WorldWideScience

Sample records for analog resonances strangeness

  1. Strange decays from strange resonances

    CERN Document Server

    Bijker, R

    2001-01-01

    We discuss the mass spectrum and strong decays of baryon resonances belonging to the N, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon. We find good overall agreement with the available data. Systematic discrepancies are found for lowlying S-wave states, in particular in the strong decays of N(1535), N(1650), Sigma(1750), Lambda(1405), Lambda(1670) and Lambda(1800).

  2. Strange decays from strange resonances

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2001-07-01

    We discuss the mass spectrum and strong decays of baryon resonances belonging to the N, {delta}, {sigma}, {lambda}, {xi} and {omega} families in a collective string- like model for the nucleon. We find good overall agreement with the available data. Systematic discrepancies are found for low-lying S-wave states, in particular in the strong decays of N(1535), N(1650), {sigma}(1750), {lambda}{sup *}(1405), {lambda}(1670) and {lambda}(1800). (Author)

  3. Missing strange resonances in Lattice QCD

    CERN Document Server

    Marczenko, Michał

    2016-01-01

    Recent Lattice QCD (LQCD) studies suggest that there are missing resonances in the strange sector of the Hadron Resonance Gas (HRG) model. By adopting the continuous Hagedorn mass spectrum, we present how different medium compositions influence the HRG predictions of conserved charge fluctuations. It is shown that missing strange resonances may be partially accounted for by applying the Hagedorn mass spectrum extracted from experimentally established hadrons. On the other hand, the strange-baryonic spectra, extracted from LQCD results for fluctuations, are found to be consistent with the unconfirmed states in the Particle Data Group (PDG) database, whilst the strange-mesonic spectrum points towards yet undiscovered states in the intermediate mass region.

  4. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Fabbietti, L. [e12, Physik Department Technische Universität München Excellence Cluster “Origin and Structure of the Universe” (Germany)

    2016-01-22

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  5. Electroproduction of Baryon Resonances and Strangeness Suppression

    CERN Document Server

    Santopinto, E; Tecocoatzi, H Garcia

    2016-01-01

    We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...

  6. Production of multi-strange hyperons and strange resonances in the NA49 experiment

    CERN Document Server

    Barton, R A; Anticic, T; Bächler, J; Barna, D; Barnby, L S; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Blyth, C O; Boimska, B; Botje, M; Bracinik, J; Brady, F P; Bramm, R; Brun, R; Buncic, P; Carr, L; Cebra, D; Cooper, G E; Cramer, J G; Csató, P; Eckhardt, F; Ferenc, D; Filip, P; Fischer, H G; Fodor, Z; Foka, P Y; Freund, P; Friese, V; Ftácnik, J; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Hlinka, V; Höhne, C; Igo, G; Ivanov, M; Jacobs, P; Janik, R; Jones, P G; Kadija, K; Kolesnikov, V I; Kollegger, T; Kowalski, M; Van Leeuwen, M; Lévai, Peter; Malakhov, A I; Margetis, S; Markert, C; Mayes, B W; Melkumov, G L; Mischke, A; Molnár, J; Nelson, J M; Odyniec, Grazyna Janina; Pálla, G; Panagiotou, A D; Petridis, A; Pikna, M; Pinsky, L; Poskanzer, A M; Prindle, D J; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Ritter, H G; Röhrich, D; Roland, C; Roland, G; Rybicki, A; Sammer, T; Sandoval, A; Sann, H; Schäfer, E; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Snellings, R; Squier, G T A; Stock, Reinhard; Strmen, P; Ströbele, H; Susa, T; Szarka, I; Szentpétery, I; Sziklai, J; Toy, M; Trainor, T A; Trentalange, S; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Voloshin, S A; Vranic, D; Wang, F; Weerasundara, D D; Wenig, S; Wetzler, A; Whitten, C; Xu, N; Yates, T A; Yoo, I K; Zimányi, J

    2001-01-01

    The NA49 large-acceptance hadron spectrometer has measured strange and multi-strange hadrons from Pb+Pb and p+p collisions at the CERN SPS. Preliminary results for the transverse mass and rapidity distributions for X and Xi /sup +/ from central Pb+Pb collisions at 158 GeV c/sup -1//nudeon are presented. Fully integrated yields per event of 4.42+or-0.31 and 0.74+0.04 are found for Xi /sup -/ and Xi /sup +/, respectively, leading to a 4 pi Xi /sup +// Xi /sup -/ ratio of 0.17+or-0.02. The ratio Xi /sup +// Xi /sup -/ at mid-rapidity is found to be 0.22+or-0.04, agreeing with previously published values. In addition, preliminary data on the Lambda (1520) and phi (1020) resonances are presented. The Lambda (1520) multiplicity for p+p collisions is found to be 0.012+or-0.003. No signal is observed for Pb+Pb collisions and a production upper limit of 1.36 Lambda (1520) per event indicates an apparent suppression when comparing with scaled p+p data. Integrated phi (1020) yields per event are found to be 7.6+or-1.1 f...

  7. Strange Resonance and Charmed Particle Production in Muon-Associated Neutrino Neon Charged-Current Interactions

    Science.gov (United States)

    Hyatt, Eric Roy

    The production of strange resonances and charmed particles in nu_{mu} Ne charged-current interactions was measured in the 15 ft Bubble Chamber. The chamber, filled with a heavy Ne-H_2 mixture, was exposed at Fermilab to a wide-band horn-focussed neutrino beam with peak energy ~20 GeV. In a 390,000 expansion exposure of the chamber, ~125,000 charge-current events occurred within the fiducial volume. Among these events were 4381 (3676) well-reconstructed K _sp{s}{0} ( Lambda^0) decays. The events containing these neutral strange particle decays are examined to measure strange resonance and charmed particle production. Inclusive production rates or rate limits per charged-current event are measured for the K*(890) and Sigma^ {*}(1380) resonances. The production of any particular resonance is measured to be typically {cal O}(1%), and resonance decays are shown to account for 10-25% of K^0 /|{rm K}^0 's and Lambda^0's. Production rates or rate limits are measured for charmed particles via hadronic decays which include a neutral strange particle --these rates are typically {cal O} (1%) and are consistent with the rate at which charmed particle semileptonic decays were observed during the same experiment. ftn*Research supported by the National Science Foundation. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the graduate School of Arts and Sciences, Columbia University.

  8. Strange hadrons and resonances at LHC energies with the ALICE detector

    Directory of Open Access Journals (Sweden)

    Badalá A.

    2014-03-01

    Full Text Available The study of (multistrange hadrons and resonance production allows in heavyion collisions to gather information on the early partonic phase of the fireball and its evolution. The ALICE collaboration has measured the production of K*(8920, φ(1020 resonances and KS0, Λ, Ξ−, Ω− hadrons and their anti-particles at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV. This contribution presents results on strangeness enhancement, baryon to meson ratios (Λ/KS0 and Ω−/φ and on resonance to stable particle ratio (φ/K and K*/K. The nuclear modification factor RAA of the φ(1020 will be also discussed.

  9. Decay Properties Of The Dipole Isobaric Analog Resonances

    NARCIS (Netherlands)

    Gorelik, M. L.; Safonov, I. V.; Urin, M. H.

    2006-01-01

    Abstract: A continuum-RPA-based approach is applied to describe the decay properties of isolated dipole isobaric analog resonances in nuclei having not-too-large neutron excess. Calculated for a few resonances in 90Zr the elastic E1-radiative width and partial proton widths for decay into one-hole s

  10. Heavy baryonic resonances, multi strange hadrons and equilibration at SIS18 energies

    CERN Document Server

    Steinheimer, J; Becattini, F; Stock, R; Bleicher, M

    2016-01-01

    We study the details and time dependence of particle production in nuclear collisions at a fixed target beam energy of $E_{\\mathrm{lab}}= 1.76$ A GeV with the UrQMD transport model. We find that the previously proposed production mechanism for multi strange hadrons, $\\phi$ and $\\Xi$, are possible due to secondary interactions of incoming nuclei of the projectile and target with already created nuclear resonances, while the Fermi momenta of the nuclei play only a minor role. We also show how the centrality dependence of these particle multiplicities can be used to confirm the proposed mechanism, as it strongly depends on the number of participants in the reaction. Furthermore we investigate the time dependence of particle production in collisions of Ca+Ca at this beam energy, in order to understand the origins of the apparent chemical equilibration of the measured particle yields. We find that indeed the light hadron yields appear to be in equilibrium already from the very early stage of the collision while in...

  11. Analog VLSI implementation of resonate-and-fire neuron.

    Science.gov (United States)

    Nakada, Kazuki; Asai, Tetsuya; Hayashi, Hatsuo

    2006-12-01

    We propose an analog integrated circuit that implements a resonate-and-fire neuron (RFN) model based on the Lotka-Volterra (LV) system. The RFN model is a spiking neuron model that has second-order membrane dynamics, and thus exhibits fast damped subthreshold oscillation, resulting in the coincidence detection, frequency preference, and post-inhibitory rebound. The RFN circuit has been derived from the LV system to mimic such dynamical behavior of the RFN model. Through circuit simulations, we demonstrate that the RFN circuit can act as a coincidence detector and a band-pass filter at circuit level even in the presence of additive white noise and background random activity. These results show that our circuit is expected to be useful for very large-scale integration (VLSI) implementation of functional spiking neural networks.

  12. Production rates of strange vector mesons at the Z0 resonance

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Mihai O. [Stanford Univ., CA (United States)

    1997-05-01

    This dissertation presents a study of strange vector meson production, "leading particle" effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z. The measurements were performed in e+e- collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of ρ and K*0 and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*0 production is studied separately in these samples, and the results show evidence for the "leading particle" effect. The difference between K*0 production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.

  13. Strange Hadron Resonances Freeze-Out Probes in Heavy-Ion Collisions

    CERN Document Server

    Markert, C; Rafelski, J

    2002-01-01

    Hyperon resonances are becoming an extremely useful tool allowing the study of the properties of hadronic fireballs made in heavy ion collisions. Their yield, compared to stable particles with the same quark composition, depends on hadronization conditions. The resonance's short lifetime makes them ideal probes of the fireball chemical freeze-out mechanisms. An analysis of resonance abundance in heavy ion collisions should be capable of distinguishing between possible hadronization scenarios, in particular between sudden and gradual hadronization. In this paper, we review the existing SPS and RHIC experimental data on resonance production in heavy ion collisions, and discuss in terms of both thermal and microscopic models the yields of the two observed resonances, K* and Lambda(1520). We show how freeze-out properties, namely chemical freeze-out temperature and the lifetime of the interacting hadron phase which follows, can be related to resonance yields. Finally, we apply these methods to SPS and RHIC measur...

  14. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    NARCIS (Netherlands)

    Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Boretzky, K.; Heil, M.; Litvinov, Yu A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.

    2012-01-01

    The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approxima

  15. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  16. Study of $^{13}$Be through isobaric analog resonances in the Maya active target

    CERN Multimedia

    Riisager, K; Orr, N A; Jonson, B N G; Raabe, R; Fynbo, H O U; Nilsson, T

    We propose to perform an experiment with a $^{12}$Be beam and the Maya active target. We intend to study the ground state of $^{13}$Be through the population of its isobaric analog resonance in $^{13}$B. The resonance will be identified detecting its proton- and neutron-decay channels.

  17. Formation of a narrow baryon resonance with positive strangeness in K^+ collisions with Xe nuclei

    CERN Document Server

    Barmin, V V; Borisov, V S; Curceanu, C; Davidenko, G V; Dolgolenko, A G; Guaraldo, C; Kubantsev, M A; Larin, I F; Matveev, V A; Shebanov, V A; Shishov, N N; Sokolov, L I; Tumanov, G K; Verebryusov, V S

    2009-01-01

    The data on the charge-exchange reaction K^+Xe --> K^0 p Xe, obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK^0 resonance with mass near 1538 MeV is confirmed and reinforced. The statistical significance of the signal reaches some 8\\sigma (6\\sigma) when estimated as S/\\sqrt{B} (S/\\sqrt{B+S}). The mass and intrinsic width of the \\Theta^+ baryon are measured as m = (1538+-2) MeV and \\Gamma = (0.39+-0.10) MeV.

  18. Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    CERN Document Server

    Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M

    2012-01-01

    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...

  19. More strange hadrons from QCD thermodynamics and strangeness freeze-out in heavy ion collisions

    CERN Document Server

    Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-01-01

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. This provides evidence for the thermodynamic importance of additional, experimentally unobserved strange hadrons close to the QCD crossover. We show that, owing to overall strangeness neutrality, the thermodynamic presence of these additional states gets imprinted in the yields of the ground state strange hadrons leading to ob...

  20. Strange Assemblage

    Directory of Open Access Journals (Sweden)

    David Robert Cole

    2014-08-01

    Full Text Available This paper contends that the power of Deleuze & Guattari’s (1988 notion of assemblage as theorised in 1000 Plateaus can be normalised and reductive with reference to its application to any social-cultural context where an open system of dynamic and fluid elements are located. Rather than determining the assemblage in this way, this paper argues for an alternative conception of ‘strange assemblage’ that must be deliberately and consciously created through rigorous and focused intellectual, creative and philosophical work around what makes assemblages singular. The paper will proceed with examples of ‘strange assemblage’ taken from a film by Peter Greenaway (A Zed and 2 Noughts; the film ‘Performance’; educational research with Sudanese families in Australia; the book, Bomb Culture by Jeff Nuttall (1970; and the band Hawkwind. Fittingly, these elements are themselves chosen to demonstrate the concept of ‘strange assemblage’, and how it can be presented. How exactly the elements of a ‘strange assemblage’ come together and work in the world is unknown until they are specifically elaborated and created ‘in the moment’. Such spontaneous methodology reminds us of the 1960s ‘Happenings’, the Situationist International and Dada/Surrealism. The difference that will be opened up by this paper is that all elements of this ‘strange assemblage’ cohere in terms of a rendering of ‘the unacceptable.'

  1. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    OpenAIRE

    2012-01-01

    The gamma-decay of the anti-analog of the giant dipole resonance (AGDR) has been measured to the isobaric analog state excited in the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent random-phase approximation (RPA) and turned out to be very sensitive to the neutron-skin thickness (\\DeltaR_(pn)). By comparing the theoretical results with the measured one, the \\DeltaR_(pn) value for 124Sn was deduced...

  2. Leaky Modes of Waveguides as a Classical Optics Analogy of Quantum Resonances

    Directory of Open Access Journals (Sweden)

    Sara Cruz y Cruz

    2015-01-01

    Full Text Available A classical optics waveguide structure is proposed to simulate resonances of short range one-dimensional potentials in quantum mechanics. The analogy is based on the well-known resemblance between the guided and radiation modes of a waveguide with the bound and scattering states of a quantum well. As resonances are scattering states that spend some time in the zone of influence of the scatterer, we associate them with the leaky modes of a waveguide, the latter characterized by suffering attenuation in the direction of propagation but increasing exponentially in the transverse directions. The resemblance is complete because resonances (leaky modes can be interpreted as bound states (guided modes with definite lifetime (longitudinal shift. As an immediate application we calculate the leaky modes (resonances associated with a dielectric homogeneous slab (square well potential and show that these modes are attenuated as they propagate.

  3. Signal modulating noise effect in bistable stochastic resonance systems and its analog simulation

    Institute of Scientific and Technical Information of China (English)

    XIAO Fang-hong; YAN Gui-rong; XIE Shi-cheng

    2006-01-01

    The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.

  4. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    Science.gov (United States)

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  5. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianping; Wei, Zhongchao, E-mail: wzc@scnu.edu.cn; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-08

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  6. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    Science.gov (United States)

    Krasznahorkay, A.; Stuhl, L.; Csatlós, M.; Algora, A.; Gulyás, J.; Timár, J.; Paar, N.; Vretenar, D.; Harakeh, M. N.; Boretzky, K.; Heil, M.; Litvinov, Yu. A.; Rossi, D.; Scheidenberger, C.; Simon, H.; Weick, H.; Bracco, A.; Brambilla, S.; Blasi, N.; Camera, F.; Giaz, A.; Million, B.; Pellegri, L.; Riboldi, S.; Wieland, O.; Altstadt, S.; Fonseca, M.; Glorius, J.; Göbel, K.; Heftrich, T.; Koloczek, A.; Kräckmann, S.; Langer, C.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Schmidt, S.; Sonnabend, K.; Weigand, M.; Kalantar-Nayestanaki, N.; Rigollet, C.; Bagchi, S.; Najafi, M. A.; Aumann, T.; Atar, L.; Heine, M.; Holl, M.; Movsesyan, A.; Schrock, P.; Volkov, V.; Wamers, F.; Fiori, E.; Löher, B.; Marganiec, J.; Savran, D.; Johansson, H. T.; Fernández, P. Diaz; Garg, U.; Balabanski, D. L.

    2012-10-01

    The γ-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p(124Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness (ΔRpn). By comparing the theoretical results with the measured one, the ΔRpn value for 124Sn was deduced to be 0.21 ± 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.

  7. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Barionic Resonances with Positive Strangeness S=+1 in the System nK+ from the Reaction np -> npK+K- at the Momentum of Incident Neutrons Pn=5.20 Gev/c

    CERN Document Server

    Troyan, Yu A; Troyan, A Y; Plekhanov, E B; Jerusalimov, A P; Arakelian, S G; Troyan, Yu.A.

    2006-01-01

    The production and properties of the resonances with the strangeness S=+1 in the system of nK+ were studied in the reaction np->npK+K- at the momentum of incident neutrons Pn=(5.20 +/- 0.12)GeV/c. A number of peculiarities were found in the effective mass spectrum of the mentioned above system. Their widths are comparable with the mass resolution. The estimation of the spins of resonances was carried out and the rotational band connecting the resonances masses and their spins was constructed.

  9. Optical Analog-to-digital Conversion Scheme Based on Tunable Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2007-01-01

    Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.

  10. Search for non-strange dibaryons

    Indian Academy of Sciences (India)

    Arun K Jain

    2006-05-01

    Inspite of tremendous interest there has been sporadic searches for dibaryon resonances in the past few decades. The main hurdle one faces in this search is their identification, their signature and practically no guide to their location. With the identification of the pentaquark-+ resonance one is encouraged to look for the discovery of strange dibaryons also. However where and how to look for non-strange dibaryons is not clear. The transition from a bipolar to a unipolar non-strange dibaryon may possibly be seen in the (, 2) reactions on heavy nuclei. The change of the finite size of the $p-p$ interaction vertex can be identified as a sudden change in the extracted DWIA spectroscopic factor. The DWIA anomalies are to be searched for in the existing (, 2) reaction data for the identification of non-strange dibaryons.

  11. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs

    Science.gov (United States)

    Zhou, Yu; Deng, Geng; Zheng, Yan-Zhen; Xu, Jing; Ashraf, Hamad; Yu, Zhi-Wu

    2016-11-01

    Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N-H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N-H/N-C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.

  12. Strange baryonic resonances below the anti KN threshold. Results from p+p reactions at the HADES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Siebenson, Johannes Stephan

    2013-04-18

    The present work investigates the vacuum properties of the hyperon resonances {Sigma}(1385){sup +} and {Lambda}(1405). For this purpose, p+p reactions at 3.5 GeV kinetic beam energy were analyzed. By using simulations and a special background method, the Breit-Wigner mass and width of the {Sigma}(1385){sup +} could be determined. Furthermore, its production dynamics were studied in different angular distributions. In this context indications were found that the {Sigma}(1385){sup +} partially stems from the decay of a heavy {Delta}-resonance. The investigation of the {Lambda}(1405) was based on similar analysis methods. After acceptance and efficiency corrections, the spectral shape of the {Lambda}(1405) could be extracted. Here a mass shift of this particle to masses below 1400 MeV/c{sup 2} was found. This might reveal important information about the two pole structure of the {Lambda}(1405) and its influence on the low energy anti KN interaction.

  13. Canonical Strangeness Enhancement

    CERN Document Server

    Sollfrank, J; Redlich, Krzysztof; Satz, Helmut

    1998-01-01

    According to recent experimental data and theoretical developments we discuss three distinct topics related to strangeness enhancement in nuclear reactions. We investigate the compatibility of multi-strange particle ratios measured in a restricted phase space with thermal model parameters extracted recently in 4pi. We study the canonical suppression as a possible reason for the observed strangeness enhancement and argue that a connection between QGP formation and the undersaturation of strangeness is not excluded.

  14. Strangeness At Extremes

    CERN Document Server

    Tolos, Laura; Khemchandani, Kanchan; Martinez-Torres, Alberto; Bratkovskaya, Elena; Aichelin, Joerg; Nielsen, Marina; Navarra, Fernando S

    2015-01-01

    We study the properties of strange mesons in vacuum and in the hot nuclear medium within unitarized coupled-channel effective theories. We determine transition probabilities, cross sections and scattering lengths for strange mesons. These scattering observables are of fundamental importance for understanding the dynamics of strangeness production and propagation in heavy-ion collisions.

  15. Weak Strangeness and Eta Production

    CERN Document Server

    Alam, M Rafi; Alvarez-Ruso, Luis; Simo, I Ruiz; Vacas, M J Vicente; Singh, S K

    2013-01-01

    We have studied strange particle production off nucleons through $\\Delta S =0 $ and $|\\Delta S| = 1$ channels, and specifically single kaon/antikaon, eta, associated particle production for neutrino/antineutrino induced processes as well as antineutrino induced single hyperon production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are $f_\\pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $\\Sigma^*(1385)$ resonance and for eta production $S_{11}(1535)$ and $S_{11}(1650)$ resonances are included.

  16. Strange-pulsar model

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina Nacional de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, (Argentina))

    1990-02-12

    Deep modifications to the current strange-star structure can occur if strange matter is not stable all the way down to zero pressure. This would be the case, for example, if some stable particle is formed at relatively low pressure and/or temperature. We show that the inclusion of a likely specific candidate particle (quark {alpha}) in the strange-matter picture leads to stellar models that present more realistic behavior in the light of current pulsar understanding.

  17. An investigation of the influence of the pairing correlations on the properties of the isobar analog resonances in = 208 nuclei

    Indian Academy of Sciences (India)

    A Küçükbursa; D I Salamov; T Babacan; H A Aygör

    2004-11-01

    Within the quasi-particle random phase approximation (QRPA), the method of the self-consistent determination of the isovector effective interaction which restores a broken isotopic symmetry for the nuclear part of the Hamiltonian is given. The effect of the pairing correlations between nucleons on the following quantities were investigated for the = 208 nuclei: energies of the isobar analog 0+ states, the isospin admixtures in the ground state of the even–even nuclei, and the differential cross-section for the 208Pb(3He,)208Bi reaction at E(3He) = 450 MeV. Both couplings of the excitation branches with z = 0 ± 1, and the analog state with isovector monopole resonance (IVMR) in the quasi-particle representation were taken into account in our calculations. As a result of these calculations, it was seen that the pairing correlations between nucleons have no considerable effect on the = 23 isospin admixture in the ground state of the 208Pb nucleus, and they cause partially an increase in the isospin impurity of the isobar analog resonance (IAR). It was also established that these correlations have changed the isospin structure of the IAR states, and shifted the energies of the IVMR states to the higher values.

  18. Recurrences of strange attractors

    Indian Academy of Sciences (India)

    E J Ngamga; A Nandi; R Ramaswamy; M C Romano; M Thiel; J Kurths

    2008-06-01

    The transitions from or to strange nonchaotic attractors are investigated by recurrence plot-based methods. The techniques used here take into account the recurrence times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize. The performance of these techniques is shown for the Heagy-Hammel transition to SNAs and for the fractalization transition to SNAs for which other usual nonlinear analysis tools are not successful.

  19. Strange nonchaotic stars

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  20. Search and Study of the Baryonic Resonances with the Strangeness S=+1 in the System $nK^{+}$ from the Reaction $np\\to npK^{+}K^{-}$ at the Momentum of Incident Neutrons $P_{n}=(5.20\\pm 0.12)$ GeV/c

    CERN Document Server

    Troyan, Yu A; Troyan, A Yu; Plekhanov, E B; Jerusalimov, A P; Piskaleva, G B; Arakelian, S G

    2004-01-01

    The production and properties of the resonances with the strangeness S=+1 in the system nK^{+} were studied in the reaction np\\to npK^{+}K^{-} at the momentum of incident neutrons P_{n}=(5.20\\pm 0.12) GeV/c. A number of peculiarities were found in the effective mass spectrum of the mentioned above system. All these resonances have a large statistical significance. Then widths are comparable with the mass resolution. The estimation of the spins of resonances was carried out and the rotational band connecting the resonance masses with spins was constructed

  1. The Search and Study of the Baryonic Resonances with the Strangeness S = +1 in the System of nK+ from the Reaction np -> npK+K- at the Momentum of Incident Neutrons Pn = (5.20+/-0.12)GeV/c

    CERN Document Server

    Troyan, Yu A; Troyan, Yu A; Plekhanov, E B; Jerusalimov, A P; Piskaleva, G B; Arakelian, S G; Troyan, Yu.A.

    2004-01-01

    The production and properties of the resonances with the strangeness S = +1 in the system of nK+ were studied in the reaction np -> npK+K- at the momentum of incident neutrons Pn = (5.20+/-0.12)GeV/c. A number of peculiarities was found in the effective mass spectrum of the mentioned above system. All these resonances have a large statistical significance. Their widths are comparable with the mass resolution. The estimation of the resonances spin was carried out and the rotational band connecting the resonances masses and their spins was constructed.

  2. Strangeness Physics at CLAS in the 6 GeV Era

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    A very brief overview is presented of varied strangeness-physics studies that have been conducted with the CLAS system in the era of 6 GeV beam at Jefferson Lab. A full bibliography of articles related to open strangeness production is given, together with some physics context for each work. One natural place where these studies could be continued, using a K L beam and the GlueX detector, is in the further investigation of the Λ(1405) baryon. The line shapes and cross sections of this state were found, using photoproduction at CLAS, to differ markedly in the three possible Σπ final states. The analogous strong-interaction reactions using a K L beam could further bring this phenomenon into focus. 1. The CLAS program ran from 1998 to 2012, during the time when the maximum Jefferson Lab beam energy was 6 GeV. An important thrust of this program was to investigate the spectrum of N * and Δ * (non-strange) baryon resonances using photo-and electro-production reactions. To this end, final states containing strange particles (K mesons and low-mass hyperons) played a significant role. The reason for this is partly due to favorable kinemat-ics. When the total invariant energy W (= √ s) of a baryonic system exceeds 1.6 GeV it becomes possible to create the lightest strangeness-containing final state, K + Λ. This is a two-body final state that is straightforward to reconstruct in the CLAS detector system [1], and theoretically it is easier to deal with two-body reaction amplitudes than with three-and higher-body reaction amplitudes. In the mass range W > 1.6 GeV the decay modes of excited nucleons tend to not to favor two-body π-nucleon final states but rather multi-pion states. As input to partial-wave decompositions and resonance-extraction models, therefore, the strangeness-containing final states of high-mass nucleon excitations have had importance. Excited baryons decay through all possible channels simultaneously, constrained by unitarity of course

  3. Strange Weak Values

    CERN Document Server

    Hosoya, Akio

    2010-01-01

    We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.

  4. A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment

    Science.gov (United States)

    Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.

    2015-04-01

    We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.

  5. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems

    Science.gov (United States)

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 105. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications. PMID:27463720

  6. Constraints on the Neutron Skin and the Symmetry Energy from the Anti-analog Giant Dipole Resonance in 208Pb

    CERN Document Server

    Cao, L G; Colo', G; Sagawa, H

    2015-01-01

    We investigate the impact of the neutron-skin thickness Delta(R) on the energy difference between the anti-analog giant dipole resonance (AGDR), E(AGDR), and the isobaric analog state (IAS), E(IAS), in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the Droplet Model that linearly connects the energy difference E(AGDR)-E(IAS) with Delta(R). To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic apporach and, by comparing our results with available experimental data in 208Pb, we find that our analysis is consistent with Delta(R) = 0.204 \\pm 0.009 fm, J = 31.4 \\pm 0.5 MeV ...

  7. A Fat strange Repeller

    Institute of Scientific and Technical Information of China (English)

    申影; 何阅; 姜玉梅; 何大韧

    2004-01-01

    This article reports an observation on a fat strange repeller, which appears after a characteristic crisis observed in a kicked rotor subjected to a piecewise continuous force field. The discontinuity border in the definition range of the two-dimensional mapping, which describes the system, oscillates as the discrete time develops. At a threshold of a control parameter a fat chaotic attractor suddenly transfers to a fat transient set. The strange repeller, which appears after the crisis, is also a fat fractal. This is the reason why super-transience happens

  8. The Search and Study of the Baryonic Resonances with the Strangeness S = +1 in the System of nK+ from the Reaction np -> npK+K- at the Momentum of Incident Neutrons Pn = (5.20+/-0.12)GeV/c

    OpenAIRE

    Troyan, Yu. A.; Beljaev, A. V.; Troyan, A. Yu.; Plekhanov, E. B.; Jerusalimov, A. P.; Piskaleva, G. B.; Arakelian, S. G.

    2004-01-01

    The production and properties of the resonances with the strangeness S = +1 in the system of nK+ were studied in the reaction np -> npK+K- at the momentum of incident neutrons Pn = (5.20+/-0.12)GeV/c. A number of peculiarities was found in the effective mass spectrum of the mentioned above system. All these resonances have a large statistical significance. Their widths are comparable with the mass resolution. The estimation of the spins of resonances was carried out and the rotational band co...

  9. Design and optimization of polymer ring resonator modulators for analog microwave photonic applications

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2016-02-01

    Efficient modulation of electrical signals onto an optical carrier remains the main challenge in full implementation of microwave photonic links (MPLs) for applications such as antenna remoting and wireless access networks. Current MPLs utilize Mach-Zehnder Interferometers (MZI) with sinusoidal transfer function as electro-optic modulators causing nonlinear distortions in the link. Recently ring resonator modulators (RRM) consisting of a ring resonator coupled to a base waveguide attracted interest to enhance linearity, reduce the size and power consumption in MPLs. Fabrication of a RRM is more challenging than the MZI not only in fabrication process but also in designing and optimization steps. Although RRM can be analyzed theoretically for MPLs, physical structures need to be designed and optimized utilizing simulation techniques in both optical and microwave regimes with consideration of specific material properties. Designing and optimization steps are conducted utilizing full-wave simulation software package and RRM function analyzed in both passive and active forms and confirmed through theoretical analysis. It is shown that RRM can be completely designed and analyzed utilizing full-wave simulation techniques and as a result linearity effect of the modulator on MPLs can be studied and optimized. The material nonlinearity response can be determined computationally and included in modulator design and readily adaptable for analyzing other materials such as silicon or structures where theoretical analysis is not easily achieved.

  10. Calculation of Regge trajectories of strange resonances and identification of the K0*(800) as a non-ordinary meson

    CERN Document Server

    Peláez, J R

    2016-01-01

    We review how the Regge trajectory of an elastic resonance can be obtained just from its pole position and coupling, using a dispersive formalism. This allows us to deal correctly with the finite widths of resonances in Regge trajectories. In this way we can calculate the Regge trajectories for the $K^*(892)$, $K_1(1400)$ and $K^*_0(1430)$, obtaining ordinary linear Regge trajectories, expected for $q \\bar q$ resonances. In contrast, for the $K^*_0(800)$ meson, the resulting Regge trajectory is non-linear and with much smaller slope, strongly supporting its non-ordinary nature.

  11. Strange Nonchaotic Stars

    Science.gov (United States)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  12. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-01

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  13. Separate chemical freeze-outs of strange and non-strange hadrons and problem of residual chemical non-equilibrium of strangeness in relativistic heavy ion collisions

    CERN Document Server

    Bugaev, K A; Sagun, V V; Ivanytskyi, A I; Cleymans, J; Mironchuk, E S; Nikonov, E G; Taranenko, A V; Zinovjev, G M

    2016-01-01

    We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $\\gamma_{s}$ factor which accounts for the remaining strange particle non-equilibration. Within suggested approach the parameters of two chemical freeze-outs are connected by the conservation laws of entropy, baryonic charge, third isospin projection and strangeness. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with $\\chi^2/dof \\simeq 0.93$. A special attention is paid to a successful description of the Strangeness Horn. The well-known problem of selective suppression of $\\bar \\Lambda $ and $\\bar \\Xi$ hyperons is also discussed. The main result is that for all collision energies the $\\gamma_{s}$ factor is about 1 within the error bars, except for the center of mass collision energy 7.6 GeV at which we find about 20\\% enhancement of strangeness. Als...

  14. Strange stars, strange dwarfs, and planetary-like strange-matter objects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Schaab, C.; Weigel, M.K. [Ludwig-Maximilians Univ., Munich (Germany). Inst. for Theoretical Physics; Glendenning, N.K. [Lawrence Berkeley Lab., CA (United States). Nuclear Science Div.

    1995-05-01

    This paper gives an overview of the properties of all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from strange stars to strange dwarfs. In contrast to their non-strange counterparts--neutron stars and white dwarfs--their properties are determined by two (rather than one) parameters, the central star density and the density at the base of the nuclear crust. This leads to stellar strange-matter configurations whose properties are much more complex than those of the conventional sequence. As an example, two generically different categories of stable strange dwarfs are found, which could be the observed white dwarfs. Furthermore the authors find very-low-mass strange stellar objects, with masses as small as those of Jupiter or even lighter planets. Such objects, if abundant enough, should be seen by the presently performed gravitational microlensing searches.

  15. A photonic analog of Möbius strips using coupled optical ring resonators

    Science.gov (United States)

    Wu, Li-Ting; Guo, Rui-Peng; Cui, Tie-Jun; Chen, Jing

    2017-02-01

    A Möbius strip has an intriguing topological property in that it only has one non-orientable side. Here we propose to utilize coupled optical ring resonators (ORRs) to simulate the topological effect of Möbius strips. This scheme is based on the fact that the counter-clockwise mode in an ORR only couples to the clockwise mode of an adjacent ORR. We show that if an odd number of ORRs form a closed loop, after a round trip the handedness of the excited mode does not return to the initial one. Only after a double round trip does the mode come back to its initial state. Such a kind of Möbius-type coupling topology can be observed from the strong backward reflection in a common bus that provides the initial excitation. Eigenmodes, reflection and transmission spectra, and field distributions are calculated and analyzed. We also study the situation without Möbius-type coupling. The difference between these two categories is discussed. COMSOL simulations verify our analysis. The importance of this investigation and potential applications are briefly discussed.

  16. Strangeness Production in AA and pp Collisions

    CERN Document Server

    Satz, P Castorina ad H

    2016-01-01

    Boost-invariant hadron production in high energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ($pp$, $e^+e^-$) below LHC energies. In contrast, the space-time superposition of individual collisions in high energy heavy ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we det...

  17. Strangeness at finite temperature from Lattice QCD

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2016-01-01

    The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inclusion of decays [3]). We propose a set of specific observables, defined as linear combinations of conserved charge fluctuations, which allow to investigate this issue for baryons containing one or more strange quarks separately. Applications of these observables to isolate the multiplicity fluctuations of kaons from lattice QCD, and their comparison with the experimental results, are also discussed.

  18. On the near-threshold peak structure in the differential cross section of $\\phi$-meson photoproduction: missing resonance with non-negligible strangeness content?

    CERN Document Server

    Kiswandhi, Alvin

    2011-01-01

    The details of the analysis, with more extensive results, of the near-threshold bump structure in the forward differential cross section of the phi-meson photoproduction to determine whether it is a signature of a resonance are presented. The analysis is carried out in an effective Lagrangian approach which includes Pomeron and (pi, eta) exchanges in the t channel, and contributions from the s- and u-channel excitation of a postulated nucleon resonance. In addition to the differential cross sections, we use the nine spin-density matrix elements as recently measured, instead of the phi-meson decay angular distributions which depend only on six spin-density matrix elements as was done before, to constrain the resonance parameters. We conclude that indeed the bump structure as reported by LEPS, can only be explained with an assumption of the excitation of a resonance of spin 3/2, as previously reported. However, both parities of +/- can account for the data equally well with almost identical mass of 2.08 +/- 0.0...

  19. Incompressibility of strange matter

    CERN Document Server

    Sinha, M N; Dey, J; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Bagchi, Manjari; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha

    2002-01-01

    Strange stars calculated from a realistic equation of state (EOS) show compact objects in the mass radius curve, when they are solved for gravitational fields via TOV equation. Many of the observed stars seem to fit in with this kind of compactness irrespective of whether they are X-ray pulsars, bursters or soft $\\gamma$ repeaters or radio pulsars. Calculated incompressibility of this strange matter shows continuity with that of nuclear matter. This is important in the cosmic separation of phase scenario. We compare our calculations of incompressibility with that of a nuclear matter EOS. This EOS has a continuous transition to ud-matter at about five times normal density. From a look at the consequent velocity of sound it is found that the transition to ud-matter seems necessary.

  20. Strangeness as a probe to baryon-rich QCD matter at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji [The University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan)

    2016-08-15

    We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ{sup 0}, Ξ{sup 0}, Ξ{sup -}, and K{sup +} at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number. (orig.)

  1. Analysis of structure-function relationships in cytochrome c oxidase and its biomimetic analogs via resonance Raman and surface enhanced resonance Raman spectroscopies.

    Science.gov (United States)

    Weidinger, Inez M

    2015-01-01

    Cytochrome c oxidase (CcO) catalyzes the four electron reduction of molecular oxygen to water while avoiding the formation of toxic peroxide; a quality that is of high relevance for the development of oxygen-reducing catalysts. Resonance Raman spectroscopy has been used since many years as a technique to identify electron transfer pathways in cytochrome c oxidase and to identify the key intermediates in the catalytic cycle. This information can be compared to artificial systems such as modified heme-copper enzymes, molecular heme-copper catalysts or CcO/electrode complexes in order to shed light into the reaction mechanism of these non-natural systems. Understanding the structural commonalities and differences of CcO with its non-natural analogs is of great value for designing efficient oxygen-reducing catalysts. In this review therefore Raman spectroscopic measurements on artificial heme-copper enzymes and model complexes are summarized and compared to the natural enzyme cytochrome c oxidase. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.

  2. Strange stars at finite temperature

    Science.gov (United States)

    Ray, Subharthi; Bagchi, Manjari; Dey, Jishnu; Dey, Mira

    2006-03-01

    We calculate strange star properties, using large Nc approximation with built-in chiral symmetry restoration (CSM). We used a relativistic Hartree Fock meanfield approximation method, using a modi.ed Richardson potential with two scale parameters Λ and Λ', to find a new set of equation of state (EOS) for strange quark matter. We take the effect of temperature (T) on gluon mass, in addition to the usual density dependence, and find that the transition T from hadronic matter to strange matter is 80 MeV. Therefore formation of strange stars may be the only signal for formation of QGP with asymptotic freedom (AF) and CSM.

  3. Strange/anti-strange asymmetry in the nucleon sea

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, H.R.; Magnin, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1998-01-01

    We derive the nucleon sea-quark distributions coming from a meson cloud model, in order to argue for a strange-anti strange asymmetry in the nucleon sea. (author) 13 refs., 3 figs.; e-mail: hugo at cat.cbpf.br; jmagnin at lafex.cbpf.br

  4. Strangeness production in AA and pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    Castorina, Paolo [Universita di Catania, Dipartimento di Fisica ed Astronomia, Catania (Italy); INFN, Catania (Italy); Satz, Helmut [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany)

    2016-07-15

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions (pp, e{sup +}e{sup -}) below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well. (orig.)

  5. Strangeness production in AA and pp collisions

    Science.gov (United States)

    Castorina, Paolo; Satz, Helmut

    2016-07-01

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ( pp , e^+e^- below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.

  6. Algebraic Models of Hadron Structure; 2, Strange Baryons

    CERN Document Server

    Bijker, R; Leviatan, A

    2000-01-01

    The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.

  7. Strangeness in the proton

    Science.gov (United States)

    Alberg, Mary

    2014-03-01

    Both perturbative and non-perturbative mechanisms contribute to strangeness in the proton sea. We have developed a hybrid model in which non-perturbative contributions are calculated in a meson cloud model which expands the proton in terms of meson-baryon states, and perturbative contributions are calculated in a statistical model which expands the proton in terms of quark-gluon states. The perturbative contributions are represented in the parton distributions of the ``bare'' hadrons in the meson cloud. We compare our results to the recent experimental data of ATLAS and HERMES. This research has been supported in part by NSF Award 1205686.

  8. Strangeness and Hadron Structure

    CERN Document Server

    Ellis, Jonathan Richard

    2001-01-01

    The nucleon wave function may contain a significant component of ssbar pairs, according to several measurements including the pi-nucleon sigma term, charm production and polarization effects in deep-inelastic scattering. In addition, there are excesses of phi production in LEAR and other experiments, above predictions based the naive Okubo-Zweig-Iizuka rule, that may be explained if the nucleon wave function contains a polarized ssbar component. This model also reproduces qualitatively data on Lambda polarization in deep-inelastic neutrino scattering. The strange component of the proton is potentially important for other physics, such as the search for astrophysical dark matter.

  9. On the strangeness content of the nucleon

    CERN Document Server

    Alarcon, J M; Camalich, J Martin; Oller, J A

    2012-01-01

    We revisit the classical relation between the strangeness content of the nucleon, the pion-nucleon sigma term and the $SU(3)_F$ breaking of the baryon masses in the context of covariant chiral perturbation theory. In particular, we consider the contributions of the decuplet resonances explicitly. We find that a value of the pion-nucleon sigma term of $\\sim$60 MeV is not at odds with, but favored by the fulfillment of the Zweig rule. We compare these results with earlier ones and discuss the convergence of the chiral series as well as the uncertainties of chiral approaches to the determination of the sigma terms.

  10. Electrically Charged Strange Quark Stars

    CERN Document Server

    Negreiros, Rodrigo P; Malheiro, Manuel; Usov, Vladimir

    2009-01-01

    The possible existence of compact stars made of absolutely stable strange quark matter--referred to as strange stars--was pointed out by E. Witten almost a quarter of a century ago. One of the most amazing features of such objects concerns the possible existence of ultra-strong electric fields on their surfaces, which, for ordinary strange matter, is around $10^{18}$ V/cm. If strange matter forms a color superconductor, as expected for such matter, the strength of the electric field may increase to values that exceed $10^{19}$ V/cm. The energy density associated with such huge electric fields is on the same order of magnitude as the energy density of strange matter itself, which, as shown in this paper, alters the masses and radii of strange quark stars at the 15% and 5% level, respectively. Such mass increases facilitate the interpretation of massive compact stars, with masses of around $2 M_\\odot$, as strange quark stars.

  11. Open and Hidden Strangeness Production in Nucleon-Nucleon Collisions

    CERN Document Server

    Shyam, Radhey

    2008-01-01

    We present an overview of the description of K and eta meson productions in nucleon-nucleon collisions within an effective Lagrangian model where meson production proceeds via excitation, propagation and subsequent decay of intermediate baryonic resonant states. The $K$ meson contains a strange quark ($s$) or antiquark ($\\bar s$) while the $\\eta$ meson has hidden strangeness as it contains some component of the $s{\\bar s}$ pair. Strange meson production is expected to provide information on the manifestation of quantum chromodynamics in the non-perturbative regime of energies larger than that of the low energy pion physics. We discuss specific examples where proper understanding of the experimental data for these reactions is still lacking.

  12. Magnetic monopoles and strange matter

    Science.gov (United States)

    Sañudo, J.; Seguí, A.

    1986-01-01

    We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  13. ALICE Masterclass on strangeness

    Directory of Open Access Journals (Sweden)

    Foka Panagiota

    2014-04-01

    Full Text Available An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become “scientists for a day” as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a “hands-on” session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement “strangeness enhancement” and the employed methodology are presented.

  14. Today's View on Strangeness

    CERN Document Server

    Ellis, Jonathan Richard

    2005-01-01

    There are several different experimental indications, such as the pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest that the nucleon wave function contains a hidden s bar s component. This is expected in chiral soliton models, which also predicted the existence of new exotic baryons that may recently have been observed. Another hint of hidden strangeness in the nucleon is provided by copious phi production in various N bar N annihilation channels, which may be due to evasions of the Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic scattering.

  15. Strangeness enhancement at the hadronic chemical freeze-out

    CERN Document Server

    Sagun, V V; Bugaev, K A; Cleymans, J; Ivanytskyi, A I; Mishustin, I N; Nikonov, E G

    2014-01-01

    The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $\\gamma_{s}$ factor which gives us an opportunity to perform a high quality fit with $\\chi^2/dof \\simeq 63.5/55 \\simeq 1.15$ of the hadronic multiplicity ratios measured from the low AGS to the highest RHIC energies. In contrast to previous findings, at low energies we observe the strangeness enhancement instead of a suppression. In addition, the performed $\\gamma_{s}$ fit allows us to achieve the highest quality of the Strangeness Horn description with $\\chi^2/dof=3.3/14$. For the first time the top point of the Strangeness Horn is perfectly reproduced, which makes our theoretical horn as sharp as an experimental one. However, the $\\gamma_{s}$ fit approach does not sizably improve the description of the multi-strange baryons and antibaryons. Therefore, an apparent deviation of mu...

  16. Probing Strangeness in Hard Processes

    CERN Document Server

    Avakian, H; Cisbani, E; Contalbrigo, M; D'Alesio, U; De Leo, R; Devita, R; Di Nezza, P; Hasch, D; Mirazita, M; Osipenko, M; Pappalardo, L; Rossi, P

    2012-01-01

    Since the discovery of strangeness almost five decades ago, interest in this degree of freedom has grown up and now its investigation spans the scales from quarks to nuclei. Measurements with identified strange hadrons can provide important information on several hot topics in hadronic physics: the strange distribution and fragmentation functions, the nucleon tomography and quark orbital momentum, accessible through the study of the {\\it generalized} parton distribution and the {\\it transverse momentum dependent} parton distribution functions, the quark hadronization in the nuclear medium, the hadron spectroscopy and the search for exotic mesons. The CLAS12 large acceptance spectrometer in Hall B at the Jefferson Laboratory upgraded with a RICH detector together with the 12 GeV CEBAF high intensity, high polarized electron beam can open new possibilities to study strangeness in hard processes allowing breakthroughs in all those areas. This paper summarizes the physics case for a RICH detector for CLAS12. Many...

  17. Strangeness in strongly interacting matter

    CERN Document Server

    Greiner, C

    2002-01-01

    This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K+ - production probes the nuclear equation of state (EoS); (3) enhanced strangeness production especially in the (multi-)strange (anti-)baryon channels as a signal of quark gluon plasma (QGP) formation. As a guideline for the discussion I employ the extensive experience with microscopic hadronic transport models. In addition, I elaborate on the recent idea of antihyperon production solely by means of multi-mesonic fusion-type reactions.

  18. Solid Bare Strange Quark Stars

    CERN Document Server

    Xu, R X

    2003-01-01

    The reason, we need three terms of `strange', `bare', and `solid' before quark stars, is presented concisely though some fundamental issues are not certain. Observations favoring these stars are introduced.

  19. Search for strange quark matter

    CERN Document Server

    Hill, J C

    2000-01-01

    We present results of a search for charged and neutral strangelets produced on collisions of 11.6 A GeV/c Au beams with Pt or Pb targets. Yields of light nuclei and hypernuclei produced by coalescence were measured. Penalty factors were measured for the addition to a fragment of a nucleon or strange hadron. These are useful in planning future searches for strange quark matter.

  20. The strange-quark distribution

    Energy Technology Data Exchange (ETDEWEB)

    Barone, V. [Turin Univ. (Italy). Ist. di Fisica Teorica; Genovese, M. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Nikolaev, N.N. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); Predazzi, E. [Turin Univ. (Italy). Ist. di Fisica Teorica; Zakharov, B.G. [L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation)

    1996-03-01

    We discuss the latest CCFR determination of the strange sea density of the proton. We comment on the differences with a previous, leading-order, result and point out the relevance of quark mass effects and current non-conservation effects. By taking them into account it is possible to solve the residual discrepancy with another determination of the strange-quark distribution. Two important sources of uncertainties are also analysed. (orig.). With 4 figs.

  1. Strange neutral currents in nuclei

    CERN Document Server

    Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A

    1995-01-01

    We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \

  2. Rotational properties of strange-pulsar models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata, Argentina (AR)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo, Brazil (BR)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, Argentina (AR))

    1991-07-15

    We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.

  3. Rotational properties of strange-pulsar models

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina)); Horvath, J.E. (Instituto Astronomico e Geofisico, Departamento de Astronomia, Universidade de Sao Paulo, Caixa Postal 30627, 01051 Sao Paulo (Brazil)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata (Argentina))

    1991-08-15

    We present a study of the rotational properties of strange pulsars: strange-matter stars capable of supporting glitches. It is shown that their differentiated internal structure implies a lower maximum rotational frequency than that of homogeneous strange stars. Nevertheless, they are able to fit the known pulsar properties.

  4. Strangeness production at SPS energies

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Mitrovski, Michael

    2006-01-01

    We present a summary of measurements of strange particles performed by the experiment NA49 in central and minimum bias Pb+Pb collisions in the beam energy range 20A - 158A GeV. New results on Xi production in central Pb+Pb collisions and on Lambda, Xi production in minimum bias collisions are shown. Transverse mass spectra and rapidity distributions of strange particles at different energies are compared. The energy dependence of the particle yields and ratios is discussed. NA49 measurements of the Lambda and Xi enhancement factors are shown for the first time.

  5. Strange nonchaotic self-oscillator

    Science.gov (United States)

    Jalnine, Alexey Yu.; Kuznetsov, Sergey P.

    2016-08-01

    An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system of mechanical nature driven by a constant torque applied to one of the elements of the construction. So the external force is not oscillatory, and the system is autonomous. Components of the motion with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its existence sheds new light on the question of feasibility of SNA in autonomous systems.

  6. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  7. The Nature of Strange Modes in Classical Variable Stars

    CERN Document Server

    Buchler, J R; Kollath, Z

    1997-01-01

    Strange modes have been found in the radial spectrum of many luminous stars, most recently in Cepheids and RR Lyrae. We show that there is nothing strange about these modes -- they must exist even in the adiabatic limit. With a change of variables and without approximation the adiabatic linear pulsation equation is reduced to a Schroedinger equation in which the radial coordinate is the local sound-traversal time. In this formulation, the narrow hydrogen partial ionization region is seen to act as a potential barrier, separating the star into two regions. Resonances between the two regions result in the strange modes, for which the ratio of interior to exterior amplitude is at a minimum. The relative location of the barrier changes with the stellar parameters, and this gives rise to avoided level-crossings along a sequence of models. 2 The appearance of strange modes and the associated level crossings are exhibited with an analytic toy-model with the potential barrier approximated by a delta function. This to...

  8. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  9. Strange-quark-matter stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  10. A strange cat in Dublin

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  11. How strange is pion electroproduction?

    CERN Document Server

    Gorchtein, Mikhail; Zhang, Xilin

    2015-01-01

    We consider pion production in parity-violating electron scattering (PVES) in the presence of nucleon strangeness in the framework of partial wave analysis with unitarity. Using the experimental bounds on the strange form factors obtained in elastic PVES, we study the sensitivity of the parity-violating asymmetry to strange nucleon form factors. For forward kinematics and electron energies above 1 GeV, we observe that this sensitivity may reach about 20\\% in the threshold region. With parity-violating asymmetries being as large as tens p.p.m., this study suggests that threshold pion production in PVES can be used as a promising way to better constrain strangeness contributions. Using this model for the neutral current pion production, we update the estimate for the dispersive $\\gamma Z$-box correction to the weak charge of the proton. In the kinematics of the Qweak experiment, our new prediction reads Re$\\,\\Box_{\\gamma Z}^V(E=1.165\\,{\\rm GeV}) = (5.58\\pm1.41)\\times10^{-3}$, an improvement over the previous un...

  12. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  13. Will strangeness win the prize?

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States). E-mail: kapusta at physics.spa.umn.edu

    2001-03-01

    Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)

  14. Polarized strangeness in the nucleon

    CERN Document Server

    Sapozhnikov, M G

    2001-01-01

    A large violation of the Okubo-Zweig-Iizuka rule was discovered in the annihilation of stopped antiprotons. The explanation of these experimental data is discussed in the framework of the model assumed that the nucleon strange sea quarks are polarized.

  15. The isospin admixture of the ground state and the properties of the isobar analog resonances in medium and heavy mass nuclei

    Indian Academy of Sciences (India)

    D I Salmov; T Babacan; A Kücükbursa; S Ünlü; İ Maraṣ

    2006-06-01

    Within the framework of quasiparticle random phase approximation (QRPA), Pyatov–Salamov method [23] for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state were investigated with the inclusion of the pairing correlations between nucleons for the medium and heavy mass regions: 80 < < 90, 102 < < 124, and 204 < < 214. It was determined that the influence of the pairing interaction between nucleons on the isospin admixtures in the ground state and the isospin structure of the IAR state is more pronounced for the light isotopes ( ≈ ) of the investigated nuclei.

  16. Neutron-skin thickness of 208Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    CERN Document Server

    Krasznahorkay, A; Csige, L; Eriksen, T K; Giacoppo, F; Görgen, A; Hagen, T W; Harakeh, M N; Julin, R; Koehler, P; Paar, N; Siem, S; Stuhl, L; Tornyi, T; Vretenar, D

    2013-01-01

    The 208Pb(p,ngamma p)207Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its gamma-decay of to the isobaric analog state. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (DR_pn). By comparing the theoretical results with the measured transition energy, the value of 0.190 +- 0.028 fm has been determined for DR_pn of 208Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7+- 0.6 MeV) and the slope of the symmetry energy (L=49.7 +- 4.4 MeV), resulting in more stringent constraints than most of the previous studies.

  17. Strangeness and charm in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Cabrera, Daniel [Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid (Spain); Garcia-Recio, Carmen [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Molina, Raquel [Research Center for Nuclear Physics (RCNP), Mihogaoka 10-1, Ibaraki 567-0047 (Japan); Nieves, Juan; Oset, Eulogio [Instituto de Física Corpuscular (Centro Mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Romanets, Olena [Theory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Salcedo, Lorenzo Luis [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain)

    2013-09-20

    The properties of strange (K, K{sup ¯} and K{sup ¯⁎}) and open-charm (D, D{sup ¯} and D{sup ⁎}) mesons in dense matter are studied using a unitary approach in coupled channels for meson–baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg–Tomozawa Lagrangian to incorporate spin–flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, K{sup ¯} and K{sup ¯⁎} spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K{sup +}K{sup ⁎−}A{sup ′} reaction, which we propose as a tool to detect in-medium modifications of the K{sup ¯⁎} meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2{sup +} and 3/2{sup +} baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.

  18. Strange Particle Production at RHIC

    CERN Document Server

    Timmins, Anthony R

    2008-01-01

    We report STAR measurements of mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$, $\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, and $\\bar{\\Omega}^{+}$ particles in Cu+Cu and Au+Au $\\sqrt{s_{NN}} = 200$ GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu+Cu collisions compared to Au+Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.

  19. Strange metal without magnetic criticality

    Science.gov (United States)

    Tomita, Takahiro; Kuga, Kentaro; Uwatoko, Yoshiya; Coleman, Piers; Nakatsuji, Satoru

    2015-07-01

    A fundamental challenge to our current understanding of metals is the observation of qualitative departures from Fermi liquid behavior. The standard view attributes such non-Fermi liquid phenomena to the scattering of electrons off quantum critical fluctuations of an underlying order parameter. Although the possibility of non-Fermi liquid behavior isolated from the border of magnetism has long been speculated, no experimental confirmation has been made. Here, we report on the observation of a strange metal region away from a magnetic instability in an ultrapure single crystal. In particular, we show that the heavy-fermion superconductor β-YbAlB4 forms a possible phase with strange metallic behavior across an extensive pressure regime, distinctly separated from a high-pressure magnetic quantum phase transition by a Fermi liquid phase.

  20. Strangeness exchange reactions and hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dover, C.B.

    1982-01-01

    Recent progress in the spectroscopy of ..lambda.. and ..sigma.. hypernuclei is reviewed. Prospects for the production of doubly strange hypernuclei at a future kaon factory are assessed. It is suggested that the (K/sup -/,K/sup +/) reaction on a nuclear target may afford an optimal way of producing the H dibaryon, a stable six quark object with J/sup ..pi../ = O/sup +/, S = -2.

  1. Strangeness in QGP: Hadronization Pressure

    OpenAIRE

    Rafelski, Jan; Petran, Michal

    2014-01-01

    We review strangeness as signature of quark gluon plasma (QGP) and the hadronization process of a QGP fireball formed in relativistic heavy-ion collisions in the entire range of today accessible reaction energies. We discuss energy dependence of the statistical hadronization parameters within the context of fast QGP hadronization. We find that QGP breakup occurs for all energies at the universal hadronization pressure $P = 80\\pm 3\\,\\mathrm{MeV/fm}^3 $.

  2. Strange Dibaryon Systems

    CERN Multimedia

    2002-01-01

    With the exception of the deuteron, no bound state and only a few possible resonances have been reported in dibaryon systems. The best known of these is a $\\Lambda p$ enhancement which has been reported at several energies. In a recent experiment on the reaction $K^{-}d \\rightarrow \\Lambda p\\pi^{-}$ this shows up as a narrow peak (M=2129 MeV, $\\Gamma$=5.4 $\\pm$ 1.7 MeV) produced near minimum transfer of the dibaryon system. \\\\ \\\\ It is proposed to study S=-2 dibaryon systems such as ($\\Xi N$ and $\\Sigma\\Lambda$). The fast forward $K^{+}$ from the reaction \\\\ \\\\ $K^{-}d \\rightarrow K^{+}\\Sigma^{-}\\Lambda$ or $K^{+}\\Xi^{-}n$ \\\\ \\\\ will be investigated with Cerenkov counters and a magnetic spectrometer. The missing mass will be measured. Information from time-of-flight measurements will also be used to help select events and reduce background. A deuterium target will be exposed to a separated $K^{-}$ counter beam with a momentum of 1.4 GeV/c. This experiment will study the possible existence of the S=-2 dibaryon...

  3. Lunar Analog

    Science.gov (United States)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  4. Collective modes in strange and isospin asymmetric hadronic matter

    OpenAIRE

    2004-01-01

    We study the propagation of non-strange and strange meson modes in hadronic matter considering both isospin and strangeness mixings induced by quantum fluctuations in the medium. Baryons are described using the Quark Meson Coupling model extended to include interactions of strange quarks. In particular we evaluate the dependence of the meson masses on the baryonic density, the strangeness fraction and the isospin asymmetry of the medium. We have found a considerable admixture of strangeness a...

  5. Quark-hadron phase transition and strangeness conservation constraints

    Science.gov (United States)

    Saeed-Uddin

    1999-01-01

    The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.

  6. Strange attractor simulated on a quantum computer

    OpenAIRE

    2002-01-01

    We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.

  7. Strangeness detection in ALICE experiment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Safarik, K. [European Lab. for Particle Physics, Geneva (Switzerland)

    1995-07-15

    The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.

  8. Kilohertz QPOs and strange stars

    OpenAIRE

    Bulik, Tomasz; Gondek-Rosinska, Dorota; Kluzniak, Wlodzimierz

    1998-01-01

    The kilohertz quasi periodic oscillations (QPOs) discovered in several low mass X-ray binaries (LMXBs) by the Rossi X-ray Timing Explorer (XTE) are thought to occur at the orbital frequency in accretion discs whose inner edge corresponds to the innermost (marginally) stable orbit allowed by general relativity. These ideas have been applied to constrain the equation of state (e.o.s.) of the central neutron star. Here we discuss another possibility, that the central object is a strange star, an...

  9. Strangeness -2 studies at KEK

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, K. [Gifu Univ. (Japan). Dept. of Physics

    1998-08-24

    Studies of double-strangeness (S=-2) systems at KEK are summarized. At KEK, beam exposures have been completed in three experiments, namely PS-E176, E224, and E248. The first two experiments provide interesting information on the {Xi}-N interaction, which will be discussed. In E248, counter alignment calibrations are in progress. A fourth experiment, PS-E373, is waiting for its first period of beam exposure in February 1998 and should provide at least ten times better statistics on S=-2 systems than did E176 and E224. (orig.) 14 refs.

  10. Strangeness -2 studies at KEK

    Science.gov (United States)

    Nakazawa, Kazuma

    1998-08-01

    Studies of double-strangeness (S=-2) systems at KEK are summarized. At KEK, beam exposures have been completed in three experiments, namely PS-E176, E224, and E248. The first two experiments provide interesting information on the Ξ-N interaction, which will be discussed. In E248, counter alignment calibrations are in progress. A fourth experiment, PS-E373, is waiting for its first period of beam exposure in February 1998 and should provide at least ten times better statistics on S=-2 systems than did E176 and E224.

  11. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...

  12. A new candidate for non-strangeness pentaquarks: N*(1675)

    CERN Document Server

    Nam, Seung-il; Hosaka, Atsushi; Kim, Hyun-Chul

    2007-01-01

    We study a new nucleon resonance from eta photoproduction, which was observed at sqrt{s}=1675 MeV with a narrow decay width (~10 MeV) by the Tohoku LNS group as well as the GRAAL collaboration. Using an effective Lagrangian approach, we compute differential cross sections for the eta photoproduction. In addition to N*(1675,1/2+-,3/2+-), we employ six other nucleon resonances, i.e. N*(1520,1535,1650,1675,1710,1720) and vector meson exchanges which are the most relevant ones to this reaction process. As a result, we can reproduce the GRAAL data qualitatively well and observe obvious isospin asymmetry between the transition magnetic moments of N*(1675): mu_{gamma nn*} >> mu_{gamma pp*}, which indicates that the newly found nucleon resonance may be identified as a non-strange pentaquark state.

  13. Strangeness in STAR at RHIC

    CERN Document Server

    ,

    2016-01-01

    We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $\\sqrt{s_{\\rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $\\Omega$ and $\\phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $\\sqrt{s_{\\rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $\\phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $\\phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{\\rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.

  14. A Study of Strange Particles Produced in Neutrino Neutral Current Interactions in the NOMAD Experiment

    CERN Document Server

    Naumov, D V; Naumova, E; Popov, B; Astier, Pierre; Autiero, D; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Banner, M; Bassompierre, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, P W; Cavasinni, V; Cervera-Villanueva, A; Challis, R C; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Das, R; Degaudenzi, H M; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, V; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J; Hong, T M; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kent, N; Kirsanov, M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V V; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Nédélec, P; Nefedov, Yu A; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Poulsen, C; Rebuffi, L; Rico, J; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M E; Shih, D; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Yu; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T G; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2004-01-01

    Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.

  15. Anisotropic strange star with de Sitter spacetime

    Science.gov (United States)

    Kalam, Mehedi; Rahaman, Farook; Ray, Saibal; Hossein, Sk. Monowar; Karar, Indrani; Naskar, Jayanta

    2012-12-01

    Stars can be treated as self-gravitating fluid. Krori and Barua (J. Phys. A., Math. Gen. 8:508, 1975) gave an analytical solution to that kind of fluids. In this connection, we propose a de Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of the cosmological constant on a small scale to study the structure of anisotropic strange stars and come to the conclusion that this doping is very well compatible with the well-known physical features of strange stars.

  16. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  17. Strange particle production from SIS to LHC

    Indian Academy of Sciences (India)

    H Oeschler; J Cleymans; K Redlich

    2003-05-01

    A review of meson emission in heavy-ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features, e.g. the different centrality dependences of pions and kaons. Furthermore, the independence of the + to - ratio on the number of participating nucleons observed between SIS and relativistic heavy-ion collider (RHIC) is consistent with this model. The observed maximum in the +/+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 A$\\cdot$GeV is due to the energy dependence of the chemical freeze-out parameters and .

  18. Bare strange quark stars formation and emission

    CERN Document Server

    Xu, R X

    2002-01-01

    Recent achievements of bare strange stars are briefly reviewed. A nascent protostrange star should be bare because of strong mass ejection and high temperature after the supernova detonation flame, and a crust can also hardly form except for a super-Eddington accretion. The magnetosphere of a bare strange star is composed mainly of electron-positron pair plasma, where both inner and outer vacuum gaps work for radio as well as high energy nonthermal emission. A featureless thermal spectrum is expected since no ion is above the quark surface, whilst electron cyclotron lines could appear in some bare strange stars with suitable magnetic fields. Various astrophysical implications of bare strange stars are discussed.

  19. Associated strangeness production at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Saghai, B.

    1996-04-01

    Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author). 59 refs.

  20. Strangeness suppression in the unquenched quark model

    CERN Document Server

    Bijker, Roelof; Santopinto, Elena

    2016-01-01

    In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.

  1. Cooling Properties of Cloudy Bag Strange Stars

    CERN Document Server

    Ng Cheuk Liu; Chu, M C

    2003-01-01

    As the chiral symmetry is widely recognized as an important driver of the strong interaction dynamics, current strange stars models based on MIT bag models do not obey such symmetry. We investigate properties of bare strange stars using the Cloudy Bag Model, in which a pion cloud coupled to the quark-confining bag is introduced such that chiral symmetry is conserved. We find that in this model the decay of pions is a very efficient cooling way. In fact it can carry out most the thermal energy in a few milliseconds and directly convert them into 100MeV photons via pion decay. This may be a very efficient $\\gamma$-ray burst mechanism. Furthermore, the cooling behavior may provide a possible way to distinguish a compact object between a neutron star, MIT strange star and Cloudy Bag strange star in observations.

  2. Strange Baryonic Matter and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    In this contribution we address the question whether kaon condensation could occur in strongly interacting self-bound strange hadronic matter. In our comprehensive dynamical relativistic mean-field (RMF) calculations of nuclear and hypernuclear systems containing several antikaons we found saturation of bar K separation energy as well as the associated nuclear and bar K density distributions upon increasing the number of bar K mesons. The saturation pattern was found to be a universal feature of these multi-strangeness configurations. Since in all cases the bar K separation energy does not exceed 200 MeV, we conclude that bar K mesons do not provide the physical "strangeness" degrees of freedom for self-bound strange hadronic matter.

  3. Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature

    CERN Document Server

    Cheng, M; Jung, C; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Petreczky, P; Schmidt, C; Söldner, W

    2008-01-01

    We analyze baryon number, strangeness and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4-action) at two values of the lattice cut-off with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however show deviations from a resonance gas in the vicinity of the transition temperature.

  4. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    Science.gov (United States)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  5. Penta-quark States with Strangeness, Hidden Charm and Beauty

    CERN Document Server

    Wu, Jia-Jun

    2015-01-01

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  6. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  7. Note on Strange Quarks in the Nucleon

    CERN Document Server

    Steininger, K

    1994-01-01

    Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.

  8. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  9. Calculation of strange star structure

    Directory of Open Access Journals (Sweden)

    GH Bordbar

    2009-12-01

    Full Text Available In this paper, we have considered that the strange-star consists of quark matter from its center to surface. For quark matter, we have used two models, the MIT bag model and string-flip like model. In the bag model, the energy of the system has been considered the kinetic energy of the particles of system in addition to a constant B. We have considered two states for B, one of them is constant and the other one is density dependent. The second state has been obtained from the recent Cern data from quark-geleon plasma formation. In string-flip like model, the energy of the particles of the system has been obtained from the Schrodinger equation, where the Hamiltonian has been considered the sum of kinetic and potential energies. The potential in Hamiltonian is the general potential which depends on density that is the block potential. In the String-flip like model, the block potential is linear or square functions of the relative distance between two quarks. We have also obtained the equation of state of quark matter for all considered cases. Finally, we have computed the structure of the quark star using our equations of state.

  10. Theoretical perspectives on strange physics

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  11. Strangeness production in proton–proton and proton–nucleus collisions

    Indian Academy of Sciences (India)

    Radhey Shyam

    2006-04-01

    We discuss the investigation of the strange meson production in proton-proton () and proton–nucleus () reactions within an effective Lagrangian model. The kaon production proceeds mainly via excitations of * (1650), * (1710), and * (1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon–proton final state interaction effects are quite important. Thus, these studies provide a check on the models of hyperon–nucleon interactions. The in medium production of kaons shows strong sensitivity to the self-energies of the intermediate mesons.

  12. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y″, a, and internal ions are found in the CID spectra and slight mass differ- ences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  13. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y", a, and internal ions are found in the CID spectra and slight mass differences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  14. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  15. Torsional oscillations of nonbare strange stars

    CERN Document Server

    Mannarelli, Massimo; Parisi, Alessandro; Pilo, Luigi; Tonelli, Francesco

    2015-01-01

    Strange stars are one of the possible compact stellar objects that can be formed after a supernova collapse. We consider a model of strange star having an inner core in the color-flavor locked phase surmounted by a crystalline color superconducting layer. These two phases constitute the {\\it quarksphere}, which we assume to be the largest and heaviest part of the strange star. The next layer consists of standard nuclear matter forming a ionic crust, hovering on the top of the quarksphere and prevented from falling by a strong dipolar electric field. The dipolar electric field arises because quark matter is confined in the quarksphere by the strong interaction, but electrons can leak outside forming a few hundreds Fermi thick electron layer separating the ionic crust from the underlying quark matter. The ionic matter and the crystalline color superconducting matter constitute two electromagnetically coupled crust layers. We study the torsional oscillations of these two layers. Remarkably, we find that if a fra...

  16. Strange Quark Contribution to the Nucleon - (Dissertation)

    CERN Document Server

    Darnell, Dean

    2008-01-01

    The strangeness contribution to the electric and magnetic properties of the nucleon has been under investigation experimentally for many years. Lattice Quantum Chromodynamics (LQCD) gives theoretical predictions of these measurements by implementing the continuum gauge theory on a discrete, mathematical Euclidean space-time lattice which provides a cutoff removing the ultra-violet divergences. In this dissertation we will discuss effective methods using LQCD that will lead to a better determination of the strangeness contribution to the nucleon properties. Strangeness calculations are demanding technically and computationally. Sophisticated techniques are required to carry them to completion. In this thesis, new theoretical and computational methods for this calculation such as twisted mass fermions, perturbative subtraction, and General Minimal Residual (GMRES) techniques which have proven useful in the determination of these form factors will be investigated. Numerical results of the scalar form factor usin...

  17. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  18. Measurements of strangeness production in the STAR experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W.K. [Wayne State Univ., Detroit, MI (United States)

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  19. Improvements on the structure of strange stars

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (La Plata Univ. Nacional (Argentina). Facultad de Ciencias Astronomicas y Geofisicas); Horvath, J.E. (La Plata Univ. Nacional (Argentina). Dept. de Fisica Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico)

    1990-12-15

    We present the structure of strange-star models, including the effects of a specific hypothetical few-quark bound state (quark-alpha). The general features of these stellar objects are discussed and analysed in detail. It is shown that this modification to the strange-matter picture would allow us to interpret the 'glitch' phenomenon observed in many pulsars in terms of features possessed by such objects, although detailed models remain to be constructed. For low-mass stars it is found that the structure consists entirely of quark-alpha matter, forming a new branch of stable compact stars. (author).

  20. Stability of realistic strange stars (RSS)

    CERN Document Server

    Bhowmick, S; Dey, M; Ray, S; Ray, R; Bhowmick, Siddhartha; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Ray, Ranjan

    2001-01-01

    Strange stars (SS) calculated from a realistic equation of state (EOS) are very stable, for example under fast rotation but have a soft surface, on which ripples may occur when radiation is emitted close to it. We suggest this as a natural explanation of the fluctuations observed in the intensity profile of X-ray pulsars. In contrast, SS based on EOS derived from the bag models (Bag SS) are less stable against fast rotation and do not have a hard surface and cannot explain these ripples. There are other important differences between Bag SS and the SS, based on a realistic EOS, which we call realistic strange stars (RSS).

  1. Can strange stars mimic dark energy stars?

    CERN Document Server

    Deb, Debabrata; Guha, B K; Ray, Saibal

    2016-01-01

    The possibility of strange stars mixed with dark energy to be one of candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter is acting as dark energy after certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature not only a physically acceptable stable model but also mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particulary note that two-fluid distribution is the major reason for anisotropic nature of the spherical stellar system.

  2. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  3. Evidence for strange matter in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E. (Facultad de Ciencias Astronomicas y Geofiiaasicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina de La Plata, Calle 49 y 115, Casilla de Correo 67, 1900 La Plata, Argentina (AR))

    1989-08-14

    With the aim of overcoming the present energetic difficulties in getting type-II supernovae explosions, we present a possible scenario based on strange-matter formation. The observational expectations of this picture are discussed and the predictions of the model for SN 1987A neutrinos and remnant pulsar are examined.

  4. The Evolution of Proto-Strange Stars

    CERN Document Server

    Benvenuto, Omar G

    2013-01-01

    We perform 1D calculations of neutrino opacities inside a young "strange star" assumed to be the result of the conversion process of a normal neutron object. We evaluate the deleptonization and cooling timescales, which happen to be longer than the proto-NS analogues, and preliminary address the features of the emerging neutrino signal.

  5. The mystery of the strange formulae

    Science.gov (United States)

    Bracken, Tony

    2016-10-01

    On a recent visit to the Wilhelm Röntgen memorial in Wurzburg, Germany, I noticed two strange trigonometric formulae set in the terrazzo floor at the western entrance to the building that houses Röntgen's X-ray laboratory.

  6. Seismic Search for Strange Quark Matter

    Science.gov (United States)

    Teplitz, Vigdor

    2004-01-01

    Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.

  7. 'Strange money': risk, finance and socialized debt.

    Science.gov (United States)

    Dodd, Nigel

    2011-03-01

    This paper explores an essential but neglected aspect of recent discussions of the banking and financial system, namely money itself. Specifically, I take up a distinction drawn by Susan Strange which has never been fully elaborated: between a financial system that is global, and an international monetary system that remains largely territorial. I propose a sociological elaboration of this distinction by examining each category, 'finance' and 'money', in terms of its distinctive orientation to risk and debt. Money is distinguished by its high degree of liquidity and low degree of risk, corresponding to expectations that derive from its status as a 'claim upon society'- a form of socialized debt. But as Strange argued, these features of money are being undermined by the proliferation of sophisticated instruments of financial risk management -'strange money'- that, as monetary substitutes, both weaken states' capacity to manage money, and more broadly, contribute to 'overbanking'. The ultimate danger, according to Strange, is the 'death of money'. The paper concludes by exploring the implications of the distinction for sociological arguments about the changing nature of money.

  8. Extraction of radiative decay width for the non-strange partner of Theta^+

    CERN Document Server

    Azimov, Ya I; Polyakov, M V; Strakovsky, I I; Azimov, Ya.

    2005-01-01

    Using the results of the GRAAL collaboration on the \\eta photoproduction from the neutron target, we attempt to extract the partial radiative width of the possible new nucleon resonance N^*(1675). The obtained estimates support this resonance to be a very attractive candidate for the non-strange member of the exotic antidecuplet of baryons -- a partner of the \\Theta^+ pentaquark. Our phenomenological value for the transition magnetic moment \\mu(n^* n), appears to be in good agreement with predictions of the Chiral Quark Soliton Model.

  9. On relativistic models of strange stars

    Indian Academy of Sciences (India)

    Ramesh Tikekar; Kanti Jotania

    2007-03-01

    The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.

  10. Probing nucleon strangeness structure with $\\phi$ electroproduction

    CERN Document Server

    Oh, Yu; Yang, S N; Mori, T; Oh, Yongseok; Titov, Alexander I.; Yang, Shin Nan; Morii, Toshiyuki

    1999-01-01

    We study the possibility to constrain the hidden strangeness content of the nucleon by means of the polarization observables in phi meson electroproduction. We consider the OZI evading direct knockout mechanism that arises from the non-vanishing s\\bar{s} sea quark admixture of the nucleon as well as the background of the dominant diffractive and the one-boson-exchange processes. Large sensitivity on the nucleon strangeness are found in several beam-target and beam-recoil double polarization observables. The small \\sqrt{s} and W region, which is accesible at some of the current high-energy electron facilities, is found to be the optimal energy region for extracting out the OZI evasion process.

  11. HEAVY FERMIONS. Strange metal without magnetic criticality.

    Science.gov (United States)

    Tomita, Takahiro; Kuga, Kentaro; Uwatoko, Yoshiya; Coleman, Piers; Nakatsuji, Satoru

    2015-07-31

    A fundamental challenge to our current understanding of metals is the observation of qualitative departures from Fermi liquid behavior. The standard view attributes such non-Fermi liquid phenomena to the scattering of electrons off quantum critical fluctuations of an underlying order parameter. Although the possibility of non-Fermi liquid behavior isolated from the border of magnetism has long been speculated, no experimental confirmation has been made. Here, we report on the observation of a strange metal region away from a magnetic instability in an ultrapure single crystal. In particular, we show that the heavy-fermion superconductor β-YbAlB4 forms a possible phase with strange metallic behavior across an extensive pressure regime, distinctly separated from a high-pressure magnetic quantum phase transition by a Fermi liquid phase.

  12. Unique signatures for QGP in strangeness sector

    Science.gov (United States)

    Tiwari, V. K.; Singh, C. P.

    1998-03-01

    We suggest that the variations of certain strange particle ratios either with the energy density or with the baryon density constitute a significant signal for identification of the QGP formation in ultra-relativistic nucleus-nucleus collisions. We use realistic equations of state (EOS) for the QGP as well as for dense, hot hadron gas (HG) scenarios. We suggest that a direct comparison of the ratios obtained in the QGP and HG scenarios will be immensely helpful in identifying the QGP formation.

  13. SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    MAY,M.

    1997-10-13

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  14. Search for nuclei containing two strange quarks

    Energy Technology Data Exchange (ETDEWEB)

    May, M.

    1997-12-31

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  15. A plethora of strange nonchaotic attractors

    Indian Academy of Sciences (India)

    Surendra Singh Negi; Ramakrishna Ramaswamy

    2001-01-01

    We show that it is possible to devise a large class of skew-product dynamical systems which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attractors and the largest Lyapunov exponent is non-positive. Furthermore, we show that quasiperiodic forcing, which has been a hallmark of essentially all hitherto known examples of such dynamics is not necessary for the creation of SNAs.

  16. How chaotic are strange nonchaotic attractors

    OpenAIRE

    Glendinning, Paul; Jaeger, Tobias; Keller, Gerhard

    2006-01-01

    We show that the classic example of quasiperiodically forced maps with strange nonchaotic attractors described by Grebogi et al and Herman in the mid-1980s have some chaotic properties. More precisely, we show that these systems exhibit sensitive dependence on initial conditions, both on the whole phase space and restricted to the attractor. The results also remain valid in more general classes of quasiperiodically forced systems. Further, we include an elementary proof of a classic result by...

  17. Charmed-strange mesons revisited: mass spectra and strong decays

    CERN Document Server

    Song, Qin-Tao; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family, in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be valuable task in LHCb, forthcoming BelleII and PANDA.

  18. Combustion of nuclear matter into strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Lugones, G. (Departamento di Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (1900) La Plata (Argentina)); Benvenuto, O.G.; Vucetich, H. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, (1900) La Plata (Argentina))

    1994-11-15

    We study the properties of the combustion of pure neutron matter into strange matter in the framework of relativistic hydrodynamical theory of combustion. Because of the uncertainties in the actual properties of neutron matter, we employ the free neutron, Bethe-Johnson, Lattimer-Ravenhall, and Walecka equations of state and for strange matter we adopt the MIT bag model approximation. We find that combustion is possible for free neutron, Bethe-Johnson, and Lattimer-Ravenhall neutron matter but not for Walecka neutron matter. We interpret these results using a simple polytropic approximation showing that there exists a general flammability condition. We also study the burning of neutron matter into strange matter in a pipe showing that hydrodynamics demands flames faster than predicted by kinetics by several orders of magnitude, implying that the flame must be turbulent. Also the conditions for the deflagration to detonation transition are addressed, showing that in a pipe some of them are satisfied, strongly suggesting that the actual combustion mode should be detonation.

  19. Some Aspects of Strange Matter in Astrophysics

    CERN Document Server

    Banerjee, Shibaji

    2014-01-01

    The present work is connected with the investigation of the origin and properties of compact astrophysical objects endowed with strangeness, with the objective of finding out their relevance in the formation and evolution of the universe. In the first part of the thesis, Chap.~1-3, we discuss a model, proposed by us, to describe the propagation of small lumps of Strange Quark Matter (SQM) or strangelets, through the Terrestrial atmosphere. The theoretical results were found to be well correlated with exotic cosmic ray events characterized by very low charge to mass ratio. In the next part, we have investigated the other end of the mass spectrum of SQM. In Chap 5, we have developed an analytical expression for the Chandrasekhar Limit of Strange Quark Stars. The limit is found to depend on the fundamental constants (including the bag constant). In the last chapter we have endeavored to show that the quark nuggets, surviving the quark-hadron phase transition in the millisecond era of the early Universe can provi...

  20. Form factors and other measures of strangeness in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik

    2007-11-15

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)

  1. Constraints on the Existence of Strange Quark Stars

    OpenAIRE

    Balberg, Shmuel

    1997-01-01

    Creation of strange quark stars through strong interaction deconfinement is studied based on modern estimates of hyperon formation in neutron stars. The hyperon abundance is shown to be large enough so that if strange quark matter (SQM) is the true ground state of matter, the deconfinement density should be at most 2.5-3 times the nuclear saturation density. If so, deconfinement occurs in neutron stars at birth, and all neutron stars must be strange quark stars. Alternatively, sould observati...

  2. On the instanton-induced portion of the nucleon strangeness

    CERN Document Server

    Klabucar, D; Melic, B; Picek, I

    1999-01-01

    We calculate the instanton contribution to the proton strangeness in the MIT bag enriched by the presence of a dilute instanton liquid. The evaluation is based on expressing the nucleon matrix elements of bilinear strange quark operators in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. Our method combines the usage of the evolution operator containing a strangeness source, and the Feynman-Hellmann theorem. The method allows a unified approach to the strangeness in different channels. Only the scalar channel is found to be affected by instantons.

  3. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  4. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    Science.gov (United States)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  5. Electromagnetic production of hyperon resonances

    Energy Technology Data Exchange (ETDEWEB)

    K. Hicks, D. Keller, W. Tang

    2011-10-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  6. Strange and non-strange sea quark–gluon effects in nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Batra, M.; Upadhyay, A.

    2014-02-15

    Within a statistical approach, strange and non-strange quark–gluon Fock state contributions are analyzed for their low energy properties. A suitable wave function is written for a nucleon that consists of three valence quarks (qqq) and the sea (g,qq{sup ¯}). Expansion of the nucleonic system in terms of Fock states that contain (g,qq{sup ¯}) is assumed and the probabilities of all possible Fock states, that lead to such a wave-function containing strange and non-strange quark–gluon contents in the sea are determined. Various approximations are entertained to validate the authenticity of the model used. The statistically determined coefficients strongly favor a vector-dominated sea where the sea includes ss{sup ¯} pairs. Additionally, the sea is constrained to have a limited number of components. The phenomenological implications that affect the low energy properties are discussed. The obtained results are compared to existing theoretical models and experimental data. -- Highlights: • A general expression to determine probabilities for each quark–gluon Fock states. • To calculate probabilities in flavor, spin and color space in statistical framework. • To analyze the sea-content and examine the contribution to various properties.

  7. Strangeness in nuclei and neutron stars

    Science.gov (United States)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  8. Mini-Proceedings of ECT Workshop "Strangeness in Nuclei"

    CERN Document Server

    Curceanu, C

    2011-01-01

    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.

  9. Strange Curves, Counting Rabbits, & Other Mathematical Explorations

    CERN Document Server

    Ball, Keith

    2011-01-01

    How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai

  10. Open and hidden strangeness in hadronic systems

    CERN Document Server

    Tomasik, Boris

    2011-01-01

    We investigate production of \\phi mesons and \\Xi baryons in nucleus-nucleus collisions. Reactions on strange particles acting as a catalyser are proposed to interpret the high observed \\phi yields in HADES experiments as well as the energy dependence of the widths of \\phi rapidity spectra in collisions at the SPS energies. It is argued that the enhancement of \\Xi- yield observed by HADES is even higher than originally reported if effects of the experimental centrality trigger are taken into account. Cross sections for new hadronic processes that could produce \\Xi- are reviewed.

  11. Strangeness measurements at the HADES experiment

    OpenAIRE

    2010-01-01

    Abstract We report on HADES measurements of strange hadrons in the collision systems Ar(1.756 AGeV)+KCl and p+p at 3.5 GeV. Comparisons of K 0 s transverse mass and rapidity spectra to IQMD transport model calculations give a strong hint to a repulsive kaon-nucleon potential. The effect of the potential shows up strongest at very low transverse momenta, which were measured by HADES with high statistics. Statistical model fits show a fair agreement to the particle yields measured in the hea...

  12. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  13. Stability of charged strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)

    2015-12-17

    We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.

  14. Kaon condensation and multi-strange matter

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2010-04-01

    We report on dynamical calculations of multi- K¯ hypernuclei, which were performed by adding K¯ mesons to particle-stable configurations of nucleons, Λ and Ξ hyperons. The K¯ separation energy as well as the baryonic densities saturate with the number of antikaons. We demonstrate that the saturation is a robust feature of multi- K¯ hypernuclei. Because the K¯ separation energy B does not exceed 200 MeV, we conclude that kaon condensation is unlikely to occur in finite strong-interaction self-bound {N,Λ,Ξ} strange hadronic systems.

  15. Alienation (Entfremdung and Strangeness (Fremdheit: two Western cultural paradigms

    Directory of Open Access Journals (Sweden)

    Suzana Vasconcelos de Melo

    2011-01-01

    Full Text Available Alienation and strangeness could be understood as markers of cultural paradigms. The first term is related to modernity as the second is to postmodernity. One stands for identity, the other for alterity. While the existence of the phenomenon of alienation becomes disputable, the discourse of strangeness becomes intensified in the European academic sphere. In a way, the discourse of strangeness is labeled by a cultural critic, which tries to justify "strange" for centuries dispelled by the European culture. Meanwhile, a phenomenology of alienation is developed to re-structure the term. Both phenomena are connected insofar as alienation can be understood as a temporary moment of strangeness. Both theories turned out to be productive in literary analysis.

  16. Hadronization and Strangeness Production in a Chirally Symmetric Nonequilibrium Model

    CERN Document Server

    Rehberg, P

    1999-01-01

    The expansion and hadronization of a quark meson plasma is studied using an effective chiral interaction Lagrangian. The particles we consider are light as well as strange quarks, which can form pions, kaons and eta mesons via collision processes. The transport equations for the system are solved using a QMD type algorithm. We find that in chemical equilibrium at high temperatures the strange quark mass is considerably higher than the strange current quark mass and becomes even higher if we assume an initial state free of strange quarks. This leads to a considerably higher production threshold. In contrast to simpler scenarios, like thermodynamics of free quarks with their bare mass, we observe that strangeness production in a plasma is hindered and not favoured. The different particle species created during the evolution become separated in coordinate as well as in momentum space. We observe, as at CERN experiments, a larger mean momentum of kaons as compared to pions. Thus the radial collective velocity may...

  17. Strangeness at high temperatures: from hadrons to quarks.

    Science.gov (United States)

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  18. Strangeness at high temperatures: from hadrons to quarks

    CERN Document Server

    Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-01-01

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  19. Canonical Strangeness and Distillation Effects in Hadron Production

    CERN Document Server

    Toneev, V D

    2004-01-01

    Strangeness canonical ensemble for Maxwell-Boltzmann statistics is reconsidered for excited nuclear systems with non-vanishing net strangeness. A new recurrence relation method is applied to find the partition function. The method is first generalized to the case of quantum strangeness canonical ensemble. Uncertainties in calculation of the K+/pi+ excitation function are discussed. A new scenario based on the strangeness distillation effect is put forward for a possible explanation of anomalous strangeness production observed at the bombarding energy near 30 AGeV. The peaked maximum in the K+/pi+ ratio is considered as a sign of the critical end-point reached in evolution of the system rather than a latent heat jump emerging from the onset of the first order deconfinement phase transition.

  20. Filter for strangeness in $J^{PC}$ exotic four-quark states

    CERN Document Server

    Page, P R

    2001-01-01

    Symmetrization selection rules for the decay of four-quark states to two J=0 mesons are analysed in a non - field theoretic context with isospin symmetry. The OZI allowed decay of an isoscalar J^PC = (1,3,...)^{-+} exotic state to eta' eta or f_0' f_0 is only allowed for four-quark components of the state containing one s sbar pair, providing a filter for strangeness content in these states. Decays of four-quark a_0 states are narrower than otherwise expected. If the experimentally observed 1^{-+} enhancement in eta pi is resonant, it is qualitatively in agreement with being a four-quark state.

  1. Coalescence of Strange-Quark Planets with Strange Stars: a New Kind of Sources for Gravitational Wave Bursts

    CERN Document Server

    Geng, J J; Lu, T

    2015-01-01

    Strange quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars, but not neutron stars. According to this SQM hypothesis, the existence of a hydrostatically stable sequence of strange quark matter stars has been predicted, ranging from 1 --- 2 solar mass strange stars, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the searching for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral very close to their host strange stars, without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as a new kind of sources for GW bursts, producing strong gravitational waves at the final stage. The events occurring in our local Universe can be detected by the upcoming gravitational wave detectors, such as Advanced LIGO and the Einstein Telescope. This ...

  2. Strangeness s = -3 dibaryons in a chiral quark model

    CERN Document Server

    Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong

    2006-01-01

    The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...

  3. Role of the strange quark in the rho(770) meson

    CERN Document Server

    Molina, R; Hu, B; Alexandru, A; Doring, M

    2016-01-01

    Recently, the GWU lattice group has evaluated high-precision phase-shift data for $\\pi\\pi$ scattering in the $I = 1$, $J = 1$ channel. Unitary Chiral Perturbation Theory describes these data well around the resonance region and for different pion masses. Moreover, it allows to extrapolate to the physical point and estimate the effect of the missing $K\\bar{K}$ channel in the two-flavor lattice calculation. The absence of the strange quark in the lattice data leads to a lower $\\rho$ mass, and the analysis with U$\\chi$PT shows that the $K \\bar{K}$ channel indeed pushes the $\\pi\\pi$-scattering phase shift upward, having a surprisingly large effect on the $\\rho$-mass. The inelasticity is shown to be compatible with the experimental data. The analysis is then extended to all available two-flavor lattice simulations and similar mass shifts are observed. Chiral extrapolations of $N_f = 2 + 1$ lattice simulations for the $\\rho(770)$ are also reported.

  4. Strangeness and Charm in Nuclear Matter

    CERN Document Server

    Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis

    2012-01-01

    The properties of strange ($K$, $\\bar K$ and $\\bar K^*$) and open-charm ($D$, $\\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\\bar K$ and $\\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\\gamma A \\to K^+ K^{*-} A^\\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\\bar K^*$ meson....

  5. Strange quark momentum fraction from overlap fermion

    CERN Document Server

    Sun, Mingyang; Liu, Keh-Fei; Gong, Ming

    2015-01-01

    We present a calculation of $\\langle x \\rangle_s$ for the strange quark in the nucleon. We also report the ratio of the strange $\\langle x \\rangle$ to that of $u/d$ in the disconnected insertion which will be useful in constraining the global fit of parton distribution functions at small $x$. We adopt overlap fermion action on $2 + 1$ flavor domain-wall fermion configurations on the $24^3 \\times 64$ lattice with a light sea quark mass which corresponds to $m_{\\pi}=330$ MeV. Smeared grid $Z_3$ sources are deployed to calculate the nucleon propagator with low-mode substitution. Even-odd grid sources and time-dilution technique with stochastic noises are used to calculate the high mode contribution to the quark loop. Low mode averaging (LMA) for the quark loop is applied to reduce the statistical error of the disconnected insertion calculation. We find the ratio $\\langle x \\rangle_s/\\langle x \\rangle_{u/d}^{\\mathrm{DI}}= 0.78(3)$ in this study.

  6. Metastable strange matter and compact quark stars

    CERN Document Server

    Malheiro, M; Taurines, A R

    2003-01-01

    Strange quark matter in beta equilibrium at high densities is studied in a quark confinement model. Two equations of state are dynamically generated for the {\\it same} set of model parameters used to describe the nucleon: one corresponds to a chiral restored phase with almost massless quarks and the other to a chiral broken phase. The chiral symmetric phase saturates at around five times the nuclear matter density. Using the equation of state for this phase, compact bare quark stars are obtained with radii and masses in the ranges $R\\sim 5 - 8$ km and $M\\sim M_\\odot$. The energy per baryon number decreases very slowly from the center of the star to the periphery, remaining above the corresponding values for the iron or the nuclear matter, even at the edge. Our results point out that strange quark matter at very high densities may not be absolutely stable and the existence of an energy barrier between the two phases may prevent the compact quarks stars to decay to hybrid stars.

  7. ``Towards Strange Metallic Holography'

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  8. Radial stability of anisotropic strange quark stars

    Science.gov (United States)

    Arbañil, José D. V.; Malheiro, M.

    2016-11-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.

  9. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  10. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  11. Resonances in QCD

    Science.gov (United States)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  12. Resonances in QCD

    CERN Document Server

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  13. Strange Stars : An interesting member of the compact object family

    CERN Document Server

    Bagchi, Manjari; Dey, Jishnu; Dey, Mira

    2008-01-01

    We have studied strange star properties both at zero temperature and at finite temperatures and searched signatures of strange stars in gamma-ray, x-ray and radio astronomy. We have a set of Equations of State (EoS) for strange quark matter (SQM) and solving the TOV equations, we get the structure of strange stars. The maximum mass for a strange star decreases with the increase of temperature, because at high temperatures, the EoS become softer. One important aspect of strange star is that, surface tension depends on the size and structure of the star and is significantly larger than the conventional values. Moment of inertia is another important parameter for compact stars as by comparing theoretical values with observed estimate, it is possible to constrain the dense matter Equation of State. We hope that this approach will help us to decide whether the members of the double pulsar system PSR J0737-3039 are neutron stars or strange stars.

  14. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Menke, S; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  15. $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$: Candidates for $1D$ charmed-strange mesons

    CERN Document Server

    Song, Qing-Tao; Liu, Xiang; Matsuki, Takayuki

    2014-01-01

    Newly observed two charmed-strange resonances, $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, are investigated by calculating their Okubo-Zweig-Iizuka allowed strong decays, which shows that they are suitable candidates for the $1^3D_1$ and $1^3D_3$ states in the charmed-strange meson family. Our study also predicts other main decay modes of $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, i.e., $1D(2^-)$ and $1D^\\prime(2^-)$, are predicted in this work, which are still missing at present. Experimental search for the missing $1D(2^-)$ and $1D^\\prime(2^-)$ charmed-strange mesons is an intriguing and challenging task for further experiment.

  16. 16th International Conference on Strangeness in Quark Matter

    CERN Document Server

    2016-01-01

    Topical conference on Strangeness and Heavy Flavor production in Heavy-Ion Collisions The conference will focus on new experimental and theoretical developments on the role of strange and heavy-flavour quarks in proton-proton and in heavy-ion collisions, and in astrophysical phenomena. New results are expected, from the LHC, from RHIC and from other experimental programs. The 16th International Conference on Strangeness in Quark Matter, follows the recent events of 2015 in Dubna, 2013 in Birmingham, and 2011 in Cracow.

  17. Status and prospects for strange physics at LHCb

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Rare decays are fundamental probes of physics beyond the Standard Model. We present the current status of rare decays studies at the LHCb experiment and discuss a possible picture emerging from these measurements. The expanding LHCb program of strange physics, in particular of their rare decays, provides a unique and complementary probe to test the SM with respect to the beauty and charm. We present recent results on rare strange hadrons decays exploiting the LHCb Run I data. We then present prospects for strange physics with the LHCb Run II data and after the improvements in the trigger for the LHCb Upgrade.

  18. Dark matter heating in strange stars

    Science.gov (United States)

    Huang, Xi; Wang, Wen; Zheng, XiaoPing

    2014-04-01

    We study the effect of dark matter heating on the temperature of typical strange star (SS hereafter) ( M = 1.4 M⊙, R = 10 km) in normal phase (NSS hereafter) and in a possible existing colour-flavour locked (CFL)phase (CSS hereafter). For NSS, the influence of dark matter heating is ignored until roughly 107 yr. After 107 yr, the dark matter heating is dominant that significantly delays the star cooling, which maintains a temperature much higher than that predicted by standard cooling model for old stars. Especially for CSS, the emissivity of dark matter will play a leading role after roughly 104 yr, which causes the temperature to rise. This leads to the plateau of surface temperature appearing in ˜106.5 yr which is earlier than that of NSS (˜107 yr).

  19. Strange Attractor in Immunology of Tumor Growth

    CERN Document Server

    Voitikova, M

    1997-01-01

    The time delayed cytotoxic T-lymphocyte response on the tumor growth has been developed on the basis of discrete approximation (2-dimensional map). The growth kinetic has been described by logistic law with growth rate being the bifurcation parameter. Increase in the growth rate results in instability of the tumor state and causes period-doubling bifurcations in the immune+tumor system. For larger values of tumor growth rate a strange attractor has been observed. The model proposed is able to describe the metastable-state production when time series data of the immune state and the number of tumor cells are irregular and unpredictable. This metastatic disease may be caused not by exterior (medical) factors, but interior density dependent ones.

  20. Examining CP Symmetry in Strange Baryon Decays

    CERN Document Server

    Luk, K B

    2000-01-01

    Non-conservation of CP symmetry can manisfest itself in non-leptonic hyperon decays as a difference in the decay parameter between the strange-baryon decay and its charge conjugate. By comparing the decay distribution in the $\\Lambda$ helicity frame for the decay sequence $\\Xi^{-} \\to \\Lambda \\pi^{-}$, $\\Lambda \\to p \\pi^{-}$ with that of $\\bar{\\Xi}^{+}$ decay, E756 at Fermilab did not observe any CP-odd effect at the $10^{-2}$ level. The status of a follow-up experiment, HyperCP (FNAL E871), to search for CP violation in charged $\\Xi-\\Lambda$ decay with a sensitivity of $10^{-4}$ is also presented.

  1. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  2. Observation of a new charmed strange meson

    CERN Document Server

    Hinson, J W; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; Von Törne, E; Severini, H; Skubic, P L; Dytman, S A; Müller, J A; Nam, S; Savinov, V

    1994-01-01

    Using the CLEO-II detector, we have obtained evidence for a new meson decaying to D^0 K^+. Its mass is 2573.2^{+1.7}_{-1.6}\\pm 0.8\\pm 0.5 {}~MeV/c^2 and its width is 16^{+5}_{-4}\\pm 3~MeV/c^2. Although we do not establish its spin and parity, the new meson is consistent with predictions for an L=1, S=1, J_P=2^+ charmed strange state. hardcopies with figures can be obtained upon written request to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

  3. PREFACE: Strangeness in Quark Matter (SQM2009) Strangeness in Quark Matter (SQM2009)

    Science.gov (United States)

    Fraga, Eduardo; Kodama, Takeshi; Padula, Sandra; Takahashi, Jun

    2010-09-01

    The 14th International Conference on Strangeness in Quark Matter (SQM2009) was held in Brazil from 27 September to 2 October 2009 at Hotel Atlântico, Búzios, Rio de Janeiro. The conference was jointly organized by Universidade Federal do Rio de Janeiro, Universidade Estadual de Campinas, Centro Brasileiro de Pesquisas Físicas, Universidade de São Paulo, Universidade Estadual Paulista and Universidade Federal do Rio Grande do Sul. Over 120 scientists from Argentina, Brazil, China, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Norway, Poland, Russia, Slovakia, South Africa, Switzerland, the UK and the USA gathered at the meeting to discuss the physics of hot and dense matter through the signals of strangeness and also the behavior of heavy quarks. Group photograph The topics covered were strange and heavy quark production in nuclear collisions, strange and heavy quark production in elementary processes, bulk matter phenomena associated with strange and heavy quarks, and strangeness in astrophysics. In view of the LHC era and many other upcoming new machines, together with recent theoretical developments, sessions focused on `New developments and new facilities' and 'Open questions' were also included. A stimulating round-table discussion on 'Physics opportunities in the next decade in the view of strangeness and heavy flavor in matter' was chaired in a relaxed atmosphere by Grazyna Odyniec and conducted by P Braun-Munzinger, W Florkowski, K Redlich, K Šafařík and H Stöcker, We thank these colleagues for pointing out to young participants new physics directions to be pursued. We also thank J Dunlop and K Redlich for excellent introductory lectures given on the Sunday evening pre-conference session. In spite of the not-so-helpful weather, the beauty and charm of the town of Búzios helped to make the meeting successful. Nevertheless, the most important contributions were the excellent talks, whose contents are part of these proceedings, given

  4. A Possible Resolution of the Strange Quark Polarization Puzzle ?

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2011-01-01

    We propose a possible resolution of the strange quark polarization puzzle i.e. of the contradiction between the negative polarized strange quark density obtained from analyses of inclusive DIS data and the positive values obtained from combined analyses of inclusive and semi-inclusive SIDIS data using de Florian et. al. (DSS) fragmentation functions. To this end the results of a new combined NLO QCD analysis of the polarized inclusive and semi-inclusive DIS data, using the Hirai et. al. (HKNS) fragmentation functions, are presented. It is demonstrated that the polarized strange quark density is very sensitive to the kaon fragmentation functions, and if the set of HKNS fragmentation functions is used, the polarized strange quark density from the combined analysis turns out to be negative and well consistent with values obtained from the pure DIS analyses.

  5. From strangelets to strange stars: A unified description

    CERN Document Server

    Xia, Cheng-Jun; Zhao, En-Guang; Zhou, Shan-Gui

    2015-01-01

    The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the model parameter according to the Witten-Bodmer hypothesis and observational mass-radius probability distribution of pulsars, we investigate the properties of this kind of objects. It is found that the energy per baryon decreases monotonously for increasing baryon number and reaches its minimum at the maximum baryon number, corresponding to the most massive strange star. Due to the quark depletion, an electric potential well for negatively charged particles is formed on the surface of the quark part, which may provide some unique observables. For a rotational bare strange star, a magnetic field with the typical strength of pulsars is generated.

  6. (Anti-)strangeness production in heavy-ion collisions

    CERN Document Server

    Moreau, Pierre; Ko, Che-Ming; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    The production and dynamics of strange and antistrange hadrons in heavy-ion reactions from $\\sqrt{s_{NN}} \\approx$ 3 GeV to 200 GeV is analyzed within the Parton-Hadron-String-Dynamics (PHSD) transport model. The PHSD results for strange baryon and antibaryon production are roughly consistent with the experimental data starting from upper SPS energies. Nevertheless, hadronic final state flavor-exchange reactions are important for the actual abundances, in particular at large rapidities where hadronic dynamics, parton fragmentation and string decay dominate. A striking disagreement between the PHSD results and the available data persists, however, for bombarding energies below $\\sqrt{s_{NN}} \\approx$ 8 GeV where the strangeness production is significantly underestimated as in earlier HSD studies. This finding implies that the strangeness enhancement seen experimentally at FAIR/NICA energies cannot be attributed to a deconfinement phase transition or crossover but probably involves the approximate restoration o...

  7. The lightest neutral hypernuclei with strangeness -1 and -2

    CERN Document Server

    Richard, Jean-Marc; Zhao, Qiang

    2014-01-01

    Our current knowledge of the baryon--baryon interaction suggests that the dineutron $(n,n)$ and its strange analogue $(\\Lambda,n)$ are unstable. In contrast, the situation is more favourable for the strange three-body system $(n,n,\\Lambda)$, and even better for the four-body system $T=(n,n,\\Lambda,\\Lambda)$ with strangeness $-2$, which is likely to be stable under spontaneous dissociation. This new nucleus could be produced and identified in central deuteron--deuteron collisions via reaction $d+d\\to T+K^++K^+$, and the tetrabaryon $T$ could play an important role in catalysing the formation of a strange core in neutron stars.

  8. On the strange quark mass with improved staggered quarks

    OpenAIRE

    Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.

    2002-01-01

    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.

  9. Strange baryon spectroscopy in the relativistic quark model

    CERN Document Server

    Faustov, R N

    2015-01-01

    Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.

  10. Strange baryon spectroscopy in the relativistic quark model

    Science.gov (United States)

    Faustov, R. N.; Galkin, V. O.

    2015-09-01

    Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.

  11. Weak production of strange particles and η mesons off the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M. Rafi; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Departamento de Física Atómica, Moleculary Nuclear, and Instituto de Física Teórica y Computacional Carlos I, Universidad de Granada, Granada 18071 (Spain); Alvarez-Ruso, L.; Vacas, M. J. Vicente [Departamento de Física Teórica and Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)

    2015-10-15

    The strange particle production induced by (anti)neutrino off nucleon has been studied for |ΔS| = 0 and |ΔS| = 1 channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are f{sub π}, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included Σ*(1385) resonance and for eta production S{sub 11}(1535) and S{sub 11}(1650) resonances are included.

  12. Weak Production of Strange Particles and $\\eta$ Mesons off the Nucleon

    CERN Document Server

    Alam, M Rafi; Alvarez-Ruso, L; Athar, M Sajjad; Vacas, M J Vicente

    2015-01-01

    The strange particle production induced by (anti)neutrino off nucleon has been studied for $|\\Delta S|=0$ and $|\\Delta S|=1$ channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are $f_\\pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $\\Sigma^*$(1385) resonance and for eta production $S_{11}$(1535) and $S_{11}$(1650) resonances are included.

  13. Strange meson-baryon interaction in hot and dense medium: recent progress for a road to GSI/FAIR

    CERN Document Server

    Cabrera, Daniel; Aichelin, Jörg; bratkovskaya, Elena

    2015-01-01

    We report recent results on the dynamics of strange hadrons in two-body reactions relevant for near-threshold production in heavy-ion collisions at GSI/FAIR and NICA-Dubna. In particular, $\\bar K N$ scattering in hot and dense nuclear matter is studied within a chiral unitary framework in coupled channels, setting up the starting point for implementations in microscopic off-shell transport approaches. We focus on the calculation of transition rates with special attention to the excitation of hyperon resonances and isospin effects. Additionally, we explore "unconventional" strangeness generation by meson-meson and meson-baryon interactions in connection with recent HADES observations of deep sub-threshold $\\phi$ and $\\Xi$ production.

  14. A study of strange particle production in {nu}{sub {mu}} charged current interactions in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Fazio, T.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kustov, D.; Kuznetsov, V.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B. E-mail: popov@nusun.jinr.dubna.su; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G. [and others

    2002-01-21

    A study of strange particle production in {nu}{sub {mu}} charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles (K{sup 0}{sub s},{lambda},{lambda}-bar) have been measured. Mean multiplicities are reported as a function of the event kinematic variables E{sub {nu}}, W{sup 2} and Q{sup 2} as well as of the variables describing particle behaviour within a hadronic jet: x{sub F}, z and p{sub T}{sup 2}. Decays of resonances and heavy hyperons with identified K{sup 0}{sub s} and {lambda} in the final state have been analyzed. Clear signals corresponding to K{sup *{+-}}, {sigma}{sup *{+-}}, {xi}{sup -} and {sigma}{sup 0} have been observed.

  15. Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    @@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.

  16. Strangeness electro- and photo-production at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Reinhard Schumacher

    1996-01-01

    Strange-particle physics can extend our understanding of nuclear and nucleonic structure and reaction mechanisms. Numerous experiments at CEBAF will investigate strangeness in elementary production and nuclear reactions. The established program includes the study of hyperon electromagnetic decays, the elementary photo- and electro-production of hyperons on nucleons and light nuclei, and the electroproduction of light hypernuclear species. There are relevant experiments planned in all three experimental halls at CEBAF; advances made possible by these new facilities are discussed.

  17. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  18. Hadron spectroscopy from strangeness to charm and beauty

    Energy Technology Data Exchange (ETDEWEB)

    Zou, B.S., E-mail: zoubs@ihep.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-09-20

    Quarks of different flavors have different masses, which will cause breaking of flavor symmetries of QCD. Flavor symmetries and their breaking in hadron spectroscopy play important role for understanding the internal structures of hadrons. Hadron spectroscopy with strangeness reveals the importance of unquenched quark dynamics. Systematic study of hadron spectroscopy with strange, charm and beauty quarks would be very revealing and essential for understanding the internal structure of hadrons and its underlying quark dynamics.

  19. Higher dimensional strange quark matter solutions in self creation cosmology

    Science.gov (United States)

    Şen, R.; Aygün, S.

    2016-03-01

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  20. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIANWei-Liang; SURu-Keng; SONGHong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.

  1. Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass

    CERN Document Server

    Xu, J F; Liu, F; Hou, D F; Chen, L W

    2015-01-01

    A quark model with running coupling and running strange quark mass, which is thermodynamically self-consistent at both high and lower densities, is presented and applied to study properties of strange quark matter and structure of compact stars. An additional term to the thermodynamic potential density is determined by meeting the fundamental differential equation of thermodynamics. It plays an important role in comparatively lower density and ignorable at extremely high density, acting as a chemical-potential dependent bag constant. In this thermodynamically enhanced perturbative QCD model, strange quark matter still has the possibility of being absolutely stable, while the pure quark star has a sharp surface with a maximum mass as large as about 2 times the solar mass and a maximum radius of about 11 kilometers.

  2. Learning by Analogy: Discriminating between Potential Analogs

    Science.gov (United States)

    Richland, Lindsey E.; McDonough, Ian M.

    2010-01-01

    The ability to successfully discriminate between multiple potentially relevant source analogs when solving new problems is crucial to proficiency in a mathematics domain. Experimental findings in two different mathematical contexts demonstrate that providing cues to support comparative reasoning during an initial instructional analogy, relative to…

  3. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  4. Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars

    Institute of Scientific and Technical Information of China (English)

    陈次星; 张家铝

    2001-01-01

    The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.

  5. Strangeness Prospects with the CBM Experiment

    Science.gov (United States)

    Friese, Volker

    2016-01-01

    The CBM experiment will study strongly interacting matter at high net-baryon densities with nuclear collisions up to 45A GeV beam energy at the future FAIR facility. With interaction rates unprecedented in heavy-ion collisions, CBM will give access also to extremely rare probes and thus to the early stage of the collisions, in search for the first-order phase transition from confined to deconfined matter and the QCD critical point. The CBM physics programme will be started with beams delivered by the SIS-100 synchrotron, providing energies from 2 to 11 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 30 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS-300 in a later stage of the FAIR project. After several years of preparation, the CBM experiment now enters the realisation phase. In this article, we report on the current status of the system developments and the expected physics performance for strange and charmed observables, as well as on the roadmap towards the first data taking.

  6. Atmospheric Neutrinos Can Make Beauty Strange

    CERN Document Server

    Harnik, R; Murayama, H; Pierce, A T; Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    The large observed mixing angle in atmospheric neutrinos, coupled with Grand Unification, motivates the search for a large mixing between right-handed strange and bottom quarks. Such mixing does not appear in the standard CKM phenomenology, but may induce significant b to s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an order one effect on CP violation in B_d to phi+K_S is possible due to a large mixing between right-handed b and s squarks, while still satisfying constraints from b to s + gamma. We also include the effect of right- and left-handed bottom squark mixing proportional to m_b*mu*tan(beta). For small mu*tan(beta) there may also be a large effect in B_s mixing correlated with a large effect in B_d to phi+K_S, typically mixing effects are greater than 100 ps^{-1}, an unambiguous signal of new physics at Tevatron Run II.

  7. Atmospheric neutrinos can make beauty strange

    Science.gov (United States)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Pierce, Aaron

    2004-05-01

    The large observed mixing angle in atmospheric neutrinos, coupled with grand unification, motivates the search for large mixing between right-handed strange and bottom squarks. Such mixing does not appear in the standard Cabibbo-Kobayashi-Maskawa phenomenology, but may induce significant b→s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an O(1) effect on CP violation in B0d→φKS is possible due to a large mixing between sR and bR, while still satisfying constraints from b→sγ. We also include the effect of bL-bR mixing proportional to mbμ tan β. In the case where mbμ tan β≪M2SUSY there may be a large effect in Bs mixing correlated with a large effect in B0d→φKS, typically yielding an unambiguous signal of new physics at Tevatron run II.

  8. Strange Attractors Characterizing the Osmotic Instability

    CERN Document Server

    Tzenov, Stephan I

    2014-01-01

    In the present paper a simple dynamical model for computing the osmotically driven fluid flow in a variety of complex, non equilibrium situations is derived from first principles. Using the Oberbeck-Boussinesq approximation, the basic equations describing the process of forward osmosis have been obtained. It has been shown that these equations are very similar to the ones used to model the free Rayleigh-Benard convection. The difference is that while in the case of thermal convection the volume expansion is driven by the coefficient of thermal expansion, the key role for the osmotic instability is played by the coefficient of isothermal compressibility. In addition, it has been shown that the osmotic process represents a propagation of standing waves with time-dependent amplitudes and phase velocity, which equals the current velocity of the solvent passing through the semi-permeable membrane. The evolution of the amplitudes of the osmotic waves is exactly following the dynamics of a strange attractor of Loren...

  9. Observation of enhanced production of strange and multi-strange hadrons in high-multiplicity pp and p-Pb collisions with the ALICE detector.

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The production of strange hadrons has long been studied in heavy-ion collisions to investigate the formation of a deconfined medium. The interpretation of these data depends critically on the understanding of strange-particle production in smaller ‘baseline’ collision systems such as proton-proton and proton-ion. The ALICE experiment is well-suited to the measurement of identified charged hadrons and weakly-decaying strange and multi-strange baryons and has collected large samples of minimum-bias pp and p-Pb collisions. Characterising the collisions according to their final-state multiplicities reveals an enhancement in the production of strange and multi-strange particles, relative to light flavoured hadrons. This detailed information is valuable in understanding the mechanisms that control the production of strange particles.  

  10. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th September ...

  11. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th Septemb...

  12. Compositeness of the strange, charm and beauty odd parity $\\Lambda$ states

    CERN Document Server

    Garcia-Recio, C; Nieves, J; Salcedo, L L; Tolos, L

    2015-01-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $\\Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $\\Lambda$ states. We find that the $\\Lambda$ states which are bound states (the three $\\Lambda_b$) or narrow resonances (one $\\Lambda(1405)$ and one $\\Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $\\frac{1}{2}^-$ wide $\\Lambda(1405)$ and $\\Lambda_c(2595)$ as well as the $\\frac{3}{2}^-$ $\\Lambda(1520)$ and $\\Lambda_c(2625)$ states display smaller compositeness and so they...

  13. Structured Analog CMOS Design

    CERN Document Server

    Stefanovic, Danica

    2008-01-01

    Structured Analog CMOS Design describes a structured analog design approach that makes it possible to simplify complex analog design problems and develop a design strategy that can be used for the design of large number of analog cells. It intentionally avoids treating the analog design as a mathematical problem, developing a design procedure based on the understanding of device physics and approximations that give insight into parameter interdependences. The proposed transistor-level design procedure is based on the EKV modeling approach and relies on the device inversion level as a fundament

  14. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  15. Strange Bedfellows; Physical and Biological Oceanographers

    Science.gov (United States)

    Wooster, W. S.

    2002-12-01

    understanding the response of marine ecosystems to environmental forcing cannot be achieved without the effective collaboration of these strange bedfellows.

  16. Differences in the Cooling Behavior of Strange Quark Matter Stars and Neutron Stars

    OpenAIRE

    Schaab, Christoph; Hermann, Bernd; Weber, Fridolin; Weigel, Manfred K.

    1997-01-01

    The general statement that hypothetical strange (quark matter) stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. In this case, strange stars are slowly cooling, and their surface temperatures are more or less indistinguishable from those of slowly cooling neutron stars. Furthermore the case of enhanced cooling is reinvestigated. It shows that strange sta...

  17. Are strange stars distinguishable from neutron stars by their cooling behaviour?

    OpenAIRE

    Schaab, Ch.; Hermann, B.; Weber, F.; Weigel, M. K.

    1997-01-01

    The general statement that strange stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. If so, strange stars would be slowly cooling and their surface temperatures would be more or less indistinguishable from those of slowly cooling neutron stars. The case of enhanced cooling is reinvestigated as well. It is found that strange stars cool significantly more ...

  18. On the structure of strange stars and bagged QCD parameters

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Horvath, J.E. (La Plata Univ. Nacional (Argentina). Facultad de Ciencias Astronomicas y Geofisicas La Plata Univ. Nacional (Argentina). Facultad de Ciencias Exactas)

    1989-11-01

    We have studied the structure of stellar objects made up of strange matter, which is suspected to be the actual ground state of cold, dense baryonic matter. The equation of state containing three strong interaction parameters B, {alpha}{sub c} and m{sub s} has been varied throughout the strange matter stability window in order to get a wide picture of these hypothetical objects. It is found that this type of model can account for the presently known observational features of compact objects, and conversely, that no restriction on the space of parameters (compatible with strange matter stability) is imposed by observational facts; unless some configurations having both e{sup -} and e{sup +} in their structure happen to be unstable. (author).

  19. New analysis concerning the strange quark polarization puzzle

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2014-01-01

    The fact that analyses of semi-inclusive deep inelastic scattering suggest that the strange quark polarization $\\Delta s(x) + \\Delta \\bar{s}(x)$ is positive in the measured region of Bjorken x, whereas all analyses of inclusive deep inelastic scattering yield significantly negative values of this quantity, is known as the "strange quark polarization puzzle". We have re-analysed the world data on inclusive deep inelastic scattering, including the COMPASS 2010 proton data on the spin asymmetries, and for the first time, the new extremely precise JLab CLAS data on the proton and deuteron spin structure functions. Despite allowing, in our parametrization, for a possible sign change, our results confirm that the inclusive data yield significantly negative values for the strange quark polarization.

  20. The strange flight behaviour of slowly spinning soccer balls

    Science.gov (United States)

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-05-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights.

  1. AINSWORTH'S STRANGE SITUATION PROCEDURE: THE ORIGIN OF AN INSTRUMENT.

    Science.gov (United States)

    Van Rosmalen, Lenny; Van der Veer, René; Van der Horst, Frank

    2015-01-01

    The American-Canadian psychologist Mary Ainsworth (1913-1999) developed the Strange Situation Procedure (SSP) to measure mother-child attachment and attachment theorists have used it ever since. When Ainsworth published the first results of the SSP in 1969, it seemed a completely novel and unique instrument. However, in this paper we will show that the SSP had many precursors and that the road to such an instrument was long and winding. Our analysis of hitherto little-known studies on children in strange situations allowed us to compare these earlier attempts with the SSP. We argue that it was the combination of Ainsworth's working experience with William Blatz and John Bowlby, her own research in Uganda and Baltimore, and the strong connection of the SSP with attachment theory, that made the SSP differ enough from the other strange situation studies to become one of the most widely used instruments in developmental psychology today.

  2. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  3. Studies of the Strange Sea-Quarks Spin with Kaons

    Science.gov (United States)

    Benmokhtar, Fatiha; Voloshin, Andrew; Goodwill, Justin; Lendacky, Andrew

    2017-01-01

    It is well known that quarks and gluons give the substructure to the nucleons. and understanding of the spin structure of the nucleon in terms of quarks and gluons has been the goal of intense investigations during the last decades. The determination of strangeness is challenging and the only way of determining the strange distribution accurately from data is to improve the semi-inclusive information. This talk is focused on the determination of the strange sea contribution to the nucleon spin through the pseudo-scalar method using semi-inclusive Kaon detection technique with CLAS12 at Jefferson Lab. A Ring Imaging CHerenkov (RICH) detector is under construction and will be used for pion-kaon-proton separation. National Science Foundation #1615067.

  4. Thermodynamics of strong interaction matter from lattice QCD and the hadron resonance gas model

    CERN Document Server

    Karsch, Frithjof

    2013-01-01

    We compare recent lattice QCD calculations of higher order cumulants of net-strangeness fluctuations with hadron resonance gas (HRG) model calculations. Up to the QCD transition temperature Tc=( 154 +/- 9) MeV we find good agreement between QCD and HRG model calculations of second and fourth order cumulants, even when subtle aspects of net-baryon number, strangeness and electric charge fluctuations are probed. In particular, the fourth order cumulants indicate that also in the strangeness sector of QCD the failure of HRG model calculations sets in quite abruptly in the vicinity of the QCD transition temperature and is apparent in most observables for T > 160 MeV.

  5. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  6. Academic strangeness as uncomfortable reflexivity and academic reflexivity as uncomfortable strangeness in higher education

    DEFF Research Database (Denmark)

    Fristrup, Tine; Tulinius, Charlotte; Hølge-Hazelton, Bibi

    2015-01-01

    strangeness among several of the students, but also among ourselves as teachers and facilitators. We have been inspired by the work done by Ruth Behar (1996) on becoming a vulnerable observer and the work done by Pranee Liamputtong (2006) on researching the vulnerable. Both approaches involve a critique....... The paper briefly describes the strategies used to plan, deliver and evaluate the course, but the main emphasis is on the learning taking place as a consequence of working within this area and using these strategies in the educational setting. Having participated in and studied academic and peer supervision...... for the course, as teachers, was to create ‘an academic zone of comfort’ at the course, something we had been deprived of ourselves as young researchers. Our insistence on continuous reflexivity regarding the uncomfortable in order to develop academic reflexivity among the students created uncomfortable academic...

  7. Nucleation of strange matter in dense stellar cores

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.E. (Instituto Astronomico e Geofisico, Universidade de Sao Paulo, Avenida M. Stefano 4200, Agua Funda (04301) Sao Paulo, Sao Paulo (Brazil)); Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900) La Plata (Argentina)); Vucetich, H. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 49 y 115, C.C.67 (1900) La Plata (Argentina))

    1992-05-15

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature {ital T} for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios.

  8. Pair Winds in Schwarzschild Spacetime with Application to Strange Stars

    CERN Document Server

    Aksenov, A G; Usov, V V

    2016-01-01

    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}--10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.

  9. Effect of hyperons on phase coexistence in strange matter

    CERN Document Server

    Das, P; Chaudhuri, G

    2016-01-01

    The study of liquid gas phase transition in fragmentation of nuclei in heavy ion collisions has been extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz's free energy, specific heat and few other thermodynamic observables have been analyzed in order to examine the occurence of phase transition in the strange matter. The bimodal behaviour of the largest cluster formed in fragmentation also strongly indicates coexistence of both the phases. The presence of hyperons strengthens the signals and also shifts the transition temperature to lower values.

  10. A strange horn between Paolo Mantegazza and Charles Darwin.

    Science.gov (United States)

    Garbarino, Carla; Mazzarello, Paolo

    2013-09-01

    During the preparation of an exhibition in Pavia dedicated to the centennial anniversary of the death of the Italian Pathologist Paolo Mantegazza, a strange cheratinic horn was found at the Museum for the History of the University of Pavia labelled as 'spur of a cock transplanted into an ear of a cow.' After some historical investigation, we found this strange object was at the centre of a scientific correspondence between Mantegazza and Charles Darwin, who made reference to it in his book The Variation of Animals and Plants under Domestication.

  11. Summary of recent experimental results on strangeness production

    CERN Document Server

    Kalweit, Alexander

    2016-01-01

    This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the {\\it International Conference on Strangeness in Quark Matter} in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.

  12. Summary of recent experimental results on strangeness production

    Science.gov (United States)

    Kalweit, Alexander

    2017-01-01

    This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the International Conference on Strangeness in Quark Matter in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.

  13. Clustered Quark Matter Calculation for Strange Quark Matter

    CERN Document Server

    Na, Xuesen

    2009-01-01

    Motivated by the need for a solid state strange quark matter to better explain some observational phenomena, we discussed possibility of color singlet cluster formation in cold strange quark matter by a rough calculation following the excluded volume method proposed by Clark et al (1986) and adopted quark mass density dependent model with cubic scaling. It is found that 70% to 75% of volume and 80% to 90% of baryon number is in clusters at temperature from 10MeV to 50MeV and 1 to 10 times nuclear density.

  14. Memory matrix theory of magnetotransport in strange metals

    Science.gov (United States)

    Lucas, Andrew; Sachdev, Subir

    2015-05-01

    We model strange metals as quantum liquids without quasiparticle excitations, but with slow momentum relaxation and with slow diffusive dynamics of a conserved charge and energy. General expressions are obtained for electrical, thermal, and thermoelectric transport in the presence of an applied magnetic field using the memory matrix formalism. In the appropriate limits, our expressions agree with previous hydrodynamic and holographic results. We discuss the relationship of such results to thermoelectric and Hall transport measurements in the strange-metal phase of the hole-doped cuprates.

  15. Strange metal transport realized by gauge/gravity duality.

    Science.gov (United States)

    Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David

    2010-08-27

    Fermi liquid theory explains the thermodynamic and transport properties of most metals. The so-called non-Fermi liquids deviate from these expectations and include exotic systems such as the strange metal phase of cuprate superconductors and heavy fermion materials near a quantum phase transition. We used the anti-de-Sitter/conformal field theory correspondence to identify a class of non-Fermi liquids; their low-energy behavior is found to be governed by a nontrivial infrared fixed point, which exhibits nonanalytic scaling behavior only in the time direction. For some representatives of this class, the resistivity has a linear temperature dependence, as is the case for strange metals.

  16. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  17. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  18. Do the Pc+ pentaquarks have strange siblings?

    Science.gov (United States)

    Lebed, Richard F.

    2015-12-01

    The recent LHCb discovery of states Pc+(4380 ), Pc+(4450 ), believed to be c c ¯u u d pentaquark resonances, begs the question of whether equivalent states with c c ¯→s s ¯ exist, and how they might be produced. The precise analogue to the Pc+ discovery channel Λb→J /ψ K-p , namely, Λc→ϕ π0p , is feasible for this study and indeed is less Cabibbo suppressed, although its limited phase space suggests that evidence of a s s ¯u u d resonance Ps+ would be confined to the kinematic end-point region.

  19. Study of $\\tau$ decays involving kaons, spectral functions and determination of the strange quark mass

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sedgbeer, J K; Spagnolo, P; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Ealet, A; Motsch, F; Payre, P; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Chambers, J T; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Foss, J; Grupen, Claus; Prange, G; Smolik, L; Stephan, F; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; Mamier, G; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Vogt, M; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    1999-01-01

    All ALEPH measurements of branching ratios of tau decays involving kaons are summarized including a combination of results obtained with K^0_S and K^0_L detection. The decay dynamics are studied, leading to the determination of contributions from vector K^*(892) and K^{*}(1410), and axial-vector K_1(1270) and K_1(1400) resonances. Agreement with isospin symmetry is observed among the different final states. Under the hypothesis of the conserved vector current, the spectral function for the K\\bar{K}\\pi mode is compared with the corresponding cross section for low energy e^+e^- annihilation, yielding an axial-vector fraction of (94^{+6}_{-8})% for this mode. The branching ratio for tau decay into all strange final states is determined to be B(\\tau^-\\to X^-(S=-1)\

  20. Observation of the positive-strangeness pentaquark $\\Theta^+$ in photoproduction with the SAPHIR detector at ELSA

    CERN Document Server

    Barth, J; Ernst, J; Glander, K H; Hannappel, J; Jöpen, N; Kalinowsky, H; Klein, F; Klempt, E; Lawall, R; Link, J; Menze, D W; Neuerburg, W; Ostrick, M; Paul, E; Van Pee, H; Schulday, I; Schwille, W J; Wiegers, B; Wieland, F W; Wisskirchen, J; Wu, C

    2003-01-01

    The positive--strangeness baryon resonance $\\Theta^+$ is observed in photoproduction of the $\\rm nK^+K^0_s$ final state with the SAPHIR detector at the Bonn ELectron Stretcher Accelerator ELSA. It is seen as a peak in the $\\rm nK^+$ invariant mass distribution with a $4.8\\sigma$ confidence level. We find a mass $\\rm M_{\\Theta^+} = 1540\\pm 4\\pm 2$ MeV and an upper limit of the width $\\rm \\Gamma_{\\Theta^+} < 25$ MeV at 90% c.l. The photoproduction cross section for $\\rm\\bar K^0\\Theta^+$ is in the order of 300 nb. From the absence of a signal in the $\\rm pK^+$ invariant mass distribution in $\\rm\\gamma p\\to pK^+K^-$ at the expected strength we conclude that the $\\Theta^+$ must be isoscalar.

  1. Analogy in CLAM

    OpenAIRE

    Melis, Erica

    1999-01-01

    CL A M is a proof planner, developed by the Dream group in Edinburgh,that mainly operates for inductive proofs. This paper addresses the questionhow an analogy model that I developed independently of CL A M can beapplied to CL A M and it presents analogy-driven proof plan construction as acontrol strategy of CL A M . This strategy is realized as a derivational analogythat includes the reformulation of proof plans. The analogical replay checkswhether the reformulated justifications of the sour...

  2. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  3. Analogies of Information Security

    OpenAIRE

    Sole, Amund Bauck

    2016-01-01

    In this thesis it will be tested wither analogies and metaphors would make it easier to teach the fundamental subjects of information security and hacking to people with no previous background in computer science and only basic computer skills. This will be done by conducting interview on people with no background in computer science to see what analogies work the best for different topics in information security. From the analogy getting the best response, a small game will be designed with ...

  4. Participatory urbanism: Making the stranger familiar and the familiar strange

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine

    2016-01-01

    Urban areas are planned structures that cannot easily be changed. Urban areas do however still afford physical spaces for various types of leisure expression and participation, from street art to parkour and from urban gaming to artistic happenings. Thus, while citizens who inhabit the urban areas...... familiar strange but also by making strangers familiar"....

  5. Study of doubly strange systems using stored antiprotons

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, E.; Lisowski, F.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Y. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Olshevskiy, A.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopyanov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfarth, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martìnez Rojo, M.; Marta, M.; Michel, M.; Mora Espì, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.

    2016-10-01

    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P ‾ ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ--atoms will be feasible and even the production of Ω--atoms will be within reach. The latter might open the door to the | S | = 3 world in strangeness nuclear physics, by the study of the hadronic Ω--nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions.

  6. Strangeness nuclear physics: a critical review on selected topics

    CERN Document Server

    Botta, Elena; Garbarino, Gianni

    2012-01-01

    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of $\\Lambda$--Hypernuclei, the $\\bar K$ nuclear interaction and the possible existence of $\\bar K$ bound states in nuclei. Perspectives for future studies on these issues are also outlined.

  7. Converting Neutron Stars into Strange Stars: Instanton Model

    CERN Document Server

    Gurovich, Victor Ts

    2014-01-01

    We estimate the quasiclassical probability of the homogeneous nuclear matter transition to a strange matter when a detonation wave propagates radially inside a sphere of nuclear matter. For this purpose we make use of instanton method which is known in the quantum field theory.

  8. Study of Strange Quark Mass in CFL Phase

    Institute of Scientific and Technical Information of China (English)

    LI Xin; L(U) Xiao-Fu

    2006-01-01

    In this paper we introduce bilocal fields in the global color symmetry model and consider color and electrical neutrality conditions simultaneously to study the effect of strange quark mass Ms for the momentum-dependent condensate of color-flavor locked phase. Consequently we find that there will be a quantum phase transition occurring.

  9. Strangeness -2 and -3 Baryons in a Constituent Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Muslema Pervin; Winston Roberts

    2007-09-19

    We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.

  10. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  11. Multiplicity-dependent enhancement of strange and multi-strange hadron production in proton-proton collisions at $\\sqrt{s} = 7$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    The yields of strange (${\\rm K}^{0}_{S}$, $\\Lambda$, $\\bar{\\Lambda}$) and multi-strange ($\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$) hadrons are measured at midrapidity in proton-proton (pp) collisions at $\\sqrt{s}$ = 7 TeV as a function of the charged-particle multiplicity density (${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$).The production rate of strange particles increases faster than that of non-strange hadrons, leading to an enhancement of strange particles relative to pions, similar to that found in nucleus-nucleus collisions as well as in proton-nucleus collisions at the LHC. This is the first observation of an enhanced production of strange particles in high-multiplicity pp collisions. The magnitude of this strangeness enhancement increases with the event activity, quantified by ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$, and with hadron strangeness. It reaches almost a factor of two for the $\\Omega$ at the highest multiplicity presented. No enhancement is observed for particles with no strange quark cont...

  12. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Λ, Λ) and multiple (Ξ-, Ξ-, Ω-, Ω-) strangeness are given. In LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding system might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  13. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    王晓荣[1; 萨本豪[2; 周代翠[3; 刘涵[4; 蔡勖[5

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Α ,Α ) and multiple (Ε Ε ) strangeness are given. in LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding sys-tem might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  14. Challenges in Using Analogies

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same…

  15. Hydraulic Capacitor Analogy

    Science.gov (United States)

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  16. Nucleon strangeness as the response to a strangeness-sensitive probe in a class of hadron models

    CERN Document Server

    Klabucar, D; Melic, B; Picek, I

    1999-01-01

    On top of its valence quarks, the full nucleon ground state may contain appreciable admixture of s-\\bar{s} pairs already at small momentum transfers. This paper discusses strangeness in the mean-field type of nucleon models, and exemplifies this by explicit calculations in the MIT bag model enriched by the presence of instantons. We calculate the instanton contribution to the strangeness in the MIT bag (on top of the standard contribution to strangeness found in that model). Although we do it in an essentially perturbative way, we present a detailed derivation of the formula expressing nucleon matrix elements of bilinear strange quark operators, in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. We do it in detail to clarify our argument that in the context of the mean-field type of quark models (where a Fock state expansion exists and where the nucleon state can be constructed out of single-quark states), the resulting formula acqui...

  17. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic {tau} decays with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)

  18. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  19. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  20. TV Analog Station Transmitters

    Data.gov (United States)

    Department of Homeland Security — This file is an extract from the Consolidated Database System (CDBS) licensed by the Media Bureau. It consists of Analog Television Stations (see Rule Part47 CFR...

  1. Analog multivariate counting analyzers

    CERN Document Server

    Nikitin, A V; Armstrong, T P

    2003-01-01

    Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer fro...

  2. Challenges in Analogical Reasoning

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same physics principle is involved but that is more difficult to handle. Here, we examine introductory physics students' ability to use analogies in solving problems involving Newton's second law. Students enrolled in an algebra-based introductory physics course were given a solved problem involving tension in a rope and were then asked to solve another problem for which the physics is very similar but involved a frictional force. They were asked to point out the similarities between the two problems and then use the analogy to solve the friction problem.

  3. Synthesis of Paclitaxel Analogs

    OpenAIRE

    Xu, Zhibing

    2010-01-01

    Paclitaxel is one of the most successful anti-cancer drugs, particularly in the treatment of breast cancer and ovarian cancer. For the investigation of the interaction between paclitaxel and MD-2 protein, and development of new antagonists for lipopolysaccharide, several C10 A-nor-paclitaxel analogs have been synthesized and their biological activities have been evaluated. In order to reduce the myelosuppression effect of the paclitaxel, several C3â ² and C4 paclitaxel analogs have been synth...

  4. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  5. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  6. Radial stability of anisotropic of strange quark stars

    CERN Document Server

    Arbañil, José D V

    2016-01-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic $\\sigma=p_t-p_r$, where $p_t$ and $p_r$ are respectively the tangential and the radial pressure, are considered: one that is null at the star's surface defined by $p_r(R)=0$, and other that is nonnull on it, namely, $\\sigma_s=0$ and $\\sigma_s\

  7. Multi-strangeness production in hadron induced reactions

    Science.gov (United States)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  8. Strange Stars: Can Their Crust Reach the Neutron Drip Density?

    Institute of Scientific and Technical Information of China (English)

    Hai Fu; Yong-Feng Huang

    2003-01-01

    The electrostatic potential of electrons near the surface of static strange stars at zero temperature is studied within the frame of the MIT bag model. We find that for QCD parameters within rather wide ranges, if the nuclear crust on the strange star is at a density leading to neutron drip, then the electrostatic potential will be insufficient to establish an outwardly directed electric field, which is crucial for the survival of such a crust. If a minimum gap width of 200 fm is brought in as a more stringent constraint, then our calculations will completely rule out the possibility of such crusts. Therefore, our results argue against the existence of neutron-drip crusts in nature.

  9. Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    CERN Document Server

    Dong, S J; Williams, A G

    1998-01-01

    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is $G_M^s(0) = - 0.36 \\pm 0.20 $. The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of $ - 0.097 \\pm 0.037 \\mu_N$ to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of $ -0.68 \\pm 0.04$ which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius $_E$ is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.

  10. Multi-Strangeness Production in Hadron Induced Reactions

    CERN Document Server

    Gaitanos, T; Lalazissis, G A; Lenske, H

    2016-01-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplett-particle $\\Omega$ and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of $\\Omega$-production in the forthcoming \\panda-experiment, which can be achieved with measurable probabilities using high-energy secondary $\\Xi$-beams. We predict cross sections for $\\Omega$-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  11. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  12. Strange attractor of Henon map and its basin

    Institute of Scientific and Technical Information of China (English)

    曹永罗

    1995-01-01

    In this paper, Henon map is considered. For a positive measure set of parameters (a, b), we construct a trapping region G of topologically transitive strange attractor Aa,b for Ta,b, and prove that Aa,b= ∩n≥0Ta,bnG, and the basin B(Aa,b) of Aa,b is exactly the union of domain whose boundary is contained in w5(p) ∪wu(p) and ws(p). Therefore, that the conjecture posed by Benedicks and Carleson about the basin of strange attactor is true is proved. Furthermore, B(Aa,b) is simply connected and path-connected, w4(p2) is contained in the attainable boundary set of B(Aa,b) (where p2 is another hyperbolic fixed point of Ta,b).

  13. Strangeness in nuclear matter at DA{Phi}NE

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, P. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1998-01-01

    The low energy kaons from the {phi} meson produced at DA{Phi}NE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DA{Phi}NE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DA{Phi}NE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors.

  14. Deconfinement of strangeness and freeze-out from charge fluctuations

    CERN Document Server

    Mukherjee, Swagato

    2013-01-01

    We use Lattice QCD calculations of fluctuations and correlations of various conserved charges to show that the deconfinement of strangeness takes place in the chiral crossover region of QCD; however, inside the quark-gluon plasma strange quarks remain strongly interacting at least up to temperatures twice the QCD crossover temperature. Further, we discuss how the freeze-out parameters of heavy-ion collisions can be determined in a model-independent way through direct comparisons between experimentally measured higher order cumulants of conserved charges and corresponding Lattice QCD calculations. Utilizing the preliminary data from the STAR and PHENIX experiments we illustrate this method. Although, the Lattice QCD based determinations of the freeze-out parameters utilizing data sets of different experiments and different observables are currently not consistent with each other, it is tantalizing to see that all the observed freeze-out parameters lie very close to the chiral/deconfinement crossover region of ...

  15. Many Facets of Strangeness Nuclear Physics with Stored Antiprotons

    CERN Document Server

    Pochodzalla, Josef; Lorente, Alicia Sanchez; Rojo, Marta Martinez; Steinen, Marcell; Gerl, Jürgen; Kojouharova, Jasmina; Kojouharova, Ivan

    2016-01-01

    Stored antiprotons beams in the GeV range represent a unparalleled factory for hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of strange hadronic systems with unprecedented precision. The behavior of hyperons and -- for the first time -- of antihyperons in nuclear systems can be studied under well controlled conditions. The exclusive production of $\\Lambda\\bar{\\Lambda}$ and $\\Sigma^-\\bar{\\Lambda}$ pairs in antiproton-nucleus interactions probe the neutron and proton distribution in the nuclear periphery and will help to sample the neutron skin. For the first time, high resolution $\\gamma$-spectroscopy of doubly strange nuclei will be performed, thus complementing measurements of ground state decays of double hypernuclei with mesons beams at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange $\\Xi$-atoms are feasible and even the pr...

  16. Anomalies, symmetries and strangeness content of the proton

    Indian Academy of Sciences (India)

    J Pasupathy

    2003-11-01

    The matrix elements of the operators of strange quark fields $s\\overline{}s$ where is 1 or 5 between a proton state is calculated. The sigma term is found to be ≈ 41 MeV and the (3) singlet axial matrix element is found to be ≈ 0.22, both in agreement with experiment. The sigma term is found using the trace anomaly, while the determination of the axial vector current matrix element is from QCD sum rules. These correspond to $\\langle p|2\\overline{ss}|\\rangle / \\langle p|\\overline{u}u+\\overline{d}d|p\\rangle ≈ 0.12$ and for the axial current ≈ -0.12, respectively. The role of the anomalies in maintaining flavor symmetry in the presence of substantial differences in quark masses is pointed out. This suggests that there is no need to invoke an intrinsic strange quark component in the proton wave function.

  17. The strangeness contribution to the proton spin from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2011-12-15

    We compute the strangeness and light-quark contributions {delta}s, {delta}u and {delta}d to the proton spin in n{sub f}=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing{approx}0.073 fm, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements which involves mixing between contributions from different quark flavours. Our main result is the small negative value {delta}s{sup MS}({radical}(7.4)GeV) =-0.020(10)(4) of the strangeness contribution to the nucleon spin. (orig.)

  18. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  19. White dwarf stars as strange quark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O G [Departamento de AstronomIa y AstroFisica, Pontificia Universidad Catolica, Vicuna Mackenna 4860, Casilla 306, Santiago (Chile); Facultad de Ciencias Astronomicas y GeoFisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina)

    2005-11-01

    We show that the presence of a strange matter core inside a white dwarf (WD) star produces a drastic change in the spectrum of non-radial oscillations in the range of periods corresponding to gravity modes. The distinctive, observable signal for such a core is a very short period spacing between consecutive modes, far shorter than in the case of pulsating WDs without any compact core. (letter to the editor)

  20. Quasiequilibrium sequences of binary strange quark stars in general relativity

    CERN Document Server

    Limousin, F; Gourgoulhon, E; Limousin, Francois; Gondek-Rosinska, Dorota; Gourgoulhon, Eric

    2004-01-01

    Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is irrotational.

  1. Stability of strange stars (SS) under radial oscillation

    CERN Document Server

    Sinha, M; Dey, M; Ray, S; Bhowmick, S; Sinha, Monika; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Bhowmick, Siddhartha

    2005-01-01

    A realistic Equation of State (EOS) leads to strange stars (ReSS) which are compact in the mass radius plot, close to the Schwarzchild limiting line (Dey et al. 1998). We carry out a stability analysis under radial oscillations and compare with the EOS of other SS models. We find that the ReSS is stable and an M-R region can be identified to that effect.

  2. The extent of strangeness equilibration in quark gluon plasma

    Indian Academy of Sciences (India)

    Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava

    2003-05-01

    The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.

  3. LHCb: Prospect for rare strange decays at LHCb

    CERN Multimedia

    Marin Benito, C

    2014-01-01

    Prospects on rare strange decays at LHCb are presented. The latest results from the K_s \\to \\mu \\mu search are reported, together with the future prospects for this decay. A search for K_s \\to \\pi^0 \\mu \\mu, a K^+ mass measurement, a search for K_s \\to 4 \\el and a search for \\Sigma^+ \\to p\\mu\\mu are also presented.

  4. Strangeness Production in Ultrarelativistic Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    LONG Jia-Li; HE Ze-Jun; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    Based on the relaxation equations describing the chemical equilibration of gluons, quarks and s quarks at finite baryon density derived from the Juttner distribution of partons, with the help of a rapid phase transition scenario from quark phase to hadron phase, we calculate strangeness production in the quark phase and hadron phase. It is found that the K-/π- ratio is enhanced to be larger than that in pp collisions by about a factor 3.

  5. Weak production of strange particles off the nucleon

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Alvarez-Ruso, L; Vacas, M J Vicente

    2013-01-01

    The strange particle production off the nucleon induced by neutrinos and antineutrinos is investigated at low and intermediate energies. We develop a microscopic model based on the SU(3) chiral Lagrangian. The studied mechanisms are the main source of single kaon production for (anti)neutrino energies up to 1.5 GeV. Using this model we have also studied the associated production of kaons and hyperons. The cross sections are large enough to be measured by experiments such as MINER$\

  6. The J-PARC project-strangeness nuclear physics programs

    CERN Document Server

    Nagae, T

    2005-01-01

    Since Japanese fiscal year JFY01, which started on April 1, 2001, the Japan Proton Accelerator Research Complex (J-PARC) has been in construction under a cooperation of two institutions, KEK and Japan Atomic Energy Research Institute (JAERI). After a short introduction of the whole project, I will report on the current status of the construction. Then, I describe the initial programs on strangeness nuclear physics at J-PARC, in detail.

  7. Convergence analysis of Strang splitting for Vlasov-type equations

    CERN Document Server

    Einkemmer, Lukas

    2012-01-01

    A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type equations in the setting of abstract evolution equations is provided. It is shown that under suitable assumptions the convergence is of second order in the time step h. As an example, it is verified that the Vlasov-Poisson equation in 1+1 dimensions fits into the framework of this analysis. Also, numerical experiments for the latter case are presented.

  8. Strangeness Photoproduction at the BGO-OD Experiment

    CERN Document Server

    Jude, T C; Bayadilov, D; Beck, R; Becker, M; Bella, A; Bielefeldt, P; Boese, S; Braghieri, A; Brinkmann, K; Cole, P; Curciarello, F; De Leo, V; Di Salvo, R; Dutz, H; Elsner, D; Fantini, A; Freyermuth, O; Friedrich, S; Frommberger, F; Ganenko, V; Gervino, G; Ghio, F; Giardina, G; Goertz, S; Gridnev, A; Gutz, E; Hammann, D; Hannappel, J; Hartmann, P; Hillert, W; Ignatov, A; Jahn, R; Joosten, R; Klein, F; Koop, K; Krusche, B; Lapik, A; Sandri, P Levi; Lopatin, I V; Mandaglio, G; Messi, F; Messi, R; Metag, V; Moricciani, D; Mushkarenkov, A; Nanova, M; Nedorezov, V; Novinskiy, D; Pedroni, P; Reitz, B; Romaniuk, M; Rostomyan, T; Rudnev, N; Scheluchin, G; Schmieden, H; Stugelev, A; Sumachev, V; Tarakanov, V; Vegna, V; Walther, D; Watts, D; Zaunick, H; Zimmermann, T

    2015-01-01

    BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.

  9. Strange Quasi-Repeller in a Kicked Rotor

    Institute of Scientific and Technical Information of China (English)

    姜玉梅; 何大韧

    2003-01-01

    A new kind of crisis was observed in a system where a transition from conservative toquasi-dissipative can be observed. The crisis signifies a sudden and intrinsic change of a stochasticweb, which is formed by the end-results of the images of the discontinuous borderlines of the systemfunction. In the crisis, a strange quasi-repeller can be defined. When changing the controllingparameter, the variation of the fractile dimension of the quasi-repeller obeys a logarithmic rule.

  10. Role of Nucleon Strangeness in Core-Collapse Supernova Explosions

    Science.gov (United States)

    Hobbs, Timothy; Alberg, Mary; Miller, Gerald

    2016-09-01

    The ongoing quest to simulate explosions of core-collapse supernovae (CCSNe) in hydrodynamical calculations has placed an enormous premium upon the nuclear and hadronic processes integral to the system's evolution (i.e., the microphysics). In this context, modifications to the neutrino-nucleon elastic cross section have been identified as potentially key to ensuring that stalled bounce shocks are sufficiently re-energized to produce the desired explosion. An important source of such corrections can be found in a negative value for the nucleon's strange helicity content Δs , which leads to the enhancement and suppression of the ν - p and ν - n total cross sections, respectively. In this talk, however, I summarize the results of a recent analysis which led to a comparatively small magnitude for the strange helicity (Δs >= - 0 . 1) - a fact which renders nucleon strangeness an unlikely candidate for the decisive missing ingredient necessary in simulations for CCSN explosions. Work supported by DOE Office of Science, Office of Basic Energy Sciences program under Award No. DE-FG02-97ER-41014, and NSF Grant No. 1205686.

  11. Analysis of White Dwarfs with Strange-Matter Cores

    CERN Document Server

    Mathews, G J; O'Gorman, B; Lan, N Q; Zech, W; Otsuki, K; Weber, F

    2006-01-01

    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify ...

  12. Strange and Charm Quark Spins from Anomalous Ward Identity

    CERN Document Server

    Gong, Ming; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei

    2015-01-01

    We present a calculation of the strange and charm quark contributions to the nucleon spin from anomalous Ward identity (AWI). It is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations on a $24^3 \\times 64$ lattice with the light sea mass at $m_{\\pi} = 330$ MeV. To satisfy the AWI, the overlap fermion for the pseudoscalar density and the overlap Dirac operator for the topological density, which do not have multiplicative renormalization, are used to renormalize the form factor of the local axial-vector current at finite $q^2$. For the charm quark, we find the positive pseudoscalar term almost cancels the negative topological term for each $q^2$, leading to a very small net contribution. For the strange quark, the pseudoscalar term is less positive than that of the charm and this results in a negative strange quark spin when combined with the topological contribution. The $g_A(q^2)$ at $q^2 =0$ is obtained by a global fit of the pseudoscalar and the topological form fact...

  13. Is RXJ1856.5-3754 a strange quark star?

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Marshall, Herman L

    2003-05-05

    Deep Chandra LETGS observations of the isolated neutron star candidate RXJ1856.5-3754 have demonstrated that, to within the accuracy of the observations, the X-ray spectrum is consistent with a blackbody with a temperature of 7 x 10{sup 5} K and a radiation radius R{sub {infinity}} {approx} 5 km--much too small for current neutron star equations of state. The small apparent radius, lack of X-ray pulsations down to a level of 3%, and failure to explain the observations in terms of current neutron star models, lead to the suggestion that RXJ1856.5-3754 might be a strange quark star. We discuss some issues associated with this interpretation and look briefly at RX J1856.5-3754 in the context of other have smooth featureless spectra. Both X-ray and optical spectra of some of these objects might be explained by 'naked' crusted neutron stars or strange quark stars with thin coronae. RX J1856.5-3754 remains an interesting strange quark star candidate.

  14. Non-strange partner of strangeonium-like state Y(2175)

    CERN Document Server

    Wang, Xiao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2012-01-01

    Inspired by the observed Y(2175) state, we predict its non-strange partner Y(1915), which has a resonance structure with mass around 1915 MeV and width about $317\\sim 354$ MeV. Experimental search for Y(1915) is prpopsed by analyzing the $\\omega f_0(980)$ or $\\omega \\pi\\pi$ invariant mass spectrum of the $e^+e^-\\to \\omega f_0(980), \\omega \\pi\\pi$ and $J/\\psi\\to \\eta \\omega f_0(980)$ processes, which are accessible at Belle, BaBar, BESIII and forthcoming BelleII. Considering similarity between two families, the comparison of the mass spectra of $\\omega$ and $\\phi$ families can provide important information on the 1D state of $\\phi$ family, $\\phi(1910)$, which has a very broad resonance structure with mass around 1910 MeV regarded as the strangeonium partner of $\\omega(1650)$. This also answers the question why the 1D state $\\phi(1910)$ is still missing in experiment. This is supported by our former study on the properties of Y(2175), which explains Y(2175) as the 2D strangeonium because our thoretical total wi...

  15. A dark business, full of shadows: analogy and theology in William Harvey.

    Science.gov (United States)

    Goldberg, Benjamin

    2013-09-01

    In a short work called De conceptione appended to the end of his Exercitationes de generatione animalium (1651), William Harvey developed a rather strange analogy. To explain how such marvelous productions as living beings were generated from the rather inauspicious ingredients of animal reproduction, Harvey argued that conception in the womb was like conception in the brain. It was mostly rejected at the time; it now seems a ludicrous theory based upon homonymy. However, this analogy offers insight into the structure and function of analogies in early modern natural philosophy. In this essay I hope to not only describe the complex nature of Harvey's analogy, but also offer a novel interpretation of his use of analogical reasoning, substantially revising the account offered by Guido Giglioni (1993). I discuss two points of conceptual change and negotiation in connection with Harvey's analogy, understanding it as both a confrontation between the border of the natural and the supernatural, as well as a moment in the history of psychology. My interpretation touches upon a number of important aspects, including why the analogy was rejected, how Harvey systematically deployed analogies according to his notions of natural philosophical method, how the analogy fits into contemporary discussions of analogies in science, and finally, how the analogy must be seen in the context of changing Renaissance notions of the science of the soul, ultimately confronting the problem of how to understand final causality in Aristotelian science. In connection with the last, I conclude the essay by turning to how Harvey embeds the analogy within a natural theological cosmology.

  16. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Science.gov (United States)

    Chen, H.; Wei, J.-B.; Schulze, H.-J.

    2016-09-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.

  17. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    CERN Document Server

    Chen, H; Schulze, H -J

    2016-01-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9--11 km. We obtain an energy release as large as $3.6 \\times 10^{53}\\,\\text{erg}$ from conversion of neutron stars into strange quark stars.

  18. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)

    2016-09-15

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)

  19. Highlights of Resonance Measurements With HADES

    Directory of Open Access Journals (Sweden)

    Epple Eliane

    2015-01-01

    Full Text Available This contribution aims to give a basic overview of the latest results regarding the production of resonances in different collision systems. The results were extracted from experimental data collected with HADES that is a multipurpose detector located at the GSI Helmholtzzentrum, Darmstadt. The main points discussed here are: the properties of the strange resonances Λ(1405 and Σ(1385, the role of Δ’s as a source of pions in the final state, the production dynamics reflected in form of differential cross sections, and the role of the ϕ meson as a source for K− particles.

  20. Digital and analog communication systems

    Science.gov (United States)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  1. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  2. Study of the production of strange and multi-strange particles in lead-lead interactions at the CERN SPS the NA57 experiment

    CERN Document Server

    Antinori, Federico; Barbera, R; Bloodworth, Ian J; Botje, M; Caliandro, R; Campbell, M; Cantatore, E; Carena, W; Carrer, N; De Haas, A P; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Fanebust, K; Fedorisin, J; Feofilov, G A; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Gulino, M; Helstrup, H; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Klempt, W; Knudson, K; Kocper, B; Kolojvari, A A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Lupták, M; Manzari, V; Mazzoni, M A; Martinská, G; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Muigg, D; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Sené, M; Sené, R; Segato, G F; Snoeys, W; Staroba, P; Thompson, M; Tomasicchio, G; Torrieri, G D; Tulina, T A; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Vannucci, Luigi; Vascotto, Alessandro; Villalobos Baillie, O; Vinogradov, I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P

    2001-01-01

    The NA57 experiment studies the production of strange and multi- strange baryons and antibaryons in ultrarelativistic nucleus-nucleus collisions at the SPS. The main aim of NA57 is to investigate the behaviour of the enhancement of the production of particles with strangeness |s|=1,2,3 in nucleus-nucleus collisions at the variation of the energy and of the centrality of the collision defined, e.g. as the number of participant nucleons. We shall recall the main features of the experimental set-up, and we shall illustrate the collected data samples and the status of their analysis.

  3. Baryon-Strangeness Correlations in Au+Au Collisions at RHIC BES energies from UrQMD model

    CERN Document Server

    Yang, Zhenzhen; Mohanty, Bedangadas

    2016-01-01

    Fluctuations and correlations of conserved charges are sensitive observables for studying the QCD phase transition and critical point in high-energy heavy-ion collisions. We have studied the centrality and energy dependence of mixed-cumulants (up to fourth order) between net-baryon and net-strangeness in Au+Au collisions at $\\sqrt{s_{NN}}$= 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV from UrQMD model. To compare with other theoretical calculations, we normalize these mixed-cumulants by various order cumulants of net-strangeness distributions. We found that the results obtained from UrQMD calculations are comparable with the results from Lattice QCD at low temperature and hadron resonance gas model. The ratios of mixed-cumulants ($R_{11}^{BS},R_{13}^{BS},R_{22}^{BS}$,$R_{31}^{BS}$) from UrQMD calculations show weak centrality dependence. However, the mixed-cumulant ratios $R_{11}^{BS}$ and $R_{31}^{BS}$ show strong increase at low energy, while the $R_{13}^{BS}$ snd $R_{22}^{BS}$ are similar at different energies. ...

  4. Baryon-strangeness correlations in Au+Au collisions at √{sNN}=7.7 -200 GeV from the UrQMD model

    Science.gov (United States)

    Yang, Zhenzhen; Luo, Xiaofeng; Mohanty, Bedangadas

    2017-01-01

    Fluctuations and correlations of conserved charges are sensitive observables for studying the QCD phase transition and critical point in high-energy heavy-ion collisions. We have studied the centrality and energy dependence of mixed cumulants (up to fourth order) between net baryon and net strangeness in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV from the ultrarelativistic quantum molecular dynamics (UrQMD) model. To compare with other theoretical calculations, we normalize these mixed cumulants by various order cumulants of net-strangeness distributions. We found that the results obtained from UrQMD calculations are comparable with the results from lattice QCD at low temperature and hadron resonance gas model. The ratios of mixed cumulants (R11B S,R13B S,R22B S,R31B S ) from UrQMD calculations show weak centrality dependence. However, the mixed-cumulant ratios R11B S and R31B S show strong increase at low energy, while the R13B S and R22B S are similar at different energies. Furthermore, we have also studied the correlations between different hadron species and their contributions to the net-baryon and net-strangeness correlations. These model studies can provide baselines for searching for the signals of QCD phase transition and critical point in heavy-ion collisions.

  5. D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); University of Chinese Academy of Sciences, 100049, Beijing (China); Chen, Dian-Yong, E-mail: chendy@impcas.ac.cn [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); Liu, Xiang, E-mail: xiangliu@lzu.edu.cn [Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); School of Physical Science and Technology, Lanzhou University, 730000, Lanzhou (China); Matsuki, Takayuki, E-mail: matsuki@tokyo-kasei.ac.jp [Tokyo Kasei University, 1-18-1 Kaga, Itabashi, 173-8602, Tokyo (Japan); Theoretical Research Division, Nishina Center, RIKEN, 351-0198, Saitama (Japan)

    2015-01-27

    Newly observed two charmed-strange resonances, D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), are investigated by calculating their Okubo–Zweig–Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), i.e., 1D(2{sup -}) and 1D{sup ′}(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D{sup ′}(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments.

  6. D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Dian-Yong [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Liu, Xiang [Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); RIKEN, Theoretical Research Division, Nishina Center, Saitama (Japan)

    2015-01-01

    Newly observed two charmed-strange resonances, D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), i.e., 1D(2{sup -}) and 1D'(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D'(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments. (orig.)

  7. Analogy, explanation, and proof.

    Science.gov (United States)

    Hummel, John E; Licato, John; Bringsjord, Selmer

    2014-01-01

    People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic) whose truth was not even known prior to the existence of the explanation (proof). What do the cognitive operations underlying the inference that the milk is sour have in common with the proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This seemingly small difference poses a challenge to the task of marshaling our understanding of analogical reasoning to understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  8. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  9. Are Scientific Analogies Metaphors?

    Science.gov (United States)

    1981-02-01

    psychospiritual processes. A more modern example of unclarified analogy is Freud’s (1973; reprinted from 1955) discussion of anal- eroticism , in which...299-304. Freud, S. On transformations of instinct as exemplified in anal eroticism . In J. Strachey (Ed.), The standard 37 edition of the complete

  10. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas Ottmar

    2010-01-29

    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  11. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shusu Shi

    2016-01-01

    Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.

  12. Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2006-01-01

    We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.

  13. The Strange Magnetic Moment of the Proton in the Chiral Quark Model

    OpenAIRE

    1998-01-01

    The strange magnetic moment of the proton is small in the chiral quark model, because of a near cancellation between the quantum fluctuations that involve kaons and $s$-quarks and loops that involve radiative transitions between strange vector mesons and kaons.

  14. TRANSITION TEMPERATURE IN QCD WITH PHYSICAL LIGHT AND STRANGE QUARK MASSES.

    Energy Technology Data Exchange (ETDEWEB)

    KARSCH, F.

    2006-11-14

    We present results from a calculation of the transition temperature in QCD with two light (up, down) and one heavier (strange) quark mass as well as for QCD with three degenerate quark masses. Furthermore, we discuss first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.

  15. Weak production of strange particles off the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M. Rafi; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Dipartimento di Fisica, Universitá degli Studi di Trento Via Sommarive 14, Povo (Trento) I-38123 (Italy); Alvarez-Ruso, L.; Vacas, M. J. Vicente [Departamento de Física Teórica and Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)

    2015-05-15

    The strange particle production off the nucleon induced by neutrinos and antineutrinos is investigated at low and intermediate energies. We develop a microscopic model based on the SU(3) chiral Lagrangian. The studied mechanisms are the main source of single kaon production for (anti)neutrino energies up to 1.5 GeV. Using this model we have also studied the associated production of kaons and hyperons. The cross sections are large enough to be measured by experiments such as MINERνA, T2K and NOνA.

  16. A simple explanation of OPERA results without strange physics

    CERN Document Server

    Henri, Gilles

    2011-01-01

    We show that OPERA recent results showing an apparent superluminal velocity of muonic neutrinos can find a very simple explanation without any measurement error or any strange physics. Namely, it is enough that the beam composition varies during the leading and the trailing edges to explain an apparent time shift in the detected neutrinos. The order of magnitude of the shift will be the relative variation of the average cross-section times the rising/decaying time, and even a modest change in the composition of the beam could produce the observed effect.

  17. A strange case of ingrown toenail treated with phenol

    OpenAIRE

    Sugamata, A; Yoshizawa, N.

    2011-01-01

    We experienced a strange case of ingrown toenail, which had developed as a huge mass and enveloped the nail of the left first toe. The patient had self-treated his ingrown toenail for a period of one year with an ointment available over the counter. However, the granulation tissue on both sides of the nail had increased gradually and advanced over the nail plate in the medial direction. Finally, the granulation tissue on both sides had adhered to the nail and epithelial cells advanced over th...

  18. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    S D Maharaj; S Thirukkanesh

    2009-03-01

    We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact relativistic body allows for anisotropic pressures in the presence of the electromagnetic field. New exact solutions are found to the Einstein–Maxwell system. A particular case is shown to be regular at the stellar centre. In the isotropic limit we regain the general relativistic isothermal Universe. We show that the mass corresponds to the values obtained previously for quark stars when anisotropy and charge are present.

  19. Emergence of Strange Spatial Pattern in a Spatial Epidemic Model

    Institute of Scientific and Technical Information of China (English)

    SUN Gui-Quan; JIN Zhen; LIU Quan-Xing; LI Li

    2008-01-01

    Pattern formation of a spatial epidemic model with nonlinear incidence rate kI2 S/ (1 + αI2) is investigated. Our results show that strange spatial dynamics, i.e., filament-like pattern, can be obtained by both mathematical analysis and numerical simulation, which are different from the previous results in the spatial epidemic model such as stripe-like or spotted or coexistence of both pattern and so on. The obtained results well extend the finding of pattern formation in the epidemic model and may well explain the distribution of the infected of some epidemic.

  20. Exploring strange nucleon form factors on the lattice

    CERN Document Server

    Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David

    2010-01-01

    We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.

  1. Exploring strange nonchaotic attractors through Jacobian elliptic functions

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Hoz, A Martinez [Departamento de Fisica Aplicada, Escuela Universitaria Politecnica, Universidad de Castilla La Mancha, E-13400 Almaden (Ciudad Real) (Spain); Chacon, R, E-mail: rchacon@unex.es [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain)

    2011-11-15

    We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of quasiperiodically forced systems. We found similar scenarios of SNAs from the analysis of two representative examples: a quasiperiodically forced damped pendulum and a two-dimensional map. This clearly well-suited and advantageous use of the JEFs, which in their own right lie at the heart of nonlinear physics, may encourage students at intermediate university levels to study them in depth.

  2. Radial Oscillations of Rotating Strange Stars in Strong Magnetic Fields

    CERN Document Server

    Singh, S; Gupta, V K; Sen-Gupta, A; Anand, J D; Gupta, Asha

    2000-01-01

    In this paper we study radial oscillations of rotating strange stars in strong magnetic fields in the Density Dependent Quark Mass (DDQM) model. We see that increase of frequency i.e. difference in frequency of rotating and non-rotating stars is more for higher magnetic fields. The change is small for low mass stars but it increases with the mass of the star. This change of frequency is significant for maximum mass whereas it is marginal for a 1.4 solar mass star.

  3. How chaotic are strange non-chaotic attractors?

    Science.gov (United States)

    Glendinning, Paul; Jäger, Tobias H.; Keller, Gerhard

    2006-09-01

    We show that the classic examples of quasiperiodically forced maps with strange non-chaotic attractors described by Grebogi et al and Herman in the mid-1980s have some chaotic properties. More precisely, we show that these systems exhibit sensitive dependence on initial conditions, both on the whole phase space and restricted to the attractor. The results also remain valid in more general classes of quasiperiodically forced systems. Further, we include an elementary proof of a classic result by Glasner and Weiss on sensitive dependence, and we clarify the structure of the attractor in an example with two-dimensional fibres also introduced by Grebogi et al.

  4. Holographic duality and the resistivity of strange metals

    CERN Document Server

    Davison, Richard A; Zaanen, Jan

    2013-01-01

    We present a strange metal, described by a holographic duality, which reproduces the famous linear resistivity of the normal state of the copper oxides, in addition to the linear specific heat. This holographic metal reveals a simple and general mechanism for producing such a resistivity, which requires only quenched disorder and a strongly interacting quantum critical state. The key is the minimal viscosity of the latter: unlike in a Fermi-liquid, the viscosity is very small and therefore is important for the electrical transport. This mechanism produces a resistivity proportional to the electronic entropy.

  5. A class of exact strange quark star model

    Indian Academy of Sciences (India)

    S Thirukkanesh; F C Ragel

    2013-08-01

    Static spherically symmetric space-time is studied to describe dense compact star with quark matter within the framework of MIT Bag Model. The system of Einstein’s field equations for anisotropic matter is expressed as a new system of differential equations using transformations and it is solved for a particular general form of gravitational potential with parameters. For a particular parameter, as an example, it is shown that the model satisfies all major physical features expected in a realistic star. The generated model also smoothly matches with the Schwarzschild exterior metric at the boundary of the star. It is shown that the generated solutions are useful to model strange quark stars.

  6. A novel strange attractor and its dynamic analysis

    Directory of Open Access Journals (Sweden)

    Zhongtang Wu

    2014-03-01

    Full Text Available In this paper, not only a novel three-dimensional autonomous strange attractor is proposed, but also an idea to generate a more complex chaotic system was introduced. Of particular interest is that this novel system has complex phase diagram, big positive Lyapunov exponent and broad frequency spectrum. With either analytical or numerical methods, basic properties of the system, such as dynamical behaviors (time history and phase diagrams, Poincáre mapping, bifurcation diagram and Lyapunov exponents are investigated to observe chaotic motions. The obtained results clearly show that this is a new chaotic system which has good application prospects.

  7. Unified description of light- and strange-baryon spectra

    CERN Document Server

    Glozman, L Ya; Varga, K; Wagenbrunn, R F

    1998-01-01

    We present a chiral constituent quark model for light and strange baryons providing a unified description of their ground states and excitation spectra. The model relies on constituent quarks and Goldstone bosons arising as effective degrees of freedom of low-energy QCD from the spontaneous breaking of chiral symmetry. The spectra of the three-quark systems are obtained from a precise variational solution of the Schrödinger equation with a semirelativistic Hamiltonian. The theoretical predictions are found in close agreement with experiment.

  8. Strange and non-strange baryon and antibaryon production in sulphur-tungsten and sulphur-sulphur interactions at 200 A Gev/c

    Energy Technology Data Exchange (ETDEWEB)

    Holme, A.K.

    1995-11-01

    The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs.

  9. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  10. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  11. Transverse momentum distributions of strange hadrons produced in p- p collisions at √ s NN = 200 GeV

    Science.gov (United States)

    Bashir, Inam-ul; Bhat, Riyaz Ahmad; Uddin, Saeed

    2015-08-01

    The mid-rapidity transverse momentum spectra of strange hadrons (, and Ω) produced in p- p collisions at the highest RHIC energy √ s NN = 200 GeV have been studied using a statistical unified thermal freeze-out model. The calculated results are found to be in good agreement with the experimental data taken from STAR and BRAHMS experiments. The fits of the transverse momentum spectra to the model calculations provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. The model incorporates a longitudinal and a transverse hydrodynamic flow. The rapidity distributions of kaons and their ratios are also reproduced successfully, which reveals the presence of partial nuclear transparency effects in p- p collisions at √ s NN = 200 GeV. The contributions from heavier decay resonances are also taken into account.

  12. Resonance decay effect on conserved number fluctuations in a hadron resonance gas model

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Mohanty, A K

    2016-01-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  13. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    Science.gov (United States)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  14. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  15. Study of natural spin-parity strange meson radial excitations in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Durkin, L.S.

    1980-12-01

    Results are presented from a high statistics study of the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n at 11 GeV/c. This data was selected offline from an approx. 1000 event/..mu..b K/sup -/p experiment run on the Large Aperture Solenoid Spectrometer (LASS) at SLAC which triggered on essentially the total inelastic cross section. This K/sup -/..pi../sup +/n sample, after cuts, contained approx. 42,000 events in the K..pi.. invariant mass region from 0.65 GeV to 2.30 GeV, and absolute value t' < 0.2 GeV/sup 2/. A spherical harmonic angular moments analysis of this data is presented, as well as an energy independent partial wave analysis (PWA) of these angular moments. The nearly uniform acceptance characteristics of this data allowed a detailed analysis, which yielded information on natural spin-parity strange meson resonances in the K..pi.. invariant mass range from 0.65 GeV to 2.30 GeV. The well established K*(895), K*(1430), and K*(1780) are observed, and clear evidence is presented for a J/sup P/ = 4/sup +/ strange meson state at a mass of 2.08 GeV. The K/sup -/..pi../sup +/ elastic scattering partial waves extracted in this PWA show unambiguous evidence for a relatively narrow S wave resonance near 1.42 GeV in the K..pi.. invariant mass. This state is a confirmation of the 0/sup +/ K(1500) seen in previous PWA's. A new higher S wave resonance is clearly seen unambiguously near 1.90 GeV. Unambiguous evidence is presented for a relatively wide P wave resonance in the 1.70 GeV region.A second new P wave resonance also is seen in two of four ambiguous partial wave solutions in the 2.10 GeV region. These resonance states are discussed within the framework of a simple harmonic oscillator quark model. In particular three of the underlying resonances are discussed as possible natural spin-parity strange meson radial excitations.

  16. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  17. Study of Diffractive Dissociation Especially into Strange and Charmed Particles with EHS

    CERN Multimedia

    2002-01-01

    .PP The diffractive production of heavy quark-antiquark pairs leading to strangeness-antistrangeness and charm-anticharm systems is intended to be measured in this experiment. The use of the rapid cycling bubble chamber (RCBC) with a volume of 100 x 40 x 40 cm|3 and a picture taking rate of 15 Hz as vertex detector and EHS as forward spectrometer is suitable for the first step of this physics programme. Inclusive cross-sections for diffraction dissociation into ss are lacking whereas diffractive cc production is already better known. The gain of more insight into the mechanism of heavy quark-antiquark production, exclusive diffractive reactions with @p|0's, diffractive resonance production and also the extraction of data for the double Pomeron exchange mechanism are envisage This experiment will be run in two parts, the first one recording the entire unbiased sample of pp and @p|-p interactions, the second however using triggering for beam and high mass target diffraction dissociation against elastic scatteri...

  18. Possible evidence of surface vibration of strange stars from stellar observations

    CERN Document Server

    Ray, S; Bhowmick, S; Ray, Subharthi; Dey, Jishnu; Bhowmick, Mira Dey & Siddhartha

    2004-01-01

    Emission lines in the eV and keV range by certain stellar candidates from their recent analysis invoke the question of their possible origin. These stars under consideration, are the 4U 0614+091 (0.65, 0.86, and 1.31 keV), 2S 0918-549 (0.8 keV with width 55 eV), 4U 1543-624 (0.7 keV), 4U 1850-087 (0.7 keV) and 4U 1820-30 (0.6 and 0.9 keV) and also the 0.6 keV excess emission in RX J170930.2-263927. Recently, it has been suggested that the resonance absorption at ~ in 0.7, 1.4, 2.1 and 2.8 keV 1E1207-5209 and 0.35, 0.7 and 1.4 keV RX J1856.5-3754 are due to harmonic surface vibrations in strange stars. We propose that these harmonic vibrations may also responsible for emission lines in the above mentioned compact stellar candidates.

  19. Search for non-strange exotic mesons produced via baryon exchange

    CERN Document Server

    Boucrot, J; Bouquet, B; D'Almagne, B; De Rosny, G; Ferrer, A; Jacholkowski, A; Lahellec, A; Navach, F; Petroff, P; Rivet, P; Roudeau, P; Rougé, A; Salmeron, Roberto Aureliano; Six, J; Sonderegger, P; Treille, D; Volte, A; Wuthrick, J P; Yoshida, H

    1977-01-01

    Negative results on backward production via baryon exchange, of exotic non-strange mesons are presented. The reactions pi /sup -/p to p/sub forward/X/sup -/ and pi /sup -/n to p/sub forward/X/sup --/ have been studied with a 12 GeV/c pi /sup -/ beam in the Omega spectrometer at CERN. No resonant peak in X to pp pi /sup -/, pp pi /sup -/ pi /sup - /, pp pi /sup -/ pi /sup 0/, pi /sup +/ pi /sup -/ pi /sup -/ pi /sup -/, pi /sup +/ pi /sup -/ pi /sup -/ pi /sup 0/ has been seen. The upper limits obtained on cross sections for exotic meson production X to NN pi , NN pi pi , 4 pi are lower than the rho /sup -/ backward production cross section in the pi /sup -/p to p rho /sup -/ reaction; this result seems to contradict the predictions of the two-component duality model. Compared with already published experiments in the search for exotics produced via baryon exchange, the sensitivity of this experiment is higher by an order of magnitude. (20 refs).

  20. Decays of negative parity non-strange baryons in the 1/Nc expansion

    Energy Technology Data Exchange (ETDEWEB)

    Jose L. Goity; Carlos L. Schat; Norberto Scoccola

    2004-04-01

    The decays of non-strange negative parity baryons via the emission of single {pi} and {eta} mesons are analyzed in the framework of the 1/N{sub c} expansion. A basis of spin-flavor operators is established to that order, and with this basis the different partial wave decay amplitudes are obtained. The unknown effective coefficients are determined by fitting to the S- and D-wave partial widths as provided by the PDG. A full set of relations between widths that result at the leading order, i.e. order N{sub c0}, is given and tested with the data. The rather large errors of the input partial widths, that result from the often discrepant results for the resonance parameters from different analyses of the data, lead to a rather good fit at the leading order N{sub c0}. The next to leading order fit fails for that reason to pin down with satisfactory accuracy the effective sub leading effective constants.

  1. Strange quark asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.

  2. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    Science.gov (United States)

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  3. Strange Non-Chaotic Attractors in Quasiperiodically Forced Circle Maps

    Science.gov (United States)

    Jäger, Tobias

    2009-07-01

    The occurrence of strange non-chaotic attractors (SNA) in quasiperiodically forced systems has attracted considerable interest over the last two decades, in particular since it provides a rich class of examples for the possibility of complicated dynamics in the absence of chaos. Their existence was first described by Millions̆c̆ikov (and later by Vinograd and also Herman) for quasiperiodic {SL(2, {mathbb R})} -cocycles and by Grebogi et al (and later Keller) for so-called pinched skew products. However, except for these two particular classes there are still hardly any rigorous results on the topic, despite a large number of numerical studies confirming the widespread existence of SNA in quasiperiodically forced systems. Here, we prove the existence of SNA in quasiperiodically forced circle maps under rather general conditions, which can be stated in terms of {{mathcal C}^1} -estimates. As a consequence, we obtain the existence of SNA for parameter sets of positive measure in suitable parameter families. These SNA carry the unique physical measure of the system, which determines the behaviour of Lebesgue-almost all initial conditions. Finally, we show that the dynamics are minimal in the considered situations. The results apply in particular to a forced version of the Arnold circle map. For this example, we also describe how the first Arnold tongue collapses and looses its regularity due to the presence of strange non-chaotic attractors and a related unbounded mean motion property.

  4. Neutral strangeness production with the ZEUS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chuanlei

    2007-12-15

    The inclusive production of the neutral strange particles, {lambda}, anti {lambda} and K{sup 0}{sub S} has been studied with the ZEUS detector at HERA. The measurement provides a way to understand the fragmentation process in ep collisions and to check the universality of this process. The strangeness cross sections have been measured and compared with Monte Carlo (MC) predictions. Over the kinematic regions of interest, no {lambda} to anti {lambda} asymmetry was observed. The relative yield of {lambda} and K{sup 0}{sub S} was determined and the result was compared with MC calculations and results from other experiments. A good agreement was found except for the enhancement in the photoproduction process. Clear rapidity correlation was observed for particle pairs where either quark flavor or baryon number compensation occurs. The K{sup 0}{sub S}K{sup 0}{sub S} Bose-Einstein correlation measurement gives a result consistent with those from LEP measurements. The {lambda} polarizations were measured to be consistent with zero for HERA I data. (orig.)

  5. Electroproduction of baryon-meson states and strangeness suppression

    Science.gov (United States)

    Santopinto, E.; García-Tecocoatzi, H.; Bijker, R.

    2016-08-01

    We describe the electroproduction ratios of baryon-meson states from nucleon, inferring from the sea quarks in the nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: ΛK+, Σ* K, ΣK, pπ0, and nπ+. These predictions are in agreement with the new JLab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial tests of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we compute the so called strangeness suppression factor, λs, that is the suppression of strange quark-antiquark pairs compared to nonstrange pairs, and we found that our finding with this simple extension of the quark model is in good agreement with the results of JLab and CERN experiments.

  6. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  7. Inductive, Analogical, and Communicative Generalization

    Directory of Open Access Journals (Sweden)

    Adri Smaling

    2003-03-01

    Full Text Available Three forms of inductive generalization - statistical generalization, variation-based generalization and theory-carried generalization - are insufficient concerning case-to-case generalization, which is a form of analogical generalization. The quality of case-to-case generalization needs to be reinforced by setting up explicit analogical argumentation. To evaluate analogical argumentation six criteria are discussed. Good analogical reasoning is an indispensable support to forms of communicative generalization - receptive and responsive (participative generalization — as well as exemplary generalization.

  8. Analogy among microfluidics, micromechanics, and microelectronics.

    Science.gov (United States)

    Li, Sheng-Shian; Cheng, Chao-Min

    2013-10-07

    We wish to illuminate the analogous link between microfluidic-based devices, and the already established pairing of micromechanics and microelectronics to create a triangular/three-way scientific relationship as a means of interlinking familial disciplines and accomplishing two primary goals: (1) to facilitate the modeling of multidisciplinary domains; and, (2) to enable us to co-simulate the entire system within a compact circuit simulator (e.g., Cadence or SPICE). A microfluidic channel-like structure embedded in a micro-electro-mechanical resonator via our proposed CMOS-MEMS technology is used to illustrate the connections among microfluidics, micromechanics, and microelectronics.

  9. TOWARDS A MATHEMATICAL THEORY OF ANALOGY

    OpenAIRE

    Haraguchi, Makoto

    1985-01-01

    This paper presents a mathematical theory of analogy, which should be a basis in developing analogical reasoning by a computer. The analogy is a partial identity between two sets of facts. In order to compare several analogies, we introduce an ordering of analogies, and we define two types of optimal analogies, maximal analogies and greatest ones. We show a condition under which the greatest analogy exists, and also present a top-down procedure to find the maximal analogies.

  10. Nucleon resonance decay by the K-0 Sigma(+) channel : Preliminary results

    NARCIS (Netherlands)

    Shende, SV; Castelijns, R; Bacelar, JCS; Löhner, Herbert; Messchendorp, J

    2006-01-01

    The strange meson production on a proton target in the K-0 Sigma(+) channel is sensitive to nucleon resonance contributions. The K-0 production on a deuteron target can provide information on the hyperon-nucleon final-state interaction. The experiments gamma p -> K-0 Sigma(+) and gamma d -> K-0 Sigm

  11. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  12. Systematics of radial and angular-momentum Regge trajectories of light non-strange q\\bar{q}-states

    CERN Document Server

    Masjuan, Pere; Broniowski, Wojciech

    2012-01-01

    We reanalyze the radial (n) and angular-momentum (J) Regge trajectories for all light-quark states with baryon number zero listed in the 2011 edition of the Particle Data Tables. The parameters of the trajectories are obtained with linear regression, with weight of each resonance inversely proportional to its half-width squared, $(\\Gamma/2)^2$. That way we are side-stepping possible channel-dependent and model-dependent extractions of the resonance parameters and are able to undertake an error analysis. The method complies to the fact that the pole position of the resonance is typically shifted from channel-dependent extractions by $\\sim\\Gamma/2$. This is also a feature of the large-$N_c$ limit of QCD, where the masses change by $ \\Gamma/2$ when evolving from $N_c=3$ to $N_c=\\infty$. Our value for the slope of the radial Regge trajectories is $a=1.35(4) GeV^2$. We discuss the fundamental issue whether the masses of the light-quark non-strange states fit into a universal pattern $M_{nJ}^2 = a(n+J) +b$, as sugg...

  13. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model

    Indian Academy of Sciences (India)

    V K Gupta; Asha Gupta; S Singh; J D Anand

    2003-10-01

    We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We find that the effect of magnetic field, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.

  14. Energy Harvesting Using an Analog Circuit under Multimodal Vibration

    Directory of Open Access Journals (Sweden)

    Shigeru Shimose

    2013-01-01

    Full Text Available The efficiency of harvesting energy from a vibrating structure using a piezoelectric transducer and a simple analog circuit is investigated experimentally. This analog circuit was originally invented for a synchronized switch damping on inductor (SSDI technique, which enhances the damping of mechanical vibration. In this study, the circuit is used to implement a synchronized switch harvesting on inductor (SSHI technique. A multiple degree of freedom (MDOF structure is excited by single sinusoidal forces at its resonant frequencies and by random forces. The piezoelectric transducer converts this mechanical energy into electrical energy which is harvested using a standard rectifier bridge circuit with and without our analog circuit. Experimental results show that our analog circuit makes it possible to harvest twice as much energy under both single sinusoidal and random vibration excitations.

  15. Albert Einstein, Analogizer Extraordinaire

    CERN Document Server

    CERN. Geneva

    2007-01-01

    Where does deep insight in physics come from? It is tempting to think that it comes from the purest and most precise of reasoning, following ironclad laws of thought that compel the clear mind completely rigidly. And yet the truth is quite otherwise. One finds, when one looks closely at any major discovery, that the greatest of physicists are, in some sense, the most crazily daring and irrational of all physicists. Albert Einstein exemplifies this thesis in spades. In this talk I will describe the key role, throughout Albert Einstein's fabulously creative life, played by wild guesses made by analogy lacking any basis whatsoever in pure reasoning. In particular, in this year of 2007, the centenary of 1907, I will describe how over the course of two years (1905 through 1907) of pondering, Einstein slowly came, via analogy, to understand the full, radical consequences of the equation that he had first discovered and published in 1905, arguably the most famous equation of all time: E = mc2.

  16. Strange Attractors in Multipath propagation Detection and characterisation

    CERN Document Server

    Tannous, C; Angus, A G

    2001-01-01

    Multipath propagation of radio waves in indoor/outdoor environments shows a highly irregular behavior as a function of time. Typical modeling of this phenomenon assumes the received signal is a stochastic process composed of the superposition of various altered replicas of the transmitted one, their amplitudes and phases being drawn from specific probability densities. We set out to explore the hypothesis of the presence of deterministic chaos in signals propagating inside various buildings at the University of Calgary. The correlation dimension versus embedding dimension saturates to a value between 3 and 4 for various antenna polarizations. The full Liapunov spectrum calculated contains two positive exponents and yields through the Kaplan-Yorke conjecture the same dimension obtained from the correlation sum. The presence of strange attractors in multipath propagation hints to better ways to predict the behaviour of the signal and better methods to counter the effects of interference. The use of Neural Netwo...

  17. Direct observation of the strange b baryon Xi_b^{-}

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clement, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutíerrez, P; Gutíerrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G L; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Panov, G; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Polozov, P; Pompo, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; Van den Berg, P J; van Eijk, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-01-01

    We report the first direct observation of the strange b baryon Xi_b^{-}. We reconstruct the decay Xi_b^{-} to J/psi Xi^{-}, with J/psi to dimuons and Xi^{-} to Lambda pion, in ppbar collisions at sqrt(s) = 1.96 TeV. Using 1.3 fb^{-1} of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat.)+ 1.9/-0.4(syst.) Xi_b^{-} candidates at a mass of 5.774 +/- 0.011(stat.) +/- 0.015 (syst.) GeV. The significance of the observed signal is 5.5 sigmas, equivalent to a probability of 3.3 X 10^{-8} of it arising from a background fluctuation. Normalizing to the decay Lambda_b to J/psi Lambda, we measure the relative rate to be 0.28 +/- 0.09(stat.)+ 0.09/-0.08 (syst.).

  18. Strangeness enhancement - a potential signature for QGP phase

    Science.gov (United States)

    Tiwari, V. K.; Singh, C. P.

    1997-09-01

    Strangeness enhancement has always been considered as a potential signature for deconfining as well as chiral symmetry restoring quark-hadron phase transition. We obtain the ratios Λ¯/Λ, Ξ¯/Ξ and K+/K- from a quark-gluon plasma (QGP) using a modified equation of state (EOS). Similarly these ratios are also obtained from a hadron gas (HG) by using a thermodynamically consistent equation of state (EOS) which incorporates the finite size, hard-core repulsive interactions among baryons as an excluded volume effect. We then suggest that the variations of these ratios either with the energy density or with baryon density can serve as a potential signature for detecting a QGP formation in the ultra-relativistic heavy-ion collisions.

  19. The strange little animals of Antony van Leeuwenhoek surgical revolution.

    Science.gov (United States)

    Toledo-Pereyra, Luis H

    2009-01-01

    Antony van Leeuwenhoek (1632-1723) created a surgical revolution by demonstrating, through a series of extraordinary discoveries, the presence of "strange little animals" under the microscope. His outstanding advances were directly related to his ability to grind better glasses, which enhanced magnification many times over previously manufactured glasses. His meticulous and dedicated observational skills were unmatched by anyone dealing with magnification at the time. The surgical revolution did not occur during Leeuwenhoek's time but more than a century later when the value of his findings was evidently recognized. Today Leeuwenhoek is considered the father of microscopy as well. It is particularly enlightening that for not being a scientist himself, he demonstrated all the good virtues of method and technique for which professional scientists are admired.

  20. Strange b baryon production and lifetime in Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Xi_b is performed with a study of Xi-lepton correlations. Forty-four events with same sign Xi- l- combinations are found whereas 8.4 are expected based on on the rate of opposite sign Xi- l+ combinations. This significant excess is interpreted as evidence for Xi_b semileptonic decays. The measured product branching ratio is: Br( b -> Xi_b) Br( Xi_b -> Xc X l- nu) Br( Xc -> Xi- X') = (5.4 +/- 1.1(stat) +/- 0.8(syst) ) 10**-4 per lepton species, averaged over electrons and muons, with Xc a charmed baryo\\ n. The Xi_b lifetime is measured to be : tau = 1.35 (+0.37 -0.28 (stat)) (+0.15 -0.17 (syst)) ps.

  1. A strange case of ingrown toenail treated with phenol.

    Science.gov (United States)

    Sugamata, A; Yoshizawa, N

    2011-07-01

    We experienced a strange case of ingrown toenail, which had developed as a huge mass and enveloped the nail of the left first toe. The patient had self-treated his ingrown toenail for a period of one year with an ointment available over the counter. However, the granulation tissue on both sides of the nail had increased gradually and advanced over the nail plate in the medial direction. Finally, the granulation tissue on both sides had adhered to the nail and epithelial cells advanced over the granulation tissue completely. During surgery, the epithelized granulation tissue was excised at the bilateral terminal base point, and the posterior nail fold and the nail matrix were cauterized completely with phenol. Eighteen months after the operation there was no recurrence of the ingrown toenail.

  2. The Role of Nucleon Strangeness in Supernova Explosions

    CERN Document Server

    Hobbs, T J; Miller, Gerald A

    2016-01-01

    Recent hydrodynamical simulations of supernova (SN) evolution have highlighted the importance of a thorough control over microscopic physics responsible for such internal processes as neutrino heating. In particular, it has been suggested that modifications to the neutrino-nucleon elastic cross section can potentially play a crucial role in producing successful supernova explosions. One possible source of such corrections can be found in a nonzero value for the nucleon's strange helicity content $\\Delta s$. In the present analysis, however, we show that theoretical and experimental progress over the past decade has suggested a comparatively small magnitude for $\\Delta s$, such that its sole effect is not sufficient to provide the physics leading to supernova explosions.

  3. Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter

    CERN Document Server

    Niebergal, Brian; Jaikumar, Prashanth

    2010-01-01

    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable (u,d,s) quark matter. Our method solves hydrodynamical flow equations in 1D with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change due to heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below approximately 2 times saturation density). In a 2-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly...

  4. (Anti-)strangeness in heavy-ion collisions

    Science.gov (United States)

    Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.

    2016-08-01

    We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.

  5. Observation of a New Charmed-Strange Meson

    Science.gov (United States)

    Kutschke, Robert Kenneth

    The ARGUS detector at the DORIS II e^+e ^- storage ring at DESY has been used to search for new charmed strange mesons. A new state has been observed at a mass of 2535.8 +/- 0.6 +/- 0.7 MeV/c^2. It decays into rm D^{*+ }K^0 but not into rm D ^+K^0. Its width is less than 3.5 MeV/c^2 at the 90% confidence level. Various arguments suggest that this state is one of the two J ^{P}=1^+ states which are expected in the lowest lying P-wave cs multiplet. A search was also made for other members of the multiplet and for other decay modes of the observed state. No signals were found in these searches.

  6. Can Strange Nonchaotic Dynamics be induced through Stochastic Driving?

    CERN Document Server

    Prasad, A K; Prasad, Awadhesh; Ramaswamy, Ramakrishna

    1999-01-01

    Upon addition of noise, chaotic motion in low-dimensional dynamical systems can sometimes be transformed into nonchaotic dynamics: namely, the largest Lyapunov exponent can be made nonpositive. We study this phenomenon in model systems with a view to understanding the circumstances when such behaviour is possible. This technique for inducing ``order'' through stochastic driving works by modifying the invariant measure on the attractor: by appropriately increasing measure on those portions of the attractor where the dynamics is contracting, the overall dynamics can be made nonchaotic, however {\\it not} a strange nonchaotic attractor. Alternately, by decreasing measure on contracting regions, the largest Lyapunov exponent can be enhanced. A number of different chaos control and anticontrol techniques are known to function on this paradigm.

  7. Observation of the doubly strange b baryon Omegab-.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; DeVaughan, K; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Komissarov, E V; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-12-05

    We report the observation of the doubly strange b baryon Omegab- in the decay channel Omegab(-)-->J/psiOmega-, with J/psi-->mu+mu(-) and Omega(-)-->LambdaK(-)-->(ppi-)K-, in pp collisions at sqrt[s]=1.96 TeV. Using approximately 1.3 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider, we observe 17.8+/-4.9(stat)+/-0.8(syst) Omegab- signal events at a mass of 6.165+/-0.010(stat)+/-0.013(syst) GeV. The significance of the observed signal is 5.4sigma, corresponding to a probability of 6.7 x 10(-8) of it arising from a background fluctuation.

  8. O-H...O versus O-H...S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog.

    Science.gov (United States)

    Biswal, Himansu S; Wategaonkar, Sanjay

    2010-05-20

    In this work the hydrogen bonded complexes of diethyl ether (DEE) and diethyl sulfide (DES) with p-cresol (p-CR) were investigated. Only one conformer of the p-CR.DEE complex and three conformers of the p-CR.DES complex were found to be present under the supersonic jet expansion conditions. The conformational assignments were done with the help of IR-UV double resonance studies and ab initio calculations. The red shifts in the OH stretching frequency for the O-H...O and O-H...S hydrogen bonded complexes were quite close to each other. In fact, one of the p-CR.DES conformers showed a slightly larger red shift in the OH stretch than that in the p-CR.DEE conformer, which suggests that in this case sulfur is not a weak hydrogen bond acceptor as noted previously in case of the p-CR.H(2)O and p-CR.H(2)S complexes (Biswal et al. J. Phys. Chem. A 2009, 113, 5633). The natural bond orbital analysis also shows that the extent of overlap between sulfur lone pair orbitals (LP) and OH antibonding orbital (sigma*(OH)) was comparable to the oxygen (LP) and sigma*(OH) overlap, consistent with the similar magnitudes of the red shifts of OH stretch in the DES and DEE complexes. The computed binding energy of the p-CR.DES complex, however, was about 80% of the p-CR.DEE complex. The electron densities at the bond critical points indicated that the O-H...S interaction was weaker than the O-H...O interaction in this particular system also. The important finding of this study was that the IR red shifts in the H-bond donor X-H stretching frequency were not quite consistent with the computed binding energies and the atoms-in-molecules analysis contrary to the general understanding. Energy decomposition analysis suggests that O-H...S hydrogen bonding interaction is dispersive in nature and the dispersion contribution decreases with the increase in the length of the alkyl chain of the "S" hydrogen bond acceptor.

  9. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose-Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  10. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  11. Appropriate observables for investigating narrow resonances in kaon photoproduction off a proton

    CERN Document Server

    Mart, T

    2011-01-01

    The existence of non-strange partner of pentaquark, the J^p = 1/2^+ narrow resonance, has been investigated by utilizing kaon photoproduction off a proton. It is found that the corresponding mass is 1650 MeV and the appropriate observables for investigating this resonance are the recoiled hyperon polarization, the beam-recoil double polarization C_x, and differential cross section at backward angles. Future kaon photoproduction experiments at low energies should focus on these observables.

  12. Strange meson spectral functions and cross sections at GSI-FAIR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Daniel; Bratkovskaya, Elena [Institute for Theoretical Physics and Frankfurt Institute for Advanced Studies, Frankfurt University, 60438 Frankfurt am Main (Germany); Tolos, Laura [Institut de Ciencies de l' Espai (IEEE/CSIC), Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C-5, E-08193 Bellaterra (Spain); Aichelin, Joerg [Subatech, UMR 6457, IN2P3/CNRS, Universite de Nantes, Ecole des Mines de Nantes, Nantes (France)

    2014-07-01

    We discuss recent progress on the properties of strange mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels, which incorporates the s- and p-waves of the kaon nucleon interaction. As a novelty, the in-medium scattering amplitudes and cross sections in several channels (such as anti K N → πΣ) are obtained in addition to the (off-shell) K and anti K spectral functions and quasi-particle properties, which is of particular interest for microscopic transport evaluations of strangeness production and propagation in heavy-ion collisions. We overview previous results from the Parton-Hadron-String Dynamics transport approach (PHSD), relying on a G-matrix calculation of strange meson spectral functions within a meson-exchange model. Our understanding of strange meson interactions in nuclear matter within transport simulations is discussed in view of the in-medium cross sections obtained within the chiral unitary approach.

  13. Critical phenomena of strange hadronic matter in the extended Zimanyi-Moszkowski model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have studied the liquid-gas phase transition of warm strange hadronic matter (SHM) in the extended Zimanyi-Moszkowski model. We implement the Nijmegen soft-core potential model NSC97f of hyperon-hyperon interactions in terms of the (hidden) strange mesons. The saturation properties of pure Lambda and Xi matter by the potential essentially determine the dependence of the critical temperature on the strangeness fraction of SHM. We treat the liquid-gas phase transition of SHM as the first-order one and employ Maxwell construction so as to calculate the phase coexistence curves. The derived critical exponents beta \\simeq 1/3 and gamma=1.22 are almost independent of the strangeness fraction of SHM and almost agree with the empirical values derived from the recent multifragmentation reactions. Consequently, we have confirmed the universality of the critical phenomena in the liquid-gas phase transition of hadronic system.

  14. Exploring High Strangeness Dibaryons with the Extended Quark Delocalization and Color Screening Model

    Institute of Scientific and Technical Information of China (English)

    PANG Hou-Rong; PING Jia-Lun; WANG Fan; ZHAO En-Guang

    2004-01-01

    Promising high strangeness dibaryons are studied by the extended quark delocalization and color screening model. It is shown that besides H particle and di-Ω, there might be other dibaryon candidates worth to be searched experimentally such as NΩ.

  15. Transition temperature in QCD with physical light and strange quark masses

    CERN Document Server

    Karsch, F

    2007-01-01

    We present results from a calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N_t =4 and 6. Calculations with improved staggered fermions have been performed with a strange quark mass fixed close to its physical value and for various light to strange quark mass ratios that correspond to light pseudo-scalar masses in the range (150-500) MeV. From a combined extrapolation to the chiral (m_l -> 0) and continuum (aT -> 0) limits we obtain for the transition temperature at the physical point T_c = 192(7)(4) MeV. We also present first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.

  16. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  17. Strangeness Production in Au+Au Reactions at √ {SNN} = 62.4\\ GeV

    Science.gov (United States)

    Arsene, Ionut-Cristian

    The measurement of strangeness is a valuable tool for understanding the reaction mechanism of nuclear collisions since all the strange particles need to be created during the reaction. Also, strangeness enhancement is one of the predicted signals of the QGP. In the present work we will discuss the behaviour of the strangeness production (i.e. K/π ratio) with rapidity and baryo-chemical potential in Au+Au collisions at 62.4 A GeV. In this particular reaction, BRAHMS is able to identify particles over 3.5 rapidity units and thereby cover a wide range of bar {p}/p ratios, including the fragmentation region. We will show spectra and ratios of identified particles as a function of pT and rapidity.

  18. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their

  19. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  20. A New Strangeness Fit to World Parity-Violating Electron Scattering Data

    Science.gov (United States)

    Gilbert, Benjamin

    2017-01-01

    A global experimental effort to determine the strangeness content of nuclei, including experiments such as G0, SAMPLE, HAPPEx, and A4, have presented results on the precision frontier for parity-violating electron scattering. In particular, the kinematics of these experiments are in the low momentum-transfer region (Q2 zero electromagnetic strangeness contributions. U.S. Department of Energy grant #DE-FG02-07ER41522

  1. Multi-strange-quark states at ultra-relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J P Coffin; C Kuhn; B Hippolyte; J Baudot; I Belikov

    2003-05-01

    We examine the possibility of producing and evidencing exotic strange matter (strangelets and metastable multi-hypernuclear objects, MEMO’s), including also pure hyperonic bound states ((), (Ξ )), at RHIC and LHC. Simulations are presented to estimate the sensitivity of the STAR and ALICE experiments to the detection of these objects, focusing mainly on metastable short-lived (weak decaying) strange dibaryons, with a particular emphasis on the -dibaryon, a six quark-bag bound state (uuddss).

  2. Mathematical problem solving by analogy.

    Science.gov (United States)

    Novick, L R; Holyoak, K J

    1991-05-01

    We report the results of 2 experiments and a verbal protocol study examining the component processes of solving mathematical word problems by analogy. College students first studied a problem and its solution, which provided a potential source for analogical transfer. Then they attempted to solve several analogous problems. For some problems, subjects received one of a variety of hints designed to reduce or eliminate the difficulty of some of the major processes hypothesized to be involved in analogical transfer. Our studies yielded 4 major findings. First, the process of mapping the features of the source and target problems and the process of adapting the source solution procedure for use in solving the target problem were clearly distinguished: (a) Successful mapping was found to be insufficient for successful transfer and (b) adaptation was found to be a major source of transfer difficulty. Second, we obtained direct evidence that schema induction is a natural consequence of analogical transfer. The schema was found to co-exist with the problems from which it was induced, and both the schema and the individual problems facilitated later transfer. Third, for our multiple-solution problems, the relation between analogical transfer and solution accuracy was mediated by the degree of time pressure exerted for the test problems. Finally, mathematical expertise was a significant predictor of analogical transfer, but general analogical reasoning ability was not. The implications of the results for models of analogical transfer and for instruction were considered.

  3. Determination of strange sea distributions from {nu}N deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Inst. for High Energy Physics, Protvino (Russian Federation); Kulagin, S. [Academy of Sciences of Russia, Moscow (Russian Federation). Inst. for Nuclear Research; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2008-12-15

    We present an analysis of the nucleon strange sea extracted from a global Parton Distribution Function fit including the neutrino and anti-neutrino dimuon data by the CCFR and NuTeV collaborations, the inclusive charged lepton-nucleon Deep Inelastic Scattering and Drell-Yan data. The (anti-)neutrino induced dimuon analysis is constrained by the semi-leptonic charmed-hadron branching ratio B{sub {mu}}=(8.8{+-}0.5)%, determined from the inclusive charmed hadron measurements performed by the FNAL-E531 and CHORUS neutrino emulsion experiments. Our analysis yields a strange sea suppression factor {kappa}(Q{sup 2}=20 GeV{sup 2})=0.62{+-}0.04, the most precise value available, an x-distribution of total strange sea that is slightly softer than the non-strange sea, and an asymmetry between strange and anti-strange quark distributions consistent with zero (integrated over x it is equal to 0.0013{+-}0.0009 at Q{sup 2}=20 GeV{sup 2}). (orig.)

  4. [Analogies and analogy research in technical biology and bionics].

    Science.gov (United States)

    Nachtigall, Werner

    2010-01-01

    The procedural approaches of Technical Biology and Bionics are characterized, and analogy research is identified as their common basis. The actual creative aspect in bionical research lies in recognizing and exploiting technically oriented analogies underlying a specific biological prototype to indicate a specific technical application.

  5. PREFACE: SQM2007 International Conference on Strangeness in Quark Matter

    Science.gov (United States)

    Šafařík, Karel; Šándor, Ladislav; Tomášik, Boris

    2008-04-01

    The International Conference on `Strangeness in Quark Matter' (SQM) was held from 24-29 June 2007 at the Congress Hall of the city cultural centre in the charming mediaeval town of Levoča in north-eastern Slovakia. The Institute of Experimental Physics of the Slovak Academy of Science and the Faculty of Science of the P J Šafárik University in Košice shared the duties of main organizers of the conference. SQM2007 was attended by more than 100 participants from about 20 countries. The natural beauty and the rich cultural and historical monuments of the surrounding Spiš (Scepusium) region created an inspiring setting for the scientific, social and cultural framework of the conference. Continuing the trend started at the SQM2006 conference, heavy flavour physics in heavy-ion collisions was a topic given equal importance in the SQM2007 programme alongside strange quark physics. The Symposium for Students, from Students, organized by Christian Klein-Boesing and Boris Tomášik on the basis of the contributed abstracts, was again an integral and successful part of the conference. The jury, drawn from the organizers, awarded William A Horowitz (Columbia University) the title of best student contribution. The good news is that many students and younger researchers attended the conference. This could not have happened without generous support from our sponsors whom we would like to thank for valuable financial support: CERN, Journal of Physics G, the Prešov self-governing region authorities and the Slovak Physical Society. The kind assistance of the mayor of the town of Levoča is also warmly acknowledged. We would like to extend our gratitude to our colleagues and students from the organizing institutions for their diligent work prior to and during the conference, which ensured that everything worked smoothly. Our special thanks go to our secretaries, Adri Chomičová and Mery Šemš'aková, as well as to the management of the SATEL Hotel in Levoča for their highly

  6. Conjecturing via Reconceived Classical Analogy

    Science.gov (United States)

    Lee, Kyeong-Hwa; Sriraman, Bharath

    2011-01-01

    Analogical reasoning is believed to be an efficient means of problem solving and construction of knowledge during the search for and the analysis of new mathematical objects. However, there is growing concern that despite everyday usage, learners are unable to transfer analogical reasoning to learning situations. This study aims at facilitating…

  7. Musik som analogi og metafor

    DEFF Research Database (Denmark)

    2014-01-01

    Indeholder underkapitlerne: 2.5.1 Musik som analogi 2.5.2 Musik som metafor 2.5.3 Musikkens psykologiske funktioner - en taxonomi og metaforisk lytning til fire baroksatser......Indeholder underkapitlerne: 2.5.1 Musik som analogi 2.5.2 Musik som metafor 2.5.3 Musikkens psykologiske funktioner - en taxonomi og metaforisk lytning til fire baroksatser...

  8. Natural analog studies: Licensing perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J.W. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This report describes the licensing perspective of the term {open_quotes}natural analog studies{close_quotes} as used in CFR Part 60. It describes the misunderstandings related to its definition which has become evident during discussions at the U.S Nuclear Regulatory Commission meetings and tries to clarify the appropriate applications of natural analog studies to aspects of repository site characterization.

  9. Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.

  10. A Study of Excited Charm-Strange Baryons withEvidence for new Baryons Xi_c(3055)+ and Xi_c(3123)+

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration, The BABAR; Aubert, B.

    2007-10-30

    We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e+e storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {Lambda}{sub c}{sup +}K{sub S}{sup 0}, {Lambda}{sub c}{sup +}K{sup -}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup -}{pi}{sup +}. This study confirms the existence of the states {Xi}{sub c}(2980){sup +}, {Xi}{sub c}(3077){sup +}, and {Xi}{sub c}(3077){sup -}, with a more accurate determination of the {Xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +}, decaying through the intermediate resonant modes {Sigma}{sub c}(2455){sup ++}K{sup -} and {Sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross-section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.

  11. Axial-vector form factors of the nucleon within the chiral quark-soliton model and their strange components

    CERN Document Server

    Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus

    2005-01-01

    We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.

  12. The familiar and the strange: the dynamics of change.

    Science.gov (United States)

    Lazar, R

    1995-01-01

    This article relates to curative factors in the therapeutic process, or, to be more precise, to the various modes of the therapist's presence as presumed factors of change. It points to factors of change that have been discussed at length in the various streams of the analytical literature, which emphasized passive attention, absorption, processing and interpretation on the analyst's part, in an atmosphere of restraint and understanding (factors such as "free floating attention," "empathy," etc.). It stresses the importance of another psychic function different in nature--"defamiliarization"--as a condition that facilitates and accompanies processes of understanding and changes in perspective in relation to a reality aesthetically mediated by every human work of art, in general, and in relation to the personal-inner reality as it is expressed in the therapeutic work of art, in particular. This term sheds light on an active, mobile, breaking away--distancing--and rebinding aspect in the psychic functioning of the therapist (and in parallel of the patient), which allows them to "see the new" in a (supposedly) very familiar emotional given. In my view, this term joins others such as "act of freedom" and "constructive listening" in deepening our understanding of the therapeutic factor. There is reference to the term "defamiliarization," or "making strange," in its natural context--its birthplace--in literary criticism, and in a different historical context--in two key articles of the thirties that related to the causes of change in therapy in a very different way.

  13. Search for the Charmed Strange Baryon A$^{o}$

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to search for inclusive production of the charmed strange baryon A|0 using @S|- with a momentum of 135 GeV/c on a Be-target. A|0 with lab-momenta between 70-120 GeV/c will be accepted, corresponding to X(A|0) $>$ 0.5. \\\\ \\\\ The apparatus is a modified version of the one used for WA42. The incoming @S|- are identified by a DISC Cerenkov counter. The A|0 detection is restricted to decay channels which contains only charged particles in the final state (e.g. A|0 @A @L K|-@p|+). \\\\ \\\\ The decay products are analysed in a magnetic spectrometer equipped with multiwire proportional chambers (B,C,D,E) and drift chambers (DC). Two multicell gas Cerenkov counters (C1,C2) allow the separation of K's and p's from @p's. A second magnet (SM2) reduces the geometrical overlap of @p's and heavier particles in the Cerenkov counters due to their different momentum spectra. The scintillator hodoscopes H^4 and H^5 and the chambers E and F behind SM2 allow a geometrical correlation of tracks with the C...

  14. Chiral extrapolations and strangeness in the baryon ground states

    CERN Document Server

    Lutz, Matthias F M

    2013-01-01

    We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.

  15. Strange eigenmodes of chaotic granular flow in a tumbler

    Science.gov (United States)

    Christov, Ivan C.; Ottino, Julio M.; Lueptow, Richard M.

    2011-11-01

    Through a combined computational-experimental study of monodisperse granular flow in a slowly-rotating quasi-two-dimensional container we show the presence of naturally-persistent mixing patterns, i.e., ``strange'' eigenmodes of the advection- diffusion operator governing the mixing process in the Eulerian frame. A comparative analysis of the structure of eigenmodes and the corresponding Poincaré section and finite-time Lyapunov exponent field of the flow highlights the relationship between the Eulerian and Lagrangian descriptions of mixing. In addition, we show how the mapping method for scalar transport can be modified to include diffusive effects, which are more significant in a granular flow (in laboratory size equipment) than in a similar fluid flow. This allow us to examine (for the first time in a granular flow) the change in shape, lifespan, and eventual decay of eigenmodes due to diffusive effects at larger numbers of revolutions. Finally, it is shown that segregation patterns in bidisperse mixtures correspond to permanently-excited eigenmodes. This work was supported, in part, by NSF Grant CMMI-1000469.

  16. Strong decays of $2^+$ charm and charm-strange mesons

    CERN Document Server

    Zhang, Si-Cheng; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2016-01-01

    In this paper, we calculate the strong decays of $2^+$ heavy-light states, namely, the charmed $D^*_2(2460)^0$ meson and the charm-strange $D^*_{s2}(2573)^+$ meson. The method we adopt is the reduction formula, PCAC relation and low energy theorem, following which, the transition amplitudes are calculated. The wave functions of the heavy mesons involved are achieved by solving the instantaneous Bethe-Salpeter equation. As the OZI-allowed two-body strong decays give the dominant contribution, they can be used to estimate to total widths of mesons. Our results are: $\\Gamma[D^*_2(2460)^0]=51.3$ MeV and $\\Gamma[D^*_{s2}(2573)^+]=19.6$ MeV. The ratios of branching ratios of two main channels are $Br[D^*_2(2460)^0\\rightarrow D^+\\pi^-]/Br[D^*_2(2460)^0\\rightarrow D^{\\ast+}\\pi^-]=2.13$ and $Br[D^*_{s2}(2573)^+\\rightarrow D^{\\ast 0} K^+]/Br[D^*_{s2}(2573)^+\\rightarrow D^0K^+]=0.08$, respectively.

  17. Passive control of chaotic system with multiple strange attractors

    Institute of Scientific and Technical Information of China (English)

    Song Yun-Zhong; Zhao Guang-Zhou; Qi Dong-Lian

    2006-01-01

    In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form.Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one,and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.

  18. Chiral 2D "Strange Metals" from N = 4 SYM

    CERN Document Server

    Berkooz, Micha; Zait, Amir

    2014-01-01

    Familiar field theories may contain closed subsectors made out of only fermions, which can be used to explore new and unusual phases of matter in lower dimensions. We focus on the fermionic su(1,1) sector in N=4 SYM and on its ground states, which are Fermi surface states/operators. By computing their spectrum to order $(g_{YM}^2 N)^2$, we argue that fluctuations around this fermi surface, within the sector and in the limit $k_F\\rightarrow\\infty$, are governed by a chiral 1+1 dimensional sector of the "strange metal" coset $SU(N)_N \\otimes SU(N)_N/SU(N)_{2N}$. On the gravity side, the conjectured dual configuration is an $S=0$ degeneration of a rotating black hole. On general grounds we expect that the near horizon excitations of $(S=0,\\Omega=1,J\\rightarrow\\infty)$ degenerations of black holes will be governed by a chiral sector of a 1+1 CFT.

  19. Strange particle production in hadronic Z{sup 0} decays

    Energy Technology Data Exchange (ETDEWEB)

    Baird, K.G. III

    1996-04-01

    A study has been made of neutral strange baryons and pseudoscalar mesons produced in hadronic decays of the weak gauge boson V. The experiment was performed at the Stanford Linear Accelerator Center, which has the unique capability of colliding highly polarized electrons with unpolarized positrons. Overall production rates and spectra of the K{sup 0} and the {Lambda}{sup 0} (+{Lambda}{sup 0}) were measured and compared with other experiments as well as with Quantum Chromodynamics calculations. The combination of the small, stable beam spots produced by the SLAC Linear Collider (SLC) and the precision vertexing capabilities of the SLC Large Detector (SLD) permitted the separation of the hadronic events into three quark flavor-enriched samples. An unfolding was performed to obtain flavor-pure samples, and for the first time measurements were made of K{sup 0} and {Lambda}{sup 0} (+{Lambda}{sup 0}) production rates and spectra in uds, c, and b quark events at the Z{sup 0} pole. This measurement revealed significant production differences. Utilizing the large quark production asymmetry due to the polarized electron beam, high-purity quark and antiquark jet samples were obtained. The first measurement of production differences of the {Lambda}{sup 0} baryon in quark and antiquark jets was performed, which provided clear evidence for a leading particle effect at high momenta.

  20. Looking for Strange Quark Matter in Cosmic Rays.

    Directory of Open Access Journals (Sweden)

    Bezshapov S.P.

    2013-06-01

    Full Text Available Usually it is supposed that the definition of the CR mass composition in knee region is the key to problem of CR spectrum modification in this range. However tens of the experiments were done for the last half of century and have not decided this problem up to now. The possible causes of fiasco and arguments in favour of necessity to reformulate attack method are discussed, taking into account a new experimental data about fine structure of CR spectrum and EAS core investigations. The possible presence of the exotic processes in the area of a knee is discussed. If exotic component really exists in CR then impossible to formulate correctly more common problem of mass composition without solving this one. It is represented, that the problem of presence of an exotic component in CR should be solved easier than a CR composition problem. The observational basis is discussed. The hypothesis of strange quark matter in CR is suggested for the exotic component.

  1. Distributed Episodic and Analogical Reasoning (DEAR)

    Science.gov (United States)

    2010-04-01

    ends analysis Carbonell 1983 Modeling of Analogy Making Structure Mapping Theory (SMT) Gentner 1984 Agent based approach to analogy making...Mapping Engine (SME) Forbus 1990 Learning by analogy with larger domains Prodigy/Analogy Veloso and Carbonell 1991 Analogical Retrieval Engine MAC/FAC

  2. eta Photoproduction and N* resonances

    CERN Document Server

    Choi, Ki-Seok; Hosaka, Atsushi; Kim, Hyun-Chul

    2007-01-01

    We investigate the eta photoproduction from the nucleon using the effective Lagrangian approach at tree level. We focus on the nucleon resonance N*(1675) of possibly exotic nature, which was reported by the GRAAL, Tohoku LNS and CB-ELSA examining its spin and parity theoretically. In addition, we consider six nucleon resonances, D_{13}(1520), S_{11}(1535), S_{11}(1650), D_{15}(1675), P_{11}(1710), P_{13}(1720) as well as possible background contributions. We calculate the differential cross sections and beam asymmetries for the neutron and proton targets. They indicate that there is isospin asymmetry which can be interpreted as the large difference in the the transition photon couplings: mu_{gamma p p*} << mu_{gamma n n*}. Moreover, we find that the spin-1/2 state is preferred in order to reproduce the experimental data, although its parity remains undetermined. This observation implies that the new resonance may be identified as a non-strangeness member of the baryon antidecuplet.

  3. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  4. Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    Science.gov (United States)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2017-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω‑-baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.

  5. Molecular modeling of fentanyl analogs

    Directory of Open Access Journals (Sweden)

    LJILJANA DOSEN-MICOVIC

    2004-11-01

    Full Text Available Fentanyl is a highly potent and clinically widely used narcotic analgesic. A large number of its analogs have been synthesized, some of which (sufentanil and alfentanyl are also in clinical use. Theoretical studies, in recent years, afforded a better understanding of the structure-activity relationships of this class of opiates and allowed insight into the molecular mechanism of the interactions of fentanyl analogs with their receptors. An overview of the current computational techniques for modeling fentanyl analogs, their receptors and ligand-receptor interactions is presented in this paper.

  6. Sulfonimidamide analogs of oncolytic sulfonylureas.

    Science.gov (United States)

    Toth, J E; Grindey, G B; Ehlhardt, W J; Ray, J E; Boder, G B; Bewley, J R; Klingerman, K K; Gates, S B; Rinzel, S M; Schultz, R M; Weir, L C; Worzalla, J F

    1997-03-14

    A series of sulfonimidamide analogs of the oncolytic diarylsulfonylureas was synthesized and evaluated for (1) in vitro cytotoxicity against CEM cells, (2) in vivo antitumor activity against subaxillary implanted 6C3HED lymphosarcoma, and (3) metabolic breakdown to the o-sulfate of p-chloroaniline. The separated enantiomers of one sulfonimidamide analog displayed very different activities in the in vivo screening model. In general, several analogs demonstrated excellent growth inhibitory activity in the 6C3HED model when dosed orally or intraperitoneally. A correlative structure-activity relationship to the oncolytic sulfonylureas was not apparent.

  7. Comparison of analog and digital transceiver systems for MR imaging.

    Science.gov (United States)

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2014-01-01

    We critically evaluated analog and digital transceivers for magnetic resonance (MR) imaging systems under identical experimental conditions to identify and compare their advantages and disadvantages. MR imaging experiments were performed using a 4.74-tesla vertical-bore superconducting magnet and a high sensitivity gradient coil probe. We acquired 3-dimensional spin echo images of a kumquat with and without using a gain-stepping scan technique to extend the dynamic range of the receiver systems. The acquired MR images clearly demonstrated nearly identical image quality for both transceiver systems, but DC and ghosting artifacts were obtained for the analog transceiver system. We therefore concluded that digital transceivers have several advantages over the analog transceivers.

  8. Analog computing using reflective plasmonic metasurfaces

    CERN Document Server

    Pors, Anders; Bozhevolnyi, Sergey I

    2016-01-01

    Motivated by the recent renewed interest in compact analog computing using light and metasurfaces (Silva, A. et al., Science 2014, 343, 160-163), we suggest a practical approach to its realization that involves reflective metasurfaces consisting of arrayed gold nanobricks atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances. Using well established numerical routines, we demonstrate that these metasurfaces enable independent control of the light phase and amplitude, and design differentiator and integrator metasurfaces featuring realistic system parameters. Proof-of-principle experiments are reported along with the successful realization of a high-quality poor-man's integrator metasurface operating at the wavelength of 800 nm.

  9. Strange quark mass from the invariant mass distribution of Cabibbo-suppressed tau decays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Davier, M.; Hoecker, A. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Gamiz, E.; Prades, J. [Granada Univ., Dept. de Fisica Teorica y del Cosmos (Spain); Pich, A. [Valencia Univ. (Spain). Dept. de Fisica Teorica

    2001-06-01

    Quark mass corrections to the {tau} hadronic width play a significant role only for the strange quark, hence providing a method for determining its mass. The experimental input is the vector plus axial-vector strange spectral function derived from a complete study of tau decays into strange hadronic final states performed by ALEPH. New results on strange decay modes from other experiments are also incorporated. The present analysis determines the strange quark mass at the M{sub {tau}} mass scale using moments of the spectral function. Justified theoretical constraints are applied to the nonperturbative components and careful attention is paid to the treatment of the perturbative expansions of the moments which exhibit convergence problems. The result obtained, m{sub s} (M{sup 2}{sub {tau}}) = (120 {+-} 11{sub exp} {+-} 8v{sub us} {+-} 19th) MeV (120{sup +21}{sub -26}) MeV, is stable over the scale from M{tau} down to about 1.4 GeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) (160{sup +28}{sub -35}) MeV and m{sub s}(4 GeV{sup 2}) = (116{sup +20}{sub -25}) MeV. (authors)

  10. Using the Moon as a low-noise seismic detector for strange quark nuggets

    Energy Technology Data Exchange (ETDEWEB)

    Banerdt, W. Bruce [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Chui, Talso [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)], E-mail: talso.c.chui@jpl.nasa.gov; Griggs, Cornelius E. [Physics Department, University of Maryland, College Park, MD 20742 (United States); Herrin, Eugene T. [Department of Geology, Southern Methodist University, Dallas, TX 75275 (United States); Nakamura, Yosio [Institute for Geophysics, University of Texas at Austin, Austin, TX 78759-8500 (United States); Paik, Ho Jung [Physics Department, University of Maryland, College Park, MD 20742 (United States); Penanen, Konstantin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Rosenbaum, Doris [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); Teplitz, Vigdor L. [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Young, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2007-04-15

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [E. Witten, Phys. Rev D 30 (1984) 279]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10{sup 14} gm/cm{sup 3}). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [A. de Rujula and S. Glashow, Nature 312 (1984) 734], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  11. Liquid-gas phase transition in strange hadronic matter with relativistic models

    Science.gov (United States)

    Torres, James R.; Gulminelli, F.; Menezes, Débora P.

    2016-02-01

    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.

  12. Quantum Monte Carlo study of strange correlator in interacting topological insulators

    Science.gov (United States)

    Wu, Han-Qing; He, Yuan-Yao; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    Distinguishing the nontrivial symmetry-protected topological (SPT) phase from the trivial insulator phase in the presence of electron-electron interaction is an urgent question to the study of topological insulators. In this work, we demonstrate that the strange correlator is a sensitive diagnosis to detect SPT states in interacting systems. Employing large-scale quantum Monte Carlo (QMC) simulations, we investigate the interaction-driven quantum phase transition in the Kane-Mele-Hubbard model. The transition from the quantum spin Hall insulator at weak interaction to an antiferromagnetic Mott insulator at strong interaction can be readily detected by the momentum space behavior of the strange correlator in single-particle, spin, and pairing sectors. The interaction e?ects on the symmetry-protected edge states in various sectors are well captured in the QMC measurements of strange correlators. Moreover, we demonstrate that the strange correlator is technically easier to implement in QMC and more robust in performance than other proposed numerical diagnoses for interacting topological states, as only static correlations are needed. The attempt in this work paves the way for using the strange correlator to study interaction-driven topological phase transitions.

  13. Metastatic Insulinoma Managed with Radiolabeled Somatostatin Analog

    Science.gov (United States)

    Costa, Ricardo; Bacchi, Carlos E.; Almeida Filho, Paulo

    2013-01-01

    Insulinoma is a rare pancreatic neuroendocrine tumor. Overproduction of insulin and associated hypoglycemia are hallmark features of this disease. Diagnosis can be made through demonstration of hypoglycemia and elevated plasma levels of insulin or C-Peptide. Metastatic disease can be detected through computerized tomography (CT) scans, magnetic resonance imaging (MRI), and positron emission tomography (PET)/CT. Somatostatin receptor scintigraphy can be used not only to document metastatic disease but also as a predictive marker of the benefit from therapy with radiolabeled somatostatin analog. Unresectable metastatic insulinomas may present as a major therapeutic challenge for the treating physician. When feasible, resection is the mainstay of treatment. Prevention of hypoglycemia is a crucial goal of therapy for unresectable/metastatic tumors. Diazoxide, hydrochlorothiazide, glucagon, and intravenous glucose infusions have been used for glycemic control yielding temporary and inconsistent results. Sandostatin and its long-acting depot forms have occasionally been used in the treatment of Octreoscan-positive insulinomas. Herein, we report a case of metastatic insulinoma with very difficult glycemic control successfully treated with the radiolabeled somatostatin analog lutetium (177LU). PMID:24455330

  14. Metastatic Insulinoma Managed with Radiolabeled Somatostatin Analog

    Directory of Open Access Journals (Sweden)

    Ricardo Costa

    2013-01-01

    Full Text Available Insulinoma is a rare pancreatic neuroendocrine tumor. Overproduction of insulin and associated hypoglycemia are hallmark features of this disease. Diagnosis can be made through demonstration of hypoglycemia and elevated plasma levels of insulin or C-Peptide. Metastatic disease can be detected through computerized tomography (CT scans, magnetic resonance imaging (MRI, and positron emission tomography (PET/CT. Somatostatin receptor scintigraphy can be used not only to document metastatic disease but also as a predictive marker of the benefit from therapy with radiolabeled somatostatin analog. Unresectable metastatic insulinomas may present as a major therapeutic challenge for the treating physician. When feasible, resection is the mainstay of treatment. Prevention of hypoglycemia is a crucial goal of therapy for unresectable/metastatic tumors. Diazoxide, hydrochlorothiazide, glucagon, and intravenous glucose infusions have been used for glycemic control yielding temporary and inconsistent results. Sandostatin and its long-acting depot forms have occasionally been used in the treatment of Octreoscan-positive insulinomas. Herein, we report a case of metastatic insulinoma with very difficult glycemic control successfully treated with the radiolabeled somatostatin analog lutetium (177LU.

  15. Analog CMOS contrastive Hebbian networks

    Science.gov (United States)

    Schneider, Christian; Card, Howard

    1992-09-01

    CMOS VLSI circuits implementing an analog neural network with on-chip contrastive Hebbian learning and capacitive synaptic weight storage have been designed and fabricated. Weights are refreshed by periodic repetition of the training data. To evaluate circuit performance in a medium-sized system, these circuits were used to build a 132 synapse neural network. An adaptive neural system, such as the one described in this paper, can compensate for imperfections in the components from which it is constructed, and thus it is possible to build this type of system using simple, silicon area-efficient analog circuits. Because these analog VLSI circuits are far more compact than their digital counterparts, analog VLSI neural network implementations are potentially more efficient than digital ones.

  16. Solving a problem by analogy

    Science.gov (United States)

    Easton, Don

    1999-03-01

    This note is a description of a student solution to a problem. I found the solution exciting because it exemplifies the kind of solution by analogy that Feynman describes in The Feynman Lectures on Physics.

  17. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  18. Analog electronic neural network circuits

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.P.; Jackel, L.D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-07-01

    The large interconnectivity and moderate precision required in neural network models present new opportunities for analog computing. This paper discusses analog circuits for a variety of problems such as pattern matching, optimization, and learning. Most of the circuits build so far are relatively small, exploratory designs. The most mature circuits are those for template matching. Chips performing this function are now being applied to pattern recognition problems.

  19. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  20. 'The Strange Case of Angelica': affinity between Fantastic and Documental

    Directory of Open Access Journals (Sweden)

    Rita Benis

    2017-01-01

    Full Text Available In 2010, Manoel de Oliveira films The Strange Case of Angélica, a project from the early fifties of the past century. In it, the confrontation between the documentary side of the film (the sequences where the protagonist, Isaac, photographs the workers in the vineyards and the fantastic sequences (the episodes with the ghost of Angelica seems to indicate an affinity. That "shadow of resemblance" Petrarch spoke about to his close friend Giovanni Boccaccio: "... he who imitates must proceed in such a way that what he does is similar but not equal, and that the likeness is not that which exists between the original and the copy, that the more similar the more it is praiseworthy, but instead a likeness which one finds in the similarities between a father and a son, among which, though much difference is made in the aspect, there is, however, as a shadow of resemblance, which the painters call 'aire' (... "(apud Rodrigues 2003: 5. A "family air" as a living correlation that comes to our encounter and which is felt as an immediate understanding (and not as definable evidence. In the film, the shiver that assaults us through the apparition of Angelica seems to announce something that goes beyond this same vision: the eminence of the disappearance of the vineyard workers and their gestures, a loss of connection between Man and Nature. The present affinity - Angelica / diggers - is mirrored in Isaac's immense melancholy, the only person apparently capable of perceiving the landscape, the "air" that this relationship evokes. The whole film is crossed by the glimpse of this indefinable kinship, by the porosity between the sensitive world and the spectral world, the permanent interweaving of visibilities / invisibilities that allow us access to this other cinematographic space-time, more percept than visible, in which, according to Manoel de Oliveira, the phantom of physical reality reveals itself "more real, however, than reality itself" (Baecque and

  1. Silas Weir Mitchell and "The Strange Case of George Dedlow".

    Science.gov (United States)

    Kline, David G

    2016-07-01

    It has been said of Silas Weir Mitchell (1829-1914) that as a young man he was first among the physiologists of his day, in middle age first among physicians, and as an older man, one of the most noted novelists of his country. Mitchell's novels were written in his later life as a means to avoid boredom during lengthy summer vacations that were the norm for that time among the affluent members of Philadelphia society. These novels were criticized by some because of poor plots, which in some instances failed to move along, or for text that offered a stereotyped depiction of genteel society and the effects that war or personal disaster had on the characters' behavior The criticism came despite the fact that all critics agreed that Mitchell's portrayals of psychopathology in his fictional characters was unique and accurate. However, in his 30s, Mitchell had written and by chance had published a fictional short story that not only transcended such criticisms but became immensely popular. "The Strange Case of George Dedlow" portrays a union officer who was not a physician but who had some medical background and who sustained a series of war wounds leading to severe nerve pain, the author's first description of causalgia, multiple amputations, and the psychological as well as physical symptoms of phantom limb syndrome. The protagonist tells of his torments in the first person in a very engaging fashion. Thus, long before he began writing his, at that time, acclaimed novels in the 1880s, Mitchell wrote a piece of fiction that combines accurate and very important medical observations with fiction of great historical interest. The following rendering of this now classic short story includes selected quotes and some interpretation and is perhaps appropriate for this year, 2 years after the centenary year of his death in 1914.

  2. Strange history: the fall of Rome explained in Hereditas.

    Science.gov (United States)

    Bengtsson, Bengt O

    2014-12-01

    In 1921 Hereditas published an article on the fall of Rome written by the famous classical scholar Martin P:son Nilsson. Why was a paper on this unexpected topic printed in the newly founded journal? To Nilsson, the demise of the Roman Empire was explained by the "bastardization" occurring between "races" from different parts of the realm. Offspring from mixed couples were of a less stable "type" than their parents, due to the breaking up by recombination of the original hereditary dispositions, which led to a general loss of competence to rule and govern. Thus, the "hardness" of human genes, together with their recombination, was - according to Nilsson - the main cause of the fall of Rome. Nilsson's argument is not particularly convincingly presented. Human "races" are taken to have the same genetic structure as inbred crop strains, and Nilsson believes in a metaphysical unity between the individual and the race to which it belongs. However, in my view, Martin P:son Nilsson and his friend Herman Nilsson-Ehle had wider aims with the article than to explain a historical event. The article can be read as indicating strong support from the classical human sciences to the ambitious new science of genetics. Support is also transferred from genetics to the conservative worldview, where the immutability and inflexibility of the Mendelian genes are used to strengthen the wish for greater stability in politics and life. The strange article in Hereditas can, thus, be read as an early instance in the - still ongoing - tug-of-war between the conservative and the liberal ideological poles over how genetic results best are socially interpreted.

  3. Resonance production in p+p, p+A and A+A collisions measured with HADES

    Directory of Open Access Journals (Sweden)

    Reshetin A.

    2012-11-01

    Full Text Available The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.

  4. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  5. Search for Stable Strange Quark Matter in Lunar Soil using the Mass Spectrometry Technique

    CERN Document Server

    Han, Ke

    2008-01-01

    Strange quark matter is a postulated state which may be the true ground state of cold hadronic matter. Physicists have been searching for strange quark matter in the last several decades but found no definite evidence of its existence. In our experiment, we used the Yale tandem accelerator as a mass spectrometer to identify possible stable strangelets (small chunks of strange quark matter) in lunar soil. The search covers the mass range from A=42 to A=70 amu for nuclear charges 6, 8, and 9. No strangelets are found at sensitivity levels down to $\\sim10^{-17}$. The implied limit on strangelet flux in cosmic rays is the most sensitive to date for the covered mass range.

  6. Analysis of strange-mode instability with time-dependent convection in hot massive stars

    CERN Document Server

    Sonoi, Takafumi

    2013-01-01

    We carry out nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC) for the first time. Although convective luminosity in envelopes of hot massive stars is not as dominative as in stars near the red edge of the classical Cepheid instability strip in the Hertzsprung-Russell (H-R) diagram, we have found that the strange-mode instability can be affected by the treatment of convection. However, existence of the instability around and over the Humphreys-Davidson (H-D) limit is independent of the treatment. This implies that the strange-mode instability could be responsible for the lack of observed stars over the H-D limit regardless of uncertainties on convection theories.

  7. Strange Stars with Realistic Quark Vector Interaction and Phenomenological Density-dependent Scalar Potential

    CERN Document Server

    Dey, M; Dey, J; Ray, S; Samanta, B C; Dey, Mira; Bombaci, Ignazio; Dey, Jishnu; Ray, Subharthi

    1998-01-01

    We derive an equation of state (EOS) for strange matter, starting from an interquark potential which (i) has asymptotic freedom built into it, (ii) shows confinement at zero density ($\\rho_B = 0$) and deconfinement at high $\\rho_B$, and (iii) gives a stable configuration for chargeless, $\\beta$-stable quark matter. This EOS is then used to calculate the structure of Strange Stars, and in particular their mass-radius relation. Our present results confirm and reinforce the recent claim\\cite{li,b} that the compact objects associated with the x-ray pulsar Her X-1, and with the x-ray burster 4U 1820-30 are strange stars.

  8. Strangeness production in p–Pb and Pb–Pb collisions with ALICE at LHC

    Science.gov (United States)

    Colella, Domenico; ALICE Collaboration

    2017-01-01

    The main goal of the ALICE experiment is to study the properties of the hot and dense medium created in ultra-relativistic heavy-ion collisions. The measurement of the (multi-)strange particles is an important tool to understand particle production mechanisms and the dynamics of the quark-gluon plasma (QGP). We report on the production of in proton-lead (p–Pb) collisions at and lead-lead (Pb–Pb) collisions at measured by ALICE at the LHC. The comparison of the hyperon-to-pion ratios in the two colliding systems may provide insight into strangeness production mechanisms, while the comparison of the nuclear modification factors helps to determine the contribution of initial state effects and the suppression from strange quark energy loss in nuclear matter.

  9. (In)stability in dense strange hadronic matter and compact stars

    CERN Document Server

    Torres, James R; Menezes, Debora P

    2016-01-01

    Background : The emergence of hyperon degrees of freedom in neutron star matter has been associated to first order phase transitions in some phenomenological models, but conclusions on the possible physical existence of an instability in the strangeness sector are strongly model dependent. Purpose : The purpose of the present study is to assess whether strangeness instabilities are related to specific values of the largely unconstrained hyperon interactions, and to study the effect of the strange meson couplings on phenomenological properties of neutron stars and supernova matter, once these latter are fixed to fulfill the constraints imposed by hypernuclear data. Method : We consider a phenomenological RMF model sufficiently simple to allow a complete exploration of the parameter space. Results : We show that no instability at supersaturation density exists for the RMF model, as long as the parameter space is constrained by basic physical requirements. This is at variance with a non-relativistic functional, ...

  10. Characteristics of Strange Hadron Production in Some High Energy Collisions and The Role of Power Laws

    CERN Document Server

    Biswas, Sunil Kumar; Ghosh, Amar Chandra Das; Bhattacharyya, Subrata; 10.4236/ojm.2012.21001

    2012-01-01

    Studies on `strange' particle production have always occupied a very important space in the domain of Particle Physics. This was and is so, just because of some conjectures about specially abundant or excess production of `strange' particles, at certain stages and under certain conditions arising out of what goes by the name of `Standard' model in Particle Physics. With the help of Hagedornian power laws we have attempted to understand and interpret here the nature of the $p_T$-spectra for the strange particle production in a few high energy nuclear collisions, some interesting ratio-behaviours and the characteristics of the nuclear modification factors that are measured in laboratory experiments. After obtaining and analysing the final results we do not confront any peculiarities or oddities or extraneous excesses in the properties of the relevant observables with no left-over problems or puzzles. The model(s) used by us work(s) quite well for explaining the measured data.

  11. Nucleon strange $s\\bar s$ asymmetry to the $\\Lambda/\\bar\\Lambda$ fragmentation

    CERN Document Server

    Chi, Yujie; Ma, Bo-Qiang

    2014-01-01

    The difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers in the semi-inclusive deep inelastic scattering process is intensively studied. The study is performed in the current fragmentation region, by considering the intermediate hyperon decay processes and sea quark fragmentation processes, while the strange sea $s\\bar s$ asymmetry in the nucleon is taken into account. The calculation in the light-cone quark-diquark model shows that the strange sea asymmetry gives a proper trend to the difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers. When considering the nonzero final hadron transverse momentum, our results can explain the COMPASS data reasonably. The nonzero final hadron transverse momentum is interpreted as a natural constraint to the final hadron $z$ range where the longitudinal spin transfer is more sensitive to the strange sea $s\\bar s$ asymmetry.

  12. In-medium modifications of open and hidden strange-charm mesons from spatial correlation functions

    CERN Document Server

    Bazavov, Alexei; Maezawa, Yu; Mukherjee, Swagato; Petreczky, Peter

    2014-01-01

    We calculate spatial correlation functions of in-medium mesons consisting of strange--anti-strange, strange--anti-charm and charm--anti-charm quarks in (2+1)-flavor lattice QCD using the highly improved staggered quark action. A comparative study of the in-medium modifications of mesons with different flavor contents is performed. We observe significant in-medium modifications for the $\\phi$ and $D_s$ meson channels already at temperatures around the chiral crossover region. On the other hand, for the $J/\\psi$ and $\\eta_c$ meson channels in-medium modifications remain relatively small around the chiral crossover region and become significant only above 1.3 times the chiral crossover temperature.

  13. Liquid-gas phase transition in strange hadronic matter with relativistic models

    CERN Document Server

    Torres, James R; Menezes, Débora P

    2015-01-01

    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...

  14. Analog approach to mixed analog-digital circuit simulation

    Science.gov (United States)

    Ogrodzki, Jan

    2013-10-01

    Logic simulation of digital circuits is a well explored research area. Most up-to-date CAD tools for digital circuits simulation use an event driven, selective trace algorithm and Hardware Description Languages (HDL), e.g. the VHDL. This techniques enable simulation of mixed circuits, as well, where an analog part is connected to the digital one through D/A and A/D converters. The event-driven mixed simulation applies a unified, digital-circuits dedicated method to both digital and analog subsystems. In recent years HDL techniques have been also applied to mixed domains, as e.g. in the VHDL-AMS. This paper presents an approach dual to the event-driven one, where an analog part together with a digital one and with converters is treated as the analog subsystem and is simulated by means of circuit simulation techniques. In our problem an analog solver used yields some numerical problems caused by nonlinearities of digital elements. Efficient methods for overriding these difficulties have been proposed.

  15. Neutral strange particle production at top SPS energy measured by the CERES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Radomski, S.

    2006-07-05

    Systematics of strange particle production in collisions of ultrarelativistic nuclei provides an insight into the properties of the strongly interacting matter. Hadrochemistry, the study of the relative yields, provides information about chemical freeze-out and the position of the system in the phase diagram. Strangeness production at Super Proton Synchrotron (SPS) energies is not fully explained by the thermal model of hadron gas. Data reported by one experiment show sharp structures as a function of energy which are interpreted as a signature for a phase transition, but due to discrepancies in the results between two different experiments, a conclusion can not be drawn. This thesis is part of an effort to build a database of the strangeness production at SPS energy. The particular subject of this work is a precise measurement of the production of K{sub S}{sup 0}. The results are compared with two other experiments and the prediction of the thermal model. The high precision data shed light on the systematics of strangeness production and allow clarification of the experimental status. The study of transverse momentum spectra provides information about the temperature and the radial expansion of the system. Here, as in the case of particle yields, interesting structures are visible as a function of energy. A rapid increase in the number of degrees of freedom is visible in the SPS region. A large part of the strangeness is carried by the neutral strange baryon {lambda}. Here the experimental situation is even more complicated because the reconstruction of the {lambda} yield requires large extrapolation to low transverse momentum. In this work first results on {lambda} production will be presented. (orig.)

  16. Multiplicity dependence of light flavour hadron production at LHC energies in the strangeness canonical suppression picture

    CERN Document Server

    Vislavicius, Vytautas

    2016-01-01

    We present an analysis of data on light flavour hadron production as function of event multiplicity at LHC energies measured by the ALICE collaboration. The strangeness-canonical approach within the framework of the THERMUS statistical hadronisation model is used for a simultaneous description of pp, p-Pb, and Pb-Pb collisions. The rapidity window dependence of the strangeness correlation volume is addressed and a value of $\\Delta y = 1.43 \\pm 0.13$ is found. With the exception of the $\\phi$-meson, an excellent description of the experimental data is found.

  17. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    Science.gov (United States)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  18. Strange quark matter solutions for Marder's universe in f(R,T) gravity with Λ

    Science.gov (United States)

    Aygün, S.; Aktas, C.; Yılmaz, İ.

    2016-12-01

    In this paper, we investigate homogeneous cylindrically symmetric Marder's universe in the presence of strange quark matter (SQM) source in f(R,T) gravity with cosmological constant Λ. For this aim we have used the anisotropy feature (σxx/θ) of Marder type universe and equation of state (EoS) strange quark matter to obtain solutions in two classes f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). Finally, some physical and kinematical properties are discussed.

  19. Disorder-driven electron delocalization in strange metals: The case of tetragonal FeTe

    Science.gov (United States)

    Craco, Luis

    2017-03-01

    We investigate the dual roles of electron-electron interactions and site-diagonal disorder in a strange bad-metal. Saturating- and insulating-like resistivity observed in the non-magnetically ordered phase of tetragonal FeTe are shown to be driven by the interplay between multiband effects and iron-d shell band-filling. Incorporation of site-diagonal disorder promotes weak electronic delocalization and metallicity in tetragonal FeTe. The correlated electronic structure we derive is promising in the sense that it leads to results that might explain why moderate disorder can generate nearly linear resistivity dependence in strange metals.

  20. Strange star admitting Chaplygin equation of state in Finch-Skea spacetime

    Science.gov (United States)

    Bhar, Piyali

    2015-10-01

    In the present paper we propose a new model of an anisotropic strange star which admits the Chaplygin equation of state. The exterior spacetime is described by a Schwarzschild line element. The model is developed by assuming the Finch-Skea ansatz (Finch and Skea in Class. Quantum Gravity 6:467, 1989. We obtain the model parameters in closed form. Our model is free from a central singularity. Choosing some particular values for the parameter we show that our model corroborates the observational data of the strange star PSR J1614-2230 (Gangopadhyay et al. in Mon. Not. R. Astron. Soc. 431:3216, 2013.

  1. Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data

    CERN Document Server

    Alekhin, S; Caminadac, L; Lipka, K; Lohwasser, K; Moch, S; Petti, R; Placakyte, R

    2014-01-01

    We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of $W^\\pm$-bosons with $c$-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.

  2. Determination of strange sea quark distributions from fixed-target and collider data

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J.; Lohwasser, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Caminada, L. [Zuerich Univ. (Switzerland). Physik Inst.; Lipka, K.; Placakyt e, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2014-04-15

    We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of W{sup ±}-bosons with c-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.

  3. Near-threshold production of the multi-strange $\\Xi^-$ hyperon

    CERN Document Server

    Chung, P; Alexander, J M; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Cole, B; Crowe, K; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Holzmann, W; Huo, L; Issah, M; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; Milan, J; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R P; Srivastava, B; Stone, N T B; Symons, T J M; Taranenko, A V; Whitfield, J; Wienold, T; Witt, R; Wood, L; Zhang Wei Ning; Oeschler, H

    2003-01-01

    The yield for the multi-strange $\\Xi^{-}$ hyperon has been measured in 6 AGeV Au+Au collisions via reconstruction of its decay products $\\pi^{-}$ and $\\Lambda$, the latter also being reconstructed from its daughter tracks of $\\pi^{-}$ and p. The measurement is rather close to the threshold for $\\Xi^{-}$ production and therefore provides an important test of model predictions. The measured yield of $\\Xi^{-}$ in central collisions is found to be in excellent agreement with statistical and transport model predictions, suggesting that multi-strange hadron production approaches chemical equilibrium in high baryon density nuclear matter.

  4. Resonances within chaos.

    Science.gov (United States)

    Gallavotti, G; Gentile, G; Giuliani, A

    2012-06-01

    A chaotic system under periodic forcing can develop a periodically visited strange attractor. We discuss simple models in which the phenomenon, quite easy to see in numerical simulations, can be completely studied analytically.

  5. Resonances within Chaos

    CERN Document Server

    Gallavotti, Giovanni; Giuliani, Alessandro

    2011-01-01

    A chaotic system under periodic forcing can develop a periodically visited strange attractor. We discuss simple models in which the phenomenon, quite easy to see in numerical simulations, can be completely studied analytically.

  6. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  7. A Strange Case of Left Bowel Ischemia after Right Hernioplasty

    Directory of Open Access Journals (Sweden)

    Girolamo Geraci

    2010-02-01

    Full Text Available We report the first observed case of a young man who suffered of large and unsuspected left bowel ischemia following an elective right open hernioplasty. A 54-year-old man had a 2-year history of right inguinal reducible mass and was admitted to hospital for an elective day case open inguinal hernioplasty for a direct right inguinal hernia. Apart from mild hypertension controlled with ACE inhibitor, he was medically fit and well. The patient was submitted to open tension-free mesh repair with polypropylene preshaped mesh with local infiltration anesthesia and additive sedation with midazolam. The local anesthesia and surgery were uneventful and he was discharged home on the same day as per day case protocol. He was readmitted about 12 h after discharge with a history of central and left lower abdominal pain with palpable mass, and distension and fever (38°C. After imaging and laboratory studies the patient was submitted to explorative surgery with the suspicion of left colonic ischemia. After intraoperative confirmation we performed standard left hemicolectomy. The postoperative course was uneventful; the patient was discharged in good general condition on the 7th postoperative day. Actually, the patient is in follow-up, with normal coagulation and hemochromocytometric pattern, asymptomatic for hypercholesterolemia and atrial flutter/fibrillation. Complications relating to bowel during open techniques of hernia repair are limited to two situations: the freeing of an incarcerated or strangulated segment of bowel and inadvertent laceration of large bowel in the presence of a sliding hernia. Following this strange case of colonic ischemia, a boolean Medline search (terms: hernia, complication, repair, groin, herniorrhaphy, hernioplasty, all major MESH subjects without language restriction revealed no previous similar cases reported. However, to our knowledge, there is another trouble hypothesis: not causality but casualty. In conclusion, to our

  8. Assessment of the biological effects of 'strange' radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pryakhin, E.A.; Tryapitsina, G.A. [Chelyabinsk State University, Chelyabinsk (Russian Federation); Urutskoyev, L.I. [RECOM Company, Kurchatov Russian Research Institute, Moscow (Russian Federation); Akleyev, A.V. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation)

    2006-07-01

    The results from studies of the effects produced by electrical explosions of foils made from super pure materials in water point to the emergence of new chemical elements. An additional finding was the discharge of 'strange' radiation accompanying the transformation of chemical elements. However, currently, the mechanism involved in the interaction between 'strange' radiation and a substance or a biological entity remains obscure. Therefore, the aim of the present research is to investigate the biological effects of the 'strange' radiation. Pilot studies were performed at the RECOM RRC 'Kurchatov Institute' in April-May of 2004. The animals used in the experiment were female mice of C57Bl/6 line aged 80 days with body weight 16-18 g. The animals were exposed to radiation discharged during explosions of Ti foils in water and aqueous solutions. The cages with animals were placed at 1 m from the epicenter of the explosion. Explosions were carried out on the 19. (3 explosions), 20. (4 explosions) and 22. (3 explosions) of April, 2004 (explosions No1373 - No1382, respectively). The animals were assigned to 4 experimental groups comprised of 17-20 mice per group. The animals received experimental exposure within 1, 2 and 3 days of the experiment. In total, the experimental groups were exposed to 3, 7 and 10 explosions, respectively. In order to identify the biological reactions, the following parameters were estimated: number of nucleated cells in the bone marrow, number of CFU in the spleen after additional gamma-irradiation (6 Gy), cell composition of the bone marrow, the rate of erythrocytes with the different level of maturation in the bone marrow, the rate of erythrocytes with the micronuclei in the bone marrow, the reaction of bone marrow cells to additional gamma-irradiation (2 Gy), number of leucocytes in the peripheral blood, and cell composition of the peripheral blood. The following conclusions were drawn from these

  9. Test Wiseness and Analogy Test Performance

    Science.gov (United States)

    Moore, James C.

    1971-01-01

    Subjects received self instruction on how to approach analogy questions. Instruction was directed toward knowledge of the general format of analogy questions in standarized tests and the 15 types of relationships commonly asked for in analogy questions. An analogies post-test showed a significant effect for the group. (Author)

  10. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  11. Construction and characterization of an azurin analog for the purple copper site in cytochrome c oxidase.

    OpenAIRE

    Hay, M; Richards, J. H.; Lu, Y.

    1996-01-01

    A protein analog of a purple copper center has been constructed from a recombinant blue copper protein (Pseudomonas aeruginosa azurin) by replacing the loop containing the three ligands to the blue copper center with the corresponding loop of the CuA center in cytochrome c oxidase (COX) from Paracoccus denitrificans. The electronic absorption in the UV and visible region (UV-vis) and electron paramagnetic resonance (EPR) spectra of this analog are remarkably similar to those of the native CuA...

  12. All-optical analog comparator

    OpenAIRE

    Pu Li; Xiaogang Yi; Xianglian Liu; Dongliang Zhao; Yongpeng Zhao; Yuncai Wang

    2016-01-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical device...

  13. Silent Films and Strange Stories: Theory of Mind, Gender, and Social Experiences in Middle Childhood

    Science.gov (United States)

    Devine, Rory T.; Hughes, Claire

    2013-01-01

    In this study of two hundred and thirty 8- to 13-year-olds, a new "Silent Films" task is introduced, designed to address the dearth of research on theory of mind in older children by providing a film-based analogue of F. G. E. Happe's (1994) Strange Stories task. Confirmatory factor analysis showed that all items from both tasks loaded…

  14. Strange fireball as an explanation of the muon excess in Auger data

    Science.gov (United States)

    Anchordoqui, Luis A.; Goldberg, Haim; Weiler, Thomas J.

    2017-03-01

    We argue that ultrahigh-energy cosmic-ray collisions in Earth's atmosphere can probe the strange quark density of the nucleon. These collisions have center-of-mass energies ≳1 04.6A GeV , where A ≥14 is the nuclear baryon number. We hypothesize the formation of a deconfined thermal fireball which undergoes a sudden hadronization. At production the fireball has a very high matter density and consists of gluons and two flavors of light quarks (u , d ). Because the fireball is formed in the baryon-rich projectile fragmentation region, the high baryochemical potential damps the production of u u ¯ and d d ¯ pairs, resulting in gluon fragmentation mainly into s s ¯. The strange quarks then become much more abundant and upon hadronization the relative density of strange hadrons is significantly enhanced over that resulting from a hadron gas. Assuming the momentum distribution functions can be approximated by Fermi-Dirac and Bose-Einstein statistics, we estimate a kaon-to-pion ratio of about 3 and expect a similar (total) baryon-to-pion ratio. We show that, if this were the case, the excess of strange hadrons would suppress the fraction of energy which is transferred to decaying π0's by about 20%, yielding an ˜40 % enhancement of the muon content in atmospheric cascades, in agreement with recent data reported by the Pierre Auger Collaboration.

  15. Stability Analysis of Strange-Modes in Hot Massive Stars with Time-Dependent Convection

    CERN Document Server

    Sonoi, Takafumi

    2014-01-01

    We carry out a nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC). In envelopes of such stars, convective luminosity is not so dominant as that in envelopes of stars in the redder side of the classical instability strip. Around the Fe opacity bump, however, convection non-negligibly contributes to energy transfer. Indeed, instability of modes excited at the Fe bump is likely to be suppressed with TDC compared with the case of adopting the frozen-in convection approximation. But we make sure that unstable strange-modes certainly appear in hot massive stars even by taking into account TDC. We also examine properties of the strange-mode instability, which is related to destabilization of strange-modes without adiabatic counterparts. In this type of instability, the phase lag between density and pressure varies from 0 to $180^{\\circ}$ in an excitation zone unlike the case of the $\\kappa$-mechanism. In addition, we confirm by comparing models with $Z=0$ and $Z=0.02$ th...

  16. Strange and charm baryon masses with two flavors of dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Christaras, D; Drach, V; Gravina, M; Papinutto, M

    2012-01-01

    The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to $\\beta=3.9$, $\\beta=4.05$ and $\\beta=4.2$ with $r_0/a=5.22(2)$, $r_0/a=6.61(3)$ and $r_0/a=8.31(5)$ respectively. %spacings $a=0.0855(5)$ and $a=0.0667(3)$ determined from the pion decay constant. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.

  17. Radial pulsations of strange stars and the internal composition of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (La Plata Univ., Nacional (Argentina). Facultad de Ciencias Astronomicas y Geofisicas); Horvath, J.E. (Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico)

    1991-06-15

    We present calculations of radial oscillations of homogeneous strange stars, showing that the particular form of the equation of state allows some simple and general scaling relations which may prove to be very useful for the search of these objects. (author).

  18. Strange and charm baryon masses with two flavors of dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica

    2012-10-15

    The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.

  19. A mathematical explanation via "intelligent" PID controllers of the strange ubiquity of PIDs

    CERN Document Server

    Novel, Brigitte D'Andrea; Join, Cédric; Mounier, Hugues; Steux, Bruno

    2010-01-01

    The ubiquity of PID controllers in the industry has remained mysterious until now. We provide here a mathematical explanation of this strange phenomenon by comparing their sampling with the the one of "intelligent" PID controllers, which were recently introduced. Some computer simulations nevertheless confirm the superiority of the new intelligent feedback design.

  20. On Mature Reflection: "Strange Objects" and the Cultivation of Reflective Reading.

    Science.gov (United States)

    Heyde, Emma

    2000-01-01

    Examines Gary Crew's novel written for a young adult audience, called "Strange Objects," a story containing verifiable historical fact interwoven with elements of fiction and the supernatural. Shows how the numerous genres and viewpoints in the book challenge and contradict one another, forcing young readers to perform resistant readings…

  1. Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shaojun

    2007-03-15

    This thesis reports a new ''isoscalar'' measurement of {delta}s + {delta} anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of {delta}s + {delta} anti s only the spin asymmetry for K{sup 0}{sub s} A{sup K{sup 0}{sub s1,d}} (x,Q{sup 2}, z) and the inclusive asymmetry A{sub 1,d}(x,Q{sup 2}) are used. An accurate measurement of the total non-strange quark polarisation {delta}Q = {delta}u + {delta} anti u + {delta}d + {delta} anti d comes directly from A{sub 1,d}(x,Q{sup 2}). The fragmentation functions needed for a leading order (LO) extraction of {delta}S = {delta}s + {delta} anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)

  2. Multidimensional first and second order symmetric strang splitting for hyperbolic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kucharik, Milan [Los Alamos National Laboratory; Wendroff, Burton [Los Alamos National Laboratory

    2008-01-01

    We propose an algebraic basis for symmetric Strang splitting for first and second order accurate schemes for hyperbolic systems in N dimensions. Examples are given for two and three dimensions. Optimal stability is shown for symmetric systems. Lack of strong stability is shown for a non-symmetric example. Some numerical examples are presented for some Euler-like constant coefficient problems.

  3. Search for QGP and Thermal Freeze-out of Strange Hadrons

    OpenAIRE

    Torrieri, Giorgio; Rafelski, Johann

    2000-01-01

    After reviewing the observables of QGP we perform an analysis of m_T spectra of strange hadrons measured as function of centrality in 156AGeV Pb--Pb interactions. We show that there is a good agreement between the chemical and thermal freeze-out conditions, providing additional evidence for the formation and sudden disintegration of a supercooled QGP fireball.

  4. Are We Losing the Next Generation? A Strange Experience on a Poetry Course.

    Science.gov (United States)

    Holbrook, David

    1981-01-01

    Examining the attitudes and behaviors of his adolescent students in rural Yorkshire, the author finds in them a strange lack of respect for adults, which he attributes to disruptions of consciousness caused by the constant bombardment of pop music and television. Two other authors comment on pp128-30. (SJL)

  5. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-03-17

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

  6. Learning the spelling of strange words in Dutch benefits from regularized reading

    NARCIS (Netherlands)

    Bosman, A.M.T.; Hell, J.G. van; Verhoeven, L.T.W.

    2006-01-01

    In 2 experiments, the authors tested the effect of 2 types of reading on the spelling memory of strange or sound-spelling inconsistent words in Dutch students with and without learning disabilities: standard reading and regularized reading. Standard reading refers to reading the word the way it has

  7. Despina Hatzifotiadou: ALICE Master Class 1 - Theory: strange particles, V0 decays, invariant mass

    CERN Document Server

    CERN. Geneva

    2016-01-01

    This is the 1st of 4 short online videos. It contains an introduction to the first part of the exercise : what are strange particles, V0 decays, invariant mass. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples  Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spec...

  8. Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Paolo Castorina

    2014-01-01

    Full Text Available The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, e+e- and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than ≃0.5 fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark (q-antiquark (q̅ pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, T≃170 Mev, related to the quark acceleration, a, by T=a/2π. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration which dilutes the quark mass effect and the strangeness suppression almost disappears.

  9. Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene

    2004-01-01

    On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.

  10. Through the Looking Glass: What Happens When an Evaluator's Program Is Evaluated and Degrees of Strangeness.

    Science.gov (United States)

    Ryan, Alan G.; Baillie, Lynne E.

    1997-01-01

    Two articles present differing points of view on the evaluation of the development of a teacher education program. "Through the Looking Glass..." describes what happens when an evaluator becomes the evaluation client, and "Degrees of Strangeness" reports on the evaluator's findings and opinions. (SLD)

  11. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  12. A Strange Condition of Things: Alterity and Knowingness in Dickens' "David

    Science.gov (United States)

    Smith, Richard

    2013-01-01

    It is sometimes said that we are strangers to ourselves, bearers of internal alterity, as well as to each other. The profounder this strangeness then the greater the difficulty of giving any systematic account of it without paradox: of supposing that our obscurity to ourselves can readily be illuminated. To attempt such an account, in defiance of…

  13. The impact of s- anti s asymmetry on the strange electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ghasempour Nesheli, Ali [Islamic Azad University, Department of Physics, Shiraz Branch, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    The existence of the strange quark asymmetry in the nucleon sea has been indicated by both the experimental and theoretical analyses. Although it is well known that the s- anti s asymmetry is important for some processes in high-energy hadron collisions, it has also been indicated that it can be related to the strange Dirac form factor F{sub 1}{sup s}. In this work, we have studied the impact of s- anti s asymmetry and its uncertainty from various modern parton distribution functions (PDFs) on F{sub 1} {sup s} and compared the obtained results with the available experimental information. As a result, we found that the uncertainty in F{sub 1}{sup s}(t) due to the s(x) - anti s (x) distribution is rather large so that it dominates the model uncertainty at all values of the squared momentum transfer t. However, taking into account the uncertainties, the theoretical predictions of F{sub 1}{sup s}(t) are fully compatible with the estimate extracted from experiment. We concluded that the future accurate experimental data of the strange Dirac form factor might be used to put direct constraints on the strange content of the proton and reduce its uncertainty that has always been a challenge. (orig.)

  14. New indication on scaling properties of strangeness production in pp collisions at RHIC

    Science.gov (United States)

    Tokarev, M. V.; Zborovský, I.

    2017-02-01

    Experimental data on transverse momentum spectra of strange particles (KS0,K‑,K∗0,ϕ, Λ, Λ∗, Σ∗, Ξ‑, Ω) produced in pp collisions at s = 200GeV obtained by the STAR and PHENIX collaborations at RHIC are analyzed in the framework of z-scaling approach. The concept of the z-scaling is based on fundamental principles of self-similarity, locality, and fractality of hadron interactions at high energies. General properties of the data z-presentation are studied. Self-similarity of fractal structure of protons and fragmentation processes with strange particles is discussed. A microscopic scenario of constituent interactions developed within the z-scaling scheme is used to study the dependence of momentum fractions and recoil mass on the collision energy, transverse momentum and mass of produced inclusive particle, and to estimate the constituent energy loss. We consider that obtained results can be useful in study of strangeness origin, in searching for new physics with strange probes, and can serve for better understanding of fractality of hadron interactions at small scales.

  15. Evidence for the Strangeness-Changing Weak Decay Xi(-)(b) -> Lambda(0)(b)pi(-)

    NARCIS (Netherlands)

    Aaij, R.; Beteta, C. Abellan; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grunberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.

    2015-01-01

    Using a pp collision data sample corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb detector, we present the first search for the strangeness-changing weak decay Xi(-)(b) -> Delta(0)(b)pi(-). No b hadron decay of this type has been seen before. A signal for this decay, co

  16. Do the $P_c^+$ Pentaquarks Have Strange Siblings?

    CERN Document Server

    Lebed, Richard F

    2015-01-01

    The recent LHCb discovery of states $P_c^+(4380)$, $P_c^+(4450)$, believed to be $c\\bar c uud$ pentaquark resonances, begs the question of whether equivalent states with $c\\bar c \\to s\\bar s$ exist, and how they might be produced. The precise analogue to the $P_c^+$ discovery channel $\\Lambda_b \\to J/\\psi \\, K^- \\! p$, namely, $\\Lambda_c \\to \\phi \\pi^0 \\! p$, is feasible for this study and indeed is less Cabibbo-suppressed, although its limited phase space suggests that evidence of a $s\\bar s uud$ resonance $P_s^+$ would be confined to the kinematic endpoint region.

  17. Testing the hadronic spectrum in the strange sector

    CERN Document Server

    Parotto, Paolo

    2016-01-01

    Heavier resonances are continually being added to the hadronic spectrum from the Particle Data Group that follow an exponentially increasing mass spectrum. However, it has been suggested that even further states predicted from Quark Models are needed in the hadronic spectrum in order to improve the agreement between the hadron resonance gas model predictions and lattice QCD data. We find that the inclusion of such states with extrapolated branching ratios slightly decreases the freezeout temperature. To eliminate ambiguities, we introduce a first principle method to extract the freeze-out temperature for charged kaons from experimental data, which yields a lower bound of $T_{\\text{fo}} \\gtrsim $145 MeV for the highest collision energy at RHIC.

  18. Mathematical Analogy and Metaphorical Insight

    Science.gov (United States)

    Zwicky, Jan

    2010-01-01

    How are we to understand the power of certain literary metaphors? The author argues that the apprehension of good metaphors is importantly similar to the apprehension of fruitful mathematical analogies: both involve a structural realignment of vision. The author then explores consequences of this claim, drawing conceptually significant parallels…

  19. Geometrical Analogies in Mathematics Lessons

    Science.gov (United States)

    Eid, Wolfram

    2007-01-01

    A typical form of thinking to approach problem solutions humanly is thinking in analogous structures. Therefore school, especially mathematical lessons should help to form and to develop corresponding heuristic abilities of the pupils. In the contribution, a summary of possibilities of mathematics lessons regarding this shall particularly be…

  20. Schema Training in Analogical Reasoning.

    Science.gov (United States)

    Robins, Shani; Mayer, Richard E.

    1993-01-01

    In 3 experiments, 93, 97, and 86 college students, respectively, learned how to solve 20 verbal analogy problems and took transfer and memory tests. Results are inconsistent with active responding theory and further indicate that schema induction is maximized when the schemas are made salient and the cognitive system is not overloaded. (SLD)