

    Science.gov (United States)

    Lo, Yu-Lung; Chu, Chen-Shane

    2008-04-01

    This study presents a low-cost plastic optical fiber sensor for the dual sensing of temperature and oxygen. The sensor features a commercially available epoxy glue coated on the side-polished fiber surface for temperature sensing and a fluorinated xerogel doped with platinum tetrakis pentrafluoropheny porphine (PtTFPP) coated on the fiber end for oxygen sensing. The temperature and oxygen indicators are both excited using a UV LED light source with a wavelength of 380 nm. The luminescence emission spectra of the two indicators are well resolved and exhibit no cross-talk effects. Overall, the results indicate that the dual sensor presented in this study provides an ideal solution for the non-contact, simultaneous sensing of temperature and oxygen in general biological and medical applications.

  18. Analog and Power Microelectronics to Higher Radiation Levels and Lower Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — A study was done to examine low-temperature effects and radiation damage properties of bipolar integrated circuits. Anticipated benefits: useful in missions with...

  19. Development Of Test Rig System For Calibration Of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Husain Muhammad Dawood

    2017-09-01

    Full Text Available A test rig is described, for the measurement of temperature and resistance parameters of a Temperature Sensing Fabric (TSF for calibration purpose. The equipment incorporated a temperature-controlled hotplate, two copper plates, eight thermocouples, a temperature data-logger and a four-wire high-resolution resistance measuring multimeter. The copper plates were positioned above and below the TSF and in physical contact with its surfaces, so that a uniform thermal environment might be provided. The temperature of TSF was estimated by the measurement of temperature profiles of the two copper plates. Temperature-resistance graphs were created for all the tests, which were carried out over the range of 20 to 50°C, and they showed that the temperature and resistance values were not only repeatable but also reproducible, with only minor variations. The comparative analysis between the temperature-resistance test data and the temperature-resistance reference profile showed that the error in estimation of temperature of the sensing element was less than ±0.2°C. It was also found that the rig not only provided a stable and homogenous thermal environment but also offered the capability of accurately measuring the temperature and resistance parameters. The Temperature Sensing Fabric is suitable for integration into garments for continuous measurement of human body temperature in clinical and non-clinical settings.

  20. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  1. Spectroscopy of Minerals Analogs of Mercury Under the Hermean Conditions: The Effect of the Temperature

    Science.gov (United States)

    Bott, N.; Brunetto, R.; Carli, C.; Capaccioni, F.; Doressoundiram, A.; Langevin, Y.; Perna, D.; Poulet, F.; Serventi, G.; Sgavetti, M.; Borondics, F.; Sandt, C.

    2018-05-01

    We present a preliminary study of the effects of the strong variations of temperature on minerals of the surface of Mercury. We measured a loose powder (75-100 μm) of plagioclase and 5 mm diameter pellets made with the same powder.

  2. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  3. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  4. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing.

    Science.gov (United States)

    Zanon, Marco; Davis, Basil A S; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This

  5. Novel temperature compensation technique for force-sensing piezoresistive devices

    International Nuclear Information System (INIS)

    Scott, Joshua; Enikov, Eniko T

    2011-01-01

    A novel stress-insensitive piezoresistor in the shape of an annulus has been developed to be used in conjunction with a piezoresistive bridge for temperature-compensated force measurements. Under uniform stress conditions, the annular resistor shows near-zero stress sensitivity and a linear response to temperature excitation within test conditions of 24–34 °C. Annular resistors were placed in close proximity to stress-sensitive elements in order to detect local temperature fluctuations. Experiments evaluating the performance of the temperature compensator while testing force sensitivity showed a thermal rejection ratio of 37.2 dB and near elimination of low-frequency noise (drift) below 0.07 Hz. Potential applications of this annular resistor include use in multi-axis force sensors for force feedback microassembly, improvements in the simplicity and robustness of high precision microgram sensitive balances, higher accuracy for silicon diaphragm-based pressure sensors and simple temperature compensation for AFM cantilevers.

  6. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  7. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  8. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  9. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  10. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  11. Construction of an automated temperature sensing electric fan ...

    African Journals Online (AJOL)

    ... electric fan indicate that there will be a great demand for the product if it is introduced to the market since everybody cannot afford an air-conditioner due to its high cost. Key words: Temperature, Fan Regulator, C++ programming, Analogue-to-Digital Converter (ADC), Micro-controller, Relay, Liquid Crystal Display (LCD).

  12. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  13. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  14. A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy.

    Science.gov (United States)

    Thaokar, Chandrajit; Rossi, Michael R; Rabin, Yoed

    2016-02-01

    The current study aims at developing computational tools in order to gain information about the thermal history in areas invisible to ultrasound imaging during cryosurgery. This invisibility results from the high absorption rate of the ultrasound energy by the frozen region, which leads to an apparent opacity in the cryotreated area and a shadow behind it. A proof-of-concept for freezing-front estimation is demonstrated in the current study, using the new potential-field analogy method (PFAM). This method is further integrated with a recently developed temperature-field reconstruction method (TFRM) to estimate the temperature distribution within the frozen region. This study uses prostate cryosurgery as a developmental model and trans-rectal ultrasound imaging as a choice of practice. Results of this study indicate that the proposed PFAM is a viable and computationally inexpensive solution to estimate the extent of freezing in the acoustic shadow region. Comparison of PFAM estimations and experimental data shows an average mismatch of less than 2 mm in freezing-front location, which is comparable to the uncertainty in ultrasound imaging. Comparison of the integrated PFAM + TFRM scheme with a full-scale finite-elements analysis (FEA) indicates an average mismatch of 0.9 mm for the freezing front location and 0.1 mm for the lethal temperature isotherm of -45 °C. Comparison of the integrated PFAM + TFRM scheme with experimental temperature measurements show a difference in the range of 2 °C and 6 °C for selected points of measurement. Results of this study demonstrate the integrated PFAM + TFRM scheme as a viable and computationally inexpensive means to gain information about the thermal history in the frozen region during ultrasound-monitored cryosurgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.

    Science.gov (United States)

    Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo

    2017-03-22

    We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.

  16. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  17. Introduction to engineering a starter's guide with hands-on analog multimedia explorations

    CERN Document Server

    Karam, Lina

    2008-01-01

    This lecture provides a hands-on glimpse of the field of electrical engineering. The introduced applications utilize the NI ELVIS hardware and software platform to explore concepts such as circuits, power, analog sensing, and introductory analog signal processing such as signal generation, analog filtering, and audio and music processing. These principals and technologies are introduced in a very practical way and are fundamental to many of the electronic devices we use today. Some examples include photodetection, analog signal (audio, light, temperature) level meter, and analog music equalize

  18. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  19. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  20. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  1. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures.

    Science.gov (United States)

    Ohodnicki, Paul R; Buric, Michael P; Brown, Thomas D; Matranga, Christopher; Wang, Congjun; Baltrus, John; Andio, Mark

    2013-10-07

    Embedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration. Such sensors can potentially enable simultaneous temperature and gas sensing at temperatures approaching 900-1000 °C in a manner compatible with embedded and distributed sensing approaches. The approach is demonstrated using the Au/SiO2 system deposited on silica-based optical fibers. Stability of optical fibers under relevant high temperature conditions and interactions with changing ambient gas atmospheres is an area requiring additional investigation and development but the simplicity of the sensor design makes it potentially cost-effective and may offer a potential for widespread deployment.

  2. Prediction of radiofrequency ablation lesion formation using a novel temperature sensing technology incorporated in a force sensing catheter.

    Science.gov (United States)

    Rozen, Guy; Ptaszek, Leon; Zilberman, Israel; Cordaro, Kevin; Heist, E Kevin; Beeckler, Christopher; Altmann, Andres; Ying, Zhang; Liu, Zhenjiang; Ruskin, Jeremy N; Govari, Assaf; Mansour, Moussa

    2017-02-01

    Real-time radiofrequency (RF) ablation lesion assessment is a major unmet need in cardiac electrophysiology. The purpose of this study was to assess whether improved temperature measurement using a novel thermocoupling (TC) technology combined with information derived from impedance change, contact force (CF) sensing, and catheter orientation allows accurate real-time prediction of ablation lesion formation. RF ablation lesions were delivered in the ventricles of 15 swine using a novel externally irrigated-tip catheter containing 6 miniature TC sensors in addition to force sensing technology. Ablation duration, power, irrigation rate, impedance drop, CF, and temperature from each sensor were recorded. The catheter "orientation factor" was calculated using measurements from the different TC sensors. Information derived from all the sources was included in a mathematical model developed to predict lesion depth and validated against histologic measurements. A total of 143 ablation lesions were delivered to the left ventricle (n = 74) and right ventricle (n = 69). Mean CF applied during the ablations was 14.34 ± 3.55g, and mean impedance drop achieved during the ablations was 17.5 ± 6.41 Ω. Mean difference between predicted and measured ablation lesion depth was 0.72 ± 0.56 mm. In the majority of lesions (91.6%), the difference between estimated and measured depth was ≤1.5 mm. Accurate real-time prediction of RF lesion depth is feasible using a novel ablation catheter-based system in conjunction with a mathematical prediction model, combining elaborate temperature measurements with information derived from catheter orientation, CF sensing, impedance change, and additional ablation parameters. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  4. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  5. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    Science.gov (United States)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  6. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  7. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    Science.gov (United States)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  8. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.

    Science.gov (United States)

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M

    2015-04-01

    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  9. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  10. Ratiometric Afterglow Nanothermometer for Simultaneous in Situ Bioimaging and Local Tissue Temperature Sensing

    NARCIS (Netherlands)

    Yang, J.; Liu, Y.; Zhao, Y.; Gong, Z.; Zhang, M.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.; Zhang, H.

    2017-01-01

    Simultaneous in situ bioimage tracing and temperature sensing have been two of the foci of modern biomedicine that have given birth to designing novel luminescent nanothermometers with dual functions. To minimize the disadvantages of existing approaches, like the surface effect of nanoparticles,

  11. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  12. Technical note: using Distributed Temperature Sensing for Bowen ratio evaporation measurements

    NARCIS (Netherlands)

    Schilperoort, B.; Coenders, Miriam; Luxemburg, W.M.J.; Jimenez Rodriguez, C.D.; Cisneros Vaca2, C.; Savenije, Hubert

    2017-01-01

    Rapid improvements in the precision and spatial resolution of Distributed Temperature Sensing (DTS) technology now allows its use in hydrological and atmospheric sciences. Introduced by Euser [Hydrol. Earth Syst. Sci., 18, 2021–2032 (2014)] is the use of DTS for measuring the Bowen ratio (BR-DTS),

  13. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  14. Room temperature ammonia and VOC sensing properties of CuO nanorods

    International Nuclear Information System (INIS)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-01-01

    Here, we report a NH 3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  15. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Science.gov (United States)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2016-05-01

    Here, we report a NH3 and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  16. Room temperature ammonia and VOC sensing properties of CuO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu [Thin film laboratory, National Institute of Technology, Tiruchirappalli-620015 (India)

    2016-05-23

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations from 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.

  17. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing

    Science.gov (United States)

    Li, Feiming; Chen, Qiaoling; Cai, Zhixiong; Lin, Fangyuan; Xu, Wei; Wang, Yiru; Chen, Xi

    2017-12-01

    A novel method for the fabrication of carbon nanodots (CDs) is introduced: extracting CDs from the well-known soft drink Coca Cola via dialysis. The obtained CDs are of good monodispersity with a narrow size distribution (average diameter of 3.0 nm), good biocompatibility, high solubility (about 180 mg ml-1) and stable fluorescence even at a high salt concentration. Furthermore, they are sensitive to the temperature change with a linear relationship between the fluorescence intensity and temperature from 5 °C-95 °C. The CDs have been applied in high stable temperature sensing. This protocol is quite simple, green, cost-effective and technologically simple, which might be used for a range of applications including sensing, catalysts, drug and gene delivery, and so on.

  18. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  19. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    Science.gov (United States)

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  20. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    Directory of Open Access Journals (Sweden)

    Stefan Knobelspies

    2018-01-01

    Full Text Available We present a gas sensitive thin-film transistor (TFT based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  1. One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing

    Science.gov (United States)

    Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng

    2018-01-01

    Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.

  2. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  3. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  4. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II Complexes

    Directory of Open Access Journals (Sweden)

    Nelia Bustamante

    2018-02-01

    Full Text Available Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II complex turned out to be bis(1,10-phenanthroline(4-chloro-1,10-phenanthrolineruthenium(II, due to the combination of two strong-field chelating ligands (phen and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen. In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate, due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip. With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0–40 °C.

  5. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

    International Nuclear Information System (INIS)

    Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Yang, Xiao-Guang; Tian, Hua; Wang, Chao-Yang

    2016-01-01

    Highlights: • Self-heating lithium-ion battery (SHLB) structure provided a practical solution to the poor performance at subzero temperatures. • We report an improved SHLB that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than previously reported. • The nickel foil heating element embedded inside a SHLB cell plays a dominant role in rapid self-heating. • The embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS). • 2-sheet design self-heats faster than 1-sheet design due to more uniform internal temperature distribution. - Abstract: The recently discovered self-heating lithium-ion battery structure provided a practical solution to the poor performance at subzero temperatures that has hampered battery technology for decades. Here we report an improved self-heating lithium-ion battery (SHLB) that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than that reported previously. We reveal that a nickel foil heating element embedded inside a SHLB cell plays a dominant role in self-heating and we experimentally demonstrate that a 2-sheet design can achieve dramatically accelerated self-heating due to more uniform internal temperature distribution. We also report, for the first time, that this embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS) due to the perfectly linear relationship between the foil’s electrical resistance and temperature.

  6. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  7. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Science.gov (United States)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  8. Developing an Effective Model for Predicting Spatially and Temporally Continuous Stream Temperatures from Remotely Sensed Land Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Kristina M. McNyset

    2015-12-01

    Full Text Available Although water temperature is important to stream biota, it is difficult to collect in a spatially and temporally continuous fashion. We used remotely-sensed Land Surface Temperature (LST data to estimate mean daily stream temperature for every confluence-to-confluence reach in the John Day River, OR, USA for a ten year period. Models were built at three spatial scales: site-specific, subwatershed, and basin-wide. Model quality was assessed using jackknife and cross-validation. Model metrics for linear regressions of the predicted vs. observed data across all sites and years: site-specific r2 = 0.95, Root Mean Squared Error (RMSE = 1.25 °C; subwatershed r2 = 0.88, RMSE = 2.02 °C; and basin-wide r2 = 0.87, RMSE = 2.12 °C. Similar analyses were conducted using 2012 eight-day composite LST and eight-day mean stream temperature in five watersheds in the interior Columbia River basin. Mean model metrics across all basins: r2 = 0.91, RMSE = 1.29 °C. Sensitivity analyses indicated accurate basin-wide models can be parameterized using data from as few as four temperature logger sites. This approach generates robust estimates of stream temperature through time for broad spatial regions for which there is only spatially and temporally patchy observational data, and may be useful for managers and researchers interested in stream biota.

  9. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  10. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology

    OpenAIRE

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective...

  11. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  12. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  13. Temperature-Frequency Converter Using a Liquid Crystal Cell as a Sensing Element

    Directory of Open Access Journals (Sweden)

    José Isidro Santos

    2012-03-01

    Full Text Available A new temperature-frequency converter based on the variation of the dielectric permittivity of the Liquid Crystal (LC material with temperature has been demonstrated. Unlike other temperature sensors based on liquid crystal processing optical signals for determining the temperature, this work presents a system that is able to sense temperature by using only electrical signals. The variation of the dielectric permittivity with temperature is used to modify the capacitance of a plain capacitor using a LC material as non-ideal dielectric. An electric oscillator with an output frequency depending on variable capacitance made of a twisted-nematic (TN liquid crystal (LC cell has been built. The output frequency is related to the temperature of LC cell through the equations associated to the oscillator circuit. The experimental results show excellent temperature sensitivity, with a variation of 0.40% of the initial frequency per degree Celsius in the temperature range from −6 °C to 110 °C.

  14. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    Energy Technology Data Exchange (ETDEWEB)

    Craik, N G [Maritime Nuclear, Fredericton, N.B. (Canada)

    1997-12-31

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs.

  15. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    International Nuclear Information System (INIS)

    Islam, Mohammad Nouroz; Seethaler, Rudolf; Alam, M Shahria

    2015-01-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor. (paper)

  16. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    International Nuclear Information System (INIS)

    Craik, N.G.

    1996-01-01

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs

  17. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  18. Drawing Analogies in Environmental Education

    Science.gov (United States)

    Affifi, Ramsey

    2014-01-01

    Reconsidering the origin, process, and outcomes of analogy-making suggests practices for environmental educators who strive to disengage humans from the isolating illusions of dichotomizing frameworks. We can view analogies as outcomes of developmental processes within which human subjectivity is but an element, threading our sense of self back…

  19. A dual-mode proximity sensor with integrated capacitive and temperature sensing units

    International Nuclear Information System (INIS)

    Qiu, Shihua; Huang, Ying; He, Xiaoyue; Sun, Zhiguang; Liu, Ping; Liu, Caixia

    2015-01-01

    The proximity sensor is one of the most important devices in the field of robot application. It can accurately provide the proximity information to assistant robots to interact with human beings and the external environment safely. In this paper, we have proposed and demonstrated a dual-mode proximity sensor composed of capacitive and resistive sensing units. We defined the capacitive type proximity sensor perceiving the proximity information as C-mode and the resistive type proximity sensor detecting as R-mode. Graphene nanoplatelets (GNPs) were chosen as the R-mode sensing material because of its high performance. The dual-mode proximity sensor presents the following features: (1) the sensing distance of the dual-mode proximity sensor has been enlarged compared with the single capacitive proximity sensor in the same geometrical pattern; (2) experiments have verified that the proposed sensor can sense the proximity information of different materials; (3) the proximity sensing capability of the sensor has been improved by two modes perceive collaboratively, for a plastic block at a temperature of 60 °C: the R-mode will perceive the proximity information when the distance d between the sensor and object is 6.0–17.0 mm and the C-mode will do that when their interval is 0–2.0 mm; additionally two modes will work together when the distance is 2.0–6.0 mm. These features indicate our transducer is very valuable in skin-like sensing applications. (paper)

  20. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  1. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  2. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    Science.gov (United States)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow

  3. Design of a low-power flash analog-to-digital converter chip for temperature sensors in 0.18 µm CMOS process

    Directory of Open Access Journals (Sweden)

    Al Al

    2015-01-01

    Full Text Available Current paper proposes a simple design of a 6-bit flash analog-to-digital converter (ADC by process in 0.18 μm CMOS. ADC is expected to be used within a temperature sensor which provides analog data output having a range of 360 mV to 560 mV. The complete system consisting of three main blocks, which are the threshold inverter quantization (TIQ-comparator, the encoder and the parallel input serial output (PISO register. The TIQ-comparator functions as quantization of the analog data to the thermometer code. The encoder converts this thermometer code to 6-bit binary code and the PISO register transforms the parallel data into a data series. The design aims to get a flash ADC on low power dissipation, small size and compatible with the temperature sensors. The method is proposed to set each of the transistor channel length to find out the threshold voltage difference of the inverter on the TIQ comparator. A portion design encoder and PISO registers circuit selected a simple circuit with the best performance from previous studies and adjusted to this system. The design has an input range of 285 to 600 mV and 6-bit resolution output. The chip area of the designed ADC is 844.48 x 764.77 µm2 and the power dissipation is 0.162 µW with 1.6 V supply voltage.

  4. Germanene nanoribbon tunneling field effect transistor (GeNR-TFET) with a 10 nm channel length: analog performance, doping and temperature effects

    International Nuclear Information System (INIS)

    Bayani, Amir Hossein; Vali, Mehran; Dideban, Daryoosh; Moezi, Negin

    2016-01-01

    In this paper, a scheme of the germanene nanoribbon tunneling field effect transistor (GeNR-TFET) is proposed. The characteristics and analog performance of the device were theoretically investigated by exploiting the electrical properties of a germanene nanoribbon and applying the doping concentration in the source and drain regions at 300 K and 4 K temperatures. The device parameters were obtained using a non-equilibrium Green’s function (NEGF) method within the tight binding (TB) Hamiltonian. The TB Hamiltonian was extracted from the density functional theory (DFT) through the Wannier function. We find that by increasing the doping concentration the I on current increases which leads to an improvement of the I on /I off ratio to 10 5 . Moreover, decreasing the temperature from 300 K to 4 K causes the I off to become ten times smaller. We find that the device output characteristic displays a negative differential conductance with a good peak-to-valley ratio which is improved by increasing the doping concentration. The analog performance of the device is also investigated in the subthreshold regime of operation by varying the doping concentration. It is observed that by increasing the device doping concentration, the analog figures of merit can be improved. (paper)

  5. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  6. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    Science.gov (United States)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  7. Temperature dependence of the effective sensing area of high-Tc dc SQUIDs

    International Nuclear Information System (INIS)

    Brake, H.J.M. ter; Aarnink, W.A.M.; Bosch, P.J. van den; Hilgenkamp, J.W.M.; Flokstra, J.; Rogalla, H.

    1997-01-01

    The effective sensing area of a high-T c dc SQUID depends on temperature. As a consequence, fluctuations in the operating temperature result in apparent magnetic field noise if the SQUID is placed in a background magnetic field. An analysis of this effect for two SQUID types, the square-washer 'Ketchen' type and the inductively shunted type, is performed. For magnetocardiography, the temperature fluctuations (peak to peak) of the latter SQUID type should be below w 0.3 mK at 77 K, and below 2 mK at 55 K, with an earth's field suppression of 40 dB. For the square-washer SQUID the requirements are about 8 times less stringent. (author)

  8. Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Muhammad Dawood Husain

    2016-11-01

    Full Text Available This paper reports the uncertainty analysis of the temperature–resistance (TR data of the newly developed temperature sensing fabric (TSF, which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD; that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats and repeatability uncertainty (uncertainty among repeats were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C. The cooling TR data showed considerably reduced values (±0.07 °C of uncertainty in comparison with the heating TR data (±0.24 °C. The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body.

  9. Developing upconversion nanoparticle-based smart substrates for remote temperature sensing

    Science.gov (United States)

    Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.

    2018-02-01

    Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.

  10. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  11. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  12. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  13. Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature

    Science.gov (United States)

    Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.

    2018-04-01

    ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.

  14. Precipitated nickel doped ZnO nanoparticles with enhanced low temperature ethanol sensing properties

    Directory of Open Access Journals (Sweden)

    Umadevi Godavarti

    2017-12-01

    Full Text Available The Zn1-xNixO nanoparticles have been synthesized by novel co-precipitation method and systematically characterized by XRD, SEM, TEM and photo luminescence. The XRD patterns confirm the hexagonal wurzite structure without secondary phases in Ni substituted ZnO samples. SEM and TEM are used for the estimation of particle shape and size. In PL study there is a peak in the range of 380–390 nm in all samples that is attributed to the oxygen vacancies. Gas sensing tests reveal that Ni doped ZnO sensor has remarkably enhanced performance compared to pure ZnO detected at an optimum temperature 100 °C. It could detect ethanol gas in a wide concentration range with very high response, fast response–recovery time, good selectivity and stable repeatability. The possible sensing mechanism is discussed. The high response of ZnO Nanoparticles was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion. The superior sensing features indicate the present Ni doped ZnO as a promising nanomaterial for gas sensors. The response time and recovery time of undoped is 75 s and 60 s and 0.25 at% Ni are found to be 60 s and 45 s at 100 °C respectively.

  15. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    Science.gov (United States)

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  16. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  17. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature

    Directory of Open Access Journals (Sweden)

    Khairul Aimi Yusof

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were sputtered by radio frequency (RF magnetron sputtering method and have been employed as the sensing membrane of an extended gate field effect transistor (EGFET for pH sensing detection application. The TiO2 thin films were deposited onto indium tin oxide (ITO coated glass substrates at room temperature and 200°C, respectively. The effect of deposition temperature on thin film properties and pH detection application was analyzed. The TiO2 samples used as the sensing membrane for EGFET pH-sensor and the current-voltage (I-V, hysteresis, and drift characteristics were examined. The sensitivity of TiO2 EGFET sensing membrane was obtained from the transfer characteristic (I-V curves for different substrate heating temperatures. TiO2 thin film sputtered at room temperature achieved higher sensitivity of 59.89 mV/pH compared to the one deposited at 200°C indicating lower sensitivity of 37.60 mV/pH. Moreover the hysteresis and the drift of TiO2 thin film deposited at room temperature showed lower values compared to the one at 200°C. We have also tested the effect of operating temperature on the performance of the EGFET pH-sensing and found that the temperature effect was very minimal.

  18. Flake like V_2O_5 nanoparticles for ethanol sensing at room temperature

    International Nuclear Information System (INIS)

    Chitra, M.; Uthayarani, K.; Rajasekaran, N.; Neelakandeswari, N.; Girija, E. K.; Padiyan, D. Pathinettam

    2016-01-01

    The versatile redox property of vanadium oxide explores it in various applications like catalysis, electrochromism, electrochemistry, energy storage, sensors, microelectronics, batteries etc., In this present work, vanadium oxide was prepared via hydrothermal route followed by calcination. The structural and lattice parameters were analysed from the powder X-ray diffraction (XRD) pattern. The morphology and the composition of the sample were obtained from Field emission Scanning electron microscopic (FeSEM) and Energy Dispersive X-ray (EDAX) Spectrometric analysis respectively. The sensitivity, response – recovery time of the sample towards ethanol (0 ppm – 300 ppm) sensing at room temperature was measured and the present investigation on vanadium oxide nanoparticles over the flakes shows better sensitivity (30%) at room temperature.

  19. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  20. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    Science.gov (United States)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  1. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  2. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    Science.gov (United States)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  3. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  4. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  5. Self-sensing of temperature rises on light emitting diode based optrodes

    Science.gov (United States)

    Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick

    2018-04-01

    Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.

  6. Room temperature NO2-sensing properties of porous silicon/tungsten oxide nanorods composite

    International Nuclear Information System (INIS)

    Wei, Yulong; Hu, Ming; Wang, Dengfeng; Zhang, Weiyi; Qin, Yuxiang

    2015-01-01

    Highlights: • Porous silicon/WO 3 nanorods composite is synthesized via hydrothermal method. • The morphology of WO 3 nanorods depends on the amount of oxalic acid (pH value). • The sensor can detect ppb level NO 2 at room temperature. - Abstract: One-dimensional single crystalline WO 3 nanorods have been successfully synthesized onto the porous silicon substrates by a seed-induced hydrothermal method. The controlled morphology of porous silicon/tungsten oxide nanorods composite was obtained by using oxalic acid as an organic inducer. The reaction was carried out at 180 °C for 2 h. The influence of oxalic acid (pH value) on the morphology of porous silicon/tungsten oxide nanorods composite was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The NO 2 -sensing properties of the sensor based on porous silicon/tungsten oxide nanorods composite were investigated at different temperatures ranging from room temperature (∼25 °C) to 300 °C. At room temperature, the sensor behaved as a typical p-type semiconductor and exhibited high gas response, good repeatability and excellent selectivity characteristics toward NO 2 gas due to its high specific surface area, special structure, and large amounts of oxygen vacancies

  7. Feasibility of Locating Leakages in Sewage Pressure Pipes Using the Distributed Temperature Sensing Technology.

    Science.gov (United States)

    Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten

    2017-01-01

    The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.

  8. Investigation of the Optical and Sensing Characteristics of Nanoparticle Arrays for High Temperature Applications

    Science.gov (United States)

    Dharmalingam, Gnanaprakash

    The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel cost savings as well as a reduced environmental impact would therefore be realized if this increased air traffic utilized next generation jet turbines which used a emission/performance control sensing system. These future emissions monitoring systems must be sensitive and selective to the emission gases, reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. Plasmonics based chemical sensors which use nanocomposites comprised of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs) of H2, NO2 and CO at temperatures of 500 °C. The detection method involves measuring the change in the localized Surface Plasmon Resonance (LSPR) characteristics of the Au- YSZ nano composite and in particular, the plasmon peak position. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. The material properties of the films have produced a unique sensing behavior in terms of a preferential response to H2 compared to CO. Although this is a very good benefit, it is expected that further enhancements would be

  9. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

    DEFF Research Database (Denmark)

    Westermann, S.; Østby, T. I.; Gisnås, K.

    2015-01-01

    Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can be ...... with gradually decreasing permafrost probabilities. The study exemplifies the unexploited potential of remotely sensed data sets in permafrost mapping if they are employed in multi-sensor multi-source data fusion approaches.......Permafrost is a key element of the terrestrial cryosphere which makes mapping and monitoring of its state variables an imperative task. We present a modeling scheme based on remotely sensed land surface temperatures and reanalysis products from which mean annual ground temperatures (MAGT) can...

  10. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    International Nuclear Information System (INIS)

    Singh, Archana; Singh, Ajendra; Singh, Satyendra; Tandon, Poonam; Yadav, B.C.; Yadav, R.R.

    2015-01-01

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO 2 gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe 2 O 4 shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO 2 ) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO 2 gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature

  11. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  12. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  13. Long-term monitoring of temperature in the subsoil using Fiber Optic Distributed Sensing

    Science.gov (United States)

    Susanto, Kusnahadi; Malet, Jean-Philippe; Gance, Julien; Marc, Vincent

    2017-04-01

    Monitoring changes in soil water content in the vadose zone of soils is a great importance for various hydrological, agronomical, ecological and environmental studies. By using soil temperature measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS), we can indirectly document soil water changes at high spatial and temporal frequency. In this research, we installed an observatory of soil temperature on a representative black marl slope of the long-term Draix-Bléone hydrological observatory (South French Alps, Réseau de Basins-Versants / RBV). A 350 m long reinforced fiber optic cable was buried at 0.05, 0.10 and 0.15 m of depths and installed at the soil surface. The total length of the monitored profile is 60 m, and it three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.50 m using a double-ended configuration. Both passive and active (heating of the FO) is used to document soil water changes. We present the analysis of a period of 6 months of temperature measurements (January-July 2016). Changes in soil temperature at various temporal scales (rainfall event, season) and for the three units are discussed. These changes indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. We further test several inversion strategies to estimate soil water content from the thermal diffusivity of the soils using simple and more complex thermal models. Some limitations of using this indirect technique for long-term monitoring are also presented. The work is supported by the research project HYDROSLIDE and the large infrastructure project CRITEX funded by the French Research Agency (ANR).

  14. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.

    Science.gov (United States)

    Abriata, Luciano A; Albanesi, Daniela; Dal Peraro, Matteo; de Mendoza, Diego

    2017-06-20

    Histidine kinases (HK) are the sensory proteins of two-component systems, responsible for a large fraction of bacterial responses to stimuli and environmental changes. Prototypical HKs are membrane-bound proteins that phosphorylate cognate response regulator proteins in the cytoplasm upon signal detection in the membrane or periplasm. HKs stand as potential drug targets but also constitute fascinating systems for studying proteins at work, specifically regarding the chemistry and mechanics of signal detection, transduction through the membrane, and regulation of catalytic outputs. In this Account, we focus on Bacillus subtilis DesK, a membrane-bound HK part of a two-component system that maintains appropriate membrane fluidity at low growth temperatures. Unlike most HKs, DesK has no extracytoplasmic signal-sensing domains; instead, sensing is carried out by 10 transmembrane helices (coming from two protomers) arranged in an unknown structure. The fifth transmembrane helix from each protomer connects, without any of the intermediate domains found in other HKs, into the dimerization and histidine phosphotransfer (DHp) domain located in the cytoplasm, which is followed by the ATP-binding domains (ABD). Throughout the years, genetic, biochemical, structural, and computational studies on wild-type, mutant, and truncated versions of DesK allowed us to dissect several aspects of DesK's functioning, pushing forward a more general understanding of its own structure/function relationships as well as those of other HKs. We have shown that the sensing mechanism is rooted in temperature-dependent membrane properties, most likely a combination of thickness, fluidity, and water permeability, and we have proposed possible mechanisms by which DesK senses these properties and transduces the signals. X-ray structures and computational models have revealed structural features of TM and cytoplasmic regions in DesK's kinase- and phosphatase-competent states. Biochemical and genetic

  16. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  17. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    Science.gov (United States)

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  19. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  20. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    Science.gov (United States)

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  1. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  2. Perkinsus marinus, a protozoan parasite of the Eastern oyster (Crassostrea virginica): effects of temperature on the uptake and metabolism of fluorescent lipid analogs and lipase activities.

    Science.gov (United States)

    Chu, Fu-Lin E; Soudant, P; Lund, E D

    2003-10-01

    activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.

  3. A review on remotely sensed land surface temperature anomaly as an earthquake precursor

    Science.gov (United States)

    Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh

    2017-12-01

    The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.

  4. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  5. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.

    Science.gov (United States)

    Clapham, David E; Miller, Christopher

    2011-12-06

    The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.

  6. Distributed fiber-optic temperature sensing: recent improvements and Nagra's applications in the Mont Terri URL

    International Nuclear Information System (INIS)

    Vogt, Tobias; Mueller, Herwig R.; Vietor, Tim; Frieg, Bernd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The application of fiber-optic sensors in large experiments in underground rock laboratories (URL) and for monitoring of pilot repositories offers several advantages in contrast to conventional sensors. By means of optical fibers distributed temperature and deformation measurements can be performed without electric or mechanical components at the measurement location reducing the risk of corrosion and sensor failure. As fiber-optic strain sensors are to some extend still in a prototype stage, we focus here on Raman spectra distributed fiber-optic temperature sensing (DTS). In DTS a fiber-optic cable, which is the temperature sensor, is connected to a light reading unit that sends laser-pulses into the fiber. The backscattered light is detected with high temporal resolution. From the two-way-light-travel-time the location of backscattering is determined. For the temperature information the amplitude ratio of the Stokes and anti-Stokes signals is analyzed. The Stokes and anti- Stokes signals are the result of the Raman effect. The ratio of these signals provides a quantity that depends only on the temperature of the fiber at the location of backscatter. With commercial DTS setups it is possible to measure the temperature distribution along several kilometer long cables with a temperature resolution of 0.01 C and a spatial resolution of 1 m. Recent developments in DTS focus on better temperature precision and resolution. This advancement can be achieved by experiment-specific calibration techniques and sensor-layout as well as improved instruments. To realize high spatial resolution (cm range) wrapped fiber-optic cables can be applied. Another promising approach to monitor moisture along a fiber-optic cable installed in unconsolidated material are heatable cables. We will present a selection of the most recent advancements which may improve temperature monitoring in natural and

  7. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  8. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Janosch Schirmack

    2016-05-01

    Full Text Available We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  9. Distributed Temperature Sensing - a Useful Tool for Investigation of Surface Water - Groundwater Interaction

    Science.gov (United States)

    Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.

    2009-04-01

    In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007

  10. Characterizing subsurface water flow to artificial drain lines using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.

    2017-12-01

    Over the last several years growers have experienced increasingly wet spring conditions in the Palouse Region located in North Idaho, Eastern Washington and Eastern Oregon. As a result more artificial drain lines are being installed so growers can access their fields earlier in the growing season. Additionally there has been increasing adoption of no-tillage practices among growers in order minimize erosion and runoff in the region. There is a growing body of evidence that suggests long-term no-tillage may lead to the establishment of large macropore networks through increased earthworm activity and the preservation of root channels. These macropore networks, in conjunctions with the presence of artificial drains lines, may create connected preferential flow paths from agricultural fields to receiving streams. This connectivity of flow paths from agricultural fields to receiving water bodies may increase the loading of nutrients and agricultural chemicals as some flow paths may largely bypass soil matrix interaction where materials can be sequestered. Our primary objective for this study was to characterize subsurface flow to two artificial drain lines, one under conventional tillage and the other under no-tillage, using distributed temperature sensing (DTS) technology. During the study (November 2016-April 2017) the near surface soil-water temperature was consistently colder than that of deeper depths. Temperature was thus used as a tracer as snow melt and soil-water moved from the near surface to the drain lines during snowmelt and precipitation events. The spatial and temporal variability of the temperature along the artificial drain line under no-tillage practices was found to be greater than that of the conventional tilled field. It is hypothesized that preferential flow paths are responsible for the increased variability of temperature seen in the drain line under long term no-till management. The temperature along the conventional till drain line showed a

  11. Study on temperature field airborne remote sensing survey along shore nuclear power station in different tide status

    International Nuclear Information System (INIS)

    Liang Chunli; Li Mingsong

    2010-01-01

    Nuclear Power Station needs to let large quantity of cooling water to the near sea area when it is running. Whether the cooling water has effect to surrounding environment and the running of Nuclear Power Station needs further research. Temperature Drainage Mathematic Model and Physical Analogue Model need to acquire the distribution characteristic of near Station sea surface temperature field in different seasons and different tide status. Airborne Remote Sending Technique has a advantage in gaining high resolution sea surface temperature in different tide status, and any other manual method with discrete point survey can not reach it. After a successful implementation of airborne remote sensing survey to gain the near-shore temperature drainage information in Qinshan Nuclear Power Station, it provides the reference methods and ideas for temperature drainage remote sensing survey of Nuclear Power Station. (authors)

  12. Remote Sensing Analysis of Temperature and Suspended Sediment Concentration in Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thanda Ko, Nyein; Rutten, Martine

    2017-04-01

    Detailed spatial coverage of water quality parameters are crucial to better manage rivers. However, collection of water quality parameters is both time consuming and costly for large rivers. This study demonstrates that Operational Land Image (OLI) Sensor on board of Landsat 8 can be successfully applied for the detection of spatial patterns of water temperature as well as suspended sediment concentration (SSC) using the Ayeyarwady river, Myanmar as a case study. Water temperature estimation was obtained from the brightness thermal Band 10 by using the Split-Window algorithm. The study finds that there is a close agreement between the remote sensing temperature and in-situ temperature with relative error in the range from 4.5% to 8.2%. The sediment load of Ayeyarwady river is ranked as the third-largest sediment load among the world's rivers but there is very little known about this important parameter, due to a lack of adequate gauge data. The single band reflectance of Landsat image (Band 5) seems a good indicator for the estimation of SSC with relative error in the range of less than 10% but the developed empirical formula by the power relation with the only seven ground reference points is uncertain to apply for the entire river basin. It is to note that an important constraint for the sediment analysis is the availability of spatial and temporal ground reference data. Future studies should also focus on the improvement of ground reference data points to become more reliable, because most of the river in Asia, especially in Myanmar, don't have readily available continuous ground sediment data points due to lack of measurement gauge stations through the river.

  13. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Science.gov (United States)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  14. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    Science.gov (United States)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  15. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  16. A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy

    Directory of Open Access Journals (Sweden)

    Muhammad Hakirin Roslan

    2017-11-01

    Full Text Available This paper presents an alternative approach to determine the simplified top-oil temperature (TOT based on the pathway of energy transfer and thermal-electrical analogy concepts. The main contribution of this study is the redefinition of the nonlinear thermal resistance based on these concepts. An alternative approximation of convection coefficient, h, based on heat transfer theory was proposed which eliminated the requirement of viscosity. In addition, the lumped capacitance method was applied to the thermal-electrical analogy to derive the TOT thermal equivalent equation in differential form. The TOT thermal model was evaluated based on the measured TOT of seven transformers with either oil natural air natural (ONAN or oil natural air forced (ONAF cooling modes obtained from temperature rise tests. In addition, the performance of the TOT thermal model was tested on step-loading of a transformer with an ONAF cooling mode obtained from previous studies. A comparison between the TOT thermal model and the existing TOT Thermal-Electrical, Exponential (IEC 60076-7, and Clause 7 (IEEE C57.91-1995 models was also carried out. It was found that the measured TOT of seven transformers are well represented by the TOT thermal model where the highest maximum and root mean square (RMS errors are 6.66 °C and 2.76 °C, respectively. Based on the maximum and RMS errors, the TOT thermal model performs better than Exponential and Clause 7 models and it is comparable with the Thermal-Electrical 1 (TE1 and Thermal-Electrical 2 (TE2 models. The same pattern is found for the TOT thermal model under step-loading where the maximum and RMS errors are 5.77 °C and 2.02 °C.

  17. Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements

    Science.gov (United States)

    Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Jiménez Rodríguez, César; Cisneros Vaca, César; Savenije, Hubert

    2018-01-01

    Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by ) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important. In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated. We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m-2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be

  18. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    Science.gov (United States)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  19. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    Directory of Open Access Journals (Sweden)

    A.-M. Kurth

    2013-02-01

    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  20. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Roozbeh Raoufi

    2017-11-01

    Full Text Available Daily evapotranspiration (ET is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST from the MODerate resolution Imaging Spectroradiometer (MODIS on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1. Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures.

  1. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming.

    Science.gov (United States)

    Lee, Yi-Ying; Belas, Robert

    2015-01-01

    Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    Science.gov (United States)

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  3. Self-Evaluation of PANDA-FBG Based Sensing System for Dynamic Distributed Strain and Temperature Measurement.

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi

    2017-10-12

    A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.

  4. Simultaneous distributed strain and temperature sensing based on combined Raman–Brillouin scattering using Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Bolognini, Gabriele; Soto, Marcelo A; Di Pasquale, Fabrizio

    2010-01-01

    An investigation is performed of the possibility of achieving simultaneous distributed strain and temperature sensing based on hybrid Raman–Brillouin scattering with the use of multi-wavelength optical sources such as common Fabry–Perot (FP) lasers. By employing a self-heterodyne detection scheme based on a multi-wavelength optical local oscillator, the benefits of FP lasers are fully exploited, allowing for high-power Raman intensity measurements and a simultaneous high-accuracy detection of the Brillouin frequency shift parameter for each FP longitudinal mode. Experimental results point out a significant reduction of coherent Rayleigh noise, and highlight the enhanced performance in hybrid Raman–Brillouin sensing when using FP lasers; in particular using standard FP lasers at 1550 nm results in about 12 dB (7 dB) temperature (strain) accuracy improvement at 25 km sensing distance with respect to the use of standard distributed feedback lasers

  5. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  6. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature...

  7. Effect of temperature, pH, and water activity on Mucor spp. growth on synthetic medium, cheese analog and cheese.

    Science.gov (United States)

    Morin-Sardin, Stéphanie; Rigalma, Karim; Coroller, Louis; Jany, Jean-Luc; Coton, Emmanuel

    2016-06-01

    The Mucor genus includes a large number of ubiquitous fungal species. In the dairy environment, some of them play a technological role providing typical organoleptic qualities to some cheeses while others can cause spoilage. In this study, we compared the effect of relevant abiotic factors for cheese production on the growth of six strains representative of dairy technological and contaminant species as well as of a non cheese related strain (plant endophyte). Growth kinetics were determined for each strain in function of temperature, water activity and pH on synthetic Potato Dextrose Agar (PDA), and secondary models were fitted to calculate the corresponding specific cardinal values. Using these values and growth kinetics acquired at 15 °C on cheese agar medium (CA) along with three different cheese types, optimal growth rates (μopt) were estimated and consequently used to establish a predictive model. Contrarily to contaminant strains, technological strains showed higher μopt on cheese matrices than on PDA. Interestingly, lag times of the endophyte strain were strongly extended on cheese related matrices. This study offers a relevant predictive model of growth that may be used for better cheese production control but also raises the question of adaptation of some Mucor strains to the cheese. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Eigendecomposition model of resistance temperature detector with applications to S-CO{sub 2} cycle sensing

    Energy Technology Data Exchange (ETDEWEB)

    Heifetz, Alexander, E-mail: aheifetz@anl.gov; Vilim, Richard

    2017-01-15

    Highlights: • Developed eigendecomposition model of resistance temperature detector (RTD) in a fluid. • Showed that RTD time constant primarily depends on the rate of heat transfer from the fluid to the outer wall of RTD. • Showed that RTD time constant can be calculated as the sum of reciprocal eigenvalues of the heat transfer matrix. • Calculated time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO{sub 2} cycle. - Abstract: Super-critical carbon dioxide (S-CO{sub 2}) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO{sub 2} cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO{sub 2} cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer from the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigenvalues of the heat transfer matrix. Using the computational model and a set of RTD and CO{sub 2} fluid thermo-physical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO{sub 2} cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO{sub 2}.

  9. Investigation of Pristine Graphite Oxide as Room-Temperature Chemiresistive Ammonia Gas Sensing Material

    Directory of Open Access Journals (Sweden)

    Alexander G. Bannov

    2017-02-01

    Full Text Available Graphite oxide has been investigated as a possible room-temperature chemiresistive sensor of ammonia in a gas phase. Graphite oxide was synthesized from high purity graphite using the modified Hummers method. The graphite oxide sample was investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Sensing properties were tested in a wide range of ammonia concentrations in air (10–1000 ppm and under different relative humidity levels (3%–65%. It was concluded that the graphite oxide–based sensor possessed a good response to NH3 in dry synthetic air (ΔR/R0 ranged from 2.5% to 7.4% for concentrations of 100–500 ppm and 3% relative humidity with negligible cross-sensitivity towards H2 and CH4. It was determined that the sensor recovery rate was improved with ammonia concentration growth. Increasing the ambient relative humidity led to an increase of the sensor response. The highest response of 22.2% for 100 ppm of ammonia was achieved at a 65% relative humidity level.

  10. Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing

    Science.gov (United States)

    Bhuvaneshwari, S.; Papachan, Seethal; Gopalakrishnan, N.

    2017-05-01

    CuO nanostructures and CuO-MnO2 nanocomposite were successfully synthesized using hydrothermal method without any aid of growth controlling agents. The synthesized CuO nanostructures have monoclinic structure. The XRD pattern of CuO-MnO2 observed with mixed phases of monoclinic CuO and birnessite-type MnO2 which confirms the formation of nanocomposite. SEM images revealed the turmeric-like morphology for CuO and intercalated sheets with flowers on the surface for CuO-MnO2. The length and breadth of turmeric-like structure is about 642.2 nm and 141.8 nm, respectively. The band gap of 1.72 eV for CuO nanostructure and 1.9 eV for CuO-MnO2 nanocomposite were observed from the absorption spectra. The free standing devices of CuO-MnO2 showed nearly a 3 fold increase sensing response to ammonia at room temperature when compared to the constituent CuO. The composite sensor showed response time of 120 s and recovered within 600 s. This enhanced response can be asserted to the peculiar morphology of the composite that provides more adsorption site for gas diffusion to take place.

  11. Room temperature alcohol sensing by oxygen vacancy controlled TiO{sub 2} nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P., E-mail: pb-etc-besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India); Chattopadhyay, P. P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah (India)

    2014-08-25

    Oxygen vacancy (OV) controlled TiO{sub 2} nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH{sub 4}F and ethylene glycol with selective H{sub 2}O content. The structural evolution of TiO{sub 2} nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO{sub 2} nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO{sub 2} nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  12. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism

    International Nuclear Information System (INIS)

    Han, Zhizhong; Wang, Jiejie; Liao, Lan; Pan, Haibo; Shen, Shuifa; Chen, Jianzhong

    2013-01-01

    Nano-scale TiO 2 powders doped with phosphorus were prepared by sol–gel method. The characterization of the materials was performed by XRD, BET, FT-IR spectroscopy, Zeta potential measurement and XPS analysis. The results indicate that the phosphorus suppresses the crystal growth and phase transformation and, at the same time, increases the surface area and enhances the sensitivity and selectivity for the P-doped TiO 2 oxygen sensors. In this system, the operating temperature is low, only 116 °C, and the response time is short. The spectra of FT-IR and XPS show that the phosphorus dopant presents as the pentavalent-oxidation state in TiO 2 , further phosphorus can connect with Ti 4+ through the bond of Ti-O-P. The positive shifts of XPS peaks indicate that electron depleted layer of P-doped TiO 2 is narrowed compared with that of pure TiO 2 , and the results of Zeta potential illuminate that the density of surface charge carrier is intensified. The adsorptive active site and Lewis acid characteristics of the surface are reinforced by phosphorus doping, where phosphorus ions act as a new active site. Thus, the sensitivity of P-doped TiO 2 is improved, and the 5 mol% P-doped sample has the optimal oxygen sensing properties.

  13. Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement

    Science.gov (United States)

    Wang, Aihui; Barlage, Michael; Zeng, Xubin; Draper, Clara Sophie

    2014-01-01

    Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models.

  14. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  15. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    Directory of Open Access Journals (Sweden)

    Baosheng Cao

    2015-12-01

    Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  16. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  17. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Polymer-derived microporous ceramics for membranes and sensors for high temperature hydrogen purification and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Ravi Mohan

    2012-06-11

    The growing interest in the use of hydrogen as main fuel has increased the need for pure hydrogen (H{sub 2}) production and purification. There are several by-products (CO, H{sub 2}O, CO{sub 2}) associated with the production of hydrogen which might damage the production rate. Therefore, separation of hydrogen from other gases is an important step in the hydrogen production process. If H{sub 2} can be selectively removed from the product side during hydrogen production in membrane reactors, then it would be possible to achieve complete CO conversion in a single-step under high temperature conditions. The main goal of the present work is the high temperature H{sub 2} purification and sensing by applying polymer-derived ceramics. To prove the concept, the microporous SiBCN, Si{sub 3}N{sub 4} and SiCN ceramic membranes have been synthesized by the polymer-pyrolysis route and their performance for the hydrogen separation have been evaluated in tubular membranes as well as in planar chemiresistors. The synthesis of amorphous SiBCN ceramics has been realized through pyrolysis of poly(organoborosilazanes) in argon. Multilayered amorphous SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membranes with gradient porosity have been realized and assessed with respect to the thermal stability, pore-size distribution and H{sub 2}/CO permeance. N{sub 2}-adsorption measurement indicates micropores in the range of 0.68-0.73 nm for three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane. SEM characterization of three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane shows the thickness of SiBCN membrane layer is 2.8 {mu}m; gas permeance measurements of the membrane shows H{sub 2}/CO selectivity of about 10.5 and the H{sub 2} permeance of about 1.05 x 10{sup -8} mol m{sup -2}s{sup -1}Pa{sup -1}. The observed gas permeation properties point out that the transportation of gas molecules through the membrane is governed by both

  19. Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method

    Directory of Open Access Journals (Sweden)

    Nu Si A. Eom

    2017-11-01

    Full Text Available In this study, a graphene-doped porous silicon (G-doped/p-Si substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

  20. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    Science.gov (United States)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  1. Room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride induced by milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Bolokang, Amogelang S., E-mail: Sylvester.Bolokang@transnet.net [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark, 0127 (South Africa); Tshabalala, Zamaswazi P. [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); Malgas, Gerald F. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville, 7535 (South Africa); Kortidis, Ioannis [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa); West Virginia University, Department of Mechanical & Aerospace Engineering, Evansdale Campus, Morgantown, WV, 26506 (United States); Swart, Hendrik C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa); Motaung, David E., E-mail: dmotaung@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001 (South Africa)

    2017-06-01

    We report on the room temperature ferromagnetism and CH{sub 4} gas sensing of titanium oxynitride prepared by milling and annealing at 1100 °C in a nitrogen gas environment. Structural analyses revealed a metastable orthorhombic TiO{sub 2} phase after milling for 120 h. The 120 h milled TiO{sub 2} particles and subsequently annealed in nitrogen gas at 1100 °C showed the formation of titanium oxynitride (TiO{sub x}N{sub y}) with a tetragonal crystal structure. An FCC metastable TiO{sub x}N{sub y} phase was also observed with a lattice parameter a = 4.235 Å. The vibrating sample magnetometer and electron paramagnetic analyses showed that the milled and TiO{sub x}N{sub y} samples possess room temperature ferromagnetism. Gas sensing measurements were carried out toward CH{sub 4} and H{sub 2} gases. The TiO{sub x}N{sub y} nanostructures demonstrated higher sensing response and selectivity to CH{sub 4} gas at room temperature. The enhanced response of 1010 and sensitivity of 50.12 ppm{sup -1} at a concentration of 20 ppm CH{sub 4} are associated with higher surface area, pore diameter and surface defects such as oxygen vacancies and Ti{sup 3+}, as evidenced from the Brunauer–Emmet–Teller, photoluminescence, electron paramagnetic resonance and x-ray photoelectron analyses. - Highlights: • Ball milled of TiO{sub 2} structure revealed metastable orthorhombic phase. • Upon nitridation tetragonal and FCC TiO{sub x}N{sub y} crystal structures were induced. • The magnetic properties of TiO{sub 2} nanoparticles was transformed by milling. • TiO{sub x}N{sub y} sensing response for CH{sub 4} gas at room temperature was high.

  2. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian; Zhang, Y.; Mulle, Matthieu; Lubineau, Gilles

    2015-01-01

    Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures

  3. UWBRAD: Ultra Wideband Software Defined Microwave Radiometer for Ice Sheet Subsurface Temperature Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing space and airborne remote sensing instruments have pushed the state-of-the-art in the characterization of ice sheet behaviors with the exception of one key...

  4. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  5. The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper.

    Science.gov (United States)

    Inda, Maria E; Oliveira, Rafael G; de Mendoza, Diego; Cybulski, Larisa E

    2016-11-01

    Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur

  6. Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties

    International Nuclear Information System (INIS)

    Kumar, R. Rakesh; Parmar, Mitesh; Narasimha Rao, K.; Rajanna, K.; Phani, A.R.

    2013-01-01

    Graphical abstract: -- A simple thermal evaporation method is presented for the growth of crystalline SnO 2 nanowires at a low substrate temperature of 450 °C via an gold-assisted vapor–liquid–solid mechanism. The as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and were also tested for methanol vapor sensing. Transmission electron microscopy studies revealed the single-crystalline nature of the each nanowire. The fabricated sensor shows good response to methanol vapor at an operating temperature of 450 °C.

  7. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  8. Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-02-01

    Full Text Available Land surface temperature (LST is an important variable that provides a valuable connection between the energy and water budget and is strongly linked to land surface hydrology. Space-borne remote sensing provides a consistent means for regularly observing LST using thermal infrared (TIR and passive microwave observations each with unique strengths and weaknesses. The spatial resolution of TIR based LST observations is around 1 km, a major advantage when compared to passive microwave observations (around 10 km. However, a major advantage of passive microwaves is their cloud penetrating capability making them all-weather sensors whereas TIR observations are routinely masked under the presence of clouds and aerosols. In this study, a relatively simple combination approach that benefits from the cloud penetrating capacity of passive microwave sensors was proposed. In the first step, TIR and passive microwave LST products were compared over Australia for both anomalies and raw timeseries. A very high agreement was shown over the vast majority of the country with R2 typically ranging from 0.50 to 0.75 for the anomalies and from 0.80 to 1.00 for the raw timeseries. Then, the scalability of the passive microwave based LST product was examined and a pixel based merging approach through linear scaling was proposed. The individual and merged LST products were further compared against independent LST from the re-analysis model outputs. This comparison revealed that the TIR based LST product agrees best with the re-analysis data (R2 0.26 for anomalies and R2 0.76 for raw data, followed by the passive microwave LST product (R2 0.16 for anomalies and R2 0.66 for raw data and the combined LST product (R2 0.18 for anomalies and R2 0.62 for raw data. It should be noted that the drop in performance comes with an increased revisit frequency of approximately 20% compared to the revised frequency of the TIR alone. Additionally, this comparison against re

  9. Combination of Well-Logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan

    Directory of Open Access Journals (Sweden)

    Bingwei Tian

    2015-03-01

    Full Text Available Geothermal resources have become an increasingly important source of renewable energy for electrical power generation worldwide. Combined Three Dimension (3D Subsurface Temperature (SST and Land Surface Temperature (LST measurements are essential for accurate assessment of geothermal resources. In this study, subsurface and surface temperature distributions were combined using a dataset comprised of well logs and Thermal Infrared Remote sensing (TIR images from Hokkaido island, northern Japan. Using 28,476 temperature data points from 433 boreholes sites and a method of Kriging with External Drift or trend (KED, SST distribution model from depths of 100 to 1500 m was produced. Regional LST was estimated from 13 scenes of Landsat 8 images. Resultant SST ranged from around 50 °C to 300 °C at a depth of 1500 m. Most of western and part of the eastern Hokkaido are characterized by high temperature gradients, while low temperatures were found in the central region. Higher temperatures in shallower crust imply the western region and part of the eastern region have high geothermal potential. Moreover, several LST zones considered to have high geothermal potential were identified upon clarification of the underground heat distribution according to 3D SST. LST in these zones showed the anomalies, 3 to 9 °C higher than the surrounding areas. These results demonstrate that our combination of TIR and 3D temperature modeling using well logging and geostatistics is an efficient and promising approach to geothermal resource exploration.

  10. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating.

    Science.gov (United States)

    He, Weina; Li, Guangyong; Zhang, Shangquan; Wei, Yong; Wang, Jin; Li, Qingwen; Zhang, Xuetong

    2015-04-28

    To obtain ideal sensing materials with nearly zero temperature coefficient resistance (TCR) for self-temperature-compensated pressure sensors, we proposed an Incipient Network Conformal Growth (INCG) technology to prepare hybrid and elastic porous materials: the nanoparticles (NPs) are first dispersed in solvent to form an incipient network, another component is then introduced to coat the incipient network conformally via wet chemical route. The conformal coatings not only endow NPs with high stability but also offer them additional structural elasticity, meeting requirements for future generations of portable, compressive and flexible devices. The resultant polypyrrole/silver coaxial nanowire hybrid aero-sponges prepared via INCG technology have been processed into a piezoresistive sensor with highly sensing stability (low TCR 0.86 × 10(-3)/°C), sensitivity (0.33 kPa(-1)), short response time (1 ms), minimum detectable pressure (4.93 Pa) after suffering repeated stimuli, temperature change and electric heating. Moreover, a stress-triggered Joule heater can be also fabricated mainly by the PPy-Ag NW hybrid aero-sponges with nearly zero temperature coefficient.

  11. Room temperature H2S gas sensing property of indium oxide thin films obtained by pulsed D.C. magnetron sputtering

    International Nuclear Information System (INIS)

    Nisha, R.; Madhusoodanan, K.N.; Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2013-01-01

    Indium oxide thin films were prepared by pulsed dc magnetron sputtering technique with no substrate heating. X-ray diffraction was used to investigate the structural properties and AFM was used to study the surface morphology gas sensing performance were conducted using a static gas sensing system. Room temperature gas sensing performance was conducted in range of 17 to 286 ppm. The sensitivity, response and recovery time of the sensor was also determined. (author)

  12. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    International Nuclear Information System (INIS)

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  13. Temperature Response of a Small Mountain Stream to Thunderstorm Cloud-Cover: Application of DTS Fiber-Optic Temperature Sensing

    Science.gov (United States)

    Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.

    2014-12-01

    From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.

  14. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  15. Albert Einstein, Analogizer Extraordinaire

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Where does deep insight in physics come from? It is tempting to think that it comes from the purest and most precise of reasoning, following ironclad laws of thought that compel the clear mind completely rigidly. And yet the truth is quite otherwise. One finds, when one looks closely at any major discovery, that the greatest of physicists are, in some sense, the most crazily daring and irrational of all physicists. Albert Einstein exemplifies this thesis in spades. In this talk I will describe the key role, throughout Albert Einstein's fabulously creative life, played by wild guesses made by analogy lacking any basis whatsoever in pure reasoning. In particular, in this year of 2007, the centenary of 1907, I will describe how over the course of two years (1905 through 1907) of pondering, Einstein slowly came, via analogy, to understand the full, radical consequences of the equation that he had first discovered and published in 1905, arguably the most famous equation of all time: E = mc2.

  16. A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 °C.

    Science.gov (United States)

    Chiang, Yu-Ju; Li, Kuang-Chung; Lin, Yi-Chieh; Pan, Fu-Ming

    2015-02-07

    We prepared PdO nanoflake thin films on the SiO2 substrate by reactive sputter deposition, and studied their sensing response to H2 at temperatures between 25 and 250 °C. In addition to the oxygen ionosorption model, which is used to describe the early H2 sensing response over the temperature range studied, the H2 sensing kinetics of the PdO thin films can be separated into three temperature regimes: temperatures below 100 °C, around 150 °C and above 200 °C. At temperatures below 100 °C, PdO reduction is the dominant reaction affecting the H2 sensing behavior. At temperatures around 150 °C, Pd reoxidation kinetically competes with PdO reduction leading to a complicated sensing characteristic. Active PdO reduction by H2 promotes the continuing growth of Pd nanoislands, facilitating dissociative oxygen adsorption and thus the subsequent Pd reoxidation in the H2-dry air gas mixture. The kinetic competition between the PdO reduction and reoxidation at 150 °C leads to the observation of an inverse of the increase in the sensor conductivity. At temperatures above 200 °C, the PdO sensor exhibits a sensor signal monotonically increasing with the H2 concentration, and the H2 sensing behavior is consistent with the Mars-van-Krevelen redox mechanism.

  17. Students' Pre- and Post-Teaching Analogical Reasoning when They Draw Their Analogies

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosaria

    2012-01-01

    Analogies are parts of human thought. From them, we can acquire new knowledge or change that which already exists in our cognitive structure. In this sense, understanding the analogical reasoning process becomes an essential condition to understand how we learn. Despite the importance of such an understanding, there is no general agreement in…

  18. Innovative use of Distributed Temperature Sensing and Meteorological Data to Understand Thermoregulation of Free-Ranging Howling Monkeys

    Science.gov (United States)

    Suarez, F. I.; Vinyard, C. J.; Williams, S. H.; Hausner, M. B.; Tyler, S. W.; Glander, K.

    2011-12-01

    Temperature fluctuations are a major driver of change in natural habitats and influence the lifestyle of all organisms because temperature impacts molecular, physiological, and behavioral processes. However, there is a lack of understanding on how temperature affects metabolism, behavior, and ecology at the organismal level. Even though physiological responses to temperature fluctuations have been well documented in laboratory conditions, it has been challenging to collect the required environmental data to study thermoregulation of free-ranging mammals such as mantled howling monkeys (Alouatta palliata). Fortunately, recent advances in fiber-optic distributed temperature sensing (DTS) now permit the observation of temperature fields in the environment at scales ranging from millimeters to kilometers. This has opened an exciting opportunity for temperature monitoring at scales that were previously not feasible. This study addresses the main limitations of previous studies of primate behavior by integrating real-time environmental data with the behavior and physiological response of free-ranging primates. In this work, we present preliminary DTS data collected in a natural habitat of howling monkeys. Fiber-optic cables were hung between the ground and an elevation of approximately 15 m within the forest canopy, providing continuous profiles of temperature without any disturbance due to the animals and habitat. These measurements were integrated with conventional meteorological data and with the ambient temperature at the location of the animal, as well as with measurements of primate's subcutaneous and core body temperatures. These data will be utilized to determine how environmental conditions relate to primate behavioral and physiological responses in time and space. The methodologies used in this study provide tools to test theories of physiological thermoregulation of other free-ranging animals.

  19. Analogical Inference and Analogical Access.

    Science.gov (United States)

    1987-08-04

    water) FLAT-TOP ( coffee ) CLEAR (beaker) U I ’/ I I I i ’ J" ’ CAUSE(BREATER-THANCTEMPERATURE( coff e), TEMPERATURE (ice)2, CFLON(heat, bar, coffee ...distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) UIUCDCS-R-87-1365 6a. NAME OF PERFORMING... ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of Illinois (If applicable) Cognitive Sciences (Code 1142CS) Department of

  20. A fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic.

    Science.gov (United States)

    Chen, Kuncai; He, Rong; Luo, Xiaoyan; Qin, Pengzhe; Tan, Lei; Tang, Youwen; Yang, Zhicong

    2017-08-15

    This paper demonstrates a new strategy for developing a fluorescent glycosyl-imprinted polymer for pH and temperature regulated sensing of target glycopeptide antibiotic. The technique provides amino modified Mn-doped ZnS QDs as fluorescent supports, 4-vinylphenylbronic acid as a covalent monomer, N-isopropyl acrylamide as a thermo-responsive monomer in combination with acrylamide as a non-covalent monomer, and glycosyl moiety of a glycopeptide antibiotic as a template to produce fluorescent molecularly imprinted polymer (FMIP) in aqueous solution. The FMIP can alter its functional moieties and structure with pH and temperature stimulation. This allows recognition of target molecules through control of pH and temperature. The fluorescence intensity of the FMIP was enhanced gradually as the concentration of telavancin increased, and showed selective recognition toward the target glycopeptide antibiotic preferentially among other antibiotics. Using the FMIP as a sensing material, good linear correlations were obtained over the concentration range of 3.0-300.0μg/L and with a low limit of detection of 1.0μg/L. The analysis results of telavancin in real samples were consistent with that obtained by liquid chromatography tandem mass spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environments

    Science.gov (United States)

    Azhari, Amir; Liang, Richard; Toyserkani, Ehsan

    2014-07-01

    The aim of this article is to introduce a novel packaging of conventional Corning SMF-28™ single-mode fibre Bragg grating sensors for ultra-high temperature sensing. The package is in a cylindrical shape made of yttria-stabilized zirconia tubes. The fibre optic sensor is epoxied to one end inside the tube to be protected from high external temperatures and also harsh environments. Highly-oriented pyrolytic graphite tube with an exceptional anisotropic thermal conductivity with higher conductivity in transverse than radial direction is positioned around the fibre to protect it from high temperatures. Air cooling system is also provided from the other end to dissipate the transferred heat from inside the tube. The shift in the Bragg wavelength is influenced by the thermal expansion of the package and internal temperature variations, which translates into thermal expansion of the fibre. The modelling and experimental results revealed that the Bragg wavelength shift increases to 1.4 pm °C-1 at higher temperatures with linear behaviour at temperatures above 600 °C. The finite element modelling and the experimental results are also in good proximity indicating the similar trend for the shift in the Bragg wavelength.

  2. Pt-decorated GaN nanowires with significant improvement in H2 gas-sensing performance at room temperature.

    Science.gov (United States)

    Abdullah, Q N; Yam, F K; Hassan, Z; Bououdina, M

    2015-12-15

    Superior sensitivity towards H2 gas was successfully achieved with Pt-decorated GaN nanowires (NWs) gas sensor. GaN NWs were fabricated via chemical vapor deposition (CVD) route. Morphology (field emission scanning electron microscopy and transmission electron microscopy) and crystal structure (high resolution X-ray diffraction) characterizations of the as-synthesized nanostructures demonstrated the formation of GaN NWs having a wurtzite structure, zigzaged shape and an average diameter of 30-166nm. The Pt-decorated GaN NWs sensor shows a high response of 250-2650% upon exposure to H2 gas concentration from 7 to 1000ppm respectively at room temperature (RT), and then increases to about 650-4100% when increasing the operating temperature up to 75°C. The gas-sensing measurements indicated that the Pt-decorated GaN NWs based sensor exhibited efficient detection of H2 at low concentration with excellent sensitivity, repeatability, and free hysteresis phenomena over a period of time of 100min. The large surface-to-volume ratio of GaN NWs and the catalytic activity of Pt metal are the most influential factors leading to the enhancement of H2 gas-sensing performances through the improvement of the interaction between the target molecules (H2) and the sensing NWs surface. The attractive low-cost, low power consumption and high-performance of the resultant decorated GaN NWs gas sensor assure their uppermost potential for H2 gas sensor working at low operating temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2017-02-01

    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  4. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    Directory of Open Access Journals (Sweden)

    Erik P. Schartner

    2014-11-01

    Full Text Available We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C.

  5. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  6. Sensing of low concentration of ammonia at room temperature by decorated multi-walled carbon nanotube: fabrication and characteristics

    Science.gov (United States)

    Hasnahena, S. T.; Roy, M.

    2018-01-01

    A chemical sensor based on multi-walled carbon nanotube (MWCNT) decorated with densely populated thiol-capped gold nanoparticles (AuNPs) with sizes smaller than 3 nm for sensing low concentrations of ammonia gas is reported. The functionalized MWCNTs, subsequently decorated with AuNPs following an easy fabrication route were exposed to NH3 gas at the room temperature and the electrical resistance of the sensor changed upon exposure. The sensor also partially recovered the initial state after sensing in the normal air environment (without any dry air or N2 gas purge). The gold nanoparticles decoration is found to enhance the sensitivity and selectivity of MWCNT towards NH3 gas under ambient conditions with a reduced response and recovery time. The material was structurally characterized by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Thermal stability of the sensor till 574 °C was demonstrated by TGA analysis. This papers describes how thiol-capped AuNPs are uniformly decorated on the outer walls of the MWCNTs with a separation of 2-3 nm making use of the ionic nature of Au and how this uniform distribution of AuNPs increases the active sites for absorption of NH3 gas molecules leading to sensing its low concentrations.

  7. Negative temperature coefficient of the action of DDT in a sense organ

    NARCIS (Netherlands)

    Bercken, J. van den; Akkermans, L.M.A.

    1972-01-01

    DDT induced repetitive spontaneuos activity inthe afferent nerve fibers of the lateral-line organ of the clawed toad, Xenopus laevis. The action of DDT increased markedly with lowered temperature. This temperature-effect was easily reversible. The results demonstrate that DDT has a definite negative

  8. Thermal infrared remote sensing of water temperature in riverine landscapes: Chapter 5

    Science.gov (United States)

    Carbonneau, Rebecca N.; Piégay, Hervé; Handcock, R.N; Torgersen, Christian E.; Cherkauer, K.A; Gillespie, A.R; Tockner, K; Faux, R. N.; Tan, Jing

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001). Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature (Cherkauer et al., 2005).

  9. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  10. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    Science.gov (United States)

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  11. Wireless Temperature Sensor Having No Electrical Connections and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Marie (Inventor)

    2014-01-01

    A wireless temperature sensor includes an electrical conductor and a dielectric material on the conductor. The conductor is electrically unconnected and is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the conductor resonates to generate harmonic electric and magnetic field responses, each of which has a frequency associated therewith. The material is selected such that it experiences changes in either dielectric or magnetic permeability attributes in the presence of a temperature change. Shifts from the sensor's baseline frequency response indicate that the material has experienced a temperature change.

  12. Development of strong-sense validation benchmarks for the fluoride salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Blandford, E. D.

    2012-01-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) is a class of reactor concepts currently under development for the U. S. Dept. of Energy. The FHR is defined as a Generation IV reactor that features low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. Recent experimental work using simulant fluids have been performed to demonstrate key 'proof of principle' FHR concepts and have helped inform the reactor design process. An important element of developing FHR technology is to sufficiently validate the predictive accuracy of the computer codes used to model system response. This paper presents a set of thermal-hydraulics experiments, defined as Strong-Sense Benchmarks (SSB's), which will help establish the FHR validation domain for simulant fluid suitability. These SSB's are more specifically designed to investigate single-phase natural circulation which is the dominant mode of FHR decay heat removal during off-normal conditions. SSB s should be viewed as engineering reference standards and differ from traditional confirmatory experiments in the sense that they are more focused on fundamental physics as opposed to reproducing high levels of physical similarity with the prototypical design. (authors)

  13. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  14. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  15. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment.

    Science.gov (United States)

    Liu, Gao; Wang, Zhao; Chen, Zihui; Yang, Shulin; Fu, Xingxing; Huang, Rui; Li, Xiaokang; Xiong, Juan; Hu, Yongming; Gu, Haoshuang

    2018-03-23

    In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.

  16. Distributed Optical Fiber Radiation and Temperature Sensing at High Energy Accelerators and Experiments

    CERN Document Server

    AUTHOR|(CDS)2090137; Brugger, Markus

    The aim of this Thesis is to investigate the feasibility of a distributed optical fiber radiation sensing system to be used at high energy physics accelerators and experiments where complex mixed-field environments are present. In particular, after having characterized the response of a selection of radiation sensitive optical fibers to ionizing radiation coming from a 60Co source, the results of distributed optical fiber radiation measurements in a mixed-field environment are presented along with the method to actually estimate the dose variation. This study demonstrates that distributed optical fiber dosimetry in the above mentioned mixed-field radiation environment is feasible, allowing to detect dose variations of about 10-15 Gy with a 1 m spatial resolution. The proof of principle has fully succeeded and we can now tackle the challenge of an industrial installation taking into account that some optimizations need to be done both on the control unit of the system as well as on the choice of the sensing f...

  17. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions

    Directory of Open Access Journals (Sweden)

    Mirim Shin

    2015-01-01

    Full Text Available There were no validation studies on portable sleep devices under different ambient temperature, thus this study evaluated the validity of wrist Actiwatch2 (AW2 or SenseWear armband (SWA against polysomnography (PSG in different ambient temperatures. Nine healthy young participants (6 males, aged 23.3±4.1 y underwent nine nights of study at ambient temperature of 17 °C, 22 °C and 29 °C in random order, after an adaptation night. They wore the AW2 and SWA while being monitored for PSG simultaneously. A linear mixed model indicated that AW2 is valid for sleep onset latency (SOL, total sleep time (TST and sleep efficiency (SE but significantly overestimated wake after sleep onset (WASO at 17 °C and 22 °C. SWA is valid for WASO, TST and SE at these temperatures, but severely underestimates SOL. However, at 29 °C, SWA significantly overestimated WASO and underestimated TST and SE. Bland–Altman plots showed small biases with acceptable limits of agreement (LoA for AW2 whereas, small biases and relatively wider LoA for most sleep variables were observed in SWA. The kappa statistic showed a moderate sleep–wake epoch agreement, with a high sensitivity but poor specificity; wake detection remains suboptimal. AW2 showed small biases for most of sleep variables at all temperature conditions, except for WASO. SWA is reliable for measures of TST, WASO and SE at 17–22 °C but not at 29 °C, and SOL approximates that of PSG only at 29 °C, thus caution is needed when monitoring sleep at different temperatures, especially in home sleep studies, in which temperature conditions are more variable.

  18. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  19. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  20. Analog techniques in CEBAF's RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology. Diode related devices are being replaced by analog IC's in the CEBAF RF control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. RF signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  1. Analog techniques in CEBAF'S RF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Fugitt, J.

    1989-01-01

    Recent developments in high-speed analog technology have progressed into the areas of traditional rf technology. Diode-related devices are being replaced by analog IC's in the CEBAF rf control system. Complex phase modulators and attenuators have been successfully tested at 70 MHz. They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity. Rf signal conditioning components and how to implement the new analog IC's will be covered in this paper. 4 refs., 5 figs

  2. Exploring the role of green and blue infrastructure in reducing temperature in Iskandar Malaysia using remote sensing approach

    International Nuclear Information System (INIS)

    Kanniah, K D; Sheikhi, A; Kang, C S

    2014-01-01

    Development of cities has led to various environmental problems as a consequence of non sustaibale town planning. One of the strategies to make cities a livable place and to achieve low levels of CO 2 emissions (low carbon cities or LCC) is the integration of the blue and green infrastructure into the development and planning of new urban areas. Iskandar Malaysia (IM) located in the southern part of Malaysia is a special economic zone that has major urban centres. The planning of these urban centres will incorporate LCC strategies to achieve a sustainable development. The role of green (plants) and blue bodies (lakes and rivers) in moderating temperature in IM have been investigated in the current study. A remotely sensed satellite imagery was used to calculate the vegetation density and land surface temperature (LST). The effect of lakes in cooling the surrounding temperature was also investigated. Results show that increasing vegetation density by 1% can decrease the LST by 0.09°C. As for the water bodies we found as the distance increased from the lake side the temperature also increased about 1.7°C and the reduction in air humidity is 9% as the distance increased to 100 meter away from the lake

  3. Effect of Annealing Temperature on Gas Sensing Performance of SnO2 Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    G. E. PATIL

    2010-12-01

    Full Text Available The effect of variation of annealing temperature on the gas sensing characteristics of SnO2 thin films, which have been prepared by spray pyrolysis on alumina substrate at 350 oC, is investigated systematically for various gases at different operating temperature. The XRD, UV-visible spectroscopy and SEM techniques were employed to establish the structural, optical and morphological characteristics of the materials, resp. The X-ray diffraction results showed an increase in the crystallinity at higher annealing temperature. A high value of sensitivity is obtained for H2S gas at an optimum temperature of 100 oC is improved considerably. A SnO2 gas sensor annealed at 950 oC with sensitivity as high as 24 %, 4 times higher than that of sensor annealed at 550oC, are obtained for 80 ppm of H2S. The degree of crystallinity and grain size calculated from the XRD patterns has been found increasing with annealing temp

  4. Effect of Annealing and Operating Substrate Temperature on Methanol Gas Sensing Properties of SnO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2017-04-01

    Full Text Available SnO2 based sensing nano-material have been synthesized by simple chemical route using Stannic (IV chloride-pentahydrate (SnCl4.5H2O as precursor. The structural properties of the prepared SnO2 nano-particles annealed at different temperatures have been characterized by X-ray diffraction (XRD analysis. The XRD patterns showed pure bulk SnO2 with a tetragonal rutile structure in the nano-powders. By increasing the annealing temperatures, the size of crystals were seen to increase, the diffraction peaks were found narrower and the intensity was higher. SnO2 films prepared by spin coating the prepared nano-material solution was tested at different temperatures for methanol vapour and it showed that the film prepared from SnO2 powder annealed at 500 0C shows the higher sensitivity to methanol vapour at 150 0C substrate temperature with significantly low response and recovery time.

  5. Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15ferroelectric materials

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-12-01

    Full Text Available The Er3+ doped Bi5TiNbWO15 ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of Bi3TiNbO9 and then Bi2WO6. Based on fluorescence intensity ratio (FIR technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (Bi3TiNbO9 in bismuth layered-structure and emission from the different part (Bi3TiNbO9 and Bi2WO6 in bismuth layered-structure for the first time.

  6. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surf...

  7. C-QDs@UiO-66-(COOH)2 Composite Film via Electrophoretic Deposition for Temperature Sensing.

    Science.gov (United States)

    Feng, Ji-Fei; Gao, Shui-Ying; Shi, Jianlin; Liu, Tian-Fu; Cao, Rong

    2018-03-05

    Temperature plays a crucial role in both scientific research and industry. However, traditional temperature sensors, such as liquid-filled thermometers, thermocouples, and transistors, require contact to obtain heat equilibrium between the probe and the samples during the measurement. In addition, traditional temperature sensors have limitations when being used to detect the temperature change of fast-moving samples at smaller scales. Herein, the carbon quantum dots (C-QDs) functionalized metal-organic framework (MOF) composite film, a novel contactless solid optical thermometer, has been prepared via electrophoretic deposition (EPD). Instead of terephthalic acid (H 2 BDC), 1',2',4',5'-benzenetetracarboxylic (H 4 BTEC) acid was employed to construct a UiO-66 framework to present two uncoordinated carboxylic groups decorated on the pore surface. The uncoordinated carboxylic groups can generate negative charges, which facilitates the deposition of film on the positive electrode during the EPD process. Moreover, UiO-66-(COOH) 2 MOFs can absorb C-QDs from the solution and prevent C-QDs from aggregating, and the well-dispersed C-QDs impart fluorescence characteristics to composites. As-synthesized composite film was successfully used to detect temperature change in the range of 97-297 K with a relative sensitivity up to 1.3% K -1 at 297 K.

  8. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  9. Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

    Science.gov (United States)

    Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.

    2018-06-01

    As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

  10. Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles

    Science.gov (United States)

    Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2018-02-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.

  11. Sensing the water content of honey from temperature-dependent electrical conductivity

    International Nuclear Information System (INIS)

    Guo, Wenchuan; Liu, Yi; Zhu, Xinhua; Zhuang, Hong

    2011-01-01

    In order to predict the water content in honey, electrical conductivity was measured on blossom honey types milk-vetch, jujube and yellow-locust with the water content of 18–37% between 5 and 40 °C. The regression models of electrical conductivity were developed as functions of water content and temperature. The results showed that increases in either water content or temperature resulted in an increase in the electrical conductivity of honey with greater changes at higher water content and/or higher temperature. The linear terms of water content and temperature, a quadratic term of water content, and the interaction effect of water content and temperature had significant influence on the electrical conductivity of honey (p < 0.0001). Regardless of blossom honey type, the linear coefficient of the determination of measured and calculated electrical conductivities was 0.998 and the range error ratio was larger than 100. These results suggest that the electrical conductivity of honey might be used to develop a detector for rapidly predicting the water content in blossom honey

  12. The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water.

    Science.gov (United States)

    Heath, Charles; Myers, Matthew; Pejcic, Bobby

    2017-12-19

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using a polymer coated internal reflection element/waveguide is an established sensor platform for the detection of a range of organic and hydrocarbon molecules dissolved in water. The polymer coating serves two purposes: to concentrate hydrocarbons from the aqueous phase and to exclude water along with other interfering molecules from the surface of the internal reflection element. Crucial to reliable quantification and analytical performance is the calibration of the ATR-FTIR sensor which is commonly performed in water under mild ambient conditions (i.e., 25 °C and 1 atm). However, there is a pressing need to monitor environmental and industrial processes/events that may occur at high pressures and temperatures where this calibration approach is unsuitable. Using a ruggedized optical fiber probe with a diamond-based ATR, we have conducted mid-infrared sensor experiments to understand the influence of high pressure (up to 207 bar) and temperature (up to 80 °C) on the detection of toluene and naphthalene dissolved in water. Using a poly(isobutylene) film, we have shown that the IR spectroscopic response is relatively unaffected by changes in pressure; however, a diminished response was observed with increasing temperature. We reveal that changes in the refractive index of the polymer film with temperature have only a minor effect on sensitivity. A more plausible explanation for the observed significant change in sensor response with temperature is that the partitioning process is exothermic and becomes less favorable with increasing temperature. This Article shows that the sensitivity is relatively invariant to pressure; however, the thermal variations are significant and need to be considered when quantifying the concentration of hydrocarbons in water.

  13. Characterization of thick and thin film SiCN for pressure sensing at high temperatures.

    Science.gov (United States)

    Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B

    2010-01-01

    Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40-60 μm) and thick (about 2-3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  14. Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures

    Directory of Open Access Journals (Sweden)

    Rama B. Bhat

    2010-02-01

    Full Text Available Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA, thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 µm and thick (about 2–3 mm films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  15. Effect of Firing Temperature on Humidity Sensing Properties of SnO2 Thick Film Resistor

    Directory of Open Access Journals (Sweden)

    R. Y. Borse

    2009-12-01

    Full Text Available Thick films of SnO2 were prepared using standard screen printing technique. The films were dried and fired at different temperatures. Tin-oxide is an n-type wide band gap semiconductor, whose resistance is described as a function of relative humidity. An increasing firing temperature on SnO2 film increases the sensitivity to humidity. The parameters such as sensitivity, response times and hysteresis of the SnO2 film sensors have been evaluated. The thick films were characterized by XRD, SEM and EDAX and grain size, composition of elements, relative phases are obtained.

  16. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  17. Cloud tolerance of remote sensing technologies to measure land surface temperature

    Science.gov (United States)

    Conventional means to estimate land surface temperature (LST) from space relies on the thermal infrared (TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave (MW) obse...

  18. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  19. Active Distribute Temperature Sensing to Estimate Vertical Water Content Variations in a Loamy-Sandy Soil

    Science.gov (United States)

    Ciocca, F.; Van De Giesen, N.; Assouline, S.; Huwald, H.; Hopmans, J. W.; Lunati, I.; Parlange, M. B.

    2011-12-01

    Optical fibers in combination with Raman scattering measurements (Distributed Temperature Sensor: DTS) have recently become more standard for the measurement of soil temperature. A recently developed technique to measure soil moisture called Active DTS (ADTS) is investigated in this study. ADTS consists of an application of a heat pulse for a fixed duration and power along the metal sheath covering the optical fiber placed in the soil. Soil moisture can be inferred from the increased temperature measured during the heating phase and the subsequent temperature decrease during the cooling phase. We assess this technique for a loamy-sandy soil as part of a field campaign that took place during the 2011 summer at EPFL. The measurements were taken within a weighing lysimeter (2.5 m depth and 1.2 m diameter) using an optical fiber arranged in 15 loops for a total measurement length of 52 m in the top 80 cm of the soil profile. Local soil moistures were simultaneously measured using capacity-based probes. Thermocouples, wrapped around the fiber, are used to account for the effects of the insulating cover surrounding the cable. Heat pulses of various duration and power have been applied for a range of soil moistures. Measurements were taken during periods of drainage and evaporation. The accuracy of the technique for the EPFL 2011 field campaign and the experiment are discussed and the soil moisture measurements are presented.

  20. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  1. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    Science.gov (United States)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  2. Exploring the relation between spatial configuration of buildings and remotely sensed temperatures

    Science.gov (United States)

    Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.

    2013-12-01

    While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures

  3. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing.

    Science.gov (United States)

    Duan, Li; Zhang, Peng; Tang, Ming; Wang, Ruoxu; Zhao, Zhiyong; Fu, Songnian; Gan, Lin; Zhu, Benpeng; Tong, Weijun; Liu, Deming; Shum, Perry Ping

    2016-09-05

    A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system's performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved.

  4. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    Science.gov (United States)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  5. Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure

    International Nuclear Information System (INIS)

    Wang Deng-Feng; Liang Ji-Ran; Li Chang-Qing; Yan Wen-Jun; Hu Ming

    2016-01-01

    In this work, we report an enhanced nitrogen dioxide (NO 2 ) gas sensor based on tungsten oxide (WO 3 ) nanowires/porous silicon (PS) decorated with gold (Au) nanoparticles. Au-loaded WO 3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy (HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO 3 nanowires. The effect of the Au nanoparticles on the NO 2 -sensing performance of WO 3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO 2 at room temperature (25 °C). It is found that the 10-Å Au-loaded WO 3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO 3 nanowires/porous silicon is also discussed. (paper)

  6. Ultra-fast and calibration-free temperature sensing in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S. M.; Nasir, Ehson F.; Farooq, Aamir

    2014-01-01

    A simultaneously time-resolved and calibration-free sensor has been demonstrated to measure temperature at the nanosecond timescale at repetition rates of 1.0 MHz. The sensor benefits from relying on a single laser, is intuitive and straightforward to implement, and can sweep across spectral ranges in excess of 1 cm-1. The sensor can fully resolve rovibrational features of the CO molecule, native to combustion environments, in the mid-infrared range near X = 4.85 μm at typical combustion temperatures (800-2500 K) and pressures (1-3 atm). All of this is possible through the exploitation of chirp in a quantum cascade laser, operating at a duty cycle of 50%, and by using high bandwidth (500 MHz) photodetection. Here, we showcase uncluttered, spectrally-pure Voigt profile fitting with accompanying peak SNRs of 150, resulting in a typical temperature precision of 0.9% (1u) at an effective time-resolution of 1.0 MHz. Our sensor is applicable to other species, and canbe integrated into commercial technologies.

  7. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  8. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  9. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  10. Ultra-fast and calibration-free temperature sensing in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S. M.

    2014-11-20

    A simultaneously time-resolved and calibration-free sensor has been demonstrated to measure temperature at the nanosecond timescale at repetition rates of 1.0 MHz. The sensor benefits from relying on a single laser, is intuitive and straightforward to implement, and can sweep across spectral ranges in excess of 1 cm-1. The sensor can fully resolve rovibrational features of the CO molecule, native to combustion environments, in the mid-infrared range near X = 4.85 μm at typical combustion temperatures (800-2500 K) and pressures (1-3 atm). All of this is possible through the exploitation of chirp in a quantum cascade laser, operating at a duty cycle of 50%, and by using high bandwidth (500 MHz) photodetection. Here, we showcase uncluttered, spectrally-pure Voigt profile fitting with accompanying peak SNRs of 150, resulting in a typical temperature precision of 0.9% (1u) at an effective time-resolution of 1.0 MHz. Our sensor is applicable to other species, and canbe integrated into commercial technologies.

  11. Remote Sensing of Coral Bleaching Using Temperature and Light: Progress towards an Operational Algorithm

    Directory of Open Access Journals (Sweden)

    William Skirving

    2017-12-01

    Full Text Available The National Oceanic and Atmospheric Administration’s Coral Reef Watch program developed and operates several global satellite products to monitor bleaching-level heat stress. While these products have a proven ability to predict the onset of most mass coral bleaching events, they occasionally miss events; inaccurately predict the severity of some mass coral bleaching events; or report false alarms. These products are based solely on temperature and yet coral bleaching is known to result from both temperature and light stress. This study presents a novel methodology (still under development, which combines temperature and light into a single measure of stress to predict the onset and severity of mass coral bleaching. We describe here the biological basis of the Light Stress Damage (LSD algorithm under development. Then by using empirical relationships derived in separate experiments conducted in mesocosm facilities in the Mexican Caribbean we parameterize the LSD algorithm and demonstrate that it is able to describe three past bleaching events from the Great Barrier Reef (GBR. For this limited example, the LSD algorithm was able to better predict differences in the severity of the three past GBR bleaching events, quantifying the contribution of light to reduce or exacerbate the impact of heat stress. The new Light Stress Damage algorithm we present here is potentially a significant step forward in the evolution of satellite-based bleaching products.

  12. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Science.gov (United States)

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.

    2013-12-01

    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  13. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing

    Science.gov (United States)

    Xiong, Yu Jiu; Zhao, Shao Hua; Tian, Fei; Qiu, Guo Yu

    2015-11-01

    An accurate estimation of evapotranspiration (ET) is crucial to better understand the water budget and improve related studies. Satellite remote sensing provides an unprecedented opportunity to map the spatiotemporal distribution of ET. However, ET values from barren or sparsely vegetated areas in arid regions are often assumed to be zero in typical ET products because of their low values. In addition, separating ET into soil evaporation (Es) and vegetation transpiration (Ec) is difficult. To address these challenges, we developed an ET product (MOD3T) based on a three-temperature model and thermal remote sensing, specifically Moderate Resolution Imaging Spectroradiometer (MODIS) data. MOD3T has a spatial resolution of 1 km and a temporal resolution of 8 days. All input parameters except air temperature were obtained from MODIS datasets. Validation in two adjacent arid river basins in northwestern China showed that the mean absolute errors (mean absolute percent errors) between the MOD3T and flux tower ET were 0.71 mm d-1 (18.5%) and 0.16 mm d-1 (24.9%) for a densely vegetated area and sparsely vegetated sandy desert, respectively. The error between the MOD3T and water balance ET was 24 mm y-1 (8.1%). The Ec/ET or Es/ET of MOD3T was comparable to the observed stable oxygen and hydrogen isotopes. Unlike the MODIS ET (MOD16), MOD3T could not provide continuous ET values (as 70% of the MOD16 area lacked data) but exhibited relatively low uncertainty, particularly in cold seasons. Therefore, MOD3T can provide ET, Es and Ec estimates for arid regions within acceptable ranges.

  14. Rhetoric and analogies

    OpenAIRE

    Aragonès, Enriqueta; Gilboa, Itzhak; Postlewaite, Andrew; Schmeidler, David; Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica; Universitat Autònoma de Barcelona. Institut d'Anàlisi Econòmica

    2013-01-01

    The art of rhetoric may be defined as changing other people's minds (opinions, beliefs) without providing them new information. One tech- nique heavily used by rhetoric employs analogies. Using analogies, one may draw the listener's attention to similarities between cases and to re-organize existing information in a way that highlights certain reg- ularities. In this paper we offer two models of analogies, discuss their theoretical equivalence, and show that finding good analogies is a com- p...

  15. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  16. Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    We report the fabrication and characterization of a polycarbonate (PC) microstructured polymer optical fiber (mPOF) Bragg grating (FBG) humidity sensor that can operate beyond 100°C. The PC preform, from which the fiber was drawn, was produced using an improved casting approach to reduce...... the attenuation of the fiber. The fiber loss was found reduced by a factor of two compared to the latest reported PC mPOF [20], holding the low loss record in PC based fibers. PC mPOFBG was characterized to humidity and temperature, and a relative humidity (RH) sensitivity of 7.31± 0.13 pm/% RH in the range 10...

  17. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    International Nuclear Information System (INIS)

    Pal, A M; Bhattacharya, S; Biswas, S; Basu, S; Pal, R

    2014-01-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere

  18. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  19. Characterizing submarine ground‐water discharge using fiber‐optic distributed temperature sensing and marine electrical resistivity

    Science.gov (United States)

    Henderson, Rory; Day-Lewis, Frederick D.; Lane, John W.; Harvey, Charles F.; Liu, Lanbo

    2008-01-01

    Submarine ground‐water discharge (SGD) contributes important solute fluxes to coastal waters. Pollutants are transported to coastal ecosystems by SGD at spatially and temporally variable rates. New approaches are needed to characterize the effects of storm‐event, tidal, and seasonal forcing on SGD. Here, we evaluate the utility of two geophysical methods‐fiber‐optic distributed temperature sensing (FO‐DTS) and marine electrical resistivity (MER)—for observing the spatial and temporal variations in SGD and the configuration of the freshwater/saltwater interface within submarine sediments. FO‐DTS and MER cables were permanently installed into the estuary floor on a transect extending 50 meters offshore under Waquoit Bay, Massachusetts, at the Waquoit Bay National Estuarine Research Reserve, and nearly continuous data were collected for 4 weeks in summer 2007. Initial results indicate that the methods are extremely useful for monitoring changes in the complex estuarine environment. The FO‐DTS produced time‐series data at approximately 1‐meter increments along the length of the fiber at approximately 29‐second intervals. The temperature time‐series data show that the temperature at near‐shore locations appears to be dominated by a semi‐diurnal (tidal) signal, whereas the temperature at off‐shore locations is dominated by a diurnal signal (day/night heating and cooling). Dipole‐dipole MER surveys were completed about every 50 minutes, allowing for production of high‐resolution time‐lapse tomograms, which provide insight into the variations of the subsurface freshwater/saltwater interface. Preliminary results from the MER data show a high‐resistivity zone near the shore at low tide, indicative of SGD, and consistent with the FO‐DTS results.

  20. Laser hybrid brazing of oxide ceramics for high temperature gas sensing applications in (V)HTRS

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Boerner, F.D.; Lippmann, W.; Hurtado, A. [Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2009-07-01

    It has been shown that the use of halogen lamps to assist laser brazing reduces total energy and joining time. For parts with specific geometries not suitable for a rotation process, an assistive heating with halogen lamps might be even more beneficial, to alleviate temperature gradients and transients. Forsterite-based ceramics are highly suitable as a joining partner for ZrO{sub 2}, especially in a laser brazing process based on volume heating. By adding Fe{sub 2}O{sub 3} to the raw powder mixture, the absorptivity of the forsterite ceramic can be tuned with an optimum at 0.1 wt.% Fe, reducing the necessary laser energy input even more. (orig.)

  1. Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer

    Science.gov (United States)

    Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An

    2018-05-01

    A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.

  2. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    Science.gov (United States)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  3. Etching twin core fiber for the temperature-independent refractive index sensing

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Pei, Li

    2018-04-01

    We proposed an ultra-compact chemically etched twin core fiber (TCF) based optic refractive index (RI) sensor, in which the etched fiber was fabricated by immersing in an aqueous solution of hydrofluoric acid (HF) to etch the cladding. Due to the multipath evolutions of light during the TCF, the mode induced interference pattern can be used for measurement. Numerical simulations were performed, demonstrating that only the cladding mode strongly interacts with the surrounding media, and the higher cladding modes will be more sensitive to external medium. In the experiment demonstration, the RI response characteristics of the sensor were investigated, which shows a relatively high RI sensitivity and a much low temperature cross-sensitivity with about 1.06 × 10-6 RIU °C-1. Due to low cost and easy fabrication, the sensor can be a suitable candidate in the biochemical field.

  4. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ramesh, E-mail: rameshphysicsdu@gmail.com; Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2016-05-06

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm{sup −1} respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp{sup 2} hybridisation of carbon atoms at 1560 cm{sup −1}. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  5. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    Science.gov (United States)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  6. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  7. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  8. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    Science.gov (United States)

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  9. Low Incidence of Esophageal Lesions After Pulmonary Vein Isolation Using Contact-Force Sensing Catheter Without Esophageal Temperature Probe.

    Science.gov (United States)

    Blockhaus, Christian; Müller, Patrick; Vom Dahl, Stephan; Leonhardt, Silke; Häussinger, Dieter; Gerguri, Shqipe; Clasen, Lucas; Schmidt, Jan; Kurt, Muhammed; Brinkmeyer, Christoph; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2017-12-12

    Pulmonary vein isolation (PVI) is a cornerstone therapy for atrial fibrillation (AF). Although severe complications are rather rare, the development of an atrio-esophageal fistula (AEF) is a fatal complication with a very high mortality even after surgical treatment. The use of esophageal temperature probes (ETP) during PVI may protect the esophagus but it is still under debate since the ETP may also lead to esophageal lesions. The aim of this study was to evaluate the clinical safety of PVI using contact-force (CF) sensing catheter without esophageal temperature monitoring.We investigated 70 consecutive patients who underwent point-by-point PVI without usage of ETP and who underwent esophago-gastro-duodenoscopy (EGD) with detailed evaluation of the esophagus after the index PVI procedure. The operator attempted to keep CF within the 10-40 g range. The incidences of esophageal lesions (EDEL) detected by endoscopy were then analyzed.Two of 70 patients (2.9%) showed EDEL consisting of one longitudinal ulcer-like erythematous lesion with fibrin and a different one consisting of a round-shaped lesion surrounded by erythema and petechial hemorrhage. All EDEL healed within two weeks under high proton-pump inhibitor therapy without developing AEF as proven by a second EGD of the esophagus.Point-by-point PVI without usage of ETP showed a low incidence of EDEL (2.9%); atrio-esophageal fistula was absent. Further studies on the necessity of ETP under CF control are necessary.

  10. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  11. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  12. Remote sensing measurements of sea surface temperature as an indicator of Vibrio parahaemolyticus in oyster meat and human illnesses.

    Science.gov (United States)

    Konrad, Stephanie; Paduraru, Peggy; Romero-Barrios, Pablo; Henderson, Sarah B; Galanis, Eleni

    2017-08-31

    Vibrio parahaemolyticus (Vp) is a naturally occurring bacterium found in marine environments worldwide. It can cause gastrointestinal illness in humans, primarily through raw oyster consumption. Water temperatures, and potentially other environmental factors, play an important role in the growth and proliferation of Vp in the environment. Quantifying the relationships between environmental variables and indicators or incidence of Vp illness is valuable for public health surveillance to inform and enable suitable preventative measures. This study aimed to assess the relationship between environmental parameters and Vp in British Columbia (BC), Canada. The study used Vp counts in oyster meat from 2002-2015 and laboratory confirmed Vp illnesses from 2011-2015 for the province of BC. The data were matched to environmental parameters from publicly available sources, including remote sensing measurements of nighttime sea surface temperature (SST) obtained from satellite readings at a spatial resolution of 1 km. Using three separate models, this paper assessed the relationship between (1) daily SST and Vp counts in oyster meat, (2) weekly mean Vp counts in oysters and weekly Vp illnesses, and (3) weekly mean SST and weekly Vp illnesses. The effects of salinity and chlorophyll a were also evaluated. Linear regression was used to quantify the relationship between SST and Vp, and piecewise regression was used to identify SST thresholds of concern. A total of 2327 oyster samples and 293 laboratory confirmed illnesses were included. In model 1, both SST and salinity were significant predictors of log(Vp) counts in oyster meat. In model 2, the mean log(Vp) count in oyster meat was a significant predictor of Vp illnesses. In model 3, weekly mean SST was a significant predictor of weekly Vp illnesses. The piecewise regression models identified a SST threshold of approximately 14 o C for both model 1 and 3, indicating increased risk of Vp in oyster meat and Vp illnesses at higher

  13. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    Science.gov (United States)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  14. Characterizing surface temperature and clarity of Kuwait's seawaters using remotely sensed measurements and GIS analyses

    Science.gov (United States)

    Alsahli, Mohammad M. M.

    Kuwait sea surface temperature (SST) and water clarity are important water characteristics that influence the entire Kuwait coastal ecosystem. The spatial and temporal distributions of these important water characteristics should be well understood to obtain a better knowledge about this productive coastal environment. The aim of this project was therefore to study the spatial and temporal distributions of: Kuwait SST using Moderate Resolution Imaging Spectroradiometer (MODIS) images collected from January 2003 to July 2007; and Kuwait Secchi Disk Depth (SDD), a water clarity measure, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MODIS data collected from November 1998 to October 2004 and January 2003 to June 2007, respectively. Kuwait SST was modeled based on the linear relationship between level 2 MODIS SST data and in situ SST data. MODIS SST images showed a significant relationship with in situ SST data ( r2= 0.98, n = 118, RMSE = 0.7°C). Kuwait SST images derived from MODIS data exhibited three spatial patterns of Kuwait SST across the year that were mainly attributed to the northwestern counterclockwise water circulation of the Arabian Gulf, and wind direction and intensity. The temporal variation of Kuwait SST was greatly influenced by the seasonal variation of solar intensity and air temperatures. Kuwait SDD was measured through two steps: first, computing the diffuse light attenuation coefficient at 490 nm, Kd(490), and 488 nm, Kd(488), derived from SeaWiFS and MODIS, respectively, using a semi-analytical algorithm; second, establishing two SDD models based on the empirical relationship of Kd(490) and Kd(488) with in situ SDD data. Kd(490) and Kd(488) showed a significant relationship with in situ SDD data ( r2= 0.67 and r2= 0.68, respectively). Kuwait SDD images showed distinct spatial and temporal patterns of Kuwait water clarity that were mainly attributed to three factors: the Shatt Al-Arab discharge, water circulation, and coastal

  15. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing.

    Science.gov (United States)

    Wang, Ziying; Zhang, Tong; Zhao, Chen; Han, Tianyi; Fei, Teng; Liu, Sen; Lu, Geyu

    2018-03-15

    In this paper, we demonstrate room-temperature NO 2 gas sensors using Pd nanoparticles (NPs) and SnO 2 NPs decorated reduced graphene oxide (Pd-SnO 2 -RGO) hybrids as sensing materials. It is found that ultrafine Pd NPs and SnO 2 NPs with particle sizes of 3-5 nm are attached to RGO nanosheets. Compared to SnO 2 -RGO hybrids, the sensor based on Pd-SnO 2 -RGO hybrids exhibited higher sensitivity at room temperature, where the response to 1 ppm NO 2 was 3.92 with the response time and recovery time being 13 s and 105 s. Moreover, such sensor exhibited excellent selectivity, and low detection limit (50 ppb). In addition to high transport capability of RGO as well as excellent NO 2 adsorption ability derived from ultrafine SnO 2 NPs and Pd NPs, the superior sensing performances of the hybrids were attributed to the synergetic effect of Pd NPs, SnO 2 NPs and RGO. Particularly, the excellent sensing performances were related to high conductivity and catalytic activity of Pd NPs. Finally, the sensing mechanism for NO 2 sensing and the reason for enhanced sensing performances by introduction of Pd NPs are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William [General Electric Company, Niskayuna, NY (United States)

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  17. Benefits of Silica Core-Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles.

    Science.gov (United States)

    Savchuk, Oleksandr A; Carvajal, Joan J; Cascales, C; Aguiló, M; Díaz, F

    2016-03-23

    We studied the temperature-dependent luminescence of GdVO4 nanoparticles co-doped with Er(3+) (1 mol %) and Yb(3+) (20 mol %) and determined their thermal sensing properties through the fluorescence intensity ratio (FIR) technique. We also analyzed how a silica coating, in a core-shell structure, affects the temperature sensing properties of this material. Spectra were recorded in the range of biological temperatures (298-343 K). The absolute sensitivity for temperature determination calculated for the core-shell nanoparticles is double the one calculated for bare nanoparticles, achieving a thermal resolution of 0.4 K. Moreover, silica-coated nanoparticles show good dispersibility in different solvents, such as water, DMSO, and methanol. Also, they show good luminescence stability without interactions with solvent molecules. Furthermore, we also observed that the silica coating shell prevents progressive heating of the nanoparticles during prolonged excitation periods with the 980 nm laser, preventing effects on their thermometric applications.

  18. Detecting analogies unconsciously

    Directory of Open Access Journals (Sweden)

    Thomas Peter Reber

    2014-01-01

    Full Text Available Analogies may arise from the conscious detection of similarities between a present and a past situation. In this functional magnetic resonance imaging study, we tested whether young volunteers would detect analogies unconsciously between a current supraliminal (visible and a past subliminal (invisible situation. The subliminal encoding of the past situation precludes awareness of analogy detection in the current situation. First, participants encoded subliminal pairs of unrelated words in either one or nine encoding trials. Later, they judged the semantic fit of supraliminally presented new words that either retained a previously encoded semantic relation (‘analog’ or not (‘broken analog’. Words in analogs versus broken analogs were judged closer semantically, which reflects unconscious analogy detection. Hippocampal activity associated with subliminal encoding correlated with the behavioral measure of unconscious analogy detection. Analogs versus broken analogs were processed with reduced prefrontal but enhanced medial temporal activity. We conclude that analogous episodes can be detected even unconsciously drawing on the episodic memory network.

  19. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature

    Science.gov (United States)

    Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen

    2018-05-01

    A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.

  20. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  1. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  2. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  3. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  4. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar

    2008-05-01

    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  5. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  6. A Theoretical Investigation of the Plausibility of Reactions Between Ammonia and Carbonyl Species (Formaldehyde, Acetaldehyde, and Acetone) in Interstellar Ice Analogs at Ultracold Temperatures

    Science.gov (United States)

    Chen, Lina; Woon, David E.

    2011-01-01

    We have reexamined the reaction between formaldehyde and ammonia, which was previously studied by us and other workers in modestly sized cluster calculations. Larger model systems with up to 12H2O were employed, and reactions of two more carbonyl species, acetaldehyde and acetone, were also carried out. Calculations were performed at the B3LYP/6-31+G** level with bulk solvent effects treated with a polarizable continuum model; limited MP2/6-31+G** calculations were also performed. We found that while the barrier for the concerted proton relay mechanism described in previous work remains modest, it is still prohibitively high for the reaction to occur under the ultracold conditions that prevail in dense interstellar clouds. However, a new pathway emerged in more realistic clusters that involves at least one barrierless step for two of the carbonyl species considered here: ammonia reacts with formaldehyde and acetaldehyde to form a partial charge transfer species in small clusters (4H2O) and a protonated hydroxyamino intermediate species in large clusters (9H2O, 12H2O); modest barriers that decrease sharply with cluster size are found for the analogous processes for the acetone-NH3 reaction. Furthermore, if a second ammonia replaces one of the water molecules in calculations in the 9H2O clusters, deprotonation can occur to yield the same neutral hydroxyamino species that is formed via the original concerted proton relay mechanism. In at least one position, deprotonation is barrierless when zero-point energy is included. In addition to describing the structures and energetics of the reactions between formaldehyde, acetaldehyde, and acetone with ammonia, we report spectroscopic predictions of the observable vibrational features that are expected to be present in ice mixtures of different composition.

  7. Optical analog transmission device

    International Nuclear Information System (INIS)

    Ikawa, Shinji.

    1994-01-01

    The present invention concerns a device such as electro-optical conversion elements, optoelectric-electric elements and optical transmission channel, not undergoing deleterious effects on the efficiency of conversion and transmission due to temperature, and aging change. That is, a sine wave superposing means superposes, on a detector signal to be transmitted, a sine-wave signal having a predetermined amplitude and at a frequency lower than that of the detector signal. An optoelectric conversion means converts the electric signal as the signal of the sine-wave signal superposing means into an optical signal and outputs the same to an optical transmitting channel. The optoelectric conversion means converts the transmitted signal to an electric signal. A discriminating means discriminates the electric signal into a detector signal and a sine-wave signal. A calculating means calculates an optical transmitting efficiency of the transmitting channel based on the amplitude of the discriminated sine-wave signal. A processing means compensates an amplitude value of the detector signals discriminated by the discriminating means based on the optical transmission efficiency. As a result, an optical analog transmission device can be attained, which conducts optical transmission at a high accuracy without undergoing the defective effects of the optical transmission efficiency. (I.S.)

  8. Challenges in Using Analogies

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same…

  9. Hydraulic Capacitor Analogy

    Science.gov (United States)

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  10. Optical analogy. Synthesis report

    International Nuclear Information System (INIS)

    1965-01-01

    The authors report the study of conditions under which light attenuation (reflection, diffusion, absorption) and the attenuation of some radiations (notably thermal neutrons) can be described with analogical calculations. The analogy between light physical properties and neutron properties is not searched for, but the analogy between their attenuation characteristics. After having discussed this possible analogy, they propose a mathematical formulation of neutron and optical phenomena which could theoretically justify the optical analogy. The second part reports a more practical study of optics problems such as the study of simple optics materials and illumination measurements, or more precisely the study of angular distributions of optical reflections, a determination of such angular distributions, and an experimental determination of the albedo

  11. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Science.gov (United States)

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  12. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    International Nuclear Information System (INIS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-01-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 µm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P_1_1, P_1_2, P_2_2, P_3_3, P_4_3 and P_4_4). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path. - Highlights: • Single-scattering properties of ice crystals are computed from 1 to 874 GHz. • Ice refractive index temperature dependence is considered at 160, 200, 230 and 270 K. • Potential applications of the database to microwave remote sensing are illustrated. • Ignoring temperature dependence of ice refractive index can lead to 5 K difference in IWP retrieval

  13. Self-sensing of deflection, force, and temperature for joule-heated twisted and coiled polymer muscles via electrical impedance

    NARCIS (Netherlands)

    van der Weijde, J.O.; Smit (student), B.; Fritschi, M.; van de Kamp, C.; Vallery, H.

    2017-01-01

    The recently introduced twisted and coiled polymer muscle is an inexpensive and lightweight compliant actuator. Incorporation of themuscle in applications that rely on feedback creates the need for deflection and force sensing. In this paper, we explore a sensing principle that does not require

  14. Temperature dependence of twinning stress – analogy between Cu–Ni–Al and Ni–Mn–Ga shape memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Vronka, Marek; Seiner, Hanuš; Heczko, Oleg

    2017-01-01

    Roč. 97, č. 18 (2017), s. 1479-1497 ISSN 1478-6435 R&D Projects: GA ČR GB14-36566G; GA ČR GA15-00262S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : SMA * single crystal * twinning * martensite * twinning stress * temperature dependence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.505, year: 2016

  15. Confronting Conceptual Challenges in Thermodynamics by Use of Self-Generated Analogies

    Science.gov (United States)

    Haglund, Jesper; Jeppsson, Fredrik

    2014-07-01

    Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated analogies to make sense of two thermodynamic processes. The participants (N = 8) were preservice physics teacher students at the fourth year of the teacher education program. The students experienced challenges in accounting for the constant entropy in reversible, adiabatic expansion of an ideal gas and the constant temperature in free, adiabatic expansion of an ideal gas. These challenges were found to be grounded in the students' intuitive understanding of the phenomena. In order to come to terms with the constant entropy in the first process, the students developed idiosyncratic explanations, but these could by properly adjusted given suitable scaffolding. In contrast, the students by themselves managed to make sense of the constant temperature in free expansion, by use of microscopic explanatory models. As a conclusion, self-generated analogies were found to provide a useful approach to identifying challenges to understanding among students, but also for the students to come to terms with these challenges. The results are discussed against a background of different perspectives on the issue of conceptual change in science education.

  16. Remote sensing technology: symposium proceedings

    International Nuclear Information System (INIS)

    1985-01-01

    Papers were presented in four subject areas: applications of remote sensing; data analysis, digital and analog; acquisition systems; and general. Abstracts of individual items from the conference were prepared separately for the data base

  17. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  18. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.

    Science.gov (United States)

    Hsiao, Wesley Wei-Wen; Hui, Yuen Yung; Tsai, Pei-Chang; Chang, Huan-Cheng

    2016-03-15

    ±1 sublevels. Interestingly, the transitions between the spin sublevels can be optically detected and manipulated by microwave radiation, a technique known as optically detected magnetic resonance (ODMR). In addition, the electron spins have an exceptionally long coherence time, making FND useful for ultrasensitive detection of temperature at the nanoscale. Pump-probe-type nanothermometry with a temporal resolution of better than 10 μs has been achieved with a three-point sampling method. Gold/diamond nanohybrids have also been developed for highly localized hyperthermia applications. This Account provides a summary of the recent advances in FND-enabled technologies with a special focus on long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. These emerging and multifaceted technologies are in synchronicity with modern imaging modalities.

  19. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    DEFF Research Database (Denmark)

    Sebok, Eva; Duque, C; Engesgaard, Peter

    2015-01-01

    , maximum and mean streambed temperatures as well as the daily amplitude and standard deviation of temperatures. The identified potential high-discharge areas were mostly located near the channel banks, also showing temporal variability because of the scouring and redistribution of streambed sediments......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... variability in streambed temperatures between October 2011 and January 2012. Detailed monthly streambed elevation surveys were carried out to monitor the position of the fibre optic cable relative to the streambed and to quantify the effect of sedimentation processes on streambed temperatures. Based...

  20. Meat analog: a review.

    Science.gov (United States)

    Malav, O P; Talukder, S; Gokulakrishnan, P; Chand, S

    2015-01-01

    The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers.

  1. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  2. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  3. Concept Confusion and Concept Discernment in Basic Magnetism Using Analogical Reasoning

    Science.gov (United States)

    Lemmer, Miriam; Morabe, Olebogeng Nicodimus

    2017-01-01

    Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the…

  4. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  5. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  6. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  7. Effects of Mars Regolith Analogs, UVC radiation, Temperature, Pressure, and pH on the Growth and Survivability of Methanogenic Archaea and Stable Carbon Isotope Fractionation: Implications for Surface and Subsurface Life on Mars

    Science.gov (United States)

    Sinha, Navita

    Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface

  8. Catestatin, vasostatin, cortisol, temperature, heart rate, respiratory rate, scores of the short form of the Glasgow composite measure pain scale and visual analog scale for stress and pain behavior in dogs before and after ovariohysterectomy.

    Science.gov (United States)

    Srithunyarat, Thanikul; Höglund, Odd V; Hagman, Ragnvi; Olsson, Ulf; Stridsberg, Mats; Lagerstedt, Anne-Sofie; Pettersson, Ann

    2016-08-02

    The stress reaction induced by surgery and associated pain may be detrimental for patient recovery and should be minimized. The neuropeptide chromogranin A (CGA) has shown promise as a sensitive biomarker for stress in humans. Little is known about CGA and its derived peptides, catestatin (CST) and vasostatin (VS), in dogs undergoing surgery. The objectives of this study were to investigate and compare concentrations of CGA epitopes CST and VS, cortisol, body temperature, heart rate, respiratory rate, scores of the short form of the Glasgow composite measure pain scale (CMPS-SF) and visual analog scales (VAS) for stress and pain behavior in dogs before and after ovariohysterectomy. Thirty healthy privately owned female dogs admitted for elective ovariohysterectomy were included. Physical examination, CMPS-SF, pain behavior VAS, and stress behavior VAS were recorded and saliva and blood samples were collected before surgery, 3 h after extubation, and once at recall 7-15 days after surgery. Dogs were premedicated with morphine and received carprofen as analgesia for 7 days during the postoperative period. At 3 h after extubation, CMPS-SF and pain behavior VAS scores had increased (p stress behavior VAS scores, temperature, respiratory rate (p stress and pain changed in dogs subjected to ovariohysterectomy. To further evaluate CST and VS usefulness as pain biomarkers, studies on dogs in acute painful situations are warranted.

  9. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  10. Griffith Saponite as an Analog for Clay Minerals at Yellowknife Bay in Gale Crater, Mars: A Marker for Low-temperature Hydrothermal Processes

    Science.gov (United States)

    Morris, R.V.; Treiman, A. H.; Agresti, D. G.; Graff, T. G.; Achilles, C. N.; Rampe, E. B.; Bristow, T. F.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; hide

    2014-01-01

    The CheMin X-ray diffraction (XRD) instrument onboard the Mars Science Laboratory rover Curiosity in Gale Crater, Mars, discovered smectite in drill fines of the Sheepbed mudstone at Yellowknife Bay (YNB). The mudstone has a basaltic composition, and the XRD powder diffraction pattern shows smectite 02l diffraction bands peaking at 4.59 A for targets John Klein and Cumberland, consistent with tri-octahedral smectites (saponite). From thermal analysis, the saponite abundance is 20 wt. %. Among terrestrial analogues we have studied, ferrian saponite from Griffith Park (Los Angeles, CA) gives the best match to the position of the 02l diffraction band of YNB saponites. Here we describe iron-rich saponites from a terrestrial perspective, with a focus on Griffith saponite, and discuss their implications for the mineralogy of Sheepbed saponite and its formation pathways. Iron-rich saponite: Iron-rich saponite on the Earth is recognized as a low-temperature (oxidize on the timescale of days when removed from their natural environment and not protected from oxidation. The Griffith saponite is Mg-rich ferrian saponite, and sample AMNH 89172 has an 02l spacing of 4.59 A (same as the Sheepbed saponites) and Fe3+/?Fe = 0.64 [3]. This similarity suggests that Sheepbed saponites are ferrian (incompletely oxidized ferrosaponite). More oxidized Griffith saponites (Fe3+/?Fe > 0.90) have somewhat smaller 02l d-spacings and also show Mossbauer evidence for an XRD amorphous Fe-bearing phase (e.g., ferrihydrite, hisingerite, superparamagnetic ferric oxides, etc.). The Griffith saponite occurs as vesicle fills, as replacements of olivine, and as replacements of mesostasis (basaltic glass). Similar occurrence modes are reported elsewhere. Hisingerite has been proposed by [13] as the alteration product of ferrian saponite whose precursor by oxidation was ferrosaponite.

  11. Reynolds analogy for the Rayleigh problem at various flow modes.

    Science.gov (United States)

    Abramov, A A; Butkovskii, A V

    2016-07-01

    The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert numbers of the order of unity or less.

  12. Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

    Directory of Open Access Journals (Sweden)

    Sunghoon Park

    2014-10-01

    Full Text Available Reports of the gas sensing properties of ZnSe are few, presumably because of the decomposition and oxidation of ZnSe at high temperatures. In this study, ZnSe nanowires were synthesized by the thermal evaporation of ZnSe powders and the sensing performance of multiple-networked ZnSe nanowire sensors toward NO2 gas was examined. The results showed that ZnSe might be a promising gas sensor material if it is used at room temperature. The response of the ZnSe nanowires to 50 ppb–5 ppm NO2 at room temperature under dark and UV illumination conditions were 101–102% and 113–234%, respectively. The responses of the ZnSe nanowires to 5 ppm NO2 increased from 102 to 234% with increasing UV illumination intensity from 0 to 1.2 mW/cm2. The response of the ZnSe nanowires was stronger than or comparable to that of typical metal oxide semiconductors reported in the literature, which require higher NO2 concentrations and operate at higher temperatures. The origin of the enhanced response of the ZnSe nanowires towards NO2 under UV illumination is also discussed.

  13. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  14. CMOS analog circuit design

    CERN Document Server

    Allen, Phillip E

    1987-01-01

    This text presents the principles and techniques for designing analog circuits to be implemented in a CMOS technology. The level is appropriate for seniors and graduate students familiar with basic electronics, including biasing, modeling, circuit analysis, and some familiarity with frequency response. Students learn the methodology of analog integrated circuit design through a hierarchically-oriented approach to the subject that provides thorough background and practical guidance for designing CMOS analog circuits, including modeling, simulation, and testing. The authors' vast industrial experience and knowledge is reflected in the circuits, techniques, and principles presented. They even identify the many common pitfalls that lie in the path of the beginning designer--expert advice from veteran designers. The text mixes the academic and practical viewpoints in a treatment that is neither superficial nor overly detailed, providing the perfect balance.

  15. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  16. Digital and analog communication systems

    Science.gov (United States)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  17. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro; Pissadakis, Stavros; Das, Rabindra N.; Giannelis, Emmanuel P.; Anastasiadis, Spiros H.; Anglos, Demetrios

    2015-01-01

    O-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence

  18. Analogs for transuranic elements

    International Nuclear Information System (INIS)

    Weimer, W.C.; Laul, J.C.; Kutt, J.C.

    1981-01-01

    A combined theoretical and experimental approach is being used to estimate the long-term environmental and biogeochemical behaviors of selected transuranic elements. The objective of this research is to estimate the effect that long-term (hundreds of years) environmental weathering has on the behavior of the transuranic elements americium and curium. This is achieved by investigating the actual behavior of naturally occurring rare earth elements, especially neodymium, that serve as transuranic analogs. Determination of the analog element behavior provides data that can be used to estimate the ultimate availability to man of transuranic materials released into the environment

  19. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a

  20. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    Science.gov (United States)

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  1. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  2. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  3. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  4. Reasoning through Instructional Analogies

    Science.gov (United States)

    Kapon, Shulamit; diSessa, Andrea A.

    2012-01-01

    This article aims to account for students' assessments of the plausibility and applicability of analogical explanations, and individual differences in these assessments, by analyzing properties of students' underlying knowledge systems. We developed a model of explanation and change in explanation focusing on knowledge elements that provide a…

  5. The Paradox of Analogy

    Directory of Open Access Journals (Sweden)

    David Botting

    2012-03-01

    Full Text Available I will show that there is a type of analogical reasoning that instantiates a pattern of reasoning in confirmation theory that is considered at best paradoxical and at worst fatal to the entire syntactical approach to confirmation and explanation. However, I hope to elaborate conditions under which this is a sound (although not necessarily strong method of reasoning.

  6. Analogy, explanation, and proof

    Science.gov (United States)

    Hummel, John E.; Licato, John; Bringsjord, Selmer

    2014-01-01

    People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic) whose truth was not even known prior to the existence of the explanation (proof). What do the cognitive operations underlying the inference that the milk is sour have in common with the proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This seemingly small difference poses a challenge to the task of marshaling our understanding of analogical reasoning to understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence. PMID:25414655

  7. How Analogy Drives Physics

    International Nuclear Information System (INIS)

    Hofstadter, Doug

    2004-01-01

    Many new ideas in theoretical physics come from analogies to older ideas in physics. For instance, the abstract notion of 'isospin' (or isotopic spin) originated in the prior concept of 'spin' (quantized angular momentum); likewise, the concept of 'phonon' (quantum of sound, or quantized collective excitation of a crystal) was based on the prior concept of 'photon' (quantum of light, or quantized element of the electromagnetic field). But these two examples, far from being exceptions, in fact represent the bread and butter of inventive thinking in physics. In a nutshell, intraphysics analogy-making -- borrowing by analogy with something already known in another area of physics -- is central to the progress of physics. The aim of this talk is to reveal the pervasiveness -- indeed, the indispensability -- of this kind of semi-irrational, wholly intuitive type of thinking (as opposed to more deductive mathematical inference) in the mental activity known as 'doing physics'. Speculations as to why wild analogical leaps are so crucial to the act of discovery in physics (as opposed to other disciplines) will be offered.

  8. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  9. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  10. A wireless batteryless in vivo EKG and core body temperature sensing microsystem with 60 Hz suppression technique for untethered genetically engineered mice real-time monitoring.

    Science.gov (United States)

    Chaimanonart, Nattapon; Young, Darrin J

    2009-01-01

    A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.

  11. A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Le [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Jianhua [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Bai, Shouli, E-mail: baisl@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Luo, Ruixian [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Dianqing, E-mail: lidq@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Aifan [State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Chung Chiun [Department of Chemical and Biomolecule Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2017-03-31

    Highlights: • Rapid synthesis of PANI has novelty, which is different with that reported before. • Enhancement of gas sensing is attributed to synergistic effect and heterojunction. • PET film is used as substrate to obtain a flexible, wearable and smart sensor. • Room temperature operating of sensor leads to save energy, safety and long life. - Abstract: A network structure of PANI/SnO{sub 2} hybrid was synthesized by an in situ chemical oxidative polymerization using cheaper ZnO nanorods as sacrificial template and the hybrid was loaded on a flexible polyethylene terephthalate (PET) thin film to construct a flexible smart sensor. The sensor not only exhibits high sensitivity which is 20 times higher than that of pure PANI to 10 ppm triethylamine, good selectivity and linear response at room temperature but also has flexible, structure simple, economical and portable characters compared with recently existing sensors. Room temperature operating of the sensor is also particularly interesting, which leads to low power consumption, environmental safety and long life times. The improvement of sensing properties is attributed to the network structure of hybrid and formation of p-n heterojunction at the interface between the PANI and SnO{sub 2}. The research is expected to open a new window for development of a kind of wearable electronic devices based on the hybrid of conducting polymer and metal oxides.

  12. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    Science.gov (United States)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  13. Controllable synthesis of Co3O4/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH3 gas sensing at room temperature

    International Nuclear Information System (INIS)

    Lin, Yufei; Kan, Kan; Song, Wanzhen; Zhang, Guo; Dang, Lifang; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-01-01

    Graphical abstract: Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co 3 O 4 and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co 3 O 4 nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co 3 O 4 /polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co 3 O 4 nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH 3 ) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH 3 gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors

  14. One-step and low-temperature synthesis of iodine-doped graphene and its multifunctional applications for hydrogen evolution reaction and electrochemical sensing

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Zhao, Xiao-lin; Wei, Xiao-ping; Wang, Xin-wei; Tian, Ye

    2017-01-01

    Iodine (I) has emerged as a powerful heteroatom dopant for efficiently tailoring the electrocatalytic properties of graphene. However, the preparation methods of I-doped graphene (I-G) and its electrocatalysis applications remain largely unexplored. Herein, a one-step and low-temperature hydrothermal approach was developed for the successful synthesis of I-G with a high I-doping level (0.52 at.%). The resulting I-G was then applied as a metal-free catalyst for hydrogen evolution reaction (HER) and electrochemical sensing. It was shown that the I-G exhibited a dramatically enhanced HER activity compared to undoped graphene, attributed to the critical role of I-doping in offering large exposed active sites and high electron transfer capability. Furthermore, I-G also displayed attractive sensing performances for highly sensitive and selective detection of dopamine. These findings demonstrate that the hydrothermally synthesized I-G can be a promising electrocatalyst for multifunctional applications in water-splitting and electrochemical sensing.

  15. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  16. Mass Screening of Suspected Febrile Patients with Remote-sensing Infrared Thermography: Alarm Temperature and Optimal Distance

    Directory of Open Access Journals (Sweden)

    Ming-Fu Chiang

    2008-12-01

    Conclusion: The temperature readings obtained by IRT may be used as a proxy for core temperature. An effective IRT system with a strict operating protocol can be rapidly implemented at the entrance of a hospital during SARS or avian influenza epidemics.

  17. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon

    DEFF Research Database (Denmark)

    Hovland, Erlend Kjeldsberg; Dierssen, Heidi M.; Ferreira, Ana Sofia

    2013-01-01

    A more comprehensive understanding of how ocean temperatures influence coccolithophorid production of particulate inorganic carbon (PIC) will make it easier to constrain the effect of ocean acidification in the future. We studied the effect of temperature on Emiliania huxleyi PIC production...

  18. Seasonal variations in groundwater upwelling zones in a Danish lowland stream analyzed using Distributed Temperature Sensing (DTS)

    DEFF Research Database (Denmark)

    Matheswaran, Karthikeyan; Blemmer, Morten; Rosbjerg, Dan

    2014-01-01

    –night temperature difference were applied to three DTS datasets representing stream temperature responses to the variable meteorological and hydrological conditions prevailing in summer, winter and spring. The standard deviation criterion was useful to identify groundwater discharge zones in summer and spring......-term deployment covering variable meteorological and hydrological scenarios. Copyright © 2012 John Wiley & Sons, Ltd....

  19. Remote sensing of height of a fog layer and temperature of fog droplets using infrared thermometer and meteorological satellite

    International Nuclear Information System (INIS)

    Inoue, K.; Abe, H.

    1998-01-01

    To study meteorological characteristics of cool foggy easterly (Yamase), by which rice production in the Tohoku region was frequently damaged, we measured temperature of the fog layer resulted from Yamase, using infrared thermal indicator and meteorological satellite (HIMAWARI). These temperature data were compared with wet-bulb and dry-bulb temperatures obtained by a ventilated psychrometer. Generally, the temperature of fog droplets estimated from infrared thermal indicator was higher than the wet-bulb temperature by about 0∼1°C. This result indicates clearly that fog droplets were cooled by evaporation on the droplet surface. Under the conditions that the fog layer is homogeneous in liquid water content and fog droplet size distribution, the height of the fog layer can be estimated by the observation of visibility and relative solar radiation flux. (author)

  20. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  1. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-10-01

    Full Text Available High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID neural network (FCPIDNN and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  2. Greener process to synthesize water-soluble Mn.sup.2+-doped CdSSe(ZnS) core(shell) nanocrystals for ratiometric temperature sensing, nanocrystals, and methods implementing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw; Hsia, Chih-Hao

    2017-07-04

    Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility may be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.

  3. Optical and Structural Properties of Multi-wall-carbon-nanotube-modified ZnO Synthesized at Varying Substrate Temperatures for Highly Efficient Light Sensing Devices

    Directory of Open Access Journals (Sweden)

    Valentine Saasa

    2015-12-01

    Full Text Available Structural, optical and light detection properties on carbon-nanotube-modified ZnO thin films grown at various temperatures from room to 1173 K are investigated. The optical band gap values calculated from reflectivity data show a hump at a critical temperature range of 873-1073 K. Similar trends in surface roughness as well as crystallite size of the films are observed. These changes have been attributed to structural change from wurzite hexagonal to cubic carbon modified ZnO as also validated by x-ray diffraction, RBS and PIXE of these layers. UV and visible light detection properties show similar trends. It is demonstrated that the present films can sense both UV and visible light to a maximum response efficiency of 66 % which is much higher than the last reported efficiency 10 %. This high response is given predominantly by cubic crystallite rather than the wurzite hexagonal composites.

  4. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature.

    Science.gov (United States)

    Li, Lei; He, Shuijian; Liu, Minmin; Zhang, Chunmei; Chen, Wei

    2015-02-03

    A facile and cost-efficient hydrothermal and lyophilization two-step strategy has been developed to prepare three-dimensional (3D) SnO2/rGO composites as NO2 gas sensor. In the present study, two different metal salt precursors (Sn(2+) and Sn(4+)) were used to prepare the 3D porous composites. It was found that the products prepared from different tin salts exhibited different sensing performance for NO2 detection. The scanning electron microscopy and transmission electron microscopy characterizations clearly show the macroporous 3D hybrids, nanoporous structure of reduce graphene oxide (rGO), and the supported SnO2 nanocrystals with an average size of 2-7 nm. The specific surface area and porosity properties of the 3D mesoporous composites were analyzed by Braunauer-Emmett-Teller method. The results showed that the SnO2/rGO composite synthesized from Sn(4+) precursor (SnO2/rGO-4) has large surface area (441.9 m(2)/g), which is beneficial for its application as a gas sensing material. The gas sensing platform fabricated from the SnO2/rGO-4 composite exhibited a good linearity for NO2 detection, and the limit of detection was calculated to be as low as about 2 ppm at low temperature. The present work demonstrates that the 3D mesoporous SnO2/rGO composites with extremely large surface area and stable nanostructure are excellent candidate materials for gas sensing.

  5. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  6. Analog storage integrated circuit

    Science.gov (United States)

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  7. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  8. Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert.

    Science.gov (United States)

    Urqueta, Harry; Jódar, Jorge; Herrera, Christian; Wilke, Hans-G; Medina, Agustín; Urrutia, Javier; Custodio, Emilio; Rodríguez, Jazna

    2018-01-15

    Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Z uz ). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Z uz at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Z uz in the study zone, such a relationship cannot be applied to directly estimate ∆Z uz using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Component Processes in Analogical Reasoning

    Science.gov (United States)

    Sternberg, Robert J.

    1977-01-01

    Describes alternative theoretical positions regarding (a) the component information processes used in analogical reasoning and (b) strategies for combining these processes. Also presents results from three experiments on analogical reasoning. (Author/RK)

  10. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  11. Inductive, Analogical, and Communicative Generalization

    Directory of Open Access Journals (Sweden)

    Adri Smaling

    2003-03-01

    Full Text Available Three forms of inductive generalization - statistical generalization, variation-based generalization and theory-carried generalization - are insufficient concerning case-to-case generalization, which is a form of analogical generalization. The quality of case-to-case generalization needs to be reinforced by setting up explicit analogical argumentation. To evaluate analogical argumentation six criteria are discussed. Good analogical reasoning is an indispensable support to forms of communicative generalization - receptive and responsive (participative generalization — as well as exemplary generalization.

  12. Analogical Reasoning and Computer Programming.

    Science.gov (United States)

    Clement, Catherine A.; And Others

    1986-01-01

    A study of correlations between analogical reasoning and Logo programming mastery among female high school students related the results of pretests of analogical reasoning to posttests of programming mastery. A significant correlation was found between analogical reasoning and the ability to write subprocedures for use in several different…

  13. Distributed-Temperature-Sensing Using Optical Methods: A First Application in the Offshore Area of Campi Flegrei Caldera (Southern Italy for Volcano Monitoring

    Directory of Open Access Journals (Sweden)

    Stefano Carlino

    2016-08-01

    Full Text Available A temperature profile 2400 m along the off-shore active caldera of Campi Flegrei (Gulf of Pozzuoli was obtained by the installation of a permanent fiber-optic monitoring system within the framework of the Innovative Monitoring for Coastal and Marine Environment (MON.I.C.A project. The system consists of a submerged, reinforced, multi-fiber cable containing six single-mode telecom grade optical fibers that, exploiting the stimulated Brillouin scattering, provide distributed temperature sensing (DTS with 1 m of spatial resolution. The obtained data show that the offshore caldera, at least along the monitored profile, has many points of heat discharge associated with fluid emission. A loose association between the temperature profile and the main structural features of the offshore caldera was also evidenced by comparing DTS data with a high-resolution reflection seismic survey. This represents an important advancement in the monitoring of this high-risk volcanic area, since temperature variations are among the precursors of magma migration towards the surface and are also crucial data in the study of caldera dynamics. The adopted system can also be applied to many other calderas which are often partially or largely submerged and hence difficult to monitor.

  14. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    International Nuclear Information System (INIS)

    Bredl, Julian; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-01-01

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  15. Influence of heat treatment and indenter tip material on depth sensing hardness tests at high temperatures of fusion relevant materials

    Energy Technology Data Exchange (ETDEWEB)

    Bredl, Julian, E-mail: julian.bredl@kit.edu; Dany, Manuel; Albinski, Bartlomiej; Schneider, Hans-Christian; Kraft, Oliver

    2015-10-15

    Highlights: • Operation of a custom-made indentation device designed for test temperatures up to 650 °C and a remote handled operation in a Hot Cell. • Instrumented indentation and conventional hardness testing of unirradiated MANET II and EUROFER. • Comparison of diamond and sapphire as indenter tip materials. - Abstract: The instrumented indentation is a suitable method for testing of even small neutron-irradiated specimens. From the continuously recorded indentation depth and the indentation force, it is possible to deduce mechanical parameters of the tested material. In this paper, a brief description of the high temperature device is given and representative results are presented. In the study, unirradiated steels are investigated by instrumented indentation at temperatures up to 500 °C. It is shown that the hardness is highly depending on the testing-temperature and can be correlated to the results of conventional tensile testing experiments. A not negligible influence of the indenter tip material is observed. The results show the functionality of the high-temperature indentation device.

  16. Analogical scaffolding: Making meaning in physics through representation and analogy

    Science.gov (United States)

    Podolefsky, Noah Solomon

    This work reviews the literature on analogy, introduces a new model of analogy, and presents a series of experiments that test and confirm the utility of this model to describe and predict student learning in physics with analogy. Pilot studies demonstrate that representations (e.g., diagrams) can play a key role in students' use of analogy. A new model of analogy, Analogical Scaffolding, is developed to explain these initial empirical results. This model will be described in detail, and then applied to describe and predict the outcomes of further experiments. Two large-scale (N>100) studies will demonstrate that: (1) students taught with analogies, according to the Analogical Scaffolding model, outperform students taught without analogies on pre-post assessments focused on electromagnetic waves; (2) the representational forms used to teach with analogy can play a significant role in student learning, with students in one treatment group outperforming students in other treatment groups by factors of two or three. It will be demonstrated that Analogical Scaffolding can be used to predict these results, as well as finer-grained results such as the types of distracters students choose in different treatment groups, and to describe and analyze student reasoning in interviews. Abstraction in physics is reconsidered using Analogical Scaffolding. An operational definition of abstraction is developed within the Analogical Scaffolding framework and employed to explain (a) why physicists consider some ideas more abstract than others in physics, and (b) how students conceptions of these ideas can be modeled. This new approach to abstraction suggests novel approaches to curriculum design in physics using Analogical Scaffolding.

  17. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    International Nuclear Information System (INIS)

    Martín, J C; Berdejo, V; Vallés, J A; Sánchez-Martín, J A; Díez, A; Andrés, M V

    2013-01-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C −1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C −1 for 90 mW pump power and a 1 m methanol-filled SCF. (paper)

  18. Towards simultaneous calibration-free and ultra-fast sensing of temperature and species in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S.M.

    2014-07-02

    We report on exploiting the down-chirp phenomenon seen in quantum cascade lasers (QCLs), when modulated with long pulses, for the purpose of performing calibration-free and temporally resolved measurements. Intrapulse spectra of a native species (e.g., H2O), common to combustion environments, were generated near λ = 7.62 μm at repetition rates as high as 3.125 MHz. Two-line absorption spectroscopy was employed to infer calibration-free temperature from the chirp-induced intrapulse spectra. In this study, such temperature measurements were limited to rates of 250 kHz due to spectral distortion at higher repetition rates. We demonstrate the ease at which accurate temperatures and H2O compositions can be achieved using simple and compact QCLs operated in the intrapulse mode. The sensor is also applicable to other species, and has the potential to be integrated into commercial technologies. © 2014 The Combustion Institute.

  19. Towards simultaneous calibration-free and ultra-fast sensing of temperature and species in the intrapulse mode

    KAUST Repository

    Chrystie, Robin S.M.; Nasir, Ehson F.; Farooq, Aamir

    2014-01-01

    We report on exploiting the down-chirp phenomenon seen in quantum cascade lasers (QCLs), when modulated with long pulses, for the purpose of performing calibration-free and temporally resolved measurements. Intrapulse spectra of a native species (e.g., H2O), common to combustion environments, were generated near λ = 7.62 μm at repetition rates as high as 3.125 MHz. Two-line absorption spectroscopy was employed to infer calibration-free temperature from the chirp-induced intrapulse spectra. In this study, such temperature measurements were limited to rates of 250 kHz due to spectral distortion at higher repetition rates. We demonstrate the ease at which accurate temperatures and H2O compositions can be achieved using simple and compact QCLs operated in the intrapulse mode. The sensor is also applicable to other species, and has the potential to be integrated into commercial technologies. © 2014 The Combustion Institute.

  20. Urban Surface Temperature Reduction via the Urban Aerosol Direct Effect: A Remote Sensing and WRF Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Menglin Jin

    2010-01-01

    Full Text Available The aerosol direct effect, namely, scattering and absorption of sunlight in the atmosphere, can lower surface temperature by reducing surface insolation. By combining National Aeronautics and Space Administration (NASA AERONET (AErosol RObotic NETwork observations in large cities with Weather Research and Forecasting (WRF model simulations, we find that the aerosol direct reduction of surface insolation ranges from 40–100Wm−2, depending on aerosol loading and land-atmosphere conditions. To elucidate the maximum possible effect, values are calculated using a radiative transfer model based on the top quartile of the multiyear instantaneous aerosol data observed by AERONET sites. As a result, surface skin temperature can be reduced by 1°C-2°C while 2-m surface air temperature reductions are generally on the order of 0.5°C–1°C.

  1. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  2. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  3. Analog and digital dividers for mass spectrometers

    International Nuclear Information System (INIS)

    Osipov, A.K.

    1980-01-01

    Errors of four different types of stress dividers used in statical mass-spectrometers for determination of mass number by accelerating stress are analyzed. The simplest flowsheet of the analog divider comprises operation amplifier, in the chain of the negative feedback of which a multiplication device on differential cascade is switched- in. This analog divider has high sensitivity to temperature and high error approximately 5%. Application of the multiplier on differential cascade with normalization permits to increase temperature stability and decrease the error up to 1%. Another type of the analog divider is a logarithmic divider the error of which is constant within the whole operation range and it constitutes 1-5%. The digital divider with a digital-analog transformer (DAT) has the error of +-0.015% which is determined by the error of detectors and resistance of keys in the locked state. Considered is the design of a divider based on transformation of the inlet stress into the time period. The error of the divider is determined in this case mainly by stress of the zero shift of the operation amplifier (it should be compensated) and relative threshold stability of the comparator triggering which equals (2-3)x10 -4 . It is noted that the divider with DAT application and the divider with the use of stress transformation within the time period are most perspective ones for statical mass-spectrometers [ru

  4. Unravelling the dependence of hydrogen oxidation kinetics on the size of Pt nanoparticles by in operando nanoplasmonic temperature sensing

    DEFF Research Database (Denmark)

    Wettergren, Kristina; Hellman, Anders; Cavalca, Filippo Carlo

    2015-01-01

    We use a noninvasive nanoscale optical-temperature measurement method based on localized surface plasmon resonance to investigate the particle size-dependence of the hydrogen oxidation reaction kinetics on model supported Pt nanocatalysts at atmospheric pressure in operando. With decreasing average...

  5. Flexible camphor sulfonic acid-doped PAni/α-Fe{sub 2}O{sub 3} nanocomposite films and their room temperature ammonia sensing activity

    Energy Technology Data Exchange (ETDEWEB)

    Bandgar, D.K. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Navale, S.T. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Navale, Y.H.; Ingole, S.M. [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India); Stadler, F.J. [College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060 (China); Ramgir, N.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Babha Atomic Research Centre, Mumbai, M.S. (India); Mane, R.S. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Patil, V.B., E-mail: drvbpatil@gmail.com [Functional Materials Research Laboratory (FMRL), School of Physical Sciences, Solapur University, Solapur 413 255, M.S. (India)

    2017-03-01

    Composite nanostructures play a crucial role in gas sensing applications owing to their tunable properties and sizes. The main goal of this article is to prepare camphor sulfonic acid (10–50 wt%)-doped PAni/α-Fe{sub 2}O{sub 3} (PFC) composite nanostructured films on flexible polyethylene terephthalate (PET) substrate through in-situ polymerization process and study their gas sensing activity towards various gases. Structural and morphological measurements along with gas sensing properties in terms of selectivity, response, stability, and response-recovery times are investigated and reported. The gas selectivity tests of flexible PFC nanostructured composite films are performed towards different gases such as NO{sub 2}, NH{sub 3}, LPG, CH{sub 3}OH, and C{sub 2}H{sub 5}OH etc., wherein all the flexible PFC (10–50%) films demonstrate a superior selectivity towards NH{sub 3} gas even in the presence of other test gases. Among the different compositions, 30% PFC flexible film exhibits highest response of 72% to 100 ppm NH{sub 3} with good response time of 65 s. The systematic study between PFC flexible nanocomposite films and NH{sub 3} gas is conducted and reported. In addition, the interfacial charge transfer kinetics across NH{sub 3} and PFC film interface was investigated by means of impendence spectroscopy study. - Highlights: • Novel route of preparation of camphor sulfonic acid doped PAni-Fe{sub 2}O{sub 3} (PFC) flexible films. • XRD, FTIR, and RAMAN analysis confirms the formation of PFC composites. • PFC films are highly selective towards NH{sub 3} gas at room temperature. • PFC films able to detect as low as 2.5 ppm concentration of NH{sub 3} gas. • 30% PFC flexible film exhibits highest response of 72%–100 ppm NH{sub 3} gas with good response time of 65 s.

  6. Controllable synthesis of Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes nanocomposites for CO and NH{sub 3} gas sensing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yufei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Kan, Kan [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150000 (China); Song, Wanzhen; Zhang, Guo; Dang, Lifang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Xie, Yu [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Shen, Peikang [Department of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Li, E-mail: llwjjhlju@sina.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Keying, E-mail: shikeying2008@163.com [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2015-08-05

    Graphical abstract: Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully controllable synthesized via hydrothermal method at different temperature. The CoPCNTs sensors exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s, low detection limit of 5 ppm and 1 ppm at room temperature, respectively. The enhanced gas sensing could be ascribed to the synergistic effect between the tiny size of Co{sub 3}O{sub 4} and good conductivity of carbon nanotubes functionalized by polyethyleneimine. - Highlights: • The CNTs functionalized by polyethyleneimine provided a new functional structural. • The novel 1D structure could capture and migrate electrons quickly. • The Co{sub 3}O{sub 4} nanoparticles liked a snake winding around CNTs. • The gas sensor could work at room temperatures, which suit to practical application. - Abstract: A novel 1D Co{sub 3}O{sub 4}/polyethyleneimine-carbon nanotubes composites (CoPCNTs) have been successfully synthesized via hydrothermal method at different temperature. The CNTs functionalized by polyethyleneimine (PCNTs) provided a new material with new structural and functional properties. The PCNTs was used as loading guider and electron transfer path. The Co{sub 3}O{sub 4} nanoparticles (NPs) loaded on the PCNTs surface liked a snake winding around CNTs, and the size was about 5–10 nm. The gas sensing characteristics of the CoPCNTs sensors to carbon monoxide (CO) and ammonia (NH{sub 3}) were evaluated with different gas concentration. The CoPCNTs sensors grown at 160 °C exhibited the highest response to CO and NH{sub 3} gases with response time of 4 s and 4.3 s at room temperature (RT), respectively. Hence, the approach developed in this work would be important for the low-cost and large-scale production of the CoPCNTs materials with highly promising applications in gas sensors.

  7. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    Science.gov (United States)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  8. MOSFET analog memory circuit achieves long duration signal storage

    Science.gov (United States)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  9. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  10. Large-strain optical fiber sensing and real-time FEM updating of steel structures under the high temperature effect

    International Nuclear Information System (INIS)

    Huang, Ying; Fang, Xia; Xiao, Hai; Bevans, Wesley James; Chen, Genda; Zhou, Zhi

    2013-01-01

    Steel buildings are subjected to fire hazards during or immediately after a major earthquake. Under combined gravity and thermal loads, they have non-uniformly distributed stiffness and strength, and thus collapse progressively with large deformation. In this study, large-strain optical fiber sensors for high temperature applications and a temperature-dependent finite element model updating method are proposed for accurate prediction of structural behavior in real time. The optical fiber sensors can measure strains up to 10% at approximately 700 °C. Their measurements are in good agreement with those from strain gauges up to 0.5%. In comparison with the experimental results, the proposed model updating method can reduce the predicted strain errors from over 75% to below 20% at 800 °C. The minimum number of sensors in a fire zone that can properly characterize the vertical temperature distribution of heated air due to the gravity effect should be included in the proposed model updating scheme to achieve a predetermined simulation accuracy. (paper)

  11. Detecting analogical resemblance without retrieving the source analogy.

    Science.gov (United States)

    Kostic, Bogdan; Cleary, Anne M; Severin, Kaye; Miller, Samuel W

    2010-06-01

    We examined whether people can detect analogical resemblance to an earlier experimental episode without being able to recall the experimental source of the analogical resemblance. We used four-word analogies (e.g., robin-nest/beaver-dam), in a variation of the recognition-without-cued-recall method (Cleary, 2004). Participants studied word pairs (e.g., robin-nest) and were shown new word pairs at test, half of which analogically related to studied word pairs (e.g., beaver-dam) and half of which did not. For each test pair, participants first attempted to recall an analogically similar pair from the study list. Then, regardless of whether successful recall occurred, participants were prompted to rate the familiarity of the test pair, which was said to indicate the likelihood that a pair that was analogically similar to the test pair had been studied. Across three experiments, participants demonstrated an ability to detect analogical resemblance without recalling the source analogy. Findings are discussed in terms of their potential relevance to the study of analogical reasoning and insight, as well as to the study of familiarity and recognition memory.

  12. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    Science.gov (United States)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  13. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  14. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  15. Experimental study on structural, optoelectronic and room temperature sensing performance of Nickel doped ZnO based ethanol sensors

    Science.gov (United States)

    Sudha, M.; Radha, S.; Kirubaveni, S.; Kiruthika, R.; Govindaraj, R.; Santhosh, N.

    2018-04-01

    Nano crystalline undoped (1Z) Zinc Oxide (ZnO) and 5, 10 and 15 Wt. % (1ZN, 2ZN and 3ZN) of Nickel doped ZnO based sensors were fabricated using the hydrothermal approach on Fluorine doped Tin Oxide (FTO) glass substrates. X-ray diffraction (XRD) analysis proved the hexagonal Wurtzite structure of ZnO. Parametric variations in terms of dislocation density, bond length, lattice parameters and micro strain with respect to dopant concentration were analysed. The prominent variations in the crystallite size, optical band gap and Photoluminescence peak ratio of devices fabricated was observed. The Field Emission Scanning Electron Microscope (FESEM) images showed a change in diameter and density of the nanorods. The effect of the operating temperature, concentration of ethanol and the different doping levels of sensitivity, response and recovery time were investigated. It was inferred that 376% of sensitivity with a very quick response and recovery time of <5 s and 10 s respectively at 150 °C of 3ZN sensor has better performance compared to other three sensors. Also 3ZN sensor showed improved sensitivity of 114%, even at room temperature with response and recovery time of 35 s and 45 s respectively.

  16. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  17. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Frank Selker

    2018-03-01

    Full Text Available There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m localized areas (0.5 m. Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

  18. High temperature annealing effects on chromel (Ni90Cr10) thin films and interdiffusion study for sensing applications

    International Nuclear Information System (INIS)

    Datta, Arindom; Cheng Xudong; Miller, Michael A.; Li Xiaochun

    2008-01-01

    Metal embedded thin film thermocouples are very attractive for various applications in harsh environments. One promising technique to embed thin films micro sensors is diffusion bonding, which requires high temperatures and pressures typically in a vacuum. In this study, high temperature annealing effects on chromel (Ni90Cr10) thin film, an important sensor material as one of the components in type K thermocouple, were investigated in a diffusion bonding environment. Annealing was carried out at 800 deg. C for one hour in a diffusion bonder under vacuum without applying pressure. Under such conditions; surface, interface and interdiffusion phenomena were investigated using different characterization techniques including X-ray Diffraction, X-ray Photoelectron Spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy. Results indicate that the present combination of dielectrics is quite reliable and Ni90Cr10 films of 500 nm thickness can be used for applications at least up to 800 deg. C due to a protective thin chromium oxide layer formation on top of the sensor film during annealing

  19. Investigating Water Movement Within and Near Wells Using Active Point Heating and Fiber Optic Distributed Temperature Sensing.

    Science.gov (United States)

    Selker, Frank; Selker, John S

    2018-03-29

    There are few methods to provide high-resolution in-situ characterization of flow in aquifers and reservoirs. We present a method that has the potential to quantify lateral and vertical (magnitude and direction) components of flow with spatial resolution of about one meter and temporal resolution of about one day. A fiber optic distributed temperature sensor is used with a novel heating system. Temperatures before heating may be used to evaluate background geothermal gradient and vertical profile of thermal diffusivity. The innovation presented is the use of variable energy application along the well, in this case concentrated heating at equally-spaced (2 m) localized areas (0.5 m). Relative to uniform warming this offers greater opportunity to estimate water movement, reduces required heating power, and increases practical length that can be heated. Numerical simulations are presented which illustrate expected behaviors. We estimate relative advection rates near the well using the times at which various locations diverge from a heating trajectory expected for pure conduction in the absence of advection. The concept is demonstrated in a grouted 600 m borehole with 300 heated patches, though evidence of vertical water movement was not seen.

  20. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  1. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  2. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  3. Selective hydrogen detection at high temperature by using yttria-stabilized zirconia-based sensor with coupled metal-oxide-based sensing electrodes

    International Nuclear Information System (INIS)

    Yamaguchi, Mami; Anggraini, Sri Ayu; Fujio, Yuki; Breedon, Michael; Plashnitsa, Vladimir V.; Miura, Norio

    2012-01-01

    A selective and sensitive hydrogen (H 2 ) sensor capable of working at a high operating temperature was developed by using a pair of metal-oxide-based SEs formed on a yttria-stabilized zirconia (YSZ) tube, operating as a mixed-potential type sensor. The utilization of SnO 2 (+30 wt.% YSZ) electrode together with NiO-TiO 2 electrode configured as a combined-type sensor, successfully diminished the response of the examined interfering gases (especially propene), while maintaining high response toward H 2 at an operating temperature of 600 °C under humid operating conditions. The developed sensor exhibited quick response to 100 ppm H 2 , as the 90% response time was observed to be 9 s. The sensing performance of the combined-type sensor was barely affected by changes in water vapor concentration within the range of 1–4 vol.%, suggesting the resilience of the sensor to function in realistic working conditions. This sensor exhibited a linear relationship between sensitivity and H 2 concentration on a logarithmic scale.

  4. Children's Development of Analogical Reasoning: Insights from Scene Analogy Problems

    Science.gov (United States)

    Richland, Lindsey E.; Morrison, Robert G.; Holyoak, Keith J.

    2006-01-01

    We explored how relational complexity and featural distraction, as varied in scene analogy problems, affect children's analogical reasoning performance. Results with 3- and 4-year-olds, 6- and 7-year-olds, 9- to 11-year-olds, and 13- and 14-year-olds indicate that when children can identify the critical structural relations in a scene analogy…

  5. Multi-spectral remote sensing of the vortex formerly known as White Oval BA: Temperature structure and cloud properties

    Science.gov (United States)

    Orton, G.; Parrish, P.; Yanamandra-Fisher, P.; Baines, K.; Mousis, O.; Pantin, E.; Fujiyoshi, T.; Fuse, T.; Simon-Miller, A.

    White Oval BA: Temperature structure and cloud properties G. Orton, P. Parrish, P. Yanamandra-Fisher, K. Baines (1), O. Mousis (2), E. Pantin (3), T. Fuse, T. Fujiyoshi (4), A. Simon-Miller (5) (1) Jet Propulsion Laboratory, Calif. Inst. of Technology, USA, (2) Obs. de Besancon, France, (3) C.E.A., France, (4) Subaru National Astron. Obs., Japan, (5) NASA Goddard Space Flight Center, USA. (Glenn.Orton@jpl.nasa.gov) White Oval BA, constituted from 3 predecessor vortices (known as Jupiter's "classical" White Ovals) after successive mergers in 1998 and 2000, became second-largest vortex in the atmosphere of Jupiter (and possibly the solar system) at the time of its formation. While it continues in this distinction, it required a name change after a 2005 December through 2006 February transformation which made it appear visually the same color as the Great Red Spot. Our campaign to understand the changes involved examination of the detailed color and wind field using Hubble Space Telescope instrumentation on several orbits in April. The field of temperatures, ammonia distribution and clouds were also examined using the mid-infrared VISIR camera/spectrometer on ESO's 8.2-m Very Large Telescope (3), the NASA Infrared telescope with the mid-infrared MIRSI instrument and the refurbished near-infrared facility camera NSFCam2. High-resolution images of the Oval were made before the color change with the COMICS mid-infrared facility on the Subaru telescope. We are using these data, and possibly others to be acquired during the summer, to characterize the extent to which changes in storm strength (vorticity, positive vertical motion) influenced (i) the depth from which colored cloud particles may have been "dredged up" from depth or (ii) the altitude to which particles may have been lofted and subject to high-energy UV radiation which caused a color change, as alternative explanations for the phenomenon. Clues to this will provide clues to the chemistry of Jupiter's cloud

  6. Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe{sup 2+} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Sai Jin; Chu, Zhao Jun; Zuo, Jun; Zhao, Xiao Jing; Huang, Cheng Zhi [East China University of Technology, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (China); Zhang, Li, E-mail: zhangli8@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2017-02-15

    A new route for one-pot preparation of carbon dots (CDs) was developed at room temperature using PEG400 as both the carbon source and passitive agent. The new method possesses the advantages of facile, rapid, energy-saving, without any external stimulus and environment friendly. By changing the content of NaOH, the PEG400-CDs with blue-emitting, yellow-emitting, orange red-emitting and red-emitting were obtained, and the formation mechanism were carefully investigated. In addition, a sensitive fluorescence sensor were developed for Fe{sup 2+} detection based on PEG400-CDs since the fluorescence of PEG400-CDs could be enhanced by Fe{sup 2+}. It was found that there is a good linear relationship between the enhanced fluorescence and Fe{sup 2+} concentration in the range of 0.5 to 2.0 μmol·L{sup −1} with the detection limit of 6.0 × 10{sup −8} mol·L{sup −1}, and Fe{sup 2+} in water samples was also determined with high accuracy and repeatability.

  7. A heat exchanger analogy of automotive paint ovens

    International Nuclear Information System (INIS)

    Rao, Preetham P.

    2013-01-01

    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  8. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    Science.gov (United States)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  9. Conjecturing via Reconceived Classical Analogy

    Science.gov (United States)

    Lee, Kyeong-Hwa; Sriraman, Bharath

    2011-01-01

    Analogical reasoning is believed to be an efficient means of problem solving and construction of knowledge during the search for and the analysis of new mathematical objects. However, there is growing concern that despite everyday usage, learners are unable to transfer analogical reasoning to learning situations. This study aims at facilitating…

  10. Musik som analogi og metafor

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2014-01-01

    Indeholder underkapitlerne: 2.5.1 Musik som analogi 2.5.2 Musik som metafor 2.5.3 Musikkens psykologiske funktioner - en taxonomi og metaforisk lytning til fire baroksatser......Indeholder underkapitlerne: 2.5.1 Musik som analogi 2.5.2 Musik som metafor 2.5.3 Musikkens psykologiske funktioner - en taxonomi og metaforisk lytning til fire baroksatser...

  11. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  12. Molecular interactions between (--epigallocatechin gallate analogs and pancreatic lipase.

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    Full Text Available The molecular interactions between pancreatic lipase (PL and four tea polyphenols (EGCG analogs, like (--epigallocatechin gallate (EGCG, (--gallocatechin gallate (GCG, (--epicatechin gallate (ECG, and (--epigallocatechin (EC, were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent.

  13. The potential for adaptation in a natural Daphnia magna population: broad and narrow-sense heritability of net reproductive rate under Cd stress at two temperatures.

    Science.gov (United States)

    Messiaen, M; Janssen, C R; Thas, O; De Schamphelaere, K A C

    2012-10-01

    The existence of genetic variability is a key element of the adaptive potential of a natural population to stress. In this study we estimated the additive and non-additive components of the genetic variability of net reproductive rate (R(0)) in a natural Daphnia magna population exposed to Cd stress at two different temperatures. To this end, life-table experiments were conducted with 20 parental and 39 offspring clonal lineages following a 2 × 2 design with Cd concentration (control vs. 3.7 μg Cd/L) and temperature (20 vs. 24 °C) as factors. Offspring lineages were obtained through inter-clonal crossing of the different parental lineages. The population mean, additive and non-additive genetic components of variation in each treatment were estimated by fitting an Animal Model to the observed R(0) values using restricted maximum likelihood estimation. From those estimates broad-sense heritabilities (H(2)), narrow-sense heritabilities (h(2)), total (CV(G)) and additive genetic coefficients of variation (CV(A)) of R(0) were calculated. The exposure to Cd imposed a considerable level of stress to the population, as shown by the fact that the population mean of R(0) exposed to Cd was significantly lower than in the control at the corresponding temperature, i.e. by 23 % at 20 °C and by 88 % at 24 °C. The latter difference indicates that increasing temperature increased the stress level imposed by Cd. The H² and CV(G) were significantly greater than 0 in all treatments, suggesting that there is a considerable degree of genetic determination of R(0) in this population and that clonal selection could rapidly lead to increasing population mean fitness under all investigated conditions. More specifically, the H² was 0.392 at 20 °C+Cd and 0.563 at 24 °C+Cd; the CV(G) was 30.0 % at 20 °C+Cd and was significantly higher (147.6 %) in the 24 °C+Cd treatment. Significant values of h(2) (= 0.23) and CV(A) (= 89.7 %) were only found in the 24 °C+Cd treatment, suggesting

  14. Design and Experimental Verification of a 0.19 V 53 μW 65 nm CMOS Integrated Supply-Sensing Sensor With a Supply-Insensitive Temperature Sensor and an Inductive-Coupling Transmitter for a Self-Powered Bio-sensing System Using a Biofuel Cell.

    Science.gov (United States)

    Kobayashi, Atsuki; Ikeda, Kei; Ogawa, Yudai; Kai, Hiroyuki; Nishizawa, Matsuhiko; Nakazato, Kazuo; Niitsu, Kiichi

    2017-12-01

    In this paper, we present a self-powered bio-sensing system with the capability of proximity inductive-coupling communication for supply sensing and temperature monitoring. The proposed bio-sensing system includes a biofuel cell as a power source and a sensing frontend that is associated with the CMOS integrated supply-sensing sensor. The sensor consists of a digital-based gate leakage timer, a supply-insensitive time-domain temperature sensor, and a current-driven inductive-coupling transmitter and achieves low-voltage operation. The timer converts the output voltage from a biofuel cell to frequency. The temperature sensor provides a pulse width modulation (PWM) output that is not dependent on the supply voltage, and the associated inductive-coupling transmitter enables proximity communication. A test chip was fabricated in 65 nm CMOS technology and consumed 53 μW with a supply voltage of 190 mV. The low-voltage-friendly design satisfied the performance targets of each integrated sensor without any trimming. The chips allowed us to successfully demonstrate proximity communication with an asynchronous receiver, and the measurement results show the potential for self-powered operation using biofuel cells. The analysis and experimental verification of the system confirmed their robustness.

  15. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  16. Analog fourier transform channelizer and OFDM receiver

    OpenAIRE

    2007-01-01

    An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...

  17. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  18. Fluorescence of tautomeric forms of curcumin in different pH and biosurfactant rhamnolipids systems: Application towards on-off ratiometric fluorescence temperature sensing.

    Science.gov (United States)

    Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara

    2017-08-01

    Medicinal properties of curcumin are widely getting realized. For its applicability as a hydrophobic drug molecule and food spice interaction of curcumin with rhamnolipids, a biosurfactant, bears importance. Here we have explored interaction of curcumin with rhamnolipids biosurfactant and its aggregation behavior. The impact of pH on critical micelle concentration (cmc) of rhamnolipids has been studied using fluorescence of curcumin and found that cmc of rhamnolipids increases with increase in pH of the medium. In acidic, neutral and slightly alkaline medium (pH8), at λ ex =355nm (for β-diketone form) curcumin undergoes excited state hydrogen transfer (ESHT) and emits solely from enol form both in the presence and absence of rhamnolipids, but first time we report that in extreme alkaline condition, at pH13, at λ ex =355nm curcumin emits from both β-diketone as well as enolic ESHT forms in absence of rhamnolipids but in the presence of rhamnolipids β-diketone is stabilized and the emission solely comes from β-diketone by completely revoking ESHT process. Fluorescence quenching by hydrophobic cetylpyridinium bromide confirms curcumin penetrates deep inside the hydrophobic pocket of rhamnolipid aggregates/micelle by reducing the distance between N + -atom of pyridinium ion and curcumin. On the other hand hydrophobic molecule like pyrene stays near to the Stern layer of rhamnolipids facilitating electron transfer from pyrene to N + -atom of pyridinium ion. Even in neutral condition, in the presence of rhamnolipids the β-diketone form, though in small proportions, can be stabilized in higher temperature in expense of enolic ESHT form, thus, offering an on off ratiometric fluorescence temperature sensing in solution, which bears significance as ratiometric probe molecules. Interaction of curcumin with rhamnolipids stabilizes curcumin in acidic, neutral and moderate alkaline condition but fails at extreme pH13. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy

    Science.gov (United States)

    Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio

    2018-05-01

    Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.

  20. Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy

    Science.gov (United States)

    Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio

    2017-12-01

    Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.

  1. Room temperature direct bonding of LiNbO3 crystal layers and its application to high-voltage optical sensing

    International Nuclear Information System (INIS)

    Tulli, D; Janner, D; Pruneri, V

    2011-01-01

    LiNbO 3 is a crystal widely used in photonics and acoustics, for example in electro-optic modulation, nonlinear optical frequency conversion, electric field sensing and surface acoustic wave filtering. It often needs to be combined with other materials and used in thin layers to achieve the adequate device performance. In this paper, we investigate direct bonding of LiNbO 3 crystals with other dielectric materials, such as Si and fused silica (SiO 2 ), and we show that specific surface chemical cleaning, together with Ar or O 2 plasma activation, can be used to increase the surface free energy and achieve effective bonding at room temperature. The resulting hybrid material bonding is very strong, making the dicing and grinding of LiNbO 3 layers as thin as 15 µm possible. To demonstrate the application potentials of the proposed bonding technique, we have fabricated and characterized a high-voltage field sensor with high sensitivity in a domain inverted and bonded LiNbO 3 waveguide substrate

  2. Molecular modeling of fentanyl analogs

    Directory of Open Access Journals (Sweden)

    LJILJANA DOSEN-MICOVIC

    2004-11-01

    Full Text Available Fentanyl is a highly potent and clinically widely used narcotic analgesic. A large number of its analogs have been synthesized, some of which (sufentanil and alfentanyl are also in clinical use. Theoretical studies, in recent years, afforded a better understanding of the structure-activity relationships of this class of opiates and allowed insight into the molecular mechanism of the interactions of fentanyl analogs with their receptors. An overview of the current computational techniques for modeling fentanyl analogs, their receptors and ligand-receptor interactions is presented in this paper.

  3. Gemini analogs of vitamin D.

    Science.gov (United States)

    Pazos, Gonzalo; Rivadulla, Marcos L; Pérez-García, Xenxo; Gandara, Zoila; Pérez, Manuel

    2014-01-01

    The Gemini analogs are the last significant contribution to the family of vitamin D derivatives in medicine, for the treatment of cancer. The first Gemini analog was characterized by two symmetric side chains at C-20. Following numerous modifications, the most active analog bears a C-23-triple bond, C-26, 27- hexafluoro substituents on one side chain and a terminal trideuteromethylhydroxy group on the other side chain. This progression was possible due to improvements in the synthetic methods for the preparation of these derivatives, which allowed for increasing molecular complexity and complete diastereoselective control at C-20 and the substituted sidechains.

  4. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    Science.gov (United States)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  5. Large-scale digitizer system, analog converters

    International Nuclear Information System (INIS)

    Althaus, R.F.; Lee, K.L.; Kirsten, F.A.; Wagner, L.J.

    1976-10-01

    Analog to digital converter circuits that are based on the sharing of common resources, including those which are critical to the linearity and stability of the individual channels, are described. Simplicity of circuit composition is valued over other more costly approaches. These are intended to be applied in a large-scale processing and digitizing system for use with high-energy physics detectors such as drift-chambers or phototube-scintillator arrays. Signal distribution techniques are of paramount importance in maintaining adequate signal-to-noise ratio. Noise in both amplitude and time-jitter senses is held sufficiently low so that conversions with 10-bit charge resolution and 12-bit time resolution are achieved

  6. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  7. Analog elements for transuranic chemistries

    International Nuclear Information System (INIS)

    Weimer, W.C.

    1982-01-01

    The analytical technique for measuring trace concentrations of the analog rare earth elements has been refined for optimal detection. The technique has been used to determine the rare earth concentrations in a series of geological and biological materials, including samples harvested from controlled lysimeter investigations. These studies have demonstrated that any of the trivalent rare earth elements may be used as analog elements for the trivalent transuranics, americium and curium

  8. CMOS Analog IC Design: Fundamentals

    OpenAIRE

    Bruun, Erik

    2018-01-01

    This book is intended for use as the main textbook for an introductory course in CMOS analog integrated circuit design. It is aimed at electronics engineering students who have followed basic courses in mathematics, physics, circuit theory, electronics and signal processing. It takes the students directly from a basic level to a level where they can start working on simple analog IC design projects or continue their studies using more advanced textbooks in the field. A distinct feature of thi...

  9. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  10. Theory of analogous force on number sets

    Energy Technology Data Exchange (ETDEWEB)

    Canessa, Enrique [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2003-08-01

    A general statistical thermodynamic theory that considers given sequences of x-integers to play the role of particles of known type in an isolated elastic system is proposed. By also considering some explicit discrete probability distributions p{sub x} for natural numbers, we claim that they lead to a better understanding of probabilistic laws associated with number theory. Sequences of numbers are treated as the size measure of finite sets. By considering p{sub x} to describe complex phenomena, the theory leads to derive a distinct analogous force f{sub x} on number sets proportional to ({partial_derivative}p{sub x}/{partial_derivative}x){sub T} at an analogous system temperature T. In particular, this yields to an understanding of the uneven distribution of integers of random sets in terms of analogous scale invariance and a screened inverse square force acting on the significant digits. The theory also allows to establish recursion relations to predict sequences of Fibonacci numbers and to give an answer to the interesting theoretical question of the appearance of the Benford's law in Fibonacci numbers. A possible relevance to prime numbers is also analyzed. (author)

  11. Periglacial and glacial analogs for Martian landforms

    Science.gov (United States)

    Rossbacher, Lisa A.

    1992-01-01

    The list of useful terrestrial analogs for Martian landforms has been expanded to include: features developed by desiccation processes; catastrophic flood features associated with boulder-sized materials; and sorted ground developed at a density boundary. Quantitative analytical techniques developed for physical geography have been adapted and applied to planetary studies, including: quantification of the patterns of polygonally fractured ground to describe pattern randomness independent of pattern size, with possible correlation to the mechanism of origin and quantification of the relative area of a geomorphic feature or region in comparison to planetary scale. Information about Martian geomorphology studied in this project was presented at professional meetings world-wide, at seven colleges and universities, in two interactive televised courses, and as part of two books. Overall, this project has expanded the understanding of the range of terrestrial analogs for Martian landforms, including identifying several new analogs. The processes that created these terrestrial features are characterized by both cold temperatures and low humidity, and therefore both freeze-thaw and desiccation processes are important. All these results support the conclusion that water has played a significant role in the geomorphic history of Mars.

  12. Analogical proportions: another logical view

    Science.gov (United States)

    Prade, Henri; Richard, Gilles

    This paper investigates the logical formalization of a restricted form of analogical reasoning based on analogical proportions, i.e. statements of the form a is to b as c is to d. Starting from a naive set theoretic interpretation, we highlight the existence of two noticeable companion proportions: one states that a is to b the converse of what c is to d (reverse analogy), while the other called paralogical proportion expresses that what a and b have in common, c and d have it also. We identify the characteristic postulates of the three types of proportions and examine their consequences from an abstract viewpoint. We further study the properties of the set theoretic interpretation and of the Boolean logic interpretation, and we provide another light on the understanding of the role of permutations in the modeling of the three types of proportions. Finally, we address the use of these proportions as a basis for inference in a propositional setting, and relate it to more general schemes of analogical reasoning. The differences between analogy, reverse-analogy, and paralogy is still emphasized in a three-valued setting, which is also briefly presented.

  13. A hierarchical spatiotemporal analog forecasting model for count data.

    Science.gov (United States)

    McDermott, Patrick L; Wikle, Christopher K; Millspaugh, Joshua

    2018-01-01

    Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure, rather than as a formal statistical model. The methodology presented here extends the model-based analog method of McDermott and Wikle (Environmetrics, 27, 2016, 70) by placing analog forecasting within a fully hierarchical statistical framework that can accommodate count observations. Using a Bayesian approach, the hierarchical analog model is able to quantify rigorously the uncertainty associated with forecasts. Forecasting waterfowl settling patterns in the northwestern United States and Canada is conducted by applying the hierarchical analog model to a breeding population survey dataset. Sea surface temperature (SST) in the Pacific Ocean is used to help identify potential analogs for the waterfowl settling patterns.

  14. Associative memory in an analog iterated-map neural network

    Science.gov (United States)

    Marcus, C. M.; Waugh, F. R.; Westervelt, R. M.

    1990-03-01

    The behavior of an analog neural network with parallel dynamics is studied analytically and numerically for two associative-memory learning algorithms, the Hebb rule and the pseudoinverse rule. Phase diagrams in the parameter space of analog gain β and storage ratio α are presented. For both learning rules, the networks have large ``recall'' phases in which retrieval states exist and convergence to a fixed point is guaranteed by a global stability criterion. We also demonstrate numerically that using a reduced analog gain increases the probability of recall starting from a random initial state. This phenomenon is comparable to thermal annealing used to escape local minima but has the advantage of being deterministic, and therefore easily implemented in electronic hardware. Similarities and differences between analog neural networks and networks with two-state neurons at finite temperature are also discussed.

  15. Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method

    Directory of Open Access Journals (Sweden)

    H.C. Madhusudhana

    2016-09-01

    Full Text Available ZrO2 nanopowders were synthesized by low temperature solution combustion method using two different fuels namely glycine and oxalyldihydrazide (ODH. The phase confirmation was done by powder X-ray diffraction (PXRD and Raman spectral analysis. Use of glycine resulted in ZrO2 with mixture of tetragonal and monoclinic phase with average crystallite size of ∼30 nm. However, ODH as fuel aids in the formation of ZrO2 with mixture of tetragonal and cubic phase with average crystallite size ∼20 nm. Further, in present work we present novel way to tune conductivity property of the nano ZrO2. We show that merely changing the fuel from glycine to ODH, we obtain better DC conductivity and dielectric constant. On the other hand use of glycine leads to the formation of ZrO2 with better AC conductivity and humidity sensing behavior. The dielectric constants calculated for samples prepared with glycine and ODH were found to be 45 and 26 respectively at 10 MHz. The AC and DC conductivity values of the samples prepared with glycine was found to be 9.5 × 10−4 S cm−1, 1.1 × 10−3 S cm−1 and that of ODH was 7.6 × 10−4 S cm−1, 3.6 × 10−3 S cm−1 respectively.

  16. Active geothermal systems as natural analogs of HLW repositories

    International Nuclear Information System (INIS)

    Elders, W.A.; Williams, A.E.; Cohen, L.H.

    1988-01-01

    Geologic analogs of long-lived processes in high-level waste (HLW) repositories have been much studied in recent years. However, most of these occurrences either involve natural processes going on today at 25 degree C, or, if they are concerned with behavior at temperatures similar to the peak temperatures anticipated near HLW canisters, have long since ended. This paper points out the usefulness of studying modern geothermal systems as natural analogs, and to illustrate the concept with a dramatic example, the Salton Sea geothermal system (SSGS)

  17. Producing and Recognizing Analogical Relations

    Science.gov (United States)

    Lipkens, Regina; Hayes, Steven C

    2009-01-01

    Analogical reasoning is an important component of intelligent behavior, and a key test of any approach to human language and cognition. Only a limited amount of empirical work has been conducted from a behavior analytic point of view, most of that within Relational Frame Theory (RFT), which views analogy as a matter of deriving relations among relations. The present series of four studies expands previous work by exploring the applicability of this model of analogy to topography-based rather than merely selection-based responses and by extending the work into additional relations, including nonsymmetrical ones. In each of the four studies participants pretrained in contextual control over nonarbitrary stimulus relations of sameness and opposition, or of sameness, smaller than, and larger than, learned arbitrary stimulus relations in the presence of these relational cues and derived analogies involving directly trained relations and derived relations of mutual and combinatorial entailment, measured using a variety of productive and selection-based measures. In Experiment 1 participants successfully recognized analogies among stimulus networks containing same and opposite relations; in Experiment 2 analogy was successfully used to extend derived relations to pairs of novel stimuli; in Experiment 3 the procedure used in Experiment 1 was extended to nonsymmetrical comparative relations; in Experiment 4 the procedure used in Experiment 2 was extended to nonsymmetrical comparative relations. Although not every participant showed the effects predicted, overall the procedures occasioned relational responses consistent with an RFT account that have not yet been demonstrated in a behavior-analytic laboratory setting, including productive responding on the basis of analogies. PMID:19230515

  18. Fast multichannel analog storage system

    International Nuclear Information System (INIS)

    Freytag, D.R.

    1982-11-01

    A Multichannel Analog Storage System based on a commercial 32-channel parallel in/serial out (PISO) analog shift register is described. The basic unit is a single width CAMAC module containing 512 analog cells and the associated logic for data storage and subsequent readout. At sampling rates of up to 30 MHz the signals are strobed directly into the PISO. At higher rates signals are strobed into a fast presampling stage and subsequently transferred in block form into an array of PISO's. Sampling rates of 300 MHz have been achieved with the present device and 1000 MHz are possible with improved signal drivers. The system is well suited for simultaneous handling of many signal channels with moderate numbers of samples in each channel. RMS noise over full scale signal has been measured as 1:3000 (approx. = 11 bit). However, nonlinearities in the response and differences in sensitivity of the analog cells require an elaborate calibration system in order to realize 11 bit accuracy for the analog information

  19. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  20. Natural analogs for Yucca Mountain

    International Nuclear Information System (INIS)

    Murphy, W.M.

    1995-01-01

    High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece

  1. Synthetic Analogs of Phospholipid Metabolites as Antimalarials.

    Science.gov (United States)

    1979-07-01

    phosphatidic acid analogs containing ether and phosphonate groups; completely non- hydrolyzable lecithin analogs containing phosphinate and ether groups...substance is a completely non- hydrolyzable analog of lecithin containing ether and phosphonate moieties instead of the normally labile carboxylic and...and also ant-i-phospholipase C (clostridial enzyme) activity. This substance Is a completely non- hydrolyzable analog of lecithin containing ether

  2. Adjoint Sensitivity Analysis of Radiative Transfer Equation: Temperature and Gas Mixing Ratio Weighting Functions for Remote Sensing of Scattering Atmospheres in Thermal IR

    Science.gov (United States)

    Ustinov, E.

    1999-01-01

    Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.

  3. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  4. 49205 ANALOGE OG DIGITALE FILTRE

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    1997-01-01

    Theese lecture notes treats the fundamental theory and the most commonly used design methods for passive- active and digital filters with special emphasis on microelectronic realizations. The lecture notes covers 75% of the material taught in the course 49205 Analog and Digital Filters...

  5. Drawing Analogies to Deepen Learning

    Science.gov (United States)

    Fava, Michelle

    2017-01-01

    This article offers examples of how drawing can facilitate thinking skills that promote analogical reasoning to enable deeper learning. The instructional design applies cognitive principles, briefly described here. The workshops were developed iteratively, through feedback from student and teacher participants. Elements of the UK National…

  6. A CMOS four-quadrant analog current multiplier

    NARCIS (Netherlands)

    Wiegerink, Remco J.

    1991-01-01

    A CMOS four-quadrant analog current multiplier is described. The circuit is based on the square-law characteristic of an MOS transistor and is insensitive to temperature and process variations. The circuit is insensitive to the body effect so it is not necessary to place transistors in individual

  7. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  8. Bayesian analogy with relational transformations.

    Science.gov (United States)

    Lu, Hongjing; Chen, Dawn; Holyoak, Keith J

    2012-07-01

    How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transformations (BART) and apply the model to the task of learning first-order comparative relations (e.g., larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al., 2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from empirical priors, the model is able to induce first-order relations represented as probabilistic weight distributions, even when given positive examples only. These learned representations allow classification of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both humans and other primates. BART then transforms its learned weight distributions by importance-guided mapping, thereby placing distinct dimensions into correspondence. These transformed representations allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can be solved with representations induced from unstructured feature vectors by mechanisms that operate in a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of relational thinking, as well as for the evolution of abstract thought. Copyright 2012 APA, all rights reserved.

  9. Crows spontaneously exhibit analogical reasoning.

    Science.gov (United States)

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  11. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  12. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  13. Analog circuit design art, science and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    This book is far more than just another tutorial or reference guide - it's a tour through the world of analog design, combining theory and applications with the philosophies behind the design process. Readers will learn how leading analog circuit designers approach problems and how they think about solutions to those problems. They'll also learn about the `analog way' - a broad, flexible method of thinking about analog design tasks.A comprehensive and useful guide to analog theory and applications. Covers visualizing the operation of analog circuits. Looks at how to rap

  14. Developing a 300C Analog Tool for EGS

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy

    2015-03-23

    This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.

  15. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: candidates for room temperature methane and hydrogen gas sensing

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-08-01

    Full Text Available O crystallite size and crystallinity on the gassensing performance of hydrogen and methane gases was also evaluated. Sensing film based on ZnOnanoparticles has numerous advantages in terms of its reliability and high sensitivity. These sensingmaterials revealed...

  16. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel

    2017-01-01

    This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-o...

  17. Analogies between antiferromagnets and antiferroelectrics

    International Nuclear Information System (INIS)

    Enz, C.P.; Matthias, B.T.

    1980-01-01

    Ferro- and antiferromagnetism in the Laves phase TiBesub(2-x) Cusub(x) occurs for 0.1 4 H 2 PO 4 and its solid solutions with TlH 2 PO 4 and with the ferroelectric KH 2 PO 4 are discussed as function of deuteration and of pressure. Another analogy as function of pressure is established with the antiferroelectric perovskite PbZrO 3 . (author)

  18. Novel phosphanucleoside analogs of dideoxynucleosides

    Czech Academy of Sciences Publication Activity Database

    Páv, Ondřej; Buděšínský, Miloš; Rosenberg, Ivan

    2017-01-01

    Roč. 73, č. 34 (2017), s. 5220-5228 ISSN 0040-4020 R&D Projects: GA ČR(CZ) GA17-12703S; GA ČR GA13-26526S; GA MZd NV15-31604A Institutional support: RVO:61388963 Keywords : phosphanucleoside * nucleoside analog * ring-closing metathesis * stereoselective hydroboration * chiral resolution Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.651, year: 2016

  19. Electrostatic analogy for symmetron gravity

    Science.gov (United States)

    Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin

    2017-12-01

    The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.

  20. HIGH RESOLUTION ANALOG / DIGITAL POWER SUPPLY CONTROLLER

    International Nuclear Information System (INIS)

    Medvedko, Evgeny A

    2003-01-01

    Corrector magnets for the SPEAR-3 synchrotron radiation source require precision, high-speed control for use with beam-based orbit feedback. A new Controller Analog/Digital Interface card (CANDI) has been developed for these purposes. The CANDI has a 24-bit DAC for current control and three 24-bit Δ-Σ ADCs to monitor current and voltages. The ADCs can be read and the DAC updated at the 4 kHz rate needed for feedback control. A precision 16-bit DAC provides on-board calibration. Programmable multiplexers control internal signal routing for calibration, testing, and measurement. Feedback can be closed internally on current setpoint, externally on supply current, or beam position. Prototype and production tests are reported in this paper. Noise is better than 17 effective bits in a 10 mHz to 2 kHz bandwidth. Linearity and temperature stability are excellent

  1. The Development of Analogical Reasoning Processes.

    Science.gov (United States)

    Sternberg, Robert J.; Rifkin, Bathsheva

    1979-01-01

    Two experiments were conducted to test the generalizability to children of a theory of analogical reasoning processes, originally proposed for adults, and to examine the development of analogical reasoning processes in terms of five proposed sources of cognitive development. (MP)

  2. 16-channel analog store and multiplexer unit

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, M; Kulka, Z [Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire

    1979-03-15

    A 16-channel analog store and multiplexer unit is described. The unit enables storing and selection of analog information which is then digitally encoded by single ADC. This solution becomes economically attractive particularly in multidetector pulse height analysis systems.

  3. Using analogs to generate production forecasts in Faja

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Lugo, Rolando A. [Repsol (Canada)

    2011-07-01

    In the Carabobol Block, extra heavy oil will be produced by cold production from Miocene Morical Member sands. Many parameters such as pressure, temperature, solution gas oil ratio and viscosity variation significantly impact well productivity; unfortunately little information is available on the Carabobol Block. The aim of this paper is to provide a new methodology for using analog data to develop fluid properties correlations and a future production profile. Data from the analog neighbour field in the Orinoco oil belt was used. A methodology using scatter data was successfully applied for the Carabobol Block and fluid composition, a complete PVT and an analytical forecast were found and confirmed with actual laboratory data and a gross numerical model. This study showed that analog data can be used as a first approach to assess initial reservoir conditions and fluid properties and to generate production forecasts.

  4. A chipless sensor tag-based RFID technology for cyber-oriented environmental sensing applications

    Science.gov (United States)

    Shrestha, Sudhir; Agarwal, Mangilal; Phoha, Vir V.; Varahramyan, Kody

    2009-05-01

    A chipless sensor tag-based radio frequency identification (RFID) technology that allows wireless collection of information from the environment, and the monitoring and accessing of the given information through cyberspace is presented. The developed system consists of a cyber enabled RFID reader and passive chipless RFID sensor tags. The reader is comprised of an analog part that wirelessly communicates with the sensor tags, and a single board computer (SBC) part. Each passive chipless sensor tag consists of a microstrip antenna and a sensor. The sensor information is amplitude modulated in the backscattered signal of the tag. The analog reader part receives the backscattered signal and feeds it to the SBC, which computes the sensor information into a 96 bit serialized global trade item number (SGTIN-96) electronic product code (EPC). Moreover, the SBC makes the information available on a cyberspace-accessible secure user interface. The reported system has been applied for temperature sensing, where the change in temperature at the tag ranging from 27°C to 140°C resulted in a 28% amplitude change at the analog part of the reader. The temperature at the tag has been monitored by accessing the reader through cyberspace using a web-based user interfaces developed for the SBC.

  5. Atheism and Analogy: Aquinas Against the Atheists

    OpenAIRE

    Linford, Daniel J.

    2014-01-01

    In the 13th century, Thomas Aquinas developed two models for how humans may speak of God - either by the analogy of proportion or by the analogy of proportionality. Aquinas's doctrines initiated a theological debate concerning analogy that spanned several centuries. In the 18th century, there appeared two closely related arguments for atheism which both utilized analogy for their own purposes. In this thesis, I show that one argument, articulated by the French materialist Paul-Henri Thiry Bar...

  6. Enhancing programming logic thinking using analogy mapping

    Science.gov (United States)

    Sukamto, R. A.; Megasari, R.

    2018-05-01

    Programming logic thinking is the most important competence for computer science students. However, programming is one of the difficult subject in computer science program. This paper reports our work about enhancing students' programming logic thinking using Analogy Mapping for basic programming subject. Analogy Mapping is a computer application which converts source code into analogies images. This research used time series evaluation and the result showed that Analogy Mapping can enhance students' programming logic thinking.

  7. Analogies and the 5E Model

    Science.gov (United States)

    Orgill, Mary Kay; Thomas, Megan

    2007-01-01

    Science classes are full of abstract or challenging concepts that are easier to understand if an analogy is used to illustrate the points. Effective analogies motivate students, clarify students' thinking, help students overcome misconceptions, and give students ways to visualize abstract concepts. When they are used appropriately, analogies can…

  8. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-01-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to…

  9. The Micro-Category Account of Analogy

    Science.gov (United States)

    Green, Adam E.; Fugelsang, Jonathan A.; Kraemer, David J. M.; Dunbar, Kevin N.

    2008-01-01

    Here, we investigate how activation of mental representations of categories during analogical reasoning influences subsequent cognitive processing. Specifically, we present and test the central predictions of the "Micro-Category" account of analogy. This account emphasizes the role of categories in aligning terms for analogical mapping. In a…

  10. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  11. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+} nano-/micro-crystals derived from a microwave-assisted hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lili [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Li, Xiangping, E-mail: lixp@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Hua, Ruinian [College of Life Science, Dalian Nationalities University, Dalian 116600 (China); Li, Xuejing; Zheng, Hui; Sun, Jiashi; Zhang, Jinsu; Cheng, Lihong [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian 116026 (China)

    2015-11-15

    Yb{sup 3+}/Er{sup 3+} co-doped α- and β-phase NaYF{sub 4} nano-/micro-crystals were prepared through a microwave-assisted hydrothermal route. The crystal structure and microscopic morphology of the samples were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Frequency upconverted emissions from the two thermally coupled excited state {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} in both phases of phosphors were recorded at temperatures ranging from room temperature to 573 K under 980 nm infrared laser excitation. The time scanning upconversion spectra were investigated in detail to reveal the thermal effect induced by laser irradiation and the luminescent thermal stability of the two phases NaYF{sub 4} polycrystals. Comparison of the upconversion luminescence and the sensitivity between the two phases NaYF{sub 4} polycrystals indicated that β-phase NaYF{sub 4} won much stronger luminescent intensity, better luminescent thermal stability, and higher temperature sensitivity. - Highlights: • Yb{sup 3+}/Er{sup 3+} codoped NaYF{sub 4} were prepared by a microwave-assisted hydrothermal route. • The UC luminescence and temperature sensing properties were studied. • Comparison of the UCL and the sensitivity between α- and β-phase samples were done. • Thermal effect and UCL thermo-stability were studied by time scanning UCL spectra. • β-phase sample won much better luminescent and temperature sensing properties.

  12. Are all analogies created equal? Prefrontal cortical functioning may predict types of analogical reasoning.

    Science.gov (United States)

    Chrysikou, Evangelia G; Thompson-Schill, Sharon L

    2010-06-01

    Abstract The proposed theory can account for analogies based on learned relationships between elements in the source and target domains. However, its explanatory power regarding the discovery of new relationships during analogical reasoning is limited. We offer an alternative perspective for the role of PFC in analogical thought that may better address different types of analogical mappings.

  13. Practical analog electronics for technicians

    CERN Document Server

    Kimber, W A

    2013-01-01

    'Practical Analog Electronics for Technicians' not only provides an accessible introduction to electronics, but also supplies all the problems and practical activities needed to gain hands-on knowledge and experience. This emphasis on practice is surprisingly unusual in electronics texts, and has already gained Will Kimber popularity through the companion volume, 'Practical Digital Electronics for Technicians'. Written to cover the Advanced GNVQ optional unit in electronics, this book is also ideal for BTEC National, A-level electronics and City & Guilds courses. Together with 'Practical Digit

  14. Resistive RAMs as analog trimming elements

    Science.gov (United States)

    Aziza, H.; Perez, A.; Portal, J. M.

    2018-04-01

    This work investigates the use of Resistive Random Access Memory (RRAM) as an analog trimming device. The analog storage feature of the RRAM cell is evaluated and the ability of the RRAM to hold several resistance states is exploited to propose analog trim elements. To modulate the memory cell resistance, a series of short programming pulses are applied across the RRAM cell allowing a fine calibration of the RRAM resistance. The RRAM non volatility feature makes the analog device powers up already calibrated for the system in which the analog trimmed structure is embedded. To validate the concept, a test structure consisting of a voltage reference is evaluated.

  15. Analog and mixed-signal electronics

    CERN Document Server

    Stephan, Karl

    2015-01-01

    A practical guide to analog and mixed-signal electronics, with an emphasis on design problems and applications This book provides an in-depth coverage of essential analog and mixed-signal topics such as power amplifiers, active filters, noise and dynamic range, analog-to-digital and digital-to-analog conversion techniques, phase-locked loops, and switching power supplies. Readers will learn the basics of linear systems, types of nonlinearities and their effects, op-amp circuits, the high-gain analog filter-amplifier, and signal generation. The author uses system design examples to motivate

  16. Analog circuit design art, science, and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    Analog Circuit Design: Art, Science, and Personalities discusses the many approaches and styles in the practice of analog circuit design. The book is written in an informal yet informative manner, making it easily understandable to those new in the field. The selection covers the definition, history, current practice, and future direction of analog design; the practice proper; and the styles in analog circuit design. The book also includes the problems usually encountered in analog circuit design; approach to feedback loop design; and other different techniques and applications. The text is

  17. The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method.

    Science.gov (United States)

    Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung

    2012-07-01

    A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

  18. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  19. Analogical reasoning in schizophrenic delusions.

    Science.gov (United States)

    Simpson, Jane; Done, D John

    2004-09-01

    Reasoning ability has often been argued to be impaired in people with schizophrenic delusions, although evidence for this is far from convincing. This experiment examined the analogical reasoning abilities of several groups of patients, including non-deluded and deluded schizophrenics, to test the hypothesis that performance by the deluded schizophrenic group would be impaired. Eleven deluded schizophrenics, 10 depressed subjects, seven non-deluded schizophrenics and 16 matched non-psychiatric controls, who were matched on a number of key variables, were asked to solve an analogical reasoning task. Performance by the deluded schizophrenic group was certainly impaired when compared with the depressed and non-psychiatric control groups though less convincingly so when compared with the non-deluded schizophrenic group. The impairment shown by the deluded schizophrenic group seemed to occur at the initial stage of the reasoning task. The particular type of impairment shown by the deluded subjects was assessed in relation to other cognitive problems already researched and the implications of these problems on reasoning tasks and theories of delusions was discussed.

  20. Reliability of analog quantum simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan [Sandia National Laboratories, Digital and Quantum Information Systems, Livermore, CA (United States); Zhang, Jun; Zeng, Lishan [Shanghai Jiao Tong University, Joint Institute of UMich-SJTU, Key Laboratory of System Control and Information Processing (MOE), Shanghai (China)

    2017-12-15

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these two points of view is a critical step in making the most of this promising technology. In this work we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. To demonstrate the approach, we characterize the robust features of a variety of quantum many-body models. (orig.)

  1. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J. M

    2013-01-01

    This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters.  It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation.  This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 45-nm technology and the need for a more statistical approach to accuracy.  Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate.  Considerable background information and pr...

  2. Kuhn and conceptual change: on the analogy between conceptual changes in science and children

    Science.gov (United States)

    Greiffenhagen, Christian; Sherman, Wendy

    2008-01-01

    This article argues that the analogy between conceptual changes in the history of science and conceptual changes in the development of young children is problematic. We show that the notions of ‘conceptual change’ in Kuhn and Piaget’s projects, the two thinkers whose work is most commonly drawn upon to support this analogy, are not compatible in the sense usually claimed. We contend that Kuhn’s work pertains not so much to the psychology of individual scientists, but to the way philosophers and historians should describe developments in communities of scientists. Furthermore, we argue that the analogy is based on a misunderstanding of the nature of science and the relation between science and common sense. The distinctiveness of the two notions of conceptual change has implications for science education research, since it raises serious questions about the relevance of Kuhn’s remarks for the study of pedagogical issues.

  3. Fermion analogy for layered superconducting films in parallel magnetic field

    International Nuclear Information System (INIS)

    Rodriguez, J.P.

    1997-01-01

    The equivalence between the Lawrence-Doniach model for films of extreme type-II layered superconductors and a generalization of the back-scattering model for spin-(1/2) electrons in one dimension is demonstrated. This fermion analogy is then exploited to obtain an anomalous H parallel -1 tail for the parallel equilibrium magnetization of the minimal double-layer case in the limit of high parallel magnetic fields H parallel for temperatures in the critical regime. (orig.)

  4. Automatic activation of categorical and abstract analogical relations in analogical reasoning.

    Science.gov (United States)

    Green, Adam E; Fugelsang, Jonathan A; Dunbar, Kevin N

    2006-10-01

    We examined activation of concepts during analogical reasoning. Subjects made either analogical judgments or categorical judgments about four-word sets. After each four-word set, they named the ink color of a single word in a modified Stroop task. Words that referred to category relations were primed (as indicated by longer response times on Stroop color naming) subsequent to analogical judgments and categorical judgments. This finding suggests that activation of category concepts plays a fundamental role in analogical thinking. When colored words referred to analogical relations, priming occurred subsequent to analogical judgments, but not to categorical judgments, even though identical four-word stimuli were used for both types of judgments. This finding lends empirical support to the hypothesis that, when people comprehend the analogy between two items, they activate an abstract analogical relation that is distinct from the specific content items that compose the analogy.

  5. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Young Solar Analogs Project

    Science.gov (United States)

    Gray, Richard O.; Saken, J. M.; Corbally, C. J.; Fuller, V.; Kahvaz, Y.; Lambert, R.; Newsome, I.; Seeds, M.

    2013-01-01

    We are carrying out a long-term project of measuring chromospheric activity and brightness variations in 31 young solar analogs (YSAs) using facilities at the Dark Sky Observatory (DSO - Appalachian State University) and the Vatican Advanced Technology Telescope (VATT). These YSAs are solar-type (spectral types F8 - K2) stars with ages ranging from 0.3 - 1.5 Gyr. The goal of this project is to gain better understanding of the magnetic activity of the early Sun, and especially how that activity may have impacted the development of life on the Earth. This project will also yield insights into the space environments experienced by young Earth analogs. We are currently in the 6th year of spectroscopic measurements of these stars: these data include Ca II H & K chromospheric flux measurements, and narrow-band measurements in the photospheric G-band, both obtained with the G/M spectrograph on the DSO 32-inch telescope. We will present evidence of activity cycles in a number of our stars, as well as periods determined from rotational modulation of the spectroscopic indices. The relationship between the Ca II activity index and the G-band index will be explored. NSF support for our project has provided funds for the construction of a robotic photometric telescope to monitor the program stars in a 5-passband system (Strömgren-v, Johnson-Cousins B, V, and R, and a 3-nm wide Hα filter). The robotic telescope has been functional since April 2012 and observes the program stars on every clear night; combined with the Piggy-back telescope attached to the DSO 32-inch, we now have photometric observations on over 130 nights stretching over nearly 2 years. We will examine the relationships between variations in the Ca II H & K index, the G-band index and the photometric bands. This project is supported by the National Science Foundation, grant AST-1109158.

  7. The Young Solar Analogs Project

    Science.gov (United States)

    Gray, Richard O.; Saken, J. M.; Corbally, C. J.; Seeds, M. F.; Morrison, S. S.

    2012-01-01

    We are carrying out a long-term project of measuring chromospheric activity and brightness variations in 31 young solar analogs (YSAs) using the Dark Sky Observatory (DSO -- Appalachian State University) 32-inch telescope and the G/M spectrograph. These YSAs are solar-type (spectral types F8 - K2) stars with ages ranging from 0.3 - 1.5 Gyr. The goal of this project is to gain better understanding of the magnetic activity of the early Sun, and especially how that activity may have impacted the development of life on the Earth. This project will also yield insights into the space environments experienced by young Earth analogs. We are currently in our 5th year of obtaining Ca II K & H chromospheric flux measurements, and are beginning to see signs of long-term activity cycles in a number of our stars. In addition, rotational modulation of the chromospheric fluxes is detectable in our data, and we have determined rotational periods for many of our stars. Short timescale increases in the K & H fluxes have been observed in a number of our stars; these events may be related to stellar flares. VATTSpec, a new moderate-resolution spectrograph on the 1.8-m Vatican Telescope in Arizona, has recently become involved with the project. This spectrograph will increase our ability to detect short-term changes in stellar activity on timescales of hours to minutes. We have been monitoring the program stars for one year in a multi-band photometric system consisting of Stromgren-v, and Johnson B, V, and R filters. We will soon add a narrow-band H-alpha filter to the system. Photometry is being carried out with a small piggy-back telescope on the 32-inch, but a robotic photometric telescope is currently being installed at DSO for this purpose. This project is supported by the National Science Foundation.

  8. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the Coast of South Africa.

    Directory of Open Access Journals (Sweden)

    Albertus J Smit

    Full Text Available Gridded SST products developed particularly for offshore regions are increasingly being applied close to the coast for biogeographical applications. The purpose of this paper is to demonstrate the dangers of doing so through a comparison of reprocessed MODIS Terra and Pathfinder v5.2 SSTs, both at 4 km resolution, with instrumental in situ temperatures taken within 400 m from the coast. We report large biases of up to +6°C in places between satellite-derived and in situ climatological temperatures for 87 sites spanning the entire ca. 2 700 km of the South African coastline. Although biases are predominantly warm (i.e. the satellite SSTs being higher, smaller or even cold biases also appear in places, especially along the southern and western coasts of the country. We also demonstrate the presence of gradients in temperature biases along shore-normal transects - generally SSTs extracted close to the shore demonstrate a smaller bias with respect to the in situ temperatures. Contributing towards the magnitude of the biases are factors such as SST data source, proximity to the shore, the presence/absence of upwelling cells or coastal embayments. Despite the generally large biases, from a biogeographical perspective, species distribution retains a correlative relationship with underlying spatial patterns in SST, but in order to arrive at a causal understanding of the determinants of biogeographical patterns we suggest that in shallow, inshore marine habitats, temperature is best measured directly.

  9. A Coastal Seawater Temperature Dataset for Biogeographical Studies: Large Biases between In Situ and Remotely-Sensed Data Sets around the Coast of South Africa

    Science.gov (United States)

    Smit, Albertus J.; Roberts, Michael; Anderson, Robert J.; Dufois, Francois; Dudley, Sheldon F. J.; Bornman, Thomas G.; Olbers, Jennifer; Bolton, John J.

    2013-01-01

    Gridded SST products developed particularly for offshore regions are increasingly being applied close to the coast for biogeographical applications. The purpose of this paper is to demonstrate the dangers of doing so through a comparison of reprocessed MODIS Terra and Pathfinder v5.2 SSTs, both at 4 km resolution, with instrumental in situ temperatures taken within 400 m from the coast. We report large biases of up to +6°C in places between satellite-derived and in situ climatological temperatures for 87 sites spanning the entire ca. 2 700 km of the South African coastline. Although biases are predominantly warm (i.e. the satellite SSTs being higher), smaller or even cold biases also appear in places, especially along the southern and western coasts of the country. We also demonstrate the presence of gradients in temperature biases along shore-normal transects — generally SSTs extracted close to the shore demonstrate a smaller bias with respect to the in situ temperatures. Contributing towards the magnitude of the biases are factors such as SST data source, proximity to the shore, the presence/absence of upwelling cells or coastal embayments. Despite the generally large biases, from a biogeographical perspective, species distribution retains a correlative relationship with underlying spatial patterns in SST, but in order to arrive at a causal understanding of the determinants of biogeographical patterns we suggest that in shallow, inshore marine habitats, temperature is best measured directly. PMID:24312609

  10. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    Science.gov (United States)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  11. Future planetary X-ray and gamma-ray remote sensing system and in situ requirements for room temperature solid state detectors

    CERN Document Server

    Trombka, J I; Starr, R; Clark, P E; Floyd, S R

    1999-01-01

    X-Ray and gamma-ray remote sensing observations find important applications in the study of the development of the planets. Orbital measurements can be carried out on solar-system bodies whose atmospheres and trapped radiation environments do not interfere significantly with the emissions. Elemental compositions can be inferred from observations of these line emissions. Future planetary missions also will involve landing both stationery and roving probes on planetary surfaces. Both X-ray and gamma-ray spectrometers will be used for performing elemental analysis of surface samples. These future planetary missions will impose a number of constraints: the flight instruments must be significantly reduced in weight from those previously flown; for many missions, gravity assist will be required, greatly increasing mission duration, resulting in the passage of several years before the first scientific measurement of a solar system body. The detector systems must operate reliably after years of cosmic-ray irradiation...

  12. Priming analogical reasoning with false memories.

    Science.gov (United States)

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems.

  13. Neural correlates of creativity in analogical reasoning.

    Science.gov (United States)

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2012-03-01

    Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key determinant of the creativity of analogical mapping (i.e., more distant analogies are generally more creative). Here, we used functional magnetic resonance imaging to assess brain activity during an analogy generation task in which we varied the semantic distance of analogical mapping (as derived quantitatively from a latent semantic analysis). Data indicated that activity within an a priori region of interest in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. Results implicate increased recruitment of frontopolar cortex as a mechanism for integrating semantically distant information to generate solutions in creative analogical reasoning. 2012 APA, all rights reserved

  14. An emergent approach to analogical inference

    Science.gov (United States)

    Thibodeau, Paul H.; Flusberg, Stephen J.; Glick, Jeremy J.; Sternberg, Daniel A.

    2013-03-01

    In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.

  15. Frozen orbit realization using LQR analogy

    Science.gov (United States)

    Nagarajan, N.; Rayan, H. Reno

    In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.

  16. Common Sense Biblical Hermeneutics

    Directory of Open Access Journals (Sweden)

    Michael B. Mangini

    2014-12-01

    Full Text Available Since the noetics of moderate realism provide a firm foundation upon which to build a hermeneutic of common sense, in the first part of his paper the author adopts Thomas Howe’s argument that the noetical aspect of moderate realism is a necessary condition for correct, universally valid biblical interpretation, but he adds, “insofar as it gives us hope in discovering the true meaning of a given passage.” In the second part, the author relies on John Deely’s work to show how semiotics may help interpreters go beyond meaning and seek the significance of the persons, places, events, ideas, etc., of which the meaning of the text has presented as objects to be interpreted. It is in significance that the unity of Scripture is found. The chief aim is what every passage of the Bible signifies. Considered as a genus, Scripture is composed of many parts/species that are ordered to a chief aim. This is the structure of common sense hermeneutics; therefore in the third part the author restates Peter Redpath’s exposition of Aristotle and St. Thomas’s ontology of the one and the many and analogously applies it to the question of how an exegete can discern the proper significance and faithfully interpret the word of God.

  17. Design and Analysis of Reconfigurable Analog System

    Science.gov (United States)

    2011-02-01

    34010010" �" �" �" �" �" �" �±" N3 N2 N± P1 P2 P3 * Current sources $RR = 1; *Ramp Rate (slope of the...2008/12/12/31e83bac-500f-4182- acca -4d360295fd9c.pdf, Analog Devices, Analog Dialogue 39-06, June 2005. [15] D. A. Johns, K. Martin "Analog Integrated

  18. Synthesis, characterization and gas sensing performance

    Indian Academy of Sciences (India)

    For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be ...

  19. Fermilab accelerator control system: Analog monitoring facilities

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system

  20. Relations as transformations: implications for analogical reasoning.

    Science.gov (United States)

    Leech, Robert; Mareschal, Denis; Cooper, Richard P

    2007-07-01

    We present two experiments assessing whether the size of a transformation instantiating a relation between two states of the world (e.g., shrinks) is a performance factor affecting analogical reasoning. The first experiment finds evidence of transformation size as a significant factor in adolescent analogical problem solving while the second experiment finds a similar effect on adult analogical reasoning using a markedly different analogical completion paradigm. The results are interpreted as providing evidence for the more general framework that cognitive representations of relations are best understood as mental transformations.