WorldWideScience

Sample records for analog resonances strangeness

  1. Strange decays from strange resonances

    CERN Document Server

    Bijker, R

    2001-01-01

    We discuss the mass spectrum and strong decays of baryon resonances belonging to the N, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon. We find good overall agreement with the available data. Systematic discrepancies are found for lowlying S-wave states, in particular in the strong decays of N(1535), N(1650), Sigma(1750), Lambda(1405), Lambda(1670) and Lambda(1800).

  2. Missing strange resonances in Lattice QCD

    CERN Document Server

    Marczenko, Michał

    2016-01-01

    Recent Lattice QCD (LQCD) studies suggest that there are missing resonances in the strange sector of the Hadron Resonance Gas (HRG) model. By adopting the continuous Hagedorn mass spectrum, we present how different medium compositions influence the HRG predictions of conserved charge fluctuations. It is shown that missing strange resonances may be partially accounted for by applying the Hagedorn mass spectrum extracted from experimentally established hadrons. On the other hand, the strange-baryonic spectra, extracted from LQCD results for fluctuations, are found to be consistent with the unconfirmed states in the Particle Data Group (PDG) database, whilst the strange-mesonic spectrum points towards yet undiscovered states in the intermediate mass region.

  3. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    Energy Technology Data Exchange (ETDEWEB)

    Fabbietti, L. [e12, Physik Department Technische Universität München Excellence Cluster “Origin and Structure of the Universe” (Germany)

    2016-01-22

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N{sup *} resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c{sup 2} in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000){sup ++} are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  4. Classical analogy of Fano resonances

    International Nuclear Information System (INIS)

    We present an analogy of Fano resonances in quantum interference to classical resonances in the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective oscillators associated with propagating and evanescent waves. We illustrate this point by considering a classical system of two coupled oscillators and interfering electron waves in a quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a novel insight into Fano resonance physics and provides a helpful view in teaching Fano resonances

  5. Electroproduction of Baryon Resonances and Strangeness Suppression

    CERN Document Server

    Santopinto, E; Tecocoatzi, H Garcia

    2016-01-01

    We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...

  6. Can Doubly Strange Dibaryon Resonances be Discovered at RHIC?

    CERN Document Server

    Paganis, S D; Ray, R L; Tang, J L; Udagawa, T; Longacre, R S

    2000-01-01

    The baryon-baryon continuum invariant mass spectrum generated from ultrarelativistic nucleus + nucleus collision data may reveal the existence of doubly-strange dibaryons not stable against strong decay if they lie within a few MeV of threshold. Furthermore, since the dominant component of these states is a superposition of two color-octet clusters which can be produced intermediately in a color-deconfined quark-gluon plasma (QGP), an enhanced production of dibaryon resonances could be a signal of QGP formation. A total of eight, doubly-strange dibaryon states are considered for experimental search using the STAR detector (Solenoidal Tracker at RHIC) at the new Relativistic Heavy Ion Collider (RHIC). These states may decay to Lambda-Lambda and/or proton-Cascade-minus, depending on the resonance energy. STAR's large acceptance, precision tracking and vertex reconstruction capabilities, and large data volume capacity, make it an ideal instrument to use for such a search. Detector performance and analysis sensit...

  7. Nucleon Resonances in Meson Nucleon Scattering with Strangeness Production

    OpenAIRE

    Waluyo, A.; Bennhold, C.; Haberzettl, H.; Penner, G.; Mosel, U.; Mart, T.

    2000-01-01

    An effective Lagrangian model in a coupled channels framework is applied to extract nucleon resonance parameters. In the K-matrix approximation, we simultaneously analyze all the available data for the transitions from pi N to five possible meson-baryon final states, pi N, pipi N, eta N, K Lambda, and KSigma, in the energy range from pi N threshold up to W = 2 GeV. In this work, we focus our efforts on the K Sigma channel. In particular, we include a set of Delta resonances around 1900 MeV: t...

  8. Energy dependence of barKN interactions and resonance pole of strange dibaryons

    OpenAIRE

    Ikeda, Yoichi; Kamano, Hiroyuki; Sato, Toru

    2010-01-01

    We study the resonance energy of the strange dibaryons using two models with the energy-independent and energy-dependent potentials for the s-wave barKN interaction, both of which are derived by certain reductions from the leading order term of the effective chiral Lagrangian. These potential models produce rather different off-shell behaviors of the two-body barKN - piSigma amplitudes in I=0 channel, i.e., the model with energy-independent (energy-dependent) potential predicts one (two) reso...

  9. Resonances and fluctuations of strange particle in 200 GeV Au-Au collisions

    CERN Document Server

    Torrieri, G

    2006-01-01

    We perform an analysis of preliminary data on strange particles yields and fluctuations within the Statistical hadronization model. We begin by describing the theoretical disagreements between different statistical models currently on the market. We then show how the simultaneous analysis of yields and fluctuations can be used to differentiate between the different models, and determine if one of them can be connected to underlying physics. We perform a study on a RHIC 200 GeV data sample that includes stable particles, resonances, and the event-by-event fluctuation of the $K/\\pi$ ratio. We show that the equilibrium statistical model can not describe the fluctuation, unless an unrealistically small volume is assumed. Such small volume then makes it impossible to describe the total particle multiplicity. The non-equilibrium model,on the other hand, describes both the $K/\\pi$ fluctuation and yields acceptably due to the extra boost to the $\\pi$ fluctuation provided by the high pion chemical potential. $\\Lambda(...

  10. Heavy baryonic resonances, multi strange hadrons and equilibration at SIS18 energies

    CERN Document Server

    Steinheimer, J; Becattini, F; Stock, R; Bleicher, M

    2016-01-01

    We study the details and time dependence of particle production in nuclear collisions at a fixed target beam energy of $E_{\\mathrm{lab}}= 1.76$ A GeV with the UrQMD transport model. We find that the previously proposed production mechanism for multi strange hadrons, $\\phi$ and $\\Xi$, are possible due to secondary interactions of incoming nuclei of the projectile and target with already created nuclear resonances, while the Fermi momenta of the nuclei play only a minor role. We also show how the centrality dependence of these particle multiplicities can be used to confirm the proposed mechanism, as it strongly depends on the number of participants in the reaction. Furthermore we investigate the time dependence of particle production in collisions of Ca+Ca at this beam energy, in order to understand the origins of the apparent chemical equilibration of the measured particle yields. We find that indeed the light hadron yields appear to be in equilibrium already from the very early stage of the collision while in...

  11. Production rates of strange vector mesons at the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Dima, M.O.

    1997-05-01

    This dissertation presents a study of strange vector meson production, {open_quotes}leading particle{close_quotes} effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z{sup 0}. The measurements were performed in e{sup +}e{sup -} collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of {phi} and K*{sup 0} and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*{sup 0} production is studied separately in these samples, and the results show evidence for the {open_quotes}leading particle{close_quotes} effect. The difference between K*{sup 0} production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.

  12. Strange matter at finite temperatures

    International Nuclear Information System (INIS)

    The properties of strange quark matter at finite temperatures and in equilibrium with respect to weak interaction are explored on the basis of the MIT bag model picture of QCD. Furthermore, to determine the stability of strange quark matter analogous investigations are also performed for nuclear matter within Walecka's model field theory. It is found that strange quark matter can be stable at zero external pressure only for temperatures below 20 MeV. (orig.)

  13. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  14. Study of leading strange meson resonances and spin-orbit splittings in K-p → K-π+n at 11 GeV/c

    International Nuclear Information System (INIS)

    The results from a high-statistics study of Kπ elastic scattering in the reaction K-p → K-π+n are presented. The data for this analysis are taken from an 11-GeV/c K-p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K-π+ events, a sample consisting of data for the Kπ → Kπ elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1- K*(895), the 2+ K*(1430), and the 3- K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4- K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0+ kappa (1490) and propose the existence of a second scalar meson resonance, the 0+ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables

  15. Study of $^{13}$Be through isobaric analog resonances in the Maya active target

    CERN Multimedia

    Riisager, K; Orr, N A; Jonson, B N G; Raabe, R; Fynbo, H O U; Nilsson, T

    We propose to perform an experiment with a $^{12}$Be beam and the Maya active target. We intend to study the ground state of $^{13}$Be through the population of its isobaric analog resonance in $^{13}$B. The resonance will be identified detecting its proton- and neutron-decay channels.

  16. Formation of a narrow baryon resonance with positive strangeness in K^+ collisions with Xe nuclei

    CERN Document Server

    Barmin, V V; Borisov, V S; Curceanu, C; Davidenko, G V; Dolgolenko, A G; Guaraldo, C; Kubantsev, M A; Larin, I F; Matveev, V A; Shebanov, V A; Shishov, N N; Sokolov, L I; Tumanov, G K; Verebryusov, V S

    2009-01-01

    The data on the charge-exchange reaction K^+Xe --> K^0 p Xe, obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK^0 resonance with mass near 1538 MeV is confirmed and reinforced. The statistical significance of the signal reaches some 8\\sigma (6\\sigma) when estimated as S/\\sqrt{B} (S/\\sqrt{B+S}). The mass and intrinsic width of the \\Theta^+ baryon are measured as m = (1538+-2) MeV and \\Gamma = (0.39+-0.10) MeV.

  17. Strangeness production from pp collisions

    CERN Document Server

    Zou, Bing-Song

    2009-01-01

    The study of the strangeness production from pp collisions plays important roles in two aspects: exploring the properties of baryon resonances involved and understanding the strangeness production from heavy ion collisions to explore the properties of high energy and high density nuclear matter. Here we review our recent studies on several most important channels for the strangeness production from pp collisions. The previously ignored contributions from Delta*(1620) and N*(1535) resonances are found to play dominant role for the pp --> n K+ Sigma+, pp --> pK+ Lambda and pp --> pp phi reactions near-thresholds. These contributions should be included for further studies on the strangeness production from both pp collisions and heavy ion collisions.

  18. Strange Assemblage

    Directory of Open Access Journals (Sweden)

    David Robert Cole

    2014-08-01

    Full Text Available This paper contends that the power of Deleuze & Guattari’s (1988 notion of assemblage as theorised in 1000 Plateaus can be normalised and reductive with reference to its application to any social-cultural context where an open system of dynamic and fluid elements are located. Rather than determining the assemblage in this way, this paper argues for an alternative conception of ‘strange assemblage’ that must be deliberately and consciously created through rigorous and focused intellectual, creative and philosophical work around what makes assemblages singular. The paper will proceed with examples of ‘strange assemblage’ taken from a film by Peter Greenaway (A Zed and 2 Noughts; the film ‘Performance’; educational research with Sudanese families in Australia; the book, Bomb Culture by Jeff Nuttall (1970; and the band Hawkwind. Fittingly, these elements are themselves chosen to demonstrate the concept of ‘strange assemblage’, and how it can be presented. How exactly the elements of a ‘strange assemblage’ come together and work in the world is unknown until they are specifically elaborated and created ‘in the moment’. Such spontaneous methodology reminds us of the 1960s ‘Happenings’, the Situationist International and Dada/Surrealism. The difference that will be opened up by this paper is that all elements of this ‘strange assemblage’ cohere in terms of a rendering of ‘the unacceptable.'

  19. Strangeness s = -6 dibaryon

    OpenAIRE

    Lian-Rong, Dai; Zong-Ye, Zhang; You-Wen, Yu

    2006-01-01

    The structure of $(\\Omega\\Omega)_{0^+}$ dibaryon with strangeness $s=-6$ is studied in the extended chiral SU(3) quark model, in which vector meson exchange dominates the short range interaction. The resonating group method (RGM) is adopted, in which the $\\Omega\\Omega$ and $CC$ (hidden color) channels are involved. The color screening effect and the effects of mixing of scalar mesons on $(\\Omega\\Omega)_{0^+}$ are also investigated.

  20. Is Strangeness Chemically Equilibrated?

    CERN Document Server

    Cleymans, J

    2010-01-01

    Results related to the possible chemical equilibration of hadrons in heavy ion collisions are reviewed. Overall the evidence is very strong with a few clear and well-documented deviations, especially concerning multi-strange hadrons. Two effects are considered in some detail. Firstly, the neglect of (possibly an infinite number) of heavy resonances is investigated with the help of the Hagedorn model. Secondly, possible deviations from the standard statistical distributions are investigated by considering in detail results obtained using the Tsallis distribution.

  1. Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators.

    Science.gov (United States)

    Yang, Lin; Ding, Jianfeng; Chen, Qiaoshan; Zhou, Ping; Zhang, Fanfan; Zhang, Lei

    2014-10-01

    We propose an N-bit optical digital-to-analog converter based on silicon microring resonators (MRRs), which can transform an N-bit electrical digital signal to an optical analog signal. A 3-bit optical digital-to-analog convertor is fabricated as proof of concept through a CMOS-compatible process on a silicon-on-insulator platform. The silicon MRRs are modulated through the electric-field-induced carrier injection in forward biased PN junctions embedded in the ring waveguides. The electro-optical 3-dB bandwidths of the silicon MRRs are approximately 800 MHz. The device works well at a speed of 500  MSample/s under driving voltage swings of 0.75 V. PMID:25360972

  2. Signal modulating noise effect in bistable stochastic resonance systems and its analog simulation

    Institute of Scientific and Technical Information of China (English)

    XIAO Fang-hong; YAN Gui-rong; XIE Shi-cheng

    2006-01-01

    The effect of signal modulating noise in bistable stochastic resonance systems was studied theoretically and experimentally. A mathematical analysis was made on the bistable stochastic resonance model with small system parameters. An analogue circuit was designed to perform the effect. The effect of signal modulating noise was shown in the analog simulation experiment. The analog experiment was conducted for two sinusoidal signals with different frequencies. The results show that there are a sinusoidal component corresponding to the input sinusoidal signal and a noise component presented as a Wiener process corresponding to the input white noise in the system output. By properly selecting system parameters, the effect of signal modulating noise can be manifested in the system output.

  3. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. High Precision Dielectric Permittivity Measurements of Planetary Regolith analogs Using A Split-Cylinder Resonator

    Science.gov (United States)

    Tsai, C. A.; Boivin, A.; Ghent, R. R.; Daly, M. G.; Bailey, R. C.

    2014-12-01

    Complex relative permittivity is essential for quantitative interpretation of radar data in remote sensing of planetary surfaces. The real part determines the speed of the electromagnetic waves, while the imaginary part is related to the penetration depth. This project is part of NASA's OSIRIS-REx asteroid sample return mission. Radar is an important tool for asteroid investigation, particularly for detecting and characterizing regolith; but without robust knowledge of dielectric properties, these data cannot be used to their greatest advantage. Here, we present preliminary measurements of complex relative permittivity using the split-cylinder resonator method at 10 GHz. Resonant cavity methods utilize the difference in resonant frequency between an empty cavity and a cavity containing a sample to calculate relative permittivity and loss tangent of the sample, at higher precision than is possible with other methods. We use these split-cylinder measurements of solid samples at a single frequency in conjunction with companion broadband (300 MHz to 14 GHz) measurements of powders. Our goal is to establish a "parameter space" that characterize the effects of various factors such as water content, frequency, and the relative abundances of mineralogical and elemental constituents such as iron and titanium on complex relative permittivity of geological materials that might represent good analogs for the regolith of Bennu, OSIRIS-REx's target asteroid. Our results will also provide a database for future asteroid exploration with radar.

  5. Search for non-strange dibaryons

    Indian Academy of Sciences (India)

    Arun K Jain

    2006-05-01

    Inspite of tremendous interest there has been sporadic searches for dibaryon resonances in the past few decades. The main hurdle one faces in this search is their identification, their signature and practically no guide to their location. With the identification of the pentaquark-+ resonance one is encouraged to look for the discovery of strange dibaryons also. However where and how to look for non-strange dibaryons is not clear. The transition from a bipolar to a unipolar non-strange dibaryon may possibly be seen in the (, 2) reactions on heavy nuclei. The change of the finite size of the $p-p$ interaction vertex can be identified as a sudden change in the extracted DWIA spectroscopic factor. The DWIA anomalies are to be searched for in the existing (, 2) reaction data for the identification of non-strange dibaryons.

  6. Optical Analog-to-digital Conversion Scheme Based on Tunable Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2007-01-01

    Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.

  7. Anti-analog giant dipole resonances and the neutron skin of nuclei

    International Nuclear Information System (INIS)

    We examine a method to determine the neutron-skin thickness of nuclei using data on the charge-exchange anti-analog giant dipole resonance (AGDR). Calculations performed using the relativistic proton–neutron quasiparticle random-phase approximation (pn-RQRPA) reproduce the isotopic trend of the excitation energies of the AGDR, as well as that of the spin-flip giant dipole resonances (IVSGDR), in comparison to available data for the even–even isotopes 112–124Sn. It is shown that the excitation energies of the AGDR, obtained using a set of density-dependent effective interactions which span a range of the symmetry energy at saturation density, supplemented with the experimental values, provide a stringent constraint on value of the neutron-skin thickness. For 124Sn, in particular, we determine the value ΔRpn=0.21±0.05 fm. The result of the present study shows that a measurement of the excitation energy of the AGDR in (p,n) reactions using rare-isotope beams in inverse kinematics, provides a valuable method for the determination of neutron-skin thickness in exotic nuclei

  8. Strange baryonic resonances below the anti KN threshold. Results from p+p reactions at the HADES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Siebenson, Johannes Stephan

    2013-04-18

    The present work investigates the vacuum properties of the hyperon resonances {Sigma}(1385){sup +} and {Lambda}(1405). For this purpose, p+p reactions at 3.5 GeV kinetic beam energy were analyzed. By using simulations and a special background method, the Breit-Wigner mass and width of the {Sigma}(1385){sup +} could be determined. Furthermore, its production dynamics were studied in different angular distributions. In this context indications were found that the {Sigma}(1385){sup +} partially stems from the decay of a heavy {Delta}-resonance. The investigation of the {Lambda}(1405) was based on similar analysis methods. After acceptance and efficiency corrections, the spectral shape of the {Lambda}(1405) could be extracted. Here a mass shift of this particle to masses below 1400 MeV/c{sup 2} was found. This might reveal important information about the two pole structure of the {Lambda}(1405) and its influence on the low energy anti KN interaction.

  9. Further evidence for formation of a narrow baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    CERN Document Server

    Barmin, V V; Borisov, V S; Curceanu, C; Davidenko, G V; Dolgolenko, A G; Guaraldo, C; Kubantsev, M A; Larin, I F; Matveev, V A; Shebanov, V A; Shishov, N N; Sokolov, L I; Tumanov, G K

    2007-01-01

    A narrow pKo resonance with mass of 1537 +- 2 MeV/c^2 has been observed in the charge-exchange reaction K+n->KoP on a neutron bound in the Xenon nucleus. Visible width of the peak is consistent with being entirely due to instrumental smearing and allows to place an upper limit on intrinsic width Gamma KoP on a bound neutron.

  10. Canonical Strangeness Enhancement

    CERN Document Server

    Sollfrank, J; Redlich, Krzysztof; Satz, Helmut

    1998-01-01

    According to recent experimental data and theoretical developments we discuss three distinct topics related to strangeness enhancement in nuclear reactions. We investigate the compatibility of multi-strange particle ratios measured in a restricted phase space with thermal model parameters extracted recently in 4pi. We study the canonical suppression as a possible reason for the observed strangeness enhancement and argue that a connection between QGP formation and the undersaturation of strangeness is not excluded.

  11. Strangeness At Extremes

    CERN Document Server

    Tolos, Laura; Khemchandani, Kanchan; Martinez-Torres, Alberto; Bratkovskaya, Elena; Aichelin, Joerg; Nielsen, Marina; Navarra, Fernando S

    2015-01-01

    We study the properties of strange mesons in vacuum and in the hot nuclear medium within unitarized coupled-channel effective theories. We determine transition probabilities, cross sections and scattering lengths for strange mesons. These scattering observables are of fundamental importance for understanding the dynamics of strangeness production and propagation in heavy-ion collisions.

  12. Isobaric analog states of neutron-rich nuclei. Doppler shift as a measurement tool for resonance excitation functions

    International Nuclear Information System (INIS)

    We present a new approach for the measurement of resonance excitation functions of neutron-rich nuclei using Doppler shift information. Preliminary data from the first application of the method is presented in the spectroscopy studies of 7He isobaric analog states in 7Li. (orig.)

  13. Weak Strangeness and Eta Production

    CERN Document Server

    Alam, M Rafi; Alvarez-Ruso, Luis; Simo, I Ruiz; Vacas, M J Vicente; Singh, S K

    2013-01-01

    We have studied strange particle production off nucleons through $\\Delta S =0 $ and $|\\Delta S| = 1$ channels, and specifically single kaon/antikaon, eta, associated particle production for neutrino/antineutrino induced processes as well as antineutrino induced single hyperon production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangians. The basic parameters of the model are $f_\\pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $\\Sigma^*(1385)$ resonance and for eta production $S_{11}(1535)$ and $S_{11}(1650)$ resonances are included.

  14. Superbursts from Strange Stars

    CERN Document Server

    Page, D; Page, Dany; Cumming, Andrew

    2005-01-01

    Recent models of carbon ignition on accreting neutron stars predict superburst ignition depths that are an order of magnitude larger than observed. We explore a possible solution to this problem, that the compact stars in low mass X-ray binaries that have shown superbursts are in fact strange stars with a crust of normal matter. We calculate the properties of superbursts on strange stars, and the resulting constraints on the properties of strange quark matter. We show that the observed ignition conditions exclude fast neutrino emission in the quark core, for example by the direct Urca process, which implies that strange quark matter at stellar densities should be in a color superconducting state. For slow neutrino emission in the quark matter core, we find that reproducing superburst properties requires a definite relation between three poorly constrained properties of strange quark matter: its thermal conductivity, its slow neutrino emissivity and the energy released by converting a nucleon into strange quar...

  15. Strangeness in hadronic interactions

    CERN Document Server

    Paul, S

    2000-01-01

    Strangeness has always been an important subject at all PANIC conferences as it probably constitutes the best link between particle and nuclear physics. I will thus use the theme of the conference by considering strangeness as a tourist through the world of strong interaction. During this talk we will accompany strangeness from production, to the royaume of mesons and baryons up to the complex world of nuclei.

  16. Strange quark matter

    International Nuclear Information System (INIS)

    We investigate the properties of multi-strange baryonic systems, comparing conventional many -- Λ hypernuclei, where the strange quarks are localized in individual hyperons, to ''strangelets'' or chunks of strange matter, which involves delocalized quarks which roam in a single large bag. Mass formulae and strong/weak decay modes for such objects are discussed, as well as the prospects for producing multi-strange systems in relativistic heavy ion collisions. For production, we consider two extremes, one based on the coalescence model and another which assumes the formation of quark-gluon-plasma. We mention the experimental searches which are underway or planned, using heavy ion beams

  17. Strange and charm mesons at FAIR

    CERN Document Server

    Tolos, L; Gamermann, D; Garcia-Recio, C; Molina, R; Nieves, J; Oset, E; Ramos, A

    2009-01-01

    We study the properties of strange and charm mesons in hot and dense matter within a self-consistent coupled-channel approach for the experimental conditions of density and temperature expected for the CBM experiment at FAIR/GSI. The in-medium solution at finite temperature accounts for Pauli blocking effects, mean-field binding of all the baryons involved, and meson self-energies. We analyze the behaviour in this hot and dense environment of dynamically-generated baryonic resonances together with the evolution with density and temperature of the strange and open-charm meson spectral functions. We test the spectral functions for strange mesons using energy-weighted sum rules and finally discuss the implications of the properties of charm mesons on the D_{s0}(2317) and the predicted X(3700) scalar resonances.

  18. Strangeness in nuclear physics

    CERN Document Server

    Gal, A; Millener, D J

    2016-01-01

    Extensions of nuclear physics to the strange sector are reviewed, covering data and models of Lambda and other hypernuclei, multi-strange matter, and anti-kaon bound states and condensation. Past achievements are highlighted, present unresolved problems discussed, and future directions outlined.

  19. Bottom-strange mesons in hyperonic matter

    CERN Document Server

    Pathak, Divakar

    2014-01-01

    The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of $B_S^0$ and ${\\bar B}_S^0$ mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium...

  20. An investigation of the influence of the pairing correlations on the properties of the isobar analog resonances in = 208 nuclei

    Indian Academy of Sciences (India)

    A Küçükbursa; D I Salamov; T Babacan; H A Aygör

    2004-11-01

    Within the quasi-particle random phase approximation (QRPA), the method of the self-consistent determination of the isovector effective interaction which restores a broken isotopic symmetry for the nuclear part of the Hamiltonian is given. The effect of the pairing correlations between nucleons on the following quantities were investigated for the = 208 nuclei: energies of the isobar analog 0+ states, the isospin admixtures in the ground state of the even–even nuclei, and the differential cross-section for the 208Pb(3He,)208Bi reaction at E(3He) = 450 MeV. Both couplings of the excitation branches with z = 0 ± 1, and the analog state with isovector monopole resonance (IVMR) in the quasi-particle representation were taken into account in our calculations. As a result of these calculations, it was seen that the pairing correlations between nucleons have no considerable effect on the = 23 isospin admixture in the ground state of the 208Pb nucleus, and they cause partially an increase in the isospin impurity of the isobar analog resonance (IAR). It was also established that these correlations have changed the isospin structure of the IAR states, and shifted the energies of the IVMR states to the higher values.

  1. Recurrences of strange attractors

    Indian Academy of Sciences (India)

    E J Ngamga; A Nandi; R Ramaswamy; M C Romano; M Thiel; J Kurths

    2008-06-01

    The transitions from or to strange nonchaotic attractors are investigated by recurrence plot-based methods. The techniques used here take into account the recurrence times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize. The performance of these techniques is shown for the Heagy-Hammel transition to SNAs and for the fractalization transition to SNAs for which other usual nonlinear analysis tools are not successful.

  2. [Through strangeness to oneself].

    Science.gov (United States)

    Sorgedrager, D B

    1993-11-01

    "Being strange" as opposed to "being oneself" is part of the thinking in all cultures. Belonging to a given culture is actually defined by ones identity and by "being oneself". Both concepts--"being oneself" or "being strange"--are rational and related constructs. Whatever they are confronted with, for most human beings it is self-evident to differentiate between subject and object, between "being oneself" or "being strange". This explains why thinking often occurs in opposites or polarities, as an either/or. All "being strange" has its origins in one's own self. "Being strange" becomes most obvious when persons, gestalt or cultures strongly deviate from one's own familiar situation. It is part of man's disposition to be cautious, suspicious of and at distance from everything considered strange and different. That explains his xenophobia feelings and actions. Behind this attitude we can always discover one's wish to preserve the familiar beliefs--combined with an uneasiness to give up one's thinking and behaviour that is proven and routine. It is only by reflecting on our own culture and our own inheritance that we have the possibility to come to terms with our own ethnic identity and foreign behavioral patterns. If we do not try to understand other cultures while keeping our own cultural identity, tensions and violent conflicts will inevitably result. PMID:8278564

  3. Elastic and inelastic scattering of polarized protons from lead-206 and lead-208 near isobaric analog resonances

    International Nuclear Information System (INIS)

    Excitation functions have been measured for elastic scattering of polarized protons from 206Pb and 208Pb, and for inelastic scattering to collective states in 206Pb (2+, 0.8033 MeV; 3-, 2.647 MeV) and 208Pb (3-, 2.6145 MeV). Both differential cross sections and analyzing powers were measured at theta/sub lab/ = 1200, 1350, 1500, and 1650, for E/sub p/ = 14.25 to 18 MeV. Fits to the excitation-function data were obtained using scattering amplitudes consisting of sums of resonant and non-resonant parts. The resonances are the isobaric analogs (IARs) of 7 low-lying states in 209Pb and 35 in 207Pb. The fits to the elastic-scattering data are excellent; for the inelastic scattering the fit is very good for the 2+ state but only fair for the 3- states. For each IAR, the energy, the total width, and the partial width and mixing phase in each channel were obtained. Also, new spin assignments were made for a number of parent states in 207Pb. The theory of Bund and Blair was used to find the spectroscopic amplitudes, which provide information on the wave functions for the parent states in 207Pb and 209Pb and for the 3- states in 206Pb and 208Pb. These spectroscopic amplitudes were then checked for internal consistency and compared with the results of other experiments and with theoretical predictions

  4. Strange Weak Values

    CERN Document Server

    Hosoya, Akio

    2010-01-01

    We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.

  5. Strange Pentaquark Hadrons in Statistical Hadronization

    OpenAIRE

    Letessier, J.; Torrieri, G.; Steinke, S.; Rafelski, J.

    2003-01-01

    We study, within the statistical hadronization model, the influence of narrow strangeness carrying baryon resonances (pentaquarks) on the understanding of particle production in relativistic heavy ion collisions. There is a great variation of expected yields as function of heavy ion collision energy due to rapidly evolving chemical conditions at particle chemical freeze-out. At relatively low collision energies, these new states lead to improvement of statistical hadronization fits.

  6. A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment

    Science.gov (United States)

    Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.

    2015-04-01

    We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.

  7. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems

    Science.gov (United States)

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 105. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications. PMID:27463720

  8. A Fat strange Repeller

    Institute of Scientific and Technical Information of China (English)

    申影; 何阅; 姜玉梅; 何大韧

    2004-01-01

    This article reports an observation on a fat strange repeller, which appears after a characteristic crisis observed in a kicked rotor subjected to a piecewise continuous force field. The discontinuity border in the definition range of the two-dimensional mapping, which describes the system, oscillates as the discrete time develops. At a threshold of a control parameter a fat chaotic attractor suddenly transfers to a fat transient set. The strange repeller, which appears after the crisis, is also a fat fractal. This is the reason why super-transience happens

  9. Constraints on the Neutron Skin and the Symmetry Energy from the Anti-analog Giant Dipole Resonance in 208Pb

    CERN Document Server

    Cao, L G; Colo', G; Sagawa, H

    2015-01-01

    We investigate the impact of the neutron-skin thickness Delta(R) on the energy difference between the anti-analog giant dipole resonance (AGDR), E(AGDR), and the isobaric analog state (IAS), E(IAS), in a heavy nucleus such as 208Pb. For guidance, we first develop a simple and analytic, yet physical, approach based on the Droplet Model that linearly connects the energy difference E(AGDR)-E(IAS) with Delta(R). To test this correlation on more fundamental grounds, we employ a family of systematically varied Skyrme energy density functionals where variations on the value of the symmetry energy at saturation density J are explored. The calculations have been performed within the fully self consistent Hartree-Fock (HF) plus charge-exchange random phase approximation (RPA) framework. We confirm the linear correlation within our microscopic apporach and, by comparing our results with available experimental data in 208Pb, we find that our analysis is consistent with Delta(R) = 0.204 \\pm 0.009 fm, J = 31.4 \\pm 0.5 MeV ...

  10. Neutrino Oscillation from Magnetized Strange Stars

    CERN Document Server

    Fraija, Nissim

    2014-01-01

    Strange-quark matter (SQM) is a likely candidate of the ground state of nuclear matter. Along with many other equations of state (EoSs), SQM seemed to be severely constrained by the recent discoveries of the 1.97 $M_\\odot$ PSR J1614-2230 and the 2.01 $M_\\odot$ PSR J0348+0432. However with new, $O(\\alpha_c^2)$, perturbative calculations, SQM seems to be able to accommodate masses as large as $\\sim 2.75 M_\\odot$. The literature of SQM stars or strange stars includes estimates of internal magnetic fields as large as $10^{20}$ G, which are unlikely to be formed as they would require $\\sim 10^{57}$ erg to be produced. Nonetheless, if strange stars may hold magnetar-strength fields ($10^{15}$ G), their internal fields are likely to reach magnetic fields as large as $10^{17}$ G. We consider neutrinos with energies of some MeV and oscillation parameters from solar, atmospheric and accelerator experiments. We study the possibility of resonant oscillation of neutrinos in strange stars.

  11. Separate chemical freeze-outs of strange and non-strange hadrons and problem of residual chemical non-equilibrium of strangeness in relativistic heavy ion collisions

    CERN Document Server

    Bugaev, K A; Sagun, V V; Ivanytskyi, A I; Cleymans, J; Mironchuk, E S; Nikonov, E G; Taranenko, A V; Zinovjev, G M

    2016-01-01

    We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $\\gamma_{s}$ factor which accounts for the remaining strange particle non-equilibration. Within suggested approach the parameters of two chemical freeze-outs are connected by the conservation laws of entropy, baryonic charge, third isospin projection and strangeness. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with $\\chi^2/dof \\simeq 0.93$. A special attention is paid to a successful description of the Strangeness Horn. The well-known problem of selective suppression of $\\bar \\Lambda $ and $\\bar \\Xi$ hyperons is also discussed. The main result is that for all collision energies the $\\gamma_{s}$ factor is about 1 within the error bars, except for the center of mass collision energy 7.6 GeV at which we find about 20\\% enhancement of strangeness. Als...

  12. Calculation of Regge trajectories of strange resonances and identification of the K0*(800) as a non-ordinary meson

    CERN Document Server

    Peláez, J R

    2016-01-01

    We review how the Regge trajectory of an elastic resonance can be obtained just from its pole position and coupling, using a dispersive formalism. This allows us to deal correctly with the finite widths of resonances in Regge trajectories. In this way we can calculate the Regge trajectories for the $K^*(892)$, $K_1(1400)$ and $K^*_0(1430)$, obtaining ordinary linear Regge trajectories, expected for $q \\bar q$ resonances. In contrast, for the $K^*_0(800)$ meson, the resulting Regge trajectory is non-linear and with much smaller slope, strongly supporting its non-ordinary nature.

  13. Strangeness at finite temperature from Lattice QCD

    CERN Document Server

    Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2016-01-01

    The precision reached by recent lattice QCD results allows for the first time to investigate whether the measured hadronic spectrum is missing some additional strange states, which are predicted by the Quark Model but have not yet been detected. This can be done by comparing some sensitive thermodynamic observables from lattice QCD to the predictions of the Hadron Resonance Gas model (with the inclusion of decays [3]). We propose a set of specific observables, defined as linear combinations of conserved charge fluctuations, which allow to investigate this issue for baryons containing one or more strange quarks separately. Applications of these observables to isolate the multiplicity fluctuations of kaons from lattice QCD, and their comparison with the experimental results, are also discussed.

  14. Strangeness Production in AA and pp Collisions

    CERN Document Server

    Satz, P Castorina ad H

    2016-01-01

    Boost-invariant hadron production in high energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ($pp$, $e^+e^-$) below LHC energies. In contrast, the space-time superposition of individual collisions in high energy heavy ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we det...

  15. Explosion of strange attractors exhibited by Duffing's equation

    International Nuclear Information System (INIS)

    Recently chaotic behavior in deterministic systems attracts attention of researchers in various fields. By using analog and digital computers, the author has long been engaged himself in the investigation on this kind of motion exhibited by Duffing's equation and has called the phenomenon the chaotically transitional process. The chaotically transitional process is attributed to both the small uncertain factors in the physical system and the global structure of the solutions of the equation. This paper also deals with chaotically transitional processes exhibited by Duffing's equation. The results obtained in the series of our reports and the unsolved problems developed from them are summarized. Special attention is directed towards the transition of the processes under the variation of the system parameter. The explosion of the strange attractor, i.e., an interesting type of transition from strange to strange attractor has been made clear. (author)

  16. Strangeness production in AA and pp collisions

    Science.gov (United States)

    Castorina, Paolo; Satz, Helmut

    2016-07-01

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ( pp , e^+e^- below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.

  17. Algebraic Models of Hadron Structure; 2, Strange Baryons

    CERN Document Server

    Bijker, R; Leviatan, A

    2000-01-01

    The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.

  18. Strange baryon resonance production in $\\sqrt{s_{NN}} = 200$ GeV $p+p$ and $Au+Au$ collisions

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta-Majumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Gaudichet, L; Ghazikhanian, V; Ghosh, P; González, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutíerrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; La Pointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimansky, S S; ESichtermann; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van, G; Buren; Van der Kolk, N; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2006-01-01

    We report the measurements of $\\Sigma (1385)$ and $\\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the transverse momentum spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

  19. Strangeness in the proton

    Science.gov (United States)

    Alberg, Mary

    2014-03-01

    Both perturbative and non-perturbative mechanisms contribute to strangeness in the proton sea. We have developed a hybrid model in which non-perturbative contributions are calculated in a meson cloud model which expands the proton in terms of meson-baryon states, and perturbative contributions are calculated in a statistical model which expands the proton in terms of quark-gluon states. The perturbative contributions are represented in the parton distributions of the ``bare'' hadrons in the meson cloud. We compare our results to the recent experimental data of ATLAS and HERMES. This research has been supported in part by NSF Award 1205686.

  20. Nucleon Strangeness and Unitarity

    OpenAIRE

    Musolf, M. J.; Hammer, H. -W.; D. Drechsel(Institut f. Kernphysik, Mainz)

    1996-01-01

    The strange-quark vector current form factors of the nucleon are analyzed within the framework of dispersion relations. Particular attention is paid to contributions made by $K\\bar{K}$ intermediate states to the form factor spectral functions. It is shown that, when the $K\\bar{K}\\to N\\bar{N}$ amplitude is evaluated in the Born approximation, the $K\\bar{K}$ contributions are identical to those arising from a one-loop calculation and entail a serious violation of unitarity. The mean square stra...

  1. Strangeness production in proton-proton and proton-nucleus collisions

    OpenAIRE

    Shyam, Radhey

    2005-01-01

    In these lectures we discuss the investigation of the strange meson production in proton-proton ($pp$) and in proton-nucleus ($pA$) reactions within an effective Lagrangian model. The kaon production proceeds mainly via the excitations of $N^*$(1650), $N^*$(1710), and $N^*$(1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energie...

  2. Electrically Charged Strange Quark Stars

    CERN Document Server

    Negreiros, Rodrigo P; Malheiro, Manuel; Usov, Vladimir

    2009-01-01

    The possible existence of compact stars made of absolutely stable strange quark matter--referred to as strange stars--was pointed out by E. Witten almost a quarter of a century ago. One of the most amazing features of such objects concerns the possible existence of ultra-strong electric fields on their surfaces, which, for ordinary strange matter, is around $10^{18}$ V/cm. If strange matter forms a color superconductor, as expected for such matter, the strength of the electric field may increase to values that exceed $10^{19}$ V/cm. The energy density associated with such huge electric fields is on the same order of magnitude as the energy density of strange matter itself, which, as shown in this paper, alters the masses and radii of strange quark stars at the 15% and 5% level, respectively. Such mass increases facilitate the interpretation of massive compact stars, with masses of around $2 M_\\odot$, as strange quark stars.

  3. Open and Hidden Strangeness Production in Nucleon-Nucleon Collisions

    CERN Document Server

    Shyam, Radhey

    2008-01-01

    We present an overview of the description of K and eta meson productions in nucleon-nucleon collisions within an effective Lagrangian model where meson production proceeds via excitation, propagation and subsequent decay of intermediate baryonic resonant states. The $K$ meson contains a strange quark ($s$) or antiquark ($\\bar s$) while the $\\eta$ meson has hidden strangeness as it contains some component of the $s{\\bar s}$ pair. Strange meson production is expected to provide information on the manifestation of quantum chromodynamics in the non-perturbative regime of energies larger than that of the low energy pion physics. We discuss specific examples where proper understanding of the experimental data for these reactions is still lacking.

  4. Magnetic monopoles and strange matter

    Science.gov (United States)

    Sañudo, J.; Seguí, A.

    1986-01-01

    We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.

  5. Strange perspectives at FAIR

    Science.gov (United States)

    Steinheimer, J.; Sturm, C.; Schramm, S.; Stöcker, H.

    2010-09-01

    Adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt, Germany, the Facility for Antiproton and Ion Research (FAIR) substantially expands research goals and technical possibilities. It will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in hadron, nuclear and atomic physics as well as applied sciences which will be described briefly in this paper. The start version of FAIR, the so-called Modularized Start Version, will deliver first beams in 2017/2018. As an example the paper presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular hypernuclei and metastable exotic multi-hypernuclear objects will be investigated.

  6. Strange culinary cncounters:

    DEFF Research Database (Denmark)

    Leer, Jonatan; Kjær, Katrine Meldgaard

    chefs Jamie Oliver and Gordon Ramsay imagine, meet and evaluate the ‘other’ food cultures in these programs, paying special attention to how the encounter with the local Indian and Italian is imagined to be a gateway to an authentic and/or primitive experience. To unpack the programs and the experiences...... for unpacking cultural encounters, and show how we have used it to deconstruct how ‘authentic’ food is done and met in Gordon's Great Escape and Jamie's Italian Escape. In doing so, we will argue that this way of reading cultural encounters ultimately opens for an alternative understanding of the central......Strange Culinary Encounters: Stranger Fetishism in Cooking Shows In this paper, we will examine the ways in which the encountering of 'other' food cultures is played out in the two travelogue cooking shows Gordon's Great Escape and Jamie's Italian Escape, arguing that despite their ‘noble...

  7. Strangeness enhancement at the hadronic chemical freeze-out

    CERN Document Server

    Sagun, V V; Bugaev, K A; Cleymans, J; Ivanytskyi, A I; Mishustin, I N; Nikonov, E G

    2014-01-01

    The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $\\gamma_{s}$ factor which gives us an opportunity to perform a high quality fit with $\\chi^2/dof \\simeq 63.5/55 \\simeq 1.15$ of the hadronic multiplicity ratios measured from the low AGS to the highest RHIC energies. In contrast to previous findings, at low energies we observe the strangeness enhancement instead of a suppression. In addition, the performed $\\gamma_{s}$ fit allows us to achieve the highest quality of the Strangeness Horn description with $\\chi^2/dof=3.3/14$. For the first time the top point of the Strangeness Horn is perfectly reproduced, which makes our theoretical horn as sharp as an experimental one. However, the $\\gamma_{s}$ fit approach does not sizably improve the description of the multi-strange baryons and antibaryons. Therefore, an apparent deviation of mu...

  8. Controlling Strange Attractor in Dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nonlinear system which exhibits a strange attractor is considered, with the goal of illustrating how to control the chaotic dynamical system and to obtain a desired attracting periodic orbit by the OGY control algorithm.

  9. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  10. Search for strange quark matter

    CERN Document Server

    Hill, J C

    2000-01-01

    We present results of a search for charged and neutral strangelets produced on collisions of 11.6 A GeV/c Au beams with Pt or Pb targets. Yields of light nuclei and hypernuclei produced by coalescence were measured. Penalty factors were measured for the addition to a fragment of a nucleon or strange hadron. These are useful in planning future searches for strange quark matter.

  11. Design and simulation of an integrated optical ring-resonator based frequency discriminator for analog optical links

    NARCIS (Netherlands)

    Timens, R.B.; Marpaung, D.A.I.; Roeloffzen, C.G.H.; Etten, van W.

    2008-01-01

    The performance of a conventional intensity modulation direct detection analog optical links is limited by the high noise power associated with large optical carrier power. This optical carrier can be suppressed by using optical frequency modulation in conjunction with a frequency discriminator. In

  12. Production of strange particles in hadronization processes

    International Nuclear Information System (INIS)

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs

  13. Strange nonchaotic self-oscillator

    Science.gov (United States)

    Jalnine, Alexey Yu.; Kuznetsov, Sergey P.

    2016-08-01

    An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system of mechanical nature driven by a constant torque applied to one of the elements of the construction. So the external force is not oscillatory, and the system is autonomous. Components of the motion with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its existence sheds new light on the question of feasibility of SNA in autonomous systems.

  14. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  15. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  16. A strange cat in Dublin

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  17. Torsional oscillations of strange stars

    Directory of Open Access Journals (Sweden)

    Mannarelli Massimo

    2014-01-01

    Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  18. Strange probes of the nucleus

    International Nuclear Information System (INIS)

    Recent experimental and theoretical advances in hypernuclear physics are reviewed. An appraisal is given of various suggestions for using strange probes to test partial quark deconfinement in nuclei and meson exchange vs quark-gluon exchange descriptions of baryon-baryon interactions. 76 refs., 6 figs

  19. Will strangeness win the prize?

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, Joseph I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States). E-mail: kapusta at physics.spa.umn.edu

    2001-03-01

    Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)

  20. Will strangeness win the prize?

    International Nuclear Information System (INIS)

    Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing with first-year physics results from RHIC. These predictions are summarized and evaluated. (author)

  1. Will Strangeness Win the Prize?

    OpenAIRE

    Kapusta, Joseph I.

    2000-01-01

    Five groups have made predictions involving the production of strange hadrons and entered them in a competition set up by Barbara Jacak, Xin-Nian Wang and myself in the spring of 1998 for the purpose of comparing to first year physics results from RHIC. These predictions are summarized and evaluated.

  2. K^* Mesons and Nucleon Strangeness

    OpenAIRE

    Barz, L. L.; Forkel, H.; Hammer, H. -W.; Navarra, F. S.; Nielsen, M; Ramsey-Musolf, M. J.

    1998-01-01

    We study contributions to the nucleon strange quark vector current form factors from intermediate states containing K^* mesons. We show how these contributions may be comparable in magnitude to those made by K mesons, using methods complementary to those employed in quark model studies. We also analyze the degree of theoretical uncertainty associated with K^* contributions.

  3. Strangeness exchange reactions and hypernuclei

    International Nuclear Information System (INIS)

    Recent progress in the spectroscopy of Λ and Σ hypernuclei is reviewed. Prospects for the production of doubly strange hypernuclei at a future kaon factory are assessed. It is suggested that the (K-,K+) reaction on a nuclear target may afford an optimal way of producing the H dibaryon, a stable six quark object with J/sup π/ = O+, S = -2

  4. The isospin admixture of the ground state and the properties of the isobar analog resonances in medium and heavy mass nuclei

    Indian Academy of Sciences (India)

    D I Salmov; T Babacan; A Kücükbursa; S Ünlü; İ Maraṣ

    2006-06-01

    Within the framework of quasiparticle random phase approximation (QRPA), Pyatov–Salamov method [23] for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state were investigated with the inclusion of the pairing correlations between nucleons for the medium and heavy mass regions: 80 < < 90, 102 < < 124, and 204 < < 214. It was determined that the influence of the pairing interaction between nucleons on the isospin admixtures in the ground state and the isospin structure of the IAR state is more pronounced for the light isotopes ( ≈ ) of the investigated nuclei.

  5. Synthesis of a fluorescence resonance energy transfer-based probe containing a tricyclic nucleoside analog for single nucleotide polymorphism typing.

    Science.gov (United States)

    Hayai, Aya; Maeda, Yusuke; Ueno, Yoshihito

    2016-08-01

    Here, we report the synthesis of a fluorescence resonance energy transfer (FRET)-based probe for single nucleotide polymorphism (SNP) typing. The probe contains a fluorescent tricyclic base, 8-amino-3-(2,3-dihydroxypropyl)imidazo[4',5':5,6]pyrido[2,3-d]pyrimidine, as a donor molecule and 7-diethylaminocoumarin-3-carboxylic acid as an acceptor molecule. FRET was observed between the donor and acceptor molecules on the probe. The identity of the target bases on DNA and RNA strands could be determined using the probe. PMID:27329795

  6. Strange functions in real analysis

    CERN Document Server

    Kharazishvili, AB

    2005-01-01

    Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis.Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers e...

  7. Spectrum of hadrons with strangeness

    CERN Document Server

    Chen, Chen; Roberts, Craig D; Wan, Shaolong; Wilson, David J

    2012-01-01

    We describe a calculation of the spectrum of strange and nonstrange hadrons that simultaneously correlates the dressed-quark-core masses of meson and baryon ground- and excited-states within a single framework. The foundation for this analysis is a symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction. Our results exemplify and highlight the deep impact of dynamical chiral symmetry breaking on the hadron spectrum: an accurate description of the meson spectrum entails a similarly successful prediction of the spectrum of baryons, including those with strangeness. The analysis also provides numerous insights into baryon structure. For example, that baryon structure is largely flavour-blind, the first radial excitation of ground-state baryons is constituted almost entirely from axial-vector diquark correlations, and DCSB is the foundation for the ordering of low-lying baryon levels; viz., (1/2)^+, (1/2)^+, (1/2)^-.

  8. Strange Dibaryon Systems

    CERN Multimedia

    2002-01-01

    With the exception of the deuteron, no bound state and only a few possible resonances have been reported in dibaryon systems. The best known of these is a $\\Lambda p$ enhancement which has been reported at several energies. In a recent experiment on the reaction $K^{-}d \\rightarrow \\Lambda p\\pi^{-}$ this shows up as a narrow peak (M=2129 MeV, $\\Gamma$=5.4 $\\pm$ 1.7 MeV) produced near minimum transfer of the dibaryon system. \\\\ \\\\ It is proposed to study S=-2 dibaryon systems such as ($\\Xi N$ and $\\Sigma\\Lambda$). The fast forward $K^{+}$ from the reaction \\\\ \\\\ $K^{-}d \\rightarrow K^{+}\\Sigma^{-}\\Lambda$ or $K^{+}\\Xi^{-}n$ \\\\ \\\\ will be investigated with Cerenkov counters and a magnetic spectrometer. The missing mass will be measured. Information from time-of-flight measurements will also be used to help select events and reduce background. A deuterium target will be exposed to a separated $K^{-}$ counter beam with a momentum of 1.4 GeV/c. This experiment will study the possible existence of the S=-2 dibaryon...

  9. An analogy between the thermal equilibration of a gas mixture and transverse relaxation in magnetic resonance spectroscopy

    CERN Document Server

    Packwood, Daniel M

    2012-01-01

    We study a gas containing two components, a small component P and a large component Q. P is selectively heated to a high temperature and then returns to equilibrium via collisions with Q. This thermal equilibration process is analysed in a new way. We divide the kinetic energy space of the molecules of P into two regions F and D, and show that the molecules of P randomly switch (`oscillate') between the two states as time proceeds due to collisions with the molecules of Q. Initially, the molecules of P are all in the state D, however because each molecule in P collides with the molecules of Q at different times, the oscillations occur out of step with each other. There is a net destructive interference between the oscillations, and so they are not observed when monitoring the average kinetic energy of the molecules of P as a function of time. We will explain the similarities and differences between this observation and transverse relaxation processes that occur in magnetic resonance spectroscopy. This study e...

  10. Low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency in two resonators side-coupled with a waveguide system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Li, Xiaoming; Han, Xu; Zhu, Youjiang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-06-07

    We theoretically and numerically investigate a low-power, ultrafast, and dynamic all-optical tunable plasmonic analog to electromagnetically induced transparency (EIT) in two nanodisk resonators side-coupled to a metal-insulator-metal plasmonic waveguide system. The optical Kerr effect is enhanced by the slow light effect of the plasmonic EIT-like effect and the plasmonic waveguide based on graphene-Ag composite material structures with giant effective Kerr nonlinear coefficient. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. With dynamically tuning the propagation phase of the plasmonic waveguide, π-phase shift of the transmission spectrum in the plasmonic EIT-like system is achieved under excitation of a pump light with an intensity as low as 5.85 MW/cm{sup 2}. The group delay is controlled between 0.09 and 0.4 ps. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward the low power consumption and ultrafast responses of integration plasmonic photonic devices and all-optical dynamical storage of light devices in optical communication and quantum information processing.

  11. Strange attractor simulated on a quantum computer

    OpenAIRE

    M. Terraneo; Georgeot, B.; D.L. Shepelyansky

    2002-01-01

    We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.

  12. Strangeness detection in ALICE experiment at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Safarik, K. [European Lab. for Particle Physics, Geneva (Switzerland)

    1995-07-15

    The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.

  13. A new candidate for non-strangeness pentaquarks: N*(1675)

    CERN Document Server

    Nam, Seung-il; Hosaka, Atsushi; Kim, Hyun-Chul

    2007-01-01

    We study a new nucleon resonance from eta photoproduction, which was observed at sqrt{s}=1675 MeV with a narrow decay width (~10 MeV) by the Tohoku LNS group as well as the GRAAL collaboration. Using an effective Lagrangian approach, we compute differential cross sections for the eta photoproduction. In addition to N*(1675,1/2+-,3/2+-), we employ six other nucleon resonances, i.e. N*(1520,1535,1650,1675,1710,1720) and vector meson exchanges which are the most relevant ones to this reaction process. As a result, we can reproduce the GRAAL data qualitatively well and observe obvious isospin asymmetry between the transition magnetic moments of N*(1675): mu_{gamma nn*} >> mu_{gamma pp*}, which indicates that the newly found nucleon resonance may be identified as a non-strange pentaquark state.

  14. Strangeness in STAR at RHIC

    CERN Document Server

    ,

    2016-01-01

    We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $\\sqrt{s_{\\rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $\\Omega$ and $\\phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $\\sqrt{s_{\\rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $\\phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $\\phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{\\rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.

  15. A Study of Strange Particles Produced in Neutrino Neutral Current Interactions in the NOMAD Experiment

    CERN Document Server

    Naumov, D V; Naumova, E; Popov, B; Astier, Pierre; Autiero, D; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Banner, M; Bassompierre, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, P W; Cavasinni, V; Cervera-Villanueva, A; Challis, R C; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Das, R; Degaudenzi, H M; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, V; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J; Hong, T M; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kent, N; Kirsanov, M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V V; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Nédélec, P; Nefedov, Yu A; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Poulsen, C; Rebuffi, L; Rico, J; Roda, C; Rubbia, André; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M E; Shih, D; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Yu; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T G; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zuber, K; Zuccon, P

    2004-01-01

    Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.

  16. Nucleon Vector Strangeness Form Factors: Multi-pion Continuum and the OZI Rule

    OpenAIRE

    Hammer, H. -W.; Ramsey-Musolf, M. J.

    1997-01-01

    We estimate the 3 \\pi continuum contribution to the nucleon strange quark vector current form factors, including the effect of a 3 \\pi \\rho \\pi resonance. We find the magnitude of this OZI-violating contribution to be comparable to that of typical OZI-allowed contributions. We also study the isoscalar electromagnetic form factors, and find that the presence of a \\rho \\pi resonance in the multi-pion continuum may generate an appreciable contribution.

  17. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  18. An experimental review on elliptic flow of strange and multi-strange hadrons in relativistic heavy ion collisions

    CERN Document Server

    Shi, Shusu

    2016-01-01

    Strange hadrons, especially multi-strange hadrons are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multi-strange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).

  19. Bottom-strange mesons in hyperonic matter

    OpenAIRE

    Pathak, Divakar; Mishra, Amruta

    2014-01-01

    The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of t...

  20. Strange attractors in rattleback dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Aleksei V; Mamaev, Ivan S [Institute of Computer Science, Izhevsk (Russian Federation)

    2003-04-30

    This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poincare maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters. (methodological notes)

  1. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Eleonora; Bansal, Ruchi

    2015-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  2. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Leonie; Bansal, Ruchi

    2010-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  3. Strangeness suppression in the unquenched quark model

    Science.gov (United States)

    Bijker, Roelof; García-Tecocoatzi, Hugo; Santopinto, Elena

    2016-07-01

    In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.

  4. Strangeness suppression in the unquenched quark model

    CERN Document Server

    Bijker, Roelof; Santopinto, Elena

    2016-01-01

    In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.

  5. Strange particle production from SIS to LHC

    Indian Academy of Sciences (India)

    H Oeschler; J Cleymans; K Redlich

    2003-05-01

    A review of meson emission in heavy-ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features, e.g. the different centrality dependences of pions and kaons. Furthermore, the independence of the + to - ratio on the number of participating nucleons observed between SIS and relativistic heavy-ion collider (RHIC) is consistent with this model. The observed maximum in the +/+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 A$\\cdot$GeV is due to the energy dependence of the chemical freeze-out parameters and .

  6. Origin of isotopic spin and strangeness

    International Nuclear Information System (INIS)

    An explanation of the origin of isotopic spin is given by applying the theory and calculations in the author's previous papers. An explanation of the origin of strangeness and broken SU3 is given as well

  7. Zero sound in strange metals with hyperscaling violation from holography

    CERN Document Server

    Dey, Parijat

    2013-01-01

    Hyperscaling violating `strange metal' phase of heavy fermion compounds can be described holographically by probe D-branes in the background of a Lifshitz space-time (dynamical exponent $z$ and spatial dimensions $d$) with hyperscaling violation (corresponding exponent $\\theta$). Without the hyperscaling violation, strange metals are known to exhibit zero sound mode for $z<2$ analogous to the Fermi liquids. In this paper, we study its fate in the presence of hyperscaling violation and find that in this case the zero sound mode exists for $z < 2(1+|\\theta|/d)$, where the positivity of the specific heat and the null energy condition of the background dictate that $\\theta<0$ and $z\\geq 1$. However, for $z \\geq 2(1+|\\theta|/d)$, there is no well-defined quasiparticle for the zero sound. The systems behave like Fermi liquid for $2|\\theta|=dz$ and like Bose liquid for $2|\\theta| = qdz$ (where $q$ is the number of spatial dimensions along which D-branes are extended in the background space), but in general ...

  8. Penta-quark States with Strangeness, Hidden Charm and Beauty

    CERN Document Server

    Wu, Jia-Jun

    2015-01-01

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  9. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    Science.gov (United States)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  10. Note on Strange Quarks in the Nucleon

    CERN Document Server

    Steininger, K

    1994-01-01

    Scalar matrix elements involving strange quarks are studied in several models. Apart from a critical reexamination of results obtained in the Nambu and Jona-Lasinio model we study a scenario, motivated by instanton physics, where spontaneous chiral symmetry breaking is induced by the flavor-mixing 't Hooft interaction only. We also investigate possible contributions of virtual kaon loops to the strangeness content of the nucleon.

  11. Surface photon emissivity of bare strange stars

    OpenAIRE

    Cheng, KS; Harko, T.

    2003-01-01

    We consider the bremsstrahlung surface photon emissivity of strange quark stars, by systematically taking into account the effects of the multiple scatterings of highly relativistic quarks in a dense medium (the Landau-Pomeranchuk-Migdal effect). Because of interference between amplitudes of nearby interactions, the bremsstrahlung emissivity from a strange star surface is suppressed for frequencies smaller than a critical frequency. The range of the suppressed frequencies is a function of the...

  12. Gaussian Anisotropy In Strange Quark Stars

    OpenAIRE

    Panahi, H.; Monadi, R.; Eghdami, I.

    2015-01-01

    In this paper for studying the anisotropic strange quark stars, we assume that the radial pressure inside the anisotropic star is a superposition of pressure in an isotropic case plus a Gaussian perturbation term. Considering a proportionality between electric charge density and the density of matter, we solve the TOV equation for different cases numerically. Our results indicate that anisotropy increases the maximum mass $M_{max}$ and also its corresponding radius $R$ for a typical strange q...

  13. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  14. Theoretical perspectives on strange physics

    International Nuclear Information System (INIS)

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K0-anti K0 mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, μ decays, hyperon decays and neutrino physics is given

  15. Theoretical perspectives on strange physics

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  16. Chiral primaries in strange metals

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail, E-mail: mikhail.isachenkov@desy.de; Kirsch, Ingo, E-mail: ingo.kirsch@desy.de; Schomerus, Volker, E-mail: volker.schomerus@desy.de

    2014-08-15

    It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We argue that the bosonic part of the superconformal algebra can be extended to a coset chiral algebra of the form W{sub N}=SO(2N{sup 2}−2){sub 1}/SU(N){sub 2N}. In terms of this algebra the spectrum of the low energy theory decomposes into a finite number of sectors which are parametrized by special necklaces. We compute the corresponding characters and partition functions and determine the set of chiral primaries for N≤5.

  17. Chiral primaries in strange metals

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail; Kirsch, Ingo; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2014-03-15

    It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We argue that the bosonic part of the superconformal algebra can be extended to a coset chiral algebra of the form W{sub N}=SO(2N{sup 2}-2){sub 1}/SU(N){sub 2N}. In terms of this algebra the spectrum of the low energy theory decomposes into a finite number of sectors which are parametrized by special necklaces. We compute the corresponding characters and partition functions and determine the set of chiral primaries for N≤5.

  18. Associated strangeness production at threshold

    CERN Document Server

    Kowina, P; Adam, H H; Budzanowski, A; Czyzykiewicz, R; Grzonka, D; Janusz, M; Jarczyk, L; Kamys, B; Khoukaz, A; Kilian, K; Lister, T A; Moskal, P; Oelert, Walter; Rozek, T; Santo, R; Schepers, G; Sefzick, T; Siemaszko, M; Smyrski, J; Steltenkamp, S; Strzalkowski, A; Winter, P; Wüstner, P; Zipper, W

    2003-01-01

    The associated strangeness dissociation at threshold has been studied at the COSY-11 facility measuring the hyperon - and the K+K- meson pair production. Measurements of the near threshold Lambda and Sigma0 production via the pp -> pK+ Lambda / Sigma0 reaction at COSY-11 have shown that the Lambda / Sigma0 cross section ratio exceeds the value at high excess energies (Q >= 300 MeV) by an order of magnitude. For a better understanding additional data have been taken between 13 MeV and 60 MeV excess energy. The near threshold production of the charged kaon-antikaon pair is related to the discussion about the nature of the scalar states in the 1 GeV/c^2 mass range, i.e. the f0(980) and a0(980). The interpretation as a K anti-K molecule is strongly dependent on the K anti-K interaction which can be studied via the production channel. A first total cross section value on the reaction pp -> ppK+K- at an excess energy of 17 MeV i.e. below the phi production threshold was measured.

  19. Strange decays of nonstrange baryons

    International Nuclear Information System (INIS)

    The strong decays of excited nonstrange baryons into the final states ΛK, ΣK, and for the first time into Λ(1405)K, Λ(1520)K, Σ(1385)K, ΛK*, and ΣK*, are examined in a relativized quark pair creation model. The wave functions and parameters of the model are fixed by previous calculations of Nπ and Nππ, etc., decays. The results show that it should be possible to discover several new negative parity excited baryons and confirm the discovery of several others by analyzing these final states in kaon production experiments. They also establish clear predictions for the relative strengths of certain states to decay to Λ(1405)K and Λ(1520)K, which can be tested to determine if a three-quark model of the Λ(1405)K is valid. The authors results compare favorably with the results of partial wave analyses of the limited existing data for the ΛK and ΣK channels. They do not find large ΣK decay amplitudes for a substantial group of predicted and weakly established negative-parity states, in contrast to the only previous work to consider decays of these states into the strange final states ΛK and ΣK

  20. Strange hadron production at low transverse momenta

    Science.gov (United States)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  1. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  2. Strangeness production in proton–proton and proton–nucleus collisions

    Indian Academy of Sciences (India)

    Radhey Shyam

    2006-04-01

    We discuss the investigation of the strange meson production in proton-proton () and proton–nucleus () reactions within an effective Lagrangian model. The kaon production proceeds mainly via excitations of * (1650), * (1710), and * (1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon–proton final state interaction effects are quite important. Thus, these studies provide a check on the models of hyperon–nucleon interactions. The in medium production of kaons shows strong sensitivity to the self-energies of the intermediate mesons.

  3. Forward-backward correlations with strange particles in PYTHIA

    CERN Document Server

    Altsybeev, Igor; Gillies, Ewen Lawson

    2015-01-01

    We present studies of strange particle yields and correlations in $pp$ collisions in the PYTHIA8 event generator by studying forward-backward correlations. Several key processes that give rise to these correlative effects are identified and manipulated to probe the fundamental properties of strange particle emitting sources. The sensitivity of strange particle production and correlations to PYTHIA's multiparton interaction, color reconnection, and explicit strangeness suppression are shown.

  4. From Super-Hyper nuclei to Strange Stars

    International Nuclear Information System (INIS)

    Both theoretical investigations of and experimental searches for not only super-hypernuclei (or long lived hyperstrange multiquark droplets,strangelets , or strange quark matter) consisting of roughly equal numbers of up, down, and strange quarks, but also super-hypernuclear matter in bulk (or quark nuggetsor strange matter) (in the early Universe or inside neutron stars) and strange stars made of super-hypernuclear matter are reviewed and discussed in some detail

  5. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y″, a, and internal ions are found in the CID spectra and slight mass differ- ences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  6. Sequence and modified group analysis on C-terminal modified analogs of endomorphin-2 using electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,a series of C-terminal modified analogs of endomorphin-2 is investigated using ESI-FT-ICR-MS. Some b, y", a, and internal ions are found in the CID spectra and slight mass differences between the calculated and observed results are obtained. Moreover, if the C-terminal modified group is t-butyloxy, it can lose butene through McLafferty rearrangement. FT-ICR MS shows its power in peptide sequencing successfully helping us obtain the structure of peptide analogs.

  7. A new deterministic model of strange stars

    International Nuclear Information System (INIS)

    The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass-radius relation due to Buchdahl is satisfied in our model. We find the surface redshift (Z) corresponding to the compactness of the stars. Finally, from our results, we predict some characteristics of a strange star of radius 9.9 km. (orig.)

  8. A new deterministic model of strange stars

    CERN Document Server

    Rahaman, Farook; Kuhfittig, P K F; Shit, G C; Rahman, Mosiur

    2014-01-01

    The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass-radius relation due to Buchdahl is satisfied in our model. We find the surface redshift ($Z$) corresponding to the compactness of the stars. Finally, from our results, we predict some characteristics of a strange star of radius 9.9 km.

  9. A new deterministic model of strange stars

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Shit, G.C. [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Chakraborty, Koushik [Government Training College, Department of Physics, Hooghly, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Rahman, Mosiur [Meghnad Saha Institute of Technology, Department of Mathematics, Kolkata (India)

    2014-10-15

    The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass-radius relation due to Buchdahl is satisfied in our model. We find the surface redshift (Z) corresponding to the compactness of the stars. Finally, from our results, we predict some characteristics of a strange star of radius 9.9 km. (orig.)

  10. Thermal Photons From Magnetized Bare Strange Stars

    CERN Document Server

    Méndez, Enrique Moreno; Patiño, Leonardo; Ortega, Patricia

    2013-01-01

    A plasma made out of strange-quark matter (SQM) and electrons, has a rather high plasma frequency (>20 MeV). Thus, a compact star made of such material all the way up to its surface, i.e., a bare strange star, would be unable to radiate away its thermal emission. We use the MIT-bag model and assume that SQM is the ground state of nuclear matter at high density. We investigate whether the presence of a magnetic field will allow propagation of radiation at frequencies below the SQM plasma frequencies. Hence, we study the presence of gyrofrequencies in a SQM plasma permeated by a strong magnetic field (B > 10^{12} G). We find that small regions in the frequency spectrum allow radiation propagation due to the presence of the magnetic fields. It is likely that narrow bands of radiation would likely be observable from magnetized bare strange stars .

  11. Torsional oscillations of nonbare strange stars

    CERN Document Server

    Mannarelli, Massimo; Parisi, Alessandro; Pilo, Luigi; Tonelli, Francesco

    2015-01-01

    Strange stars are one of the possible compact stellar objects that can be formed after a supernova collapse. We consider a model of strange star having an inner core in the color-flavor locked phase surmounted by a crystalline color superconducting layer. These two phases constitute the {\\it quarksphere}, which we assume to be the largest and heaviest part of the strange star. The next layer consists of standard nuclear matter forming a ionic crust, hovering on the top of the quarksphere and prevented from falling by a strong dipolar electric field. The dipolar electric field arises because quark matter is confined in the quarksphere by the strong interaction, but electrons can leak outside forming a few hundreds Fermi thick electron layer separating the ionic crust from the underlying quark matter. The ionic matter and the crystalline color superconducting matter constitute two electromagnetically coupled crust layers. We study the torsional oscillations of these two layers. Remarkably, we find that if a fra...

  12. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  13. Measurements of strangeness production in the STAR experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W.K. [Wayne State Univ., Detroit, MI (United States)

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  14. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  15. Strangeness Suppression in Proton-Proton Collisions

    OpenAIRE

    Drescher, Hans-Joachim; Aichelin, Joerg; Werner, Klaus

    2001-01-01

    We analyse strangeness production in proton-proton (pp) collisions at SPS and RHIC energies, using the recently advanced NeXus approach. After having verified that the model reproduces well the existing data, we interpret the results: strangeness is suppressed in proton-proton collisions at SPS energy as compared to electron-positron (e+e-) annihilation due to the limited masses of the strings produced in the reaction, whereas high energy pp and e+e- collisions agree quantitatively . Thus str...

  16. A new deterministic model of strange stars

    OpenAIRE

    Rahaman, Farook; Chakraborty, Koushik; Kuhfittig, P. K. F.(Department of Mathematics, Milwaukee School of Engineering, 53202-3109, Milwaukee, WI, USA); Shit, G. C.; Rahman, Mosiur

    2014-01-01

    The observed evidence for the existence of strange stars and the concomitant observed masses and radii are used to derive an interpolation formula for the mass as a function of the radial coordinate. The resulting general mass function becomes an effective model for a strange star. The analysis is based on the MIT bag model and yields the energy density, as well as the radial and transverse pressures. Using the interpolation function for the mass, it is shown that a mass–radius relation due t...

  17. KN Scattering and the Nucleon Strangeness Radius

    OpenAIRE

    Ramsey-Musolf, M. J.; Hammer, H. -W.

    1997-01-01

    The leading non-zero electric moment of the nucleon strange-quark vector current is the mean square strangeness radius, $$. We evaluate the lightest OZI-allowed contribution to $$, arising from the kaon cloud, using dispersion relations. Drawing upon unitarity constraints as well as $K^{+}N$ scattering and $e^+e^-\\to K\\bar{K}$ cross section data, we find the structure of this contribution differs significantly from that suggested by a variety of QCD-inspired model calculations. In particular,...

  18. Seismic Search for Strange Quark Matter

    Science.gov (United States)

    Teplitz, Vigdor

    2004-01-01

    Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.

  19. The Evolution of Proto-Strange Stars

    CERN Document Server

    Benvenuto, Omar G

    2013-01-01

    We perform 1D calculations of neutrino opacities inside a young "strange star" assumed to be the result of the conversion process of a normal neutron object. We evaluate the deleptonization and cooling timescales, which happen to be longer than the proto-NS analogues, and preliminary address the features of the emerging neutrino signal.

  20. On $pp \\to p K \\Lambda, N K \\Sigma, pp \\phi$ -- the basic ingredients for strangeness production in heavy ion collisions

    CERN Document Server

    Zou, Bing-Song

    2007-01-01

    The strangeness production in heavy ion collisions was proposed to be probes of the nuclear equation of state, Kaon potential in nuclear medium, strange quark matter and quark-gluon plasma, etc. However, to act as reliable probes, proper understanding of the basic ingredients for the strangeness production, such as $pp \\to pK^+\\Lambda$, $pp \\to pp \\phi$ and $pp \\to nK^+\\Sigma^+$ is necessary. Recent study of these reactions clearly shows that previously ignored contributions from the spin-parity $1/2^-$ resonances, $N^*(1535)$ and $\\Delta^*(1620)$, are in fact very important for these reactions, especially for near-threshold energies. It is necessary to include these contributions for getting reliable calculation for the strangeness production in heavy ion collisions.

  1. Extraction of radiative decay width for the non-strange partner of Theta^+

    CERN Document Server

    Azimov, Ya I; Polyakov, M V; Strakovsky, I I; Azimov, Ya.

    2005-01-01

    Using the results of the GRAAL collaboration on the \\eta photoproduction from the neutron target, we attempt to extract the partial radiative width of the possible new nucleon resonance N^*(1675). The obtained estimates support this resonance to be a very attractive candidate for the non-strange member of the exotic antidecuplet of baryons -- a partner of the \\Theta^+ pentaquark. Our phenomenological value for the transition magnetic moment \\mu(n^* n), appears to be in good agreement with predictions of the Chiral Quark Soliton Model.

  2. Scalar resonances as two-quark states

    International Nuclear Information System (INIS)

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  3. Strange attractor simulated on a quantum computer

    CERN Document Server

    Terraneo, M; Shepelyansky, D L

    2003-01-01

    Starting from the work of Lorenz, it has been realized that the dynamics of many various dissipative systems converges to so-called strange attractors. These objects are characterized by fractal dimensions and chaotic unstable dynamics of individual trajectories. They appear in nature in very different contexts, including applications to turbulence and weather forecast, molecular dynamics, chaotic chemical reactions, multimode solid state lasers and complex dynamics in ecological systems and physiology. The efficient numerical simulation of such dissipative systems can therefore lead to many important practical applications. Here we study a simple deterministic model where dynamics converges to a strange attractor, and show that it can be efficiently simulated on a quantum computer. Even if the dynamics on the attractor is unstable, dissipative and irreversible, a realistic quantum computer can simulate it in a reversible way, and, already with 70 qubits, will provide access to new informations unaccessible f...

  4. On relativistic models of strange stars

    Indian Academy of Sciences (India)

    Ramesh Tikekar; Kanti Jotania

    2007-03-01

    The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.

  5. SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    MAY,M.

    1997-10-13

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  6. Search for nuclei containing two strange quarks

    Energy Technology Data Exchange (ETDEWEB)

    May, M.

    1997-12-31

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  7. A plethora of strange nonchaotic attractors

    Indian Academy of Sciences (India)

    Surendra Singh Negi; Ramakrishna Ramaswamy

    2001-01-01

    We show that it is possible to devise a large class of skew-product dynamical systems which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attractors and the largest Lyapunov exponent is non-positive. Furthermore, we show that quasiperiodic forcing, which has been a hallmark of essentially all hitherto known examples of such dynamics is not necessary for the creation of SNAs.

  8. From black holes to strange metals

    OpenAIRE

    Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David

    2010-01-01

    Since the mid-eighties there has been an accumulation of metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory. Examples of these so-called non-Fermi liquids include the strange metal phase of high transition temperature cuprates, and heavy fermion systems near a quantum phase transition. We report on a class of non-Fermi liquids discovered using gauge/gravity duality. The low energy behavior of these non-Fermi liquids...

  9. Some Aspects of Strange Matter in Astrophysics

    CERN Document Server

    Banerjee, Shibaji

    2014-01-01

    The present work is connected with the investigation of the origin and properties of compact astrophysical objects endowed with strangeness, with the objective of finding out their relevance in the formation and evolution of the universe. In the first part of the thesis, Chap.~1-3, we discuss a model, proposed by us, to describe the propagation of small lumps of Strange Quark Matter (SQM) or strangelets, through the Terrestrial atmosphere. The theoretical results were found to be well correlated with exotic cosmic ray events characterized by very low charge to mass ratio. In the next part, we have investigated the other end of the mass spectrum of SQM. In Chap 5, we have developed an analytical expression for the Chandrasekhar Limit of Strange Quark Stars. The limit is found to depend on the fundamental constants (including the bag constant). In the last chapter we have endeavored to show that the quark nuggets, surviving the quark-hadron phase transition in the millisecond era of the early Universe can provi...

  10. Constraints on the Existence of Strange Quark Stars

    OpenAIRE

    Balberg, Shmuel

    1997-01-01

    Creation of strange quark stars through strong interaction deconfinement is studied based on modern estimates of hyperon formation in neutron stars. The hyperon abundance is shown to be large enough so that if strange quark matter (SQM) is the true ground state of matter, the deconfinement density should be at most 2.5-3 times the nuclear saturation density. If so, deconfinement occurs in neutron stars at birth, and all neutron stars must be strange quark stars. Alternatively, sould observati...

  11. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  12. Overview of Strangeness Production at the STAR Experiment

    CERN Document Server

    Timmins, Anthony R

    2008-01-01

    We present an overview of recent STAR results on strangeness production in p+p and heavy-ion collisions at RHIC. In both Cu+Cu and Au+Au collisions we show the centrality dependencies of bulk yield and mid-$p_{T}$ spectrum measurements with new comparisons to theory. The latest $v_{2}$ results for strange particles are presented and prospects for strangeness production in the low energy scan program will be outlined. Finally, we report new measurements of strangeness fragmentation functions for jets in p+p collisions.

  13. On the instanton-induced portion of the nucleon strangeness

    CERN Document Server

    Klabucar, D; Melic, B; Picek, I

    1999-01-01

    We calculate the instanton contribution to the proton strangeness in the MIT bag enriched by the presence of a dilute instanton liquid. The evaluation is based on expressing the nucleon matrix elements of bilinear strange quark operators in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. Our method combines the usage of the evolution operator containing a strangeness source, and the Feynman-Hellmann theorem. The method allows a unified approach to the strangeness in different channels. Only the scalar channel is found to be affected by instantons.

  14. Production of Strange, Non-strange particles and Hypernuclei in an Excluded-Volume Model

    CERN Document Server

    Tiwari, S K

    2013-01-01

    We present a systematic study of production of strange and non-strange hadron yields and their ratios obtained in various experiments using our thermodynamically consistent excluded-volume model. We also analyze the production of light nuclei, hypernuclei and their antinuclei in terms of our excluded-volume model over a broad energy range starting from Alternating Gradient Synchrotron (AGS) to Large Hadron Collider (LHC) energies. Further, we extend our model for studying rapidity spectra of hadrons produced in heavy-ion collisions.

  15. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    Science.gov (United States)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  16. Strange and non-strange sea quark–gluon effects in nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Batra, M.; Upadhyay, A.

    2014-02-15

    Within a statistical approach, strange and non-strange quark–gluon Fock state contributions are analyzed for their low energy properties. A suitable wave function is written for a nucleon that consists of three valence quarks (qqq) and the sea (g,qq{sup ¯}). Expansion of the nucleonic system in terms of Fock states that contain (g,qq{sup ¯}) is assumed and the probabilities of all possible Fock states, that lead to such a wave-function containing strange and non-strange quark–gluon contents in the sea are determined. Various approximations are entertained to validate the authenticity of the model used. The statistically determined coefficients strongly favor a vector-dominated sea where the sea includes ss{sup ¯} pairs. Additionally, the sea is constrained to have a limited number of components. The phenomenological implications that affect the low energy properties are discussed. The obtained results are compared to existing theoretical models and experimental data. -- Highlights: • A general expression to determine probabilities for each quark–gluon Fock states. • To calculate probabilities in flavor, spin and color space in statistical framework. • To analyze the sea-content and examine the contribution to various properties.

  17. Mini-Proceedings of ECT Workshop "Strangeness in Nuclei"

    CERN Document Server

    Curceanu, C

    2011-01-01

    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.

  18. Examination of the strangeness contribution to the nucleon magnetic moment

    NARCIS (Netherlands)

    Chen, XS; Timmermans, RGE; Sun, WM; Zong, HS; Wang, F

    2004-01-01

    We examine the nucleon strangeness magnetic moment mu(s) with a lowest order meson cloud model. We observe that (1) strangeness in the nucleon is a natural requirement of the empirical relation mu(p)/mu(n)similar or equal to-3/2, which favors an SU(3) octet meson cloud instead of merely the SU(2) pi

  19. Collider phenomenology of light strange-beauty squarks

    International Nuclear Information System (INIS)

    We summarize a study on the production, decay, and detection of the strange-beauty squark as light as 200 GeV at hadronic and e+e- colliders. It was motivated by nearly maximal mixing between strange and beauty squarks. (author)

  20. Strangeness and quark gluon plasma: Aspects of theory and experiment

    International Nuclear Information System (INIS)

    A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)

  1. METHODOLOGICAL NOTES: Strange attractors in rattleback dynamics

    Science.gov (United States)

    Borisov, Aleksei V.; Mamaev, Ivan S.

    2003-04-01

    This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poincare maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters.

  2. Stability of charged strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D. V.; Malheiro, Manuel [Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900 São José dos Campos, SP (Brazil)

    2015-12-17

    We investigate the hydrostatic equilibrium and the stability of charged stars made of a charged perfect fluid. The matter contained in the star follows the MIT bag model equation of state and the charge distribution to a power-law of the radial coordinate. The hydrostatic equilibrium and the stability of charged strange stars are analyzed using the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar’s equation pulsation, respectively. These two equation are modified from their original form to the inclusion of the electric charge. We found that the stability of the star decreases with the increment of the central energy density and with the increment of the amount of charge.

  3. Night Academy: Heroines, Hunters and Strange Vampires

    OpenAIRE

    Sólveig Geirsdóttir 1988

    2013-01-01

    It was within the Gothic genre that the literary vampire derived. The literary vampire has gained new popularity in the last decade with a new formula focusing on sympathetic vampires. This essay examines four contemporary vampire literary series that have all included a special vampire school. The four series analyzed in this essay are House of Night by P.C. and Kristin Cast, Strange Angels by Lili St. Crow, Vampire Academy by Richelle Mead and Vamps by Nancy A. Collins. The essay determines...

  4. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  5. Strange Curves, Counting Rabbits, & Other Mathematical Explorations

    CERN Document Server

    Ball, Keith

    2011-01-01

    How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai

  6. Strangeness at high temperatures: from hadrons to quarks.

    Science.gov (United States)

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  7. Canonical Strangeness and Distillation Effects in Hadron Production

    CERN Document Server

    Toneev, V D

    2004-01-01

    Strangeness canonical ensemble for Maxwell-Boltzmann statistics is reconsidered for excited nuclear systems with non-vanishing net strangeness. A new recurrence relation method is applied to find the partition function. The method is first generalized to the case of quantum strangeness canonical ensemble. Uncertainties in calculation of the K+/pi+ excitation function are discussed. A new scenario based on the strangeness distillation effect is put forward for a possible explanation of anomalous strangeness production observed at the bombarding energy near 30 AGeV. The peaked maximum in the K+/pi+ ratio is considered as a sign of the critical end-point reached in evolution of the system rather than a latent heat jump emerging from the onset of the first order deconfinement phase transition.

  8. Alienation (Entfremdung and Strangeness (Fremdheit: two Western cultural paradigms

    Directory of Open Access Journals (Sweden)

    Suzana Vasconcelos de Melo

    2011-01-01

    Full Text Available Alienation and strangeness could be understood as markers of cultural paradigms. The first term is related to modernity as the second is to postmodernity. One stands for identity, the other for alterity. While the existence of the phenomenon of alienation becomes disputable, the discourse of strangeness becomes intensified in the European academic sphere. In a way, the discourse of strangeness is labeled by a cultural critic, which tries to justify "strange" for centuries dispelled by the European culture. Meanwhile, a phenomenology of alienation is developed to re-structure the term. Both phenomena are connected insofar as alienation can be understood as a temporary moment of strangeness. Both theories turned out to be productive in literary analysis.

  9. Rapidity dependence of strangeness enhancement factor at FAIR energies

    International Nuclear Information System (INIS)

    Strange particles are produced only at the time of collisions and thus expected to carry important information of collision dynamics. Strangeness enhancement is considered to be one of the traditional signatures of formation of Quark Gluon Plasma (QGP). Due to the limitation of the detector acceptance, the past and ongoing heavy ion experiments could measure the strangeness enhancement at midrapidity only. But the future heavy ion experiment CBM at FAIR will have the access to the entire forward rapidity hemisphere and thus the experimental determination of rapidity dependent strangeness enhancement is a possibility. In this work, an attempt has therefore been made to study the rapidity dependent strangeness enhancement at FAIR energies with the help of a string based hadronic model (UrQMD). A sum of 93 million minimum biased UrQMD events have been used for the present analysis

  10. Electromagnetic production of hyperon resonances

    Energy Technology Data Exchange (ETDEWEB)

    K. Hicks, D. Keller, W. Tang

    2011-10-01

    The study of hyperon resonances has entered a new era of precision with advent of high-statistics photoproduction data from the CLAS detector at Jefferson Lab. These data have multi-particle final states, allowing clean identification of exclusive reactions associated with strange mesons and baryons. Examples of physics results are: evidence for isospin interference in the decay of the {Lambda}(1405) resonance; a strong suggestion of meson cloud effects in the structure of the {Sigma}(1385) resonance; data from K* photoproduction that will test the existence of the purported K{sub 0}(800)$ meson. Properties of other hyperon resonances will also be studied in the near future.

  11. Coalescence of Strange-Quark Planets with Strange Stars: a New Kind of Sources for Gravitational Wave Bursts

    CERN Document Server

    Geng, J J; Lu, T

    2015-01-01

    Strange quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars, but not neutron stars. According to this SQM hypothesis, the existence of a hydrostatically stable sequence of strange quark matter stars has been predicted, ranging from 1 --- 2 solar mass strange stars, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the searching for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral very close to their host strange stars, without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as a new kind of sources for GW bursts, producing strong gravitational waves at the final stage. The events occurring in our local Universe can be detected by the upcoming gravitational wave detectors, such as Advanced LIGO and the Einstein Telescope. This ...

  12. Strangeness s = -3 dibaryons in a chiral quark model

    CERN Document Server

    Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong

    2006-01-01

    The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...

  13. Simple Solution to the Strangeness Horn Description Puzzle

    CERN Document Server

    Bugaev, K A; Sorin, A S; Zinovjev, G M

    2012-01-01

    We propose to use the thermal model with the multi-component hard-core radii to describe the hadron yield ratios from the low AGS to the highest RHIC energies. It is demonstrated that the variation of the hard-core radii of pions and kaons enable us to drastically improve the fit quality of the measured mid-rapidity data and for the first time to completely describe the Strangeness Horn behavior as the function of the energy of collision without spoiling the fit quality of other ratios. The best global fit is found for the vanishing hard-core radius of pions and for the hard-core radius of kaons being equal to 0.35 fm, whereas the hard-core radius of all other mesons is fixed to 0.3 fm and that one of baryons is fixed to 0.5 fm. It is argued that the multi-component hadron resonance gas model opens us a principal possibility to determine the second virial coefficients of hadron-hadron interaction.

  14. Strange Matter: a state before black hole

    CERN Document Server

    Xu, Renxin

    2016-01-01

    Normal baryonic matter inside an evolved massive star can be intensely compressed by gravity after a supernova. General relativity predicts formation of a black hole if the core material is compressed into a singularity, but the real state of such compressed baryonic matter (CBM) before an event horizon of black hole appears is not yet well understood because of the non-perturbative nature of the fundamental strong interaction. Certainly, the rump left behind after a supernova explosion could manifest as a pulsar if its mass is less than the unknown maximum mass, $M_{\\rm max}$. It is conjectured that pulsar-like compact stars are made of strange matter (i.e., with 3-flavour symmetry), where quarks are still localized as in the case of nuclear matter. In principle, different manifestations of pulsar-like objects could be explained in the regime of this conjecture. Besides compact stars, strange matter could also be manifested in the form of cosmic rays and even dark matter.

  15. Notes on Properties of Holographic Strange Metals

    CERN Document Server

    Lee, Bum-Hoon

    2010-01-01

    We investigate properties of holographic strange metals in $p+2$-dimensions, generalizing the analysis performed in arXiv:0912.1061. The bulk spacetime is $p+2$-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density, the heat capacity as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via Kubo formula and we obtain the charge diffusion constant analy...

  16. Strangeness and Charm in Nuclear Matter

    CERN Document Server

    Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis

    2012-01-01

    The properties of strange ($K$, $\\bar K$ and $\\bar K^*$) and open-charm ($D$, $\\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\\bar K$ and $\\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\\gamma A \\to K^+ K^{*-} A^\\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\\bar K^*$ meson....

  17. Metastable strange matter and compact quark stars

    CERN Document Server

    Malheiro, M; Taurines, A R

    2003-01-01

    Strange quark matter in beta equilibrium at high densities is studied in a quark confinement model. Two equations of state are dynamically generated for the {\\it same} set of model parameters used to describe the nucleon: one corresponds to a chiral restored phase with almost massless quarks and the other to a chiral broken phase. The chiral symmetric phase saturates at around five times the nuclear matter density. Using the equation of state for this phase, compact bare quark stars are obtained with radii and masses in the ranges $R\\sim 5 - 8$ km and $M\\sim M_\\odot$. The energy per baryon number decreases very slowly from the center of the star to the periphery, remaining above the corresponding values for the iron or the nuclear matter, even at the edge. Our results point out that strange quark matter at very high densities may not be absolutely stable and the existence of an energy barrier between the two phases may prevent the compact quarks stars to decay to hybrid stars.

  18. ``Towards Strange Metallic Holography'

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean A.; /Harvard U., Phys. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Polchinski, Joseph; Silverstein, Eva; /Santa Barbara, KITP /UC, Santa Barbara; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  19. Gaussian Anisotropy In Strange Quark Stars

    CERN Document Server

    Panahi, H; Eghdami, I

    2015-01-01

    In this paper for studying the anisotropic strange quark stars, we assume that the radial pressure inside the anisotropic star is a superposition of pressure in an isotropic case plus a Gaussian perturbation term. Considering a proportionality between electric charge density and the density of matter, we solve the TOV equation for different cases numerically. Our results indicate that anisotropy increases the maximum mass $M_{max}$ and also its corresponding radius $R$ for a typical strange quark star. According to our calculations, an anisotropy amplitude of $A=3\\times10^{33}Nm^{-2}$ with a standard deviation of $\\sigma=3\\times10^{3}m$ leads to a neutron star of 1.97$M_{\\odot}$. Furthermore, electric charge not only increases the maximum mass and its corresponding radius, but also raises up the anisotropy factor. We can see that the tangential pressure $p_{t}$ and anisotropy factor $\\Delta$ unlike the radial pressure $p_{r}$ have a maximum on the surface and this maximum increases by adding electric charge e...

  20. Multibaryons with strangeness, charm and bottom

    Energy Technology Data Exchange (ETDEWEB)

    Kopeliovich, V.B. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Yadernykh Issledovanij; Durham Univ. (United Kingdom). Dept. of Mathematical Sciences; Zakrzewski, W.J. [Durham Univ. (United Kingdom). Dept. of Mathematical Sciences

    2000-12-01

    The spectra of baryonic systems with strangeness, charm and bottom are considered within a ''rigid oscillator'' version of the bound state soliton model. The static properties of multiskyrmions, of baryon number up to B=8, are calculated using the recently suggested rational map ansaetze as starting field configurations. The property of binding of flavoured mesons by an SU(2) skyrmion is proved rigorously within this model. Binding energy estimates are made of the states with largest isospin which can appear as negatively charged nuclear fragments and for states with zero isospin - fragments of ''flavoured'' nuclear matter. It is shown that for all types of flavour and for vertical stroke F vertical stroke {<=}2 the isoscalar baryonic systems have a better chance to be stable against strong and electromagnetic interactions than those with nonzero isospin. Baryonic systems with charm or bottom quantum numbers are found to be bound more than strange baryonic systems. (orig.)

  1. Measurement of the Strange Spectral Function in Hadronic $\\tau$ Decays

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Menke, S; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    Tau Lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the tau lepton. The decays tau- -> (Kpi)-nu tau, (Kpipi)-nu tau and (Kpipipi)-nu tau with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including eta mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the tau lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(tau- -> K-pi0nu tau) = (0.471+-0.059stat+-0.023sys)% and B(tau- -> K-pi+pi-nu tau) = (0.415+-0.053stat+-0.040sys)% ha...

  2. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  3. HERMES measurements of the strange parton distribution and strange quark helicity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Polina [PNPI, St. Petersburg (Russian Federation)

    2009-07-01

    The helicity density of the strange quark sea in the proton has been extracted from measurements of polarized semi-inclusive production of charged kaons in deep inelastic scattering of positrons from a polarized deuteron target. The isoscalar nature of the deuteron target (assuming isospin symmetry) and lack of isospin for strange quarks allows the deuteron target to be used independently without relying on fragmentation models or other experimental data. In the region of measurement of x>0.02 the helicity density is zero within experimental error and the measured first moment of the density is 0.006+/-0.029(stat)+/-0.007(sys)/. The first moment of the axial charge in the measured region is substantially less than that inferred from hyperon semi-leptonc decays.

  4. Determining the strange quark mass for 2-flavour QCD

    International Nuclear Information System (INIS)

    Using the O(a) Symanzik improved action an estimate is given for the strange quark mass for unquenched (nf=2) QCD. The determination is via the axial Ward identity (AWI) and includes a non-perturbative evaluation of the renormalisation constant. Numerical results have been obtained at several lattice spacings, enabling the continuum limit to be taken. Our results indicate a value for the strange quark mass (in the MS-bar -scheme at a scale of 2 GeV) in the range 100 - 130 MeV. A comparison is also made with other recent lattice determinations of the strange quark mass using dynamical sea quarks

  5. Determining the strange quark mass for 2-flavour QCD

    International Nuclear Information System (INIS)

    Using the O(a) Symanzik improved action an estimate is given for the strange quark mass for unquenched (nf=2) QCD. The determination is via the axial Ward identity (AWI) and includes a non-perturbative evaluation of the renormalisation constant. Numerical results have been obtained at several lattice spacings, enabling the continuum limit to be taken. Our results indicate a value for the strange quark mass (in the anti M anti S-scheme at a scale of 2 GeV) in the range 100 - 130 MeV. A comparison is also made with other recent lattice determinations of the strange quark mass using dynamical sea quarks. (orig.)

  6. Probing Strange Stars with Advanced Gravitational Wave Detectors

    OpenAIRE

    Moraes, P. H. R. S.; Miranda, O. D.

    2014-01-01

    When a neutron star is compressed to huge densities, it may be converted to a strange star. In property of the event/year rate of a neutron star - strange star binary system, we show that the operational phase of advanced gravitational wave detectors may bring up some evidences that such strange stars do exist. Moreover we argue that such a system could be a plausible progenitor to GRB 051103 and GRB 070201, whose non-detection by LIGO last run awaits convincing explanation.

  7. 16th International Conference on Strangeness in Quark Matter

    CERN Document Server

    2016-01-01

    Topical conference on Strangeness and Heavy Flavor production in Heavy-Ion Collisions The conference will focus on new experimental and theoretical developments on the role of strange and heavy-flavour quarks in proton-proton and in heavy-ion collisions, and in astrophysical phenomena. New results are expected, from the LHC, from RHIC and from other experimental programs. The 16th International Conference on Strangeness in Quark Matter, follows the recent events of 2015 in Dubna, 2013 in Birmingham, and 2011 in Cracow.

  8. Strange quark matter in a chiral SU(3) quark mean field model

    OpenAIRE

    Wang, P.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the chiral SU(3) quark mean field model to investigate strange quark matter. The stability of strange quark matter with different strangeness fraction is studied. The interaction between quarks and vector mesons destabilizes the strange quark matter. If the strength of the vector coupling is the same as in hadronic matter, strangelets can not be formed. For the case of beta equilibrium, there is no strange quark matter which can be stable against hadron emission even without vector m...

  9. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  10. Strange pathways for black hole formation

    International Nuclear Information System (INIS)

    Immediately after they are born, neutron stars are characterized by an entropy per baryon of order unity and by the presence of trapped neutrinos. If the only hadrons in the star are nucleons, these effects slightly reduce the maximum mass relative to cold, catalyzed matter. However, if strangeness-bearing hyperons, a kaon condensate, or quarks are also present, these effects result in an increase in the maximum mass of up to ∼ 0.3M[odot] compared to that of a cold, neutrino-free star. This makes a sufficiently massive proto-neutron star metastable, so that after a delay of 10-100 seconds, the PNS collapses into a black hole. Such an event might be straightforward to observe as an abrupt cessation of neutrinos when the instability is triggered

  11. The Universe is a Strange Place

    Science.gov (United States)

    Wilczek, Frank

    2006-01-01

    Our understanding of ordinary matter is remarkably accurate and complete, but it is based on principles that are very strange and unfamiliar. As I'll explain, we've come to understand matter to be a Music of the Void, in a remarkably literal sense. Just as we physicists finalized that wonderful understanding, towards the end of the twentieth century, astronomers gave us back our humility, by informing us that ordinary matter - what we, and chemists and biologists, and astronomers themselves, have been studying all these centuries constitutes only about 5% of the mass of the universe as a whole. I'll describe some of our promising attempts to rise to this challenge by improving, rather than merely complicating, our description of the world.

  12. The Universe is a Strange Place

    CERN Document Server

    Wilczek, F

    2006-01-01

    Our understanding of ordinary matter is remarkably accurate and complete, but it is based on principles that are very strange and unfamiliar. As I'll explain, we've come to understand matter to be a Music of the Void, in a remarkably literal sense. Just as we physicists finalized that wonderful understanding, towards the end of the twentieth century, astronomers gave us back our humility, by informing us that ordinary matter -- what we, and chemists and biologists, and astronomers themselves, have been studying all these centuries constitutes only about 5% of the mass of the universe as a whole. I'll describe some of our promising attempts to rise to this challenge by improving, rather than merely complicating, our description of the world.

  13. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  14. Dark matter heating in strange stars

    Science.gov (United States)

    Huang, Xi; Wang, Wen; Zheng, XiaoPing

    2014-04-01

    We study the effect of dark matter heating on the temperature of typical strange star (SS hereafter) ( M = 1.4 M⊙, R = 10 km) in normal phase (NSS hereafter) and in a possible existing colour-flavour locked (CFL)phase (CSS hereafter). For NSS, the influence of dark matter heating is ignored until roughly 107 yr. After 107 yr, the dark matter heating is dominant that significantly delays the star cooling, which maintains a temperature much higher than that predicted by standard cooling model for old stars. Especially for CSS, the emissivity of dark matter will play a leading role after roughly 104 yr, which causes the temperature to rise. This leads to the plateau of surface temperature appearing in ˜106.5 yr which is earlier than that of NSS (˜107 yr).

  15. Charges on Strange Quark Nuggets in Space

    CERN Document Server

    Abers, E S; Dicus, D A; Repko, W W; Rosenbaum, D C; Teplitz, V L

    2007-01-01

    Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic $\\gamma $-ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.

  16. Strange Attractor in Immunology of Tumor Growth

    CERN Document Server

    Voitikova, M

    1997-01-01

    The time delayed cytotoxic T-lymphocyte response on the tumor growth has been developed on the basis of discrete approximation (2-dimensional map). The growth kinetic has been described by logistic law with growth rate being the bifurcation parameter. Increase in the growth rate results in instability of the tumor state and causes period-doubling bifurcations in the immune+tumor system. For larger values of tumor growth rate a strange attractor has been observed. The model proposed is able to describe the metastable-state production when time series data of the immune state and the number of tumor cells are irregular and unpredictable. This metastatic disease may be caused not by exterior (medical) factors, but interior density dependent ones.

  17. Thermodynamics and Geometry of Strange Quark Matter

    Science.gov (United States)

    Gholizade, H.; Altaibayeva, A.; Myrzakulov, R.

    2015-06-01

    We study thermodynamic of strange quark matter (SQM) using the analytic expressions of free and internal energies. We investigate two regimes of the high density and low density separately. As a vital program, in the case of a massless gluon and massless quarks at finite temperature, we also present a geometry of thermodynamics for the gluon and Bosons using a Legendre invariance metric ,it is so called as geometrothermodynamic (GTD) to better understanding of the phase transition. The GTD metric and its second order scalar invariant have been obtained and we clarify the phase transition by study the singularities of the scalar curvature of this Riemannian metric. This method is ensemble dependence and to complete the phase transition, meanwhile we also investigate enthalpy and entropy and internal energy representations. Our work exposes new pictures of the nature of phase transitions in SQM.

  18. Thermodynamics and geometry of strange quark matter

    CERN Document Server

    Gholizade, H; Myrzakulov, R

    2014-01-01

    We study thermodynamic of strange quark matter (SQM) using the analytic expressions of free and internal energies. We investigate two regimes of the high density and low density separately. As a vital program, in the case of a massless gluon and massless quarks at finite temperature, we also present a geometry of thermodynamics for the gluon and Bosons using a Legendre invariance metric, it is so called as geometrothermodynamic (GTD) to better understanding of the phase transition. The GTD metric and its second order scalar invariant have been obtained, and we clarify the phase transition by study the singularities of the scalar curvature of this Riemannian metric. This method is ensemble dependence and to complete the phase transition. Meanwhile, we also investigate enthalpy and entropy and internal energy representations. Our work exposes new pictures of the nature of phase transitions in SQM.

  19. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  20. Resonances in QCD

    CERN Document Server

    Lutz, Matthias F M; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B; Metag, Volker; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Steve L; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2015-01-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\\it up}$, ${\\it down}$ and ${\\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\\it charm}$ quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  1. A Possible Resolution of the Strange Quark Polarization Puzzle ?

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2011-01-01

    We propose a possible resolution of the strange quark polarization puzzle i.e. of the contradiction between the negative polarized strange quark density obtained from analyses of inclusive DIS data and the positive values obtained from combined analyses of inclusive and semi-inclusive SIDIS data using de Florian et. al. (DSS) fragmentation functions. To this end the results of a new combined NLO QCD analysis of the polarized inclusive and semi-inclusive DIS data, using the Hirai et. al. (HKNS) fragmentation functions, are presented. It is demonstrated that the polarized strange quark density is very sensitive to the kaon fragmentation functions, and if the set of HKNS fragmentation functions is used, the polarized strange quark density from the combined analysis turns out to be negative and well consistent with values obtained from the pure DIS analyses.

  2. On the strange quark mass with improved staggered quarks

    OpenAIRE

    Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.

    2002-01-01

    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.

  3. Collider phenomenology of light strange-beauty squarks

    International Nuclear Information System (INIS)

    Strong mixing between right-handed strange and beauty squarks is a possible solution to the CP violation discrepancy in B→φKS decay as recently suggested by the Belle data. In this scenario, thanks to the strong mixing one of the strange-beauty squarks can be as light as 200 GeV, even though the generic supersymmetry scale is at TeV. In this work, we study the production of this light right-handed strange-beauty squark at hadronic colliders and discuss the detection in various decay scenarios. Detection prospect at the Tevatron run II is good for the strange-beauty squark mass up to about 300 GeV

  4. From strangelets to strange stars: A unified description

    CERN Document Server

    Xia, Cheng-Jun; Zhao, En-Guang; Zhou, Shan-Gui

    2015-01-01

    The conventionally separated treatments for strangelets and strange stars are now unified with a more comprehensive theoretical description for objects ranging from strangelets to strange stars. After constraining the model parameter according to the Witten-Bodmer hypothesis and observational mass-radius probability distribution of pulsars, we investigate the properties of this kind of objects. It is found that the energy per baryon decreases monotonously for increasing baryon number and reaches its minimum at the maximum baryon number, corresponding to the most massive strange star. Due to the quark depletion, an electric potential well for negatively charged particles is formed on the surface of the quark part, which may provide some unique observables. For a rotational bare strange star, a magnetic field with the typical strength of pulsars is generated.

  5. Mass-radius relation for magnetized strange quark stars

    CERN Document Server

    Martinez, A Perez; Paret, D Manreza

    2010-01-01

    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

  6. Prospects for Strangeness Production in pp Collisions at LHC

    CERN Document Server

    Kraus, I; Oeschler, H; Redlich, K

    2010-01-01

    Prospects for strangeness production in pp collisions at the Large Hadron Collider (LHC) are discussed within the statistical model. Firstly, the system size and the energy dependence of the model parameters are extracted from existing data and extrapolated to LHC energy. Particular attention is paid to demonstrate that the chemical decoupling temperature is independent of the system size. In the energy regime investigated so far, strangeness production in pp interactions is strongly influenced by the canonical suppression effects. At LHC energies, this influence might be reduced. Particle ratios with particular sensitivity to canonical effects are indicated. Secondly, the relation between the strangeness production and the charged-particle multiplicity in pp interactions is investigated. In this context the multiplicity dependence studied at Tevatron is of particular interest. There, the trend in relative strangeness production known from centrality dependent heavy-ion collisions is not seen in multiplicity ...

  7. (Anti-)strangeness production in heavy-ion collisions

    CERN Document Server

    Moreau, Pierre; Ko, Che-Ming; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    The production and dynamics of strange and antistrange hadrons in heavy-ion reactions from $\\sqrt{s_{NN}} \\approx$ 3 GeV to 200 GeV is analyzed within the Parton-Hadron-String-Dynamics (PHSD) transport model. The PHSD results for strange baryon and antibaryon production are roughly consistent with the experimental data starting from upper SPS energies. Nevertheless, hadronic final state flavor-exchange reactions are important for the actual abundances, in particular at large rapidities where hadronic dynamics, parton fragmentation and string decay dominate. A striking disagreement between the PHSD results and the available data persists, however, for bombarding energies below $\\sqrt{s_{NN}} \\approx$ 8 GeV where the strangeness production is significantly underestimated as in earlier HSD studies. This finding implies that the strangeness enhancement seen experimentally at FAIR/NICA energies cannot be attributed to a deconfinement phase transition or crossover but probably involves the approximate restoration o...

  8. Integrating out strange quarks in ChPT: Terms at order p6

    International Nuclear Information System (INIS)

    Chiral perturbation theory in the two-flavour sector allows one to analyse Green functions in QCD in a limit where the strange quark mass is considered to be large in comparison to the external momenta and to the light quark masses mu and md. In this framework, the low-energy constants of SU(2)RxSU(2)L depend on the value of the heavy quark masses. In a recent article, we have worked out, for the coupling constants li which occur at order p4 in the chiral expansion, the dependence on the strange quark mass at two-loop accuracy. Here, we provide analogous relations for some of the couplings ci which are relevant at order p6. To keep the calculations somewhat reasonable in size, we consider only those 28 couplings which enter the Green functions built from vector and axial vector quark currents in the chiral limit mu=md=0, ms≠0. This provides the matching for 27 linear combinations of the 28 couplings.

  9. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  10. Weak Production of Strange Particles and $\\eta$ Mesons off the Nucleon

    CERN Document Server

    Alam, M Rafi; Alvarez-Ruso, L; Athar, M Sajjad; Vacas, M J Vicente

    2015-01-01

    The strange particle production induced by (anti)neutrino off nucleon has been studied for $|\\Delta S|=0$ and $|\\Delta S|=1$ channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are $f_\\pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $\\Sigma^*$(1385) resonance and for eta production $S_{11}$(1535) and $S_{11}$(1650) resonances are included.

  11. Weak production of strange particles and η mesons off the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M. Rafi; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Departamento de Física Atómica, Moleculary Nuclear, and Instituto de Física Teórica y Computacional Carlos I, Universidad de Granada, Granada 18071 (Spain); Alvarez-Ruso, L.; Vacas, M. J. Vicente [Departamento de Física Teórica and Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)

    2015-10-15

    The strange particle production induced by (anti)neutrino off nucleon has been studied for |ΔS| = 0 and |ΔS| = 1 channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are f{sub π}, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included Σ*(1385) resonance and for eta production S{sub 11}(1535) and S{sub 11}(1650) resonances are included.

  12. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  13. Non-Spherical Gravitational Collapse of Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    Zade S S; Patil K D; Mulkalwar P N

    2008-01-01

    We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.

  14. Hadron spectroscopy from strangeness to charm and beauty

    Energy Technology Data Exchange (ETDEWEB)

    Zou, B.S., E-mail: zoubs@ihep.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-09-20

    Quarks of different flavors have different masses, which will cause breaking of flavor symmetries of QCD. Flavor symmetries and their breaking in hadron spectroscopy play important role for understanding the internal structures of hadrons. Hadron spectroscopy with strangeness reveals the importance of unquenched quark dynamics. Systematic study of hadron spectroscopy with strange, charm and beauty quarks would be very revealing and essential for understanding the internal structure of hadrons and its underlying quark dynamics.

  15. Strangeness and the discovery of quark-gluon plasma

    CERN Document Server

    Rafelski, J; Rafelski, Johann; Letessier, Jean

    2005-01-01

    Strangeness flavor yield s and the entropy yield S are the observables of the deconfined quark-gluon state of matter which can be studied in the entire available experimental energy range at AGS, SPS, RHIC, and, in near future, at the LHC energy range. We present here a comprehensive analysis of strange, soft hadron production as function of energy and reaction volume. We discuss the physical properties of the final state and argue how evidence about the primordial QGP emerges.

  16. Hadron spectroscopy from strangeness to charm and beauty

    International Nuclear Information System (INIS)

    Quarks of different flavors have different masses, which will cause breaking of flavor symmetries of QCD. Flavor symmetries and their breaking in hadron spectroscopy play important role for understanding the internal structures of hadrons. Hadron spectroscopy with strangeness reveals the importance of unquenched quark dynamics. Systematic study of hadron spectroscopy with strange, charm and beauty quarks would be very revealing and essential for understanding the internal structure of hadrons and its underlying quark dynamics

  17. Higher dimensional strange quark matter solutions in self creation cosmology

    Science.gov (United States)

    Şen, R.; Aygün, S.

    2016-03-01

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  18. Strange quark matter with dynamically generated quark masses

    OpenAIRE

    Buballa, M.; Oertel, M.

    1998-01-01

    Bulk properties of strange quark matter (SQM) are investigated within the SU(3) Nambu-Jona-Lasinio model. In the chiral limit the model behaves very similarly to the MIT bag model which is often used to describe SQM. However, when we introduce realistic current quark masses, the strange quark becomes strongly disfavored, because of its large dynamical mass. We conclude that SQM is not absolutely stable.

  19. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIAN Wei-Liang; SU Ru-Keng; SONG Hong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperonsis extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fractiondependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy andpressure, as well as the equation of state of the matter, are given.

  20. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIANWei-Liang; SURu-Keng; SONGHong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.

  1. Strange meson-baryon interaction in hot and dense medium: recent progress for a road to GSI/FAIR

    CERN Document Server

    Cabrera, Daniel; Aichelin, Jörg; bratkovskaya, Elena

    2015-01-01

    We report recent results on the dynamics of strange hadrons in two-body reactions relevant for near-threshold production in heavy-ion collisions at GSI/FAIR and NICA-Dubna. In particular, $\\bar K N$ scattering in hot and dense nuclear matter is studied within a chiral unitary framework in coupled channels, setting up the starting point for implementations in microscopic off-shell transport approaches. We focus on the calculation of transition rates with special attention to the excitation of hyperon resonances and isospin effects. Additionally, we explore "unconventional" strangeness generation by meson-meson and meson-baryon interactions in connection with recent HADES observations of deep sub-threshold $\\phi$ and $\\Xi$ production.

  2. Bottomed analog of Z+(4433)

    International Nuclear Information System (INIS)

    The newly observed Z+(4433) resonance by BELLE is believed to be a tetraquark bound state made up of (cu)(cd). We propose the bottomed analog of this bound state, namely, by replacing one of the charm quarks by a bottom quark, thus forming Zbc0,±,±±. One of the Zbc is doubly charged. The predicted mass of Zbc is around 7.6 GeV. This doubly charged bound state can be detected by its decay into Bc±π±. Similarly, we can also replace both charm quark and antiquark of the Z+(4433) by bottom quark and antiquark, respectively, thus forming Zbb the bottomonium analog of Z+(4433). The predicted mass of Zbb is about 10.7 GeV

  3. Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass

    CERN Document Server

    Xu, J F; Liu, F; Hou, D F; Chen, L W

    2015-01-01

    A quark model with running coupling and running strange quark mass, which is thermodynamically self-consistent at both high and lower densities, is presented and applied to study properties of strange quark matter and structure of compact stars. An additional term to the thermodynamic potential density is determined by meeting the fundamental differential equation of thermodynamics. It plays an important role in comparatively lower density and ignorable at extremely high density, acting as a chemical-potential dependent bag constant. In this thermodynamically enhanced perturbative QCD model, strange quark matter still has the possibility of being absolutely stable, while the pure quark star has a sharp surface with a maximum mass as large as about 2 times the solar mass and a maximum radius of about 11 kilometers.

  4. Periodic solution and chaotic strange attractor for shunting inhibitory cellular neural networks with impulses

    International Nuclear Information System (INIS)

    By using the continuation theorem of coincidence degree theory and constructing suitable Lyapunov functions, we study the existence, uniqueness, and global exponential stability of periodic solution for shunting inhibitory cellular neural networks with impulses, dxij/dt=-aijxij-ΣCkl(set-membershipsign)Nr(i,j)Cijklfij[xkl(t)]xij+Lij(t), t>0,t≠tk; Δxij(tk)=xij(tk+)-xij(tk-)=Ik[xij(tk)], k=1,2,... . Furthermore, the numerical simulation shows that our system can occur in many forms of complexities, including periodic oscillation and chaotic strange attractor. To the best of our knowledge, these results have been obtained for the first time. Some researchers have introduced impulses into their models, but analogous results have never been found.

  5. Strange and Non-Strange Meson Fluctuations off the Nambu--Jona-Lasinio Soliton

    CERN Document Server

    Weigel, H; Alkofer, R

    1993-01-01

    Mesonic fluctuations off the chiral soliton of the Nambu--Jona-Lasinio model are investigated. The hedgehog configuration is proven to represent a local extremum of the action. The method is applied to flavor SU(3) and the energy eigenvalue of the kaon bound state in the soliton background is evaluated which is the key ingredient for the Callan-Klebanov approach to hyperons. The energy eigenvalue of the corresponding strange-valence-quark is found to be 183MeV higher than the energy eigenvalue of the up-valence-quark when 400MeV is assumed for the up-quark constituent mass.

  6. Effect of the Curved Spacetime on the Electrostatic Potential Energy Distribution of Strange Stars

    Institute of Scientific and Technical Information of China (English)

    陈次星; 张家铝

    2001-01-01

    The effect of the strong gravitational field of the strange core of a strange star on its surface electrostatic potential energy distribution is discussed. We present the general-relativistic hydrodynamics equations of fluids in the presence of the electric fields and investigate the surface electrostatic potential distribution of the strange core of a strange star in hydrostatic equilibrium to correct Alcock and coworker's result [Astrophys. J. 310 (1986) 261]. Also, we discuss the temperature distribution of the bare strange star surface and give the related formulae, which may be useful if we are concerned further about the physical processes near the quark atter surfaces of strange stars.

  7. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  8. Strange Attractors Characterizing the Osmotic Instability

    CERN Document Server

    Tzenov, Stephan I

    2014-01-01

    In the present paper a simple dynamical model for computing the osmotically driven fluid flow in a variety of complex, non equilibrium situations is derived from first principles. Using the Oberbeck-Boussinesq approximation, the basic equations describing the process of forward osmosis have been obtained. It has been shown that these equations are very similar to the ones used to model the free Rayleigh-Benard convection. The difference is that while in the case of thermal convection the volume expansion is driven by the coefficient of thermal expansion, the key role for the osmotic instability is played by the coefficient of isothermal compressibility. In addition, it has been shown that the osmotic process represents a propagation of standing waves with time-dependent amplitudes and phase velocity, which equals the current velocity of the solvent passing through the semi-permeable membrane. The evolution of the amplitudes of the osmotic waves is exactly following the dynamics of a strange attractor of Loren...

  9. Atmospheric Neutrinos Can Make Beauty Strange

    CERN Document Server

    Harnik, R; Murayama, H; Pierce, A T; Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    The large observed mixing angle in atmospheric neutrinos, coupled with Grand Unification, motivates the search for a large mixing between right-handed strange and bottom quarks. Such mixing does not appear in the standard CKM phenomenology, but may induce significant b to s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an order one effect on CP violation in B_d to phi+K_S is possible due to a large mixing between right-handed b and s squarks, while still satisfying constraints from b to s + gamma. We also include the effect of right- and left-handed bottom squark mixing proportional to m_b*mu*tan(beta). For small mu*tan(beta) there may also be a large effect in B_s mixing correlated with a large effect in B_d to phi+K_S, typically mixing effects are greater than 100 ps^{-1}, an unambiguous signal of new physics at Tevatron Run II.

  10. Strangeness Prospects with the CBM Experiment

    Science.gov (United States)

    Friese, Volker

    2016-01-01

    The CBM experiment will study strongly interacting matter at high net-baryon densities with nuclear collisions up to 45A GeV beam energy at the future FAIR facility. With interaction rates unprecedented in heavy-ion collisions, CBM will give access also to extremely rare probes and thus to the early stage of the collisions, in search for the first-order phase transition from confined to deconfined matter and the QCD critical point. The CBM physics programme will be started with beams delivered by the SIS-100 synchrotron, providing energies from 2 to 11 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 30 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS-300 in a later stage of the FAIR project. After several years of preparation, the CBM experiment now enters the realisation phase. In this article, we report on the current status of the system developments and the expected physics performance for strange and charmed observables, as well as on the roadmap towards the first data taking.

  11. Pair emission from bare magnetized strange stars

    CERN Document Server

    Melrose, D B; Peres-Menezes, D

    2006-01-01

    The dominant emission from bare strange stars is thought to be electron-positron pairs, produced through spontaneous pair creation (SPC) in a surface layer of electrons tied to the star by a superstrong electric field. The positrons escape freely, but the electrons are directed towards the star and quickly fill all available states, such that their degeneracy suppresses further SPC. An electron must be reflected and gain energy in order to escape, along with the positron. Each escaping electron leaves a hole that is immediately filled by another electron through SPC. We discuss the collisional processes that produce escaping electrons. When the Landau quantization of the motion perpendicular to the magnetic field is taken into account, electron-electron collisions can lead to an escaping electron only through a multi-stage process involving higher Landau levels. Although the available estimates of the collision rate are deficient in several ways, it appears that the rate is too low for electron-electron colli...

  12. Observation of enhanced production of strange and multi-strange hadrons in high-multiplicity pp and p-Pb collisions with the ALICE detector.

    CERN Document Server

    CERN. Geneva

    2015-01-01

    The production of strange hadrons has long been studied in heavy-ion collisions to investigate the formation of a deconfined medium. The interpretation of these data depends critically on the understanding of strange-particle production in smaller ‘baseline’ collision systems such as proton-proton and proton-ion. The ALICE experiment is well-suited to the measurement of identified charged hadrons and weakly-decaying strange and multi-strange baryons and has collected large samples of minimum-bias pp and p-Pb collisions. Characterising the collisions according to their final-state multiplicities reveals an enhancement in the production of strange and multi-strange particles, relative to light flavoured hadrons. This detailed information is valuable in understanding the mechanisms that control the production of strange particles.  

  13. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Multimedia

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th Septemb...

  14. Discovery Mondays - “Relativity Theory... strange! Did you say strange?”

    CERN Document Server

    2005-01-01

    We all know that famous equation E=mc2, but do you know its true significance? Relativity theory: what is the meaning of this strange concept which plunged the physics world into turmoil 100 years ago? What effects can be observed today? Did you know that the GPS system would not work if relativity was not taken into account? The next Discovery Monday will take you on a journey into a strange world. You will be able to witness for yourselves the consequences of Einstein's theories. How, for example, can relativity theory be tested by eclipses? What consequences does it have for the accelerators at CERN? How can it be used to measure the mass of enormous black holes? And finally, how is it linked to the puzzle surrounding the missing mass of the Universe? As part of the World Year of Physics, the next Discovery Monday will be dedicated to one of the theories that Einstein published in 1905, his “annus mirabilis”. Join us at the Microcosm (Reception Building 33, Meyrin site), on Monday 5th September ...

  15. Evidence for strange stars from joint observation of harmonic absorption bands and of redshift

    CERN Document Server

    Bagchi, M; Dey, M D J; Bagchi, Manjari; Ray, Subharthi; Dey, Mira Dey & Jishnu

    2006-01-01

    From recent reports on terrestrial heavy ion collision experiments it appears that one may not obtain information about the existence of asymptotic freedom (AF) and chiral symmetry restoration (CSR) for quarks of QCD at high density. This information may still be obtained from compact stars - if they are made up of strange quark matter. Very high gravitational redshift lines (GRL), seen from some compact stars, seem to suggest high ratios of mass and radius (M/R) for them. This is suggestive of strange stars (SS) and can in fact be fitted very well with SQM equation of state deduced with built in AF and CSR. In some other stars broad absorption bands appear at about ~ 0.3 keV and multiples thereof, that may fit in very well with resonance with harmonic compressional breathing mode frequencies of these SS. Emission at these frequencies are also observed in six stars. If these two features of large GRL and BAB were observed together in a single star, it would strengthen the possibility for the existence of SS i...

  16. High resolution study of hyperon-nucleon interactions by associated strangeness production in pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    Siebert, R. (Inst. de Physique Nucleaire, 91 Orsay (France)); Didelez, J.P. (Inst. de Physique Nucleaire, 91 Orsay (France)); Frascaria, R. (Inst. de Physique Nucleaire, 91 Orsay (France)); Reposeur, T. (Inst. de Physique Nucleaire, 91 Orsay (France)); Warde, E. (Inst. de Physique Nucleaire, 91 Orsay (France)); Lippert, C. (Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany)); Ernst, J. (Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany)); Hinterberger, F. (Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany)); Mayer-Kuckuk, T. (Inst. fuer Strahlen- und Kernphysik der Univ. Bonn, Bonn (Germany)); Boivin, M. (Lab. National Saturne, 91 Gif-sur-Yvette (France)); Yonnet, J. (Lab. National Saturne, 91 Gif-sur-Yvette (France)); Saghai, B. (DAPNIA-SPhN, CEA Saclay, 91 Gif-sur-Yvette (France)); Grossiord, J.Y. (Inst. de Physique Nucleaire, Univ. Claude Bernard Lyon-1, 69 Villeurbanne (France)); Bovet, E. (Inst. de Physique de l' Univ., N

    1994-01-31

    The associated strangeness production in pp collisions was studied at bombarding energies of 2.3 and 2.7 GeV by detecting the outgoing K[sup +] particles with a high resolution magnetic spectrometer at forward angles up to 23.5 laboratory angle. The kaons were separated from an immense background of protons and pions by a highly resolving TOF electronics in addition to vetoes from Cerenkov detectors utilizing either [beta] differing Cerenkov light cones in lucite or different thresholds for light production in aerogel. The hyperon-nucleon missing mass spectra obtained show strong deviations from pure phase space which is ascribed to final state interactions of the p[Lambda] and the N[Sigma] systems. The structures found are discussed and compared with results from K[sup -]d [yields] [pi][sup -]YN experiments, with theoretical calculations in the frame of OBE models, and with the prediction of sharp strange dibaryon resonances from several quark-bag models. (orig.)

  17. Compositeness of the strange, charm and beauty odd parity $\\Lambda$ states

    CERN Document Server

    Garcia-Recio, C; Nieves, J; Salcedo, L L; Tolos, L

    2015-01-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $\\Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $\\Lambda$ states. We find that the $\\Lambda$ states which are bound states (the three $\\Lambda_b$) or narrow resonances (one $\\Lambda(1405)$ and one $\\Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $\\frac{1}{2}^-$ wide $\\Lambda(1405)$ and $\\Lambda_c(2595)$ as well as the $\\frac{3}{2}^-$ $\\Lambda(1520)$ and $\\Lambda_c(2625)$ states display smaller compositeness and so they...

  18. Anti-strange meson-baryon interaction in hot and dense nuclear matter

    CERN Document Server

    Cabrera, Daniel; Aichelin, Jörg; Bratkovskaya, Elena

    2014-01-01

    We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at FAIR energies. Our results rely on a chiral unitary approach in coupled channels which incorporates the $s$- and $p$-waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement full unitarization and self-consistency for both the $s$- and $p$-wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content $S=-1$. The obtained total cross sections mostly reflect the fate of the $\\Lambda(1405)$ resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium propert...

  19. Strange Quark Magnetic Moment of the Nucleon at Physical Point

    CERN Document Server

    Sufian, Raza Sabbir; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei; Liang, Jian

    2016-01-01

    We report a lattice QCD calculation of the strange quark contribution to the proton's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including the physical pion mass with chiral fermions. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of $0.051 \\,\\text{GeV}^2 \\lesssim Q^2 \\lesssim 1.31 \\,\\text{GeV}^2 $. The finite lattice spacing and finite volume corrections are included in a global fitting with $17$ valence quark masses on three lattices with different lattice spacings, different volumes, and three sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment $G^s_M(0) = - 0.073(17)(08)\\, \\mu_N$. The 4-sigma precision in statistics is achieved partly due to the low-mode averaging of the quark loop and low-mode substitution of the nucleon source to improve the statistics ...

  20. Production of strange neutral particles and measurement of the polarization of Λ in the NOMAD experiment at CERN

    International Nuclear Information System (INIS)

    The experiment NOMAD (CERN) is dedicated to the study of the neutrino-nucleon interaction. In these interactions many strange particles are produced: particularly Ks0, Λ and Λ-bar that are more easily detectable and this work is dedicated to them. The study of the polarization of Λ allows to go back to the measurements of spin transfer that are not well known. The identification of strange particles is difficult, 2 methods have been used in this work: likelihood ratios and α-asymmetry method. Once neutral strange particles were identified, their production rate (global and differential) have been made out, K*±, and Σ*± resonances and the decay of Ξ have been revealed. The second part of this work deals with the measurement of Λ polarization. The quality of the reconstruction of events and the cumulated statistics data allowed to give an accurate value of Λ polarization. A thorough study of the transverse polarization has been made and we see a dependence of the transverse impulse of Λ on the hadronic jet similar to that observed in hadronic collisions

  1. A new form of strange matter and new hope for finding it.

    CERN Multimedia

    Flam, F

    1993-01-01

    Scientists at Brookhaven National Laboratory and CERN in Switzerland will try to make matter from strange quarks, very elusive particles. Carl Dover of Brookhaven has theorized that strange quarks could group together into a nucleus as big as the sun.

  2. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  3. Strange Bedfellows; Physical and Biological Oceanographers

    Science.gov (United States)

    Wooster, W. S.

    2002-12-01

    understanding the response of marine ecosystems to environmental forcing cannot be achieved without the effective collaboration of these strange bedfellows.

  4. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  5. Coalescence of Strange-quark Planets with Strange Stars: a New Kind of Source for Gravitational Wave Bursts

    Science.gov (United States)

    Geng, J. J.; Huang, Y. F.; Lu, T.

    2015-05-01

    Strange-quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars (SSs), but not neutron stars. According to the SQM hypothesis, the existence of a hydrostatically stable sequence of SQM stars has been predicted, ranging from 1 to 2 solar mass SSs, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the search for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral very close to their host SSs without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as new sources of GW bursts, producing strong GWs at the final stage. The events occurring in our local universe can be detected by upcoming GW detectors, such as Advanced LIGO and the Einstein Telescope. This effect provides a unique probe to SQM objects and is hopefully a powerful tool for testing the SQM hypothesis.

  6. Insulin analogs and cancer

    Directory of Open Access Journals (Sweden)

    Laura eSciacca

    2012-02-01

    Full Text Available Today, insulin analogs are used in millions of diabetic patients. Insulin analogs have been developed to achieve more physiological insulin replacement in terms of time course of the effect. Modifications in the amino acid sequence of the insulin molecule change the pharmacokinetics and pharmacodynamics of the analogs in respect to human insulin. However, these changes can also modify the molecular and biological effects of the analogs. The rapid-acting insulin analogs, lispro, aspart and glulisine, have a rapid onset and shorter duration of action. The long-acting insulin analogs glargine and detemir have a protracted duration of action and a relatively smooth serum concentration profile. Insulin and its analogs may function as growth factors and therefore have a theoretical potential to promote tumor proliferation. A major question is whether analogs have an increased mitogenic activity in respect to insulin. These ligands can promote cell proliferation through many mechanisms like the prolonged stimulation of the insulin receptor, stimulation of the IGF-1 receptor (IGF-1R, prevalent activation of the ERK rather than the AKT intracellular post-receptor pathways. Studies on in vitro models indicate that short-acting analogs elicit molecular and biological effects that are similar to those of insulin. In contrast, long-acting analogs behave differently. Although not all data are homogeneous, both glargine and detemir have been found to have a decreased binding to IR but an increased binding to IGF-1R, a prevalent activation of the ERK pathway, and an increased mitogenic effect in respect to insulin. Recent retrospective epidemiological clinical studies have suggested that treatment with long-acting analogs (specifically glargine may increase the relative risk for cancer. Results are controversial and methodologically weak. Therefore prospective clinical studies are needed to evaluate the possible tumor growth-promoting effects of these insulin

  7. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  8. The strange flight behaviour of slowly spinning soccer balls.

    Science.gov (United States)

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-01-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights. PMID:23695000

  9. New analysis concerning the strange quark polarization puzzle

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2014-01-01

    The fact that analyses of semi-inclusive deep inelastic scattering suggest that the strange quark polarization $\\Delta s(x) + \\Delta \\bar{s}(x)$ is positive in the measured region of Bjorken x, whereas all analyses of inclusive deep inelastic scattering yield significantly negative values of this quantity, is known as the "strange quark polarization puzzle". We have re-analysed the world data on inclusive deep inelastic scattering, including the COMPASS 2010 proton data on the spin asymmetries, and for the first time, the new extremely precise JLab CLAS data on the proton and deuteron spin structure functions. Despite allowing, in our parametrization, for a possible sign change, our results confirm that the inclusive data yield significantly negative values for the strange quark polarization.

  10. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  11. Multiplicity-dependent enhancement of strange and multi-strange hadron production in proton-proton collisions at $\\sqrt{s} = 7$ TeV

    CERN Document Server

    ALICE, CERN; The ALICE collaboration

    2016-01-01

    The yields of strange and multi-strange hadrons are measured at midrapidity in proton-proton (pp) collisions at s = 7 TeV as a function of the charged-particle multiplicity density (dNch/dη). The production rate of strange particles increases faster than that of non-strange hadrons, leading to an enhancement of strange particles relative to pions, similar to that found in nucleus-nucleus collisions as well as in proton-nucleus collisions at the LHC. This is the first observation of an enhanced production of strange particles in high-multiplicity pp collisions. The magnitude of this strangeness enhancement increases with the event activity, quantified by dNch/dη, and with hadron strangeness. It reaches almost a factor of two for the Ω at the highest multiplicity presented. No enhancement is observed for particles with no strange quark content, demonstrating that the observed effect is strangeness rather than mass related. The results are not reproduced by any of the Monte Carlo models commonly used at the L...

  12. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  13. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  14. Effect of hyperons on phase coexistence in strange matter

    CERN Document Server

    Das, P; Chaudhuri, G

    2016-01-01

    The study of liquid gas phase transition in fragmentation of nuclei in heavy ion collisions has been extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz's free energy, specific heat and few other thermodynamic observables have been analyzed in order to examine the occurence of phase transition in the strange matter. The bimodal behaviour of the largest cluster formed in fragmentation also strongly indicates coexistence of both the phases. The presence of hyperons strengthens the signals and also shifts the transition temperature to lower values.

  15. Summary of recent experimental results on strangeness production

    CERN Document Server

    Kalweit, Alexander

    2016-01-01

    This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the {\\it International Conference on Strangeness in Quark Matter} in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.

  16. Computation of the structure of magnetized strange quark star

    CERN Document Server

    Bordbar, G H

    2011-01-01

    In this work, we have calculated some properties of the spin polarized strange quark matter (SQM) in a strong magnetic field at zero temperature using the MIT bag model. We have shown that the equation of state of spin polarized SQM is stiffer than that of the unpolarized case. We have also computed the structure properties of the spin polarized strange quark star (SQS) and have found that the presence of magnetic field leads to a more stable SQS compared to the unpolarized SQS.

  17. Computation of the structure of a magnetized strange quark star

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Ali Reza Peivand

    2011-01-01

    We have calculated some properties of spin polarized strange quark matter (SQM) in a strong magnetic field at zero temperature using the MIT bag model.We showed that the equation of state of spin polarized SQM is stiffer than that for unpolarized cases.We have also computed the structural properties of a spin polarized strange quark star (SQS) and found that the presence of a magnetic field leads to a more stable SQS when compared to the structural properties of an unpolarized SQS.

  18. Scalar strangeness content of the nucleon and baryon sigma terms

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2014-01-01

    The scalar strangeness content of the nucleon, characterized by the so-called strangeness-nucleon sigma term, is of fundamental importance in understanding its sea-quark flavor structure. We report a determination of the octet baryon sigma terms via the Feynman-Hellmann theorem by analyzing the latest high-statistics $n_f=2+1$ lattice QCD simulations with covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order. In particular, we predict $\\sigma_{\\pi N}=55(1)(4)...

  19. QCD sum rule study of a charged bottom-strange scalar meson

    Science.gov (United States)

    Zanetti, C. M.; Nielsen, M.; Khemchandani, K. P.

    2016-05-01

    Using the QCD sum rule approach, we investigate the possible four-quark structure for the new observed Bs0π± narrow structure (D0). We use a diquak-antidiquark scalar current and work to the order of ms in full QCD, without relying on 1 /mQ expansion. Our study indicates that although it is possible to obtain a stable mass in agreement with the state found by the D0 collaboration, more constraint analysis (simultaneous requirement of the OPE convergence and the dominance of the pole on the phenomenological side) leads to a higher mass. We also predict the masses of the bottom scalar tetraquark resonances with zero and two strange quarks.

  20. Observation of the positive-strangeness pentaquark $\\Theta^+$ in photoproduction with the SAPHIR detector at ELSA

    CERN Document Server

    Barth, J; Ernst, J; Glander, K H; Hannappel, J; Jöpen, N; Kalinowsky, H; Klein, F; Klempt, E; Lawall, R; Link, J; Menze, D W; Neuerburg, W; Ostrick, M; Paul, E; Van Pee, H; Schulday, I; Schwille, W J; Wiegers, B; Wieland, F W; Wisskirchen, J; Wu, C

    2003-01-01

    The positive--strangeness baryon resonance $\\Theta^+$ is observed in photoproduction of the $\\rm nK^+K^0_s$ final state with the SAPHIR detector at the Bonn ELectron Stretcher Accelerator ELSA. It is seen as a peak in the $\\rm nK^+$ invariant mass distribution with a $4.8\\sigma$ confidence level. We find a mass $\\rm M_{\\Theta^+} = 1540\\pm 4\\pm 2$ MeV and an upper limit of the width $\\rm \\Gamma_{\\Theta^+} < 25$ MeV at 90% c.l. The photoproduction cross section for $\\rm\\bar K^0\\Theta^+$ is in the order of 300 nb. From the absence of a signal in the $\\rm pK^+$ invariant mass distribution in $\\rm\\gamma p\\to pK^+K^-$ at the expected strength we conclude that the $\\Theta^+$ must be isoscalar.

  1. Inclusive production of strange particles in 360 GeV/c PP interactions

    International Nuclear Information System (INIS)

    Results on cross sections, longitudinal and transverse momentum distributions for ksub(s)sup(o), Λ and anti Λ production in 360 GeV/c PP interactions are presented as obtained from EHS equipped with the Rapid Cycling Bubble Chamber (RCBC). The Λ and anti Λ polarization are measured. The cross sections for the diffractive components are given using the recoil spectrum. The data are discussed with respect to charm production. The study on inclusive production of strange meson and baryon resonances is presented. Results on cross sections for K**(892), K*-(892), Σ+(1385) and Σ-(1285). Longitudinal and transverse momentum distributions for K*(892) and Σ(1385) are presented as well as for their induced Ksup(o's) and Λsup('s). An estimation is given on the K*(1430) and Σ*-(1915) productions. (author)

  2. Analog pulse processor

    Science.gov (United States)

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  3. Hydraulic Capacitor Analogy

    Science.gov (United States)

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  4. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2002-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  5. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2006-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  6. Fermion resonance in quantum field theory

    OpenAIRE

    Gonchar, M. O.; Kaloshin, A. E.; Lomov, V. P.

    2006-01-01

    We derive accurately the fermion resonance propagator by means of Dyson summation of the self-energy contribution. It turns out that the relativistic fermion resonance differs essentially from its boson analog.

  7. Some measurements for determining strangeness matrix elements in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.; Pollock, S.J.; Ying, S. [Washington Univ., Seattle, WA (United States); Frederico, T. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Krein, [Universidade Estadual Paulista, Sao Paulo, SP (Brazil). Inst. de Fisica Teorica; Williams, A.G. [Florida State Univ., Tallahassee, FL (United States)

    1991-12-31

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  8. Some measurements for determining strangeness matrix elements in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.; Pollock, S.J.; Ying, S. (Washington Univ., Seattle, WA (United States)); Frederico, T. (Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados); Krein, (Universidade Estadual Paulista, Sao Paulo, SP (Brazil). Inst. de Fisica Teorica); Williams, A.G. (Florida State Univ., Tallahassee, FL (United States))

    1991-01-01

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  9. Strangeness Production in Jets with ALICE at the LHC

    Science.gov (United States)

    Smith, Chrismond; Harton, Austin; Garcia, Edmundo; Alice Collaboration

    2016-03-01

    The study of strange particle production is an important tool for understanding the properties of the hot and dense QCD medium created in heavy-ion collisions at ultra-relativistic energies. The study of strange particles in these collisions provides information on parton fragmentation, a fundamental QCD process. While measurements at low and intermediate pT, are already in progress at the LHC, the study of high momentum observables is equally important for a complete understanding of the QCD matter, this can be achieved by studying jet interactions. We propose the measurement of the characteristics of the jets containing strange particles. Starting with proton-proton collisions, we have calculated the inclusive pTJet spectra and the spectra for jets containing strange particles (K-short or lambda), and we are extending this analysis to lead-lead collisions. In this talk the ALICE experiment will be described, the methodology used for the data analysis and the available results will be discussed. This material is based upon work supported by the National Science Foundation under Grants PHY-1305280 and PHY-1407051.

  10. Study of doubly strange systems using stored antiprotons

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, E.; Lisowski, F.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Y. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Olshevskiy, A.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopyanov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfarth, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martìnez Rojo, M.; Marta, M.; Michel, M.; Mora Espì, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.

    2016-10-01

    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P ‾ ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ--atoms will be feasible and even the production of Ω--atoms will be within reach. The latter might open the door to the | S | = 3 world in strangeness nuclear physics, by the study of the hadronic Ω--nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions.

  11. Evidence for strange kinetics in Hasegawa-Mima turbulent transport

    International Nuclear Information System (INIS)

    We have studied the transport of test particle ensembles moving in turbulent electrostatic fields governed by the Hasegawa-Mima (HM) equation. As a result of the interplay of the linear dispersive term and the nonlinear term in the HM equation, 'strange kinetics' emerge: the poloidal particle transport undergoes a qualitative transition from diffusive, through supradiffusive, to ballistic. (author). Letter-to-the-editor

  12. Strangeness nuclear physics: a critical review on selected topics

    CERN Document Server

    Botta, Elena; Garbarino, Gianni

    2012-01-01

    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of $\\Lambda$--Hypernuclei, the $\\bar K$ nuclear interaction and the possible existence of $\\bar K$ bound states in nuclei. Perspectives for future studies on these issues are also outlined.

  13. Realistic Approach of Strange Number System from Unary to Decimal

    Directory of Open Access Journals (Sweden)

    Debasis Das

    2012-01-01

    Full Text Available Numbers play an important role in Mathematics, also in Computer Science. A number is a symbol or group of symbols, or a word in a natural language that represents a numeral, which is different from numbers just as words differ from the things they refer to. A set of numbers in a framework that are represented by numerals in a consistent manner is called number system. In computing the study of number systems is useful to all, as a fact that various number systems are used in computer fields. Some are familiar number system (decimal (base 10, binary (base-2, octal (base-8 and hexadecimal (base-16 and others are strange number system (SNS. Strange number system is investigated for efficiently describing and implementing in digital systems. In computing the study of strange number system (SNS will useful to all researchers. Their awareness and detailed explanation is necessary for understanding various digital aspects. In this paper we have elaborate the concepts of strange number system (SNS, needs, number representation, arithmetic operations and inter conversion with different bases, represented in tabulated form. This paper will also helpful for knowledge seekers to easy understanding and practicing of number systems as well as to memories them

  14. Strangeness -2 and -3 Baryons in a Constituent Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Muslema Pervin; Winston Roberts

    2007-09-19

    We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.

  15. Study of Strange Quark Mass in CFL Phase

    Institute of Scientific and Technical Information of China (English)

    LI Xin; L(U) Xiao-Fu

    2006-01-01

    In this paper we introduce bilocal fields in the global color symmetry model and consider color and electrical neutrality conditions simultaneously to study the effect of strange quark mass Ms for the momentum-dependent condensate of color-flavor locked phase. Consequently we find that there will be a quantum phase transition occurring.

  16. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  17. Familiar-Strange: Teaching the Scripture as John Would Teach

    Science.gov (United States)

    Ha, Tung-Chiew

    2014-01-01

    The Gospel of John teaches through telling the story of Jesus in light of the familiar Hebrew faith stories. It is an interpretive task that presents Jesus to his audience and teaches them adequate faith. John the Teacher skillfully uses narrative skills to create the familiar-strange effect in his storytelling. Each story is followed by a…

  18. Strange duality, mirror symmetry, and the Leech lattice

    CERN Document Server

    Ebeling, W

    1996-01-01

    We give a survey on old and new results concerning Arnold's strange duality. We show that most of the features of this duality continue to hold for the extension of it discovered by C.T.C. Wall and the author. The results include relations to mirror symmetry and the Leech lattice.

  19. Participatory urbanism: Making the stranger familiar and the familiar strange

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine

    2016-01-01

    Urban areas are planned structures that cannot easily be changed. Urban areas do however still afford physical spaces for various types of leisure expression and participation, from street art to parkour and from urban gaming to artistic happenings. Thus, while citizens who inhabit the urban area...... familiar strange but also by making strangers familiar"....

  20. Multiplicity-dependent enhancement of strange and multi-strange hadron production in proton-proton collisions at $\\sqrt{s} = 7$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; An, Mangmang; Andrei, Cristian; Andrews, Harry Arthur; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Mishra, Tribeni; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    The yields of strange (${\\rm K}^{0}_{S}$, $\\Lambda$, $\\bar{\\Lambda}$) and multi-strange ($\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$) hadrons are measured at midrapidity in proton-proton (pp) collisions at $\\sqrt{s}$ = 7 TeV as a function of the charged-particle multiplicity density (${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$).The production rate of strange particles increases faster than that of non-strange hadrons, leading to an enhancement of strange particles relative to pions, similar to that found in nucleus-nucleus collisions as well as in proton-nucleus collisions at the LHC. This is the first observation of an enhanced production of strange particles in high-multiplicity pp collisions. The magnitude of this strangeness enhancement increases with the event activity, quantified by ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$, and with hadron strangeness. It reaches almost a factor of two for the $\\Omega$ at the highest multiplicity presented. No enhancement is observed for particles with no strange quark cont...

  1. Enhancement of strange and multi-strange baryons in central Pb-Pb interactions at 158 GeV/c per nucleon

    CERN Document Server

    Evans, D; Bakke, H; Beusch, Werner; Bloodworth, Ian J; Caliandro, R; Carrer, N; Di Bari, D; Di Liberto, S; Elia, D; Fanebust, K; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Helstrup, H; Holme, A K; Huss, D; Jacholkowski, A; Jones, G T; Kinson, J B; Knudson, K P; Králik, I; Lenti, V; Lietava, R; Loconsole, R A; Løvhøiden, G; Manzari, V; Mazzoni, M A; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Norman, P I; Pastircák, B; Quercigh, Emanuele; Romano, G; Safarík, K; Sándor, L; Segato, G F; Staroba, P; Thompson, M; Thorsteinsen, T F; Torrieri, G D; Tveter, T S; Urbán, J; Villalobos Baillie, O; Virgili, T; Votruba, M F; Závada, P

    2000-01-01

    Strange and multi-strange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a quark-gluon plasma takes place. The production yields and transverse mass spectra of strange and multi-strange baryons and anti-baryons are presented for lead-lead interactions at 158 GeV/c per nucleon. Yields and transverse mass spectra from proton-lead and proton-beryllium interactions, where no phase transition is expected, are also presented and compared to those from lead-lead interactions. (5 refs).

  2. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    王晓荣[1; 萨本豪[2; 周代翠[3; 刘涵[4; 蔡勖[5

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Α ,Α ) and multiple (Ε Ε ) strangeness are given. in LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding sys-tem might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  3. Strangeness production in pA and AA collisions at 158 A GeV

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    LUCIAE, a hadronic and string cascade model and its corresponding event generator are used to analyse strangeness production singly and multiply in p-Pb and Pb-Pb collisions at 158 A GeV. Spectra of multiplicity and transverse mass for single (Λ, Λ) and multiple (Ξ-, Ξ-, Ω-, Ω-) strangeness are given. In LUCIAE model it suggests a physical mechanism, i.e. the dependence of the strange quark suppression factor on incident energy, projectile mass and centrality of colliding system might result in increase of yield of strange particles with increasing the above three parameters. Calculations from the model reconstruct well the WA97 experimental data: increase of yield of strange particles with increasing centrality and increase of strangeness enhancement with increasing number of strange quarks, in relativistic nucleus-nucleus collisions.

  4. Meat analog: a review.

    Science.gov (United States)

    Malav, O P; Talukder, S; Gokulakrishnan, P; Chand, S

    2015-01-01

    The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers. PMID:24915320

  5. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  6. Nucleon strangeness as the response to a strangeness-sensitive probe in a class of hadron models

    CERN Document Server

    Klabucar, D; Melic, B; Picek, I

    1999-01-01

    On top of its valence quarks, the full nucleon ground state may contain appreciable admixture of s-\\bar{s} pairs already at small momentum transfers. This paper discusses strangeness in the mean-field type of nucleon models, and exemplifies this by explicit calculations in the MIT bag model enriched by the presence of instantons. We calculate the instanton contribution to the strangeness in the MIT bag (on top of the standard contribution to strangeness found in that model). Although we do it in an essentially perturbative way, we present a detailed derivation of the formula expressing nucleon matrix elements of bilinear strange quark operators, in terms of a model valence nucleon state and interactions producing quark-antiquark fluctuations on top of that valence state. We do it in detail to clarify our argument that in the context of the mean-field type of quark models (where a Fock state expansion exists and where the nucleon state can be constructed out of single-quark states), the resulting formula acqui...

  7. Challenges in Analogical Reasoning

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same physics principle is involved but that is more difficult to handle. Here, we examine introductory physics students' ability to use analogies in solving problems involving Newton's second law. Students enrolled in an algebra-based introductory physics course were given a solved problem involving tension in a rope and were then asked to solve another problem for which the physics is very similar but involved a frictional force. They were asked to point out the similarities between the two problems and then use the analogy to solve the friction problem.

  8. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic τ decays with the OPAL detector

    International Nuclear Information System (INIS)

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the τ lepton and the mass of the strange quark. The decays τ- → (Kπ)-ντ, (Kππ)-ντ and (Kπππ)-ντ with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ- → K-π0ντ) = (0.471 ± 0.064stat ± 0.021sys)%, B(τ- → K-π+π-ντ) = (0.415 ± 0.059stat ± 0.031sys)% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the τ mass scale has been determined: ms(mτ2) = (84 ± 14exp ± 6Vus ± 17theo) MeV. Evolving this result to customary scales yields ms(1 GeV2) = (111-35+26) MeV, ms(4 GeV2) = (82-25+19) MeV. (orig.)

  9. Measurement of the strangeness spectral function and the mass of the strange quark in hadronic {tau} decays with the OPAL detector

    Energy Technology Data Exchange (ETDEWEB)

    Mader, W.

    2004-03-01

    Tau lepton decays with open strangeness in the final state are measured with the Opal detector at LEP to determine the strange hadronic spectral function of the {tau} lepton and the mass of the strange quark. The decays {tau}{sup -} {yields} (K{pi}){sup -}{nu}{sub {tau}}, (K{pi}{pi}){sup -}{nu}{sub {tau}} and (K{pi}{pi}{pi}){sup -}{nu}{sub {tau}} with final states consisting of neutral and charged kaons and pions, have been studied. The invariant mass distribution of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including {eta} mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the {tau} lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B({tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}}) = (0.471 {+-} 0.064{sub stat} {+-} 0.021{sub sys})%, B({tau}{sup -} {yields} K{sup -}{pi}{sup +}{pi}{sup -}{nu}{sub {tau}}) = (0.415 {+-} 0.059{sub stat} {+-} 0.031{sub sys})% have been measured. From the CKM weighted difference of strange and non-strange spectral moments, the mass of the strange quark at the {tau} mass scale has been determined: m{sub s}(m{sub {tau}}{sup 2}) = (84 {+-} 14{sub exp} {+-} 6{sub V{sub us}} {+-} 17{sub theo}) MeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) = (111{sub -35}{sup +26}) MeV, m{sub s}(4 GeV{sup 2}) = (82{sub -25}{sup +19}) MeV. (orig.)

  10. FGF growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  11. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  12. Synthesis of Paclitaxel Analogs

    OpenAIRE

    Xu, Zhibing

    2010-01-01

    Paclitaxel is one of the most successful anti-cancer drugs, particularly in the treatment of breast cancer and ovarian cancer. For the investigation of the interaction between paclitaxel and MD-2 protein, and development of new antagonists for lipopolysaccharide, several C10 A-nor-paclitaxel analogs have been synthesized and their biological activities have been evaluated. In order to reduce the myelosuppression effect of the paclitaxel, several C3â ² and C4 paclitaxel analogs have been synth...

  13. Strange (K) nuclear systems (S=-1)

    Institute of Scientific and Technical Information of China (English)

    LI Yi-He; WU Shi-Shu

    2009-01-01

    Λ(1405) is considered as a superposition of two resonances instead of a simple bound state of the kaon and proton. Within the framework of the Brueckner-Hartree-Fock(BHF) theory, we have investigated the K nuclear systems (S=-1), especially K- pp and K- pnn(T=1). The binding energy BK-is 23 MeV (3 MeV) and the width Γ is 62 MeV (56 MeV) for K-pp(K-pnn(T=1)).

  14. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  15. A dark business, full of shadows: analogy and theology in William Harvey.

    Science.gov (United States)

    Goldberg, Benjamin

    2013-09-01

    In a short work called De conceptione appended to the end of his Exercitationes de generatione animalium (1651), William Harvey developed a rather strange analogy. To explain how such marvelous productions as living beings were generated from the rather inauspicious ingredients of animal reproduction, Harvey argued that conception in the womb was like conception in the brain. It was mostly rejected at the time; it now seems a ludicrous theory based upon homonymy. However, this analogy offers insight into the structure and function of analogies in early modern natural philosophy. In this essay I hope to not only describe the complex nature of Harvey's analogy, but also offer a novel interpretation of his use of analogical reasoning, substantially revising the account offered by Guido Giglioni (1993). I discuss two points of conceptual change and negotiation in connection with Harvey's analogy, understanding it as both a confrontation between the border of the natural and the supernatural, as well as a moment in the history of psychology. My interpretation touches upon a number of important aspects, including why the analogy was rejected, how Harvey systematically deployed analogies according to his notions of natural philosophical method, how the analogy fits into contemporary discussions of analogies in science, and finally, how the analogy must be seen in the context of changing Renaissance notions of the science of the soul, ultimately confronting the problem of how to understand final causality in Aristotelian science. In connection with the last, I conclude the essay by turning to how Harvey embeds the analogy within a natural theological cosmology.

  16. Radial stability of anisotropic of strange quark stars

    CERN Document Server

    Arbañil, José D V

    2016-01-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic $\\sigma=p_t-p_r$, where $p_t$ and $p_r$ are respectively the tangential and the radial pressure, are considered: one that is null at the star's surface defined by $p_r(R)=0$, and other that is nonnull on it, namely, $\\sigma_s=0$ and $\\sigma_s\

  17. Many Facets of Strangeness Nuclear Physics with Stored Antiprotons

    CERN Document Server

    Pochodzalla, Josef; Lorente, Alicia Sanchez; Rojo, Marta Martinez; Steinen, Marcell; Gerl, Jürgen; Kojouharova, Jasmina; Kojouharova, Ivan

    2016-01-01

    Stored antiprotons beams in the GeV range represent a unparalleled factory for hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of strange hadronic systems with unprecedented precision. The behavior of hyperons and -- for the first time -- of antihyperons in nuclear systems can be studied under well controlled conditions. The exclusive production of $\\Lambda\\bar{\\Lambda}$ and $\\Sigma^-\\bar{\\Lambda}$ pairs in antiproton-nucleus interactions probe the neutron and proton distribution in the nuclear periphery and will help to sample the neutron skin. For the first time, high resolution $\\gamma$-spectroscopy of doubly strange nuclei will be performed, thus complementing measurements of ground state decays of double hypernuclei with mesons beams at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange $\\Xi$-atoms are feasible and even the pr...

  18. Strange magnetic moments of octet baryons under SU(3) breaking

    Institute of Scientific and Technical Information of China (English)

    CAO Lu; WANG Biao; CHEN Hong

    2012-01-01

    Magnetic moments of octet baryons are parameterized to all orders of the flavor SU(3) breaking with the irreducible tensor technique in order to extract the contribution of each flavor quark to the magnetic moments of the octet baryons.The not-yet measured magnetic moment of Σ0 is predicted to be 0.649 μN.Our parameterized forms for the magnetic moments are explicitly flavor-dependent,and hence each flavor component of the magnetic moments can be evaluated directly via the flavor projection operator.It is fouud that the strange magnetic moment of the nucleon is suppressed due to the small isoscalar anomalous magnetic moment of the nucleon.In particular,the strange magnetic form factor of the nucleon turns out to be positive,(G(s)N) (0) =0.428 μN,which is consistent with recent data.

  19. Fast pulsars, strange stars: An opportunity in radio astronomy

    International Nuclear Information System (INIS)

    The world's data on radio pulsars is not expected to represent the underlying pulsar population because of a search bias against detection of short periods, especially below 1 ms. Yet pulsars in increasing numbers with periods right down to this limit have been discovered suggesting that there may be even shorter ones. If pulsars with periods below 1/2 ms were found, the conclusion that the confined hadronic phase of nucleons and nuclei is only metastable would be almost inescapable. The plausible ground state in that event is the deconfined phase of (3-flavor) strange-quark-matter. From the QCD energy scale this is as likely a ground state as the confined phase. We show that strange matter as the ground state is not ruled out by any known fact, and most especially not by the fact that the universe is in the confined phase. 136 refs

  20. Multi-Strangeness Production in Hadron Induced Reactions

    CERN Document Server

    Gaitanos, T; Lalazissis, G A; Lenske, H

    2016-01-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplett-particle $\\Omega$ and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of $\\Omega$-production in the forthcoming \\panda-experiment, which can be achieved with measurable probabilities using high-energy secondary $\\Xi$-beams. We predict cross sections for $\\Omega$-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  1. Multi-strangeness production in hadron induced reactions

    Science.gov (United States)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  2. Strange hadronic physics in electroproduction experiments at the Mainz Microtron

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, P., E-mail: patrick@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Esser, A., E-mail: aesser@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Ayerbe Gayoso, C.; Boehm, R. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Borodina, O. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bosnar, D. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Bozkurt, V. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Bydzovsky, P. [Nuclear Physics Institute, 25068 Rez near Prague (Czech Republic); Debenjak, L. [University of Ljubljana and Institut ' Jozef Stefan' , 1000 Ljubljana (Slovenia); Distler, M.O. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Friscic, I. [Department of Physics, University of Zagreb, 10002 Zagreb (Croatia); Fujii, Y.; Gogami, T. [Department of Physics, Tohoku University, Sendai 980-8571 (Japan); Gomez Rodriguez, M. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Hashimoto, O.; Hirose, S. [Department of Physics, Tohoku University, Sendai 980-8571 (Japan); Kim, E. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany)

    2012-05-01

    Present and future research into the electroproduction of strangeness plays an important role at Mainz Microtron MAMI. With the KAOS spectrometer for kaon detection operated in the multi-spectrometer facility first cross section measurements of the exclusive p(e,e{sup Prime}K{sup +}){Lambda},{Sigma}{sup 0} reactions at low-momentum transfers have been performed. These measurements have clearly discriminated between effective Lagrangian models for photo- and electroproduction of strangeness. Recently, the KAOS spectrometer was upgraded to a double-arm spectrometer for the measurement of elementary cross sections at very forward scattering angles and for the missing mass spectroscopy of hypernuclear states. In parallel, pioneering experiments on decay-pion spectroscopy of electroproduced hypernuclei were carried out at MAMI. Future experiments will on the one side address the cross section of the elementary process with polarized beam and on the other side continue the hypernuclear spectroscopy with different light nuclear targets.

  3. Strange attractor of Henon map and its basin

    Institute of Scientific and Technical Information of China (English)

    曹永罗

    1995-01-01

    In this paper, Henon map is considered. For a positive measure set of parameters (a, b), we construct a trapping region G of topologically transitive strange attractor Aa,b for Ta,b, and prove that Aa,b= ∩n≥0Ta,bnG, and the basin B(Aa,b) of Aa,b is exactly the union of domain whose boundary is contained in w5(p) ∪wu(p) and ws(p). Therefore, that the conjecture posed by Benedicks and Carleson about the basin of strange attactor is true is proved. Furthermore, B(Aa,b) is simply connected and path-connected, w4(p2) is contained in the attainable boundary set of B(Aa,b) (where p2 is another hyperbolic fixed point of Ta,b).

  4. Anomalies, symmetries and strangeness content of the proton

    Indian Academy of Sciences (India)

    J Pasupathy

    2003-11-01

    The matrix elements of the operators of strange quark fields $s\\overline{}s$ where is 1 or 5 between a proton state is calculated. The sigma term is found to be ≈ 41 MeV and the (3) singlet axial matrix element is found to be ≈ 0.22, both in agreement with experiment. The sigma term is found using the trace anomaly, while the determination of the axial vector current matrix element is from QCD sum rules. These correspond to $\\langle p|2\\overline{ss}|\\rangle / \\langle p|\\overline{u}u+\\overline{d}d|p\\rangle ≈ 0.12$ and for the axial current ≈ -0.12, respectively. The role of the anomalies in maintaining flavor symmetry in the presence of substantial differences in quark masses is pointed out. This suggests that there is no need to invoke an intrinsic strange quark component in the proton wave function.

  5. Strange Quasi-Repeller in a Kicked Rotor

    Institute of Scientific and Technical Information of China (English)

    姜玉梅; 何大韧

    2003-01-01

    A new kind of crisis was observed in a system where a transition from conservative toquasi-dissipative can be observed. The crisis signifies a sudden and intrinsic change of a stochasticweb, which is formed by the end-results of the images of the discontinuous borderlines of the systemfunction. In the crisis, a strange quasi-repeller can be defined. When changing the controllingparameter, the variation of the fractile dimension of the quasi-repeller obeys a logarithmic rule.

  6. Observation of the doubly strange b baryon omega(-)(b)

    NARCIS (Netherlands)

    V.M. Abazov; . et al; S.J. de Jong; M. Demarteau; P. Houben; P.J. van den Berg

    2008-01-01

    We report the observation of the doubly strange b baryon Omega(-)(b) in the decay channel Omega(-)(b) -> J/psi Omega(-), with J/psi -> mu(+)mu(-) and Omega(-) -> Lambda K- -> (p pi(-))K-, in p (p) over bar collisions at root s = 1.96 TeV. Using approximately 1.3 fb(-1) of data collected with the D0

  7. Strangeness in the nucleon: what have we learned?

    OpenAIRE

    Thomas, A. W.; Shanahan, P. E.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)

    2012-01-01

    We review the state of our knowledge concerning the contribution of strange quarks to various nucleon properties. In the case of the electric and magnetic form factors, the level of agreement between theory and experiment is very satisfactory and gives us considerable confidence in our capacity to make reliable calculations within non-perturbative QCD. In view of the importance of the scalar form factors to the detection of dark matter candidates such as neutralinos, we place a particular emp...

  8. Strangeness Production in Ultrarelativistic Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    LONG Jia-Li; HE Ze-Jun; MA Yu-Gang; MA Guo-Liang

    2004-01-01

    Based on the relaxation equations describing the chemical equilibration of gluons, quarks and s quarks at finite baryon density derived from the Juttner distribution of partons, with the help of a rapid phase transition scenario from quark phase to hadron phase, we calculate strangeness production in the quark phase and hadron phase. It is found that the K-/π- ratio is enhanced to be larger than that in pp collisions by about a factor 3.

  9. A study of strange-, charmed, and beauty nuclei

    International Nuclear Information System (INIS)

    An analyses is made of the bound states of nuclei in the strange-, charm-, and beauty sector using a spin-dependent Gaussian two-body interaction in the microscopic formalism. Coulomb corrections are also included for the charmed nuclei. Our simple model is in reasonable agreement with other existing theoretical and experimental results and it predicts many new bound states. (author). 21 refs, 2 figs, 10 tabs

  10. Weak production of strange particles off the nucleon

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Alvarez-Ruso, L; Vacas, M J Vicente

    2013-01-01

    The strange particle production off the nucleon induced by neutrinos and antineutrinos is investigated at low and intermediate energies. We develop a microscopic model based on the SU(3) chiral Lagrangian. The studied mechanisms are the main source of single kaon production for (anti)neutrino energies up to 1.5 GeV. Using this model we have also studied the associated production of kaons and hyperons. The cross sections are large enough to be measured by experiments such as MINER$\

  11. Photon emissivity of the electrosphere of bare strange stars

    OpenAIRE

    Harko, T.; Cheng, KS

    2005-01-01

    We consider the spectrum, emissivity, and flux of the electromagnetic radiation emitted by the thin electron layer (the electrosphere) at the surface of a bare strange star. In particular, we carefully consider the effect of the multiple and uncorrelated scattering on the radiation spectrum (the Landau-Pomeranchuk-Migdal effect), together with the effect of the strong electric field at the surface of the star. The presence of the electric field strongly influences the radiation spectrum emitt...

  12. LHCb: Prospect for rare strange decays at LHCb

    CERN Multimedia

    Marin Benito, C

    2014-01-01

    Prospects on rare strange decays at LHCb are presented. The latest results from the K_s \\to \\mu \\mu search are reported, together with the future prospects for this decay. A search for K_s \\to \\pi^0 \\mu \\mu, a K^+ mass measurement, a search for K_s \\to 4 \\el and a search for \\Sigma^+ \\to p\\mu\\mu are also presented.

  13. The extent of strangeness equilibration in quark gluon plasma

    Indian Academy of Sciences (India)

    Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava

    2003-05-01

    The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.

  14. Strangeness Photoproduction at the BGO-OD Experiment

    CERN Document Server

    Jude, T C; Bayadilov, D; Beck, R; Becker, M; Bella, A; Bielefeldt, P; Boese, S; Braghieri, A; Brinkmann, K; Cole, P; Curciarello, F; De Leo, V; Di Salvo, R; Dutz, H; Elsner, D; Fantini, A; Freyermuth, O; Friedrich, S; Frommberger, F; Ganenko, V; Gervino, G; Ghio, F; Giardina, G; Goertz, S; Gridnev, A; Gutz, E; Hammann, D; Hannappel, J; Hartmann, P; Hillert, W; Ignatov, A; Jahn, R; Joosten, R; Klein, F; Koop, K; Krusche, B; Lapik, A; Sandri, P Levi; Lopatin, I V; Mandaglio, G; Messi, F; Messi, R; Metag, V; Moricciani, D; Mushkarenkov, A; Nanova, M; Nedorezov, V; Novinskiy, D; Pedroni, P; Reitz, B; Romaniuk, M; Rostomyan, T; Rudnev, N; Scheluchin, G; Schmieden, H; Stugelev, A; Sumachev, V; Tarakanov, V; Vegna, V; Walther, D; Watts, D; Zaunick, H; Zimmermann, T

    2015-01-01

    BGO-OD is a newly commissioned experiment to investigate the internal structure of the nucleon, using an energy tagged bremsstrahlung photon beam at the ELSA electron facility. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating meson photoproduction. The extensive physics programme for open strangeness photoproduction is introduced, and preliminary analysis presented.

  15. Self-similarity of strangeness production in pp collisions at RHIC

    CERN Document Server

    Tokarev, M

    2015-01-01

    New experimental data on transverse momentum spectra of strange particles (KS0, K-, K*, phi,...) produced in pp collisions at sqrt s = 200 GeV obtained by the STAR and PHENIX collaborations at RHIC are analysed in the framework of z-scaling approach. Scaling properties of the data z-presentation are illustrated. Self-similarity of strange particle production is discussed. A microscopic scenario of constituent interactions developed within the z-scaling approach is used to study constituent energy loss, proton momentum fraction and recoil mass in dependence on the transverse momentum, strangeness, and mass of the inclusive particle. The obtained results can be useful for understanding strangeness origin, for searching for new physics with strange probes and can serve as a benchmark for complex analyses of self-similar features of strange production in heavy ion collisions.

  16. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  17. Digital and analog communication systems

    Science.gov (United States)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  18. Bottomonium states in hot asymmetric strange hadronic matter

    CERN Document Server

    Mishra, Amruta

    2014-01-01

    We calculate the in-medium masses of the bottomonium states ($\\Upsilon(1S)$, $\\Upsilon(2S)$, $\\Upsilon(3S)$ and $\\Upsilon(4S)$) in isospin asymmetric strange hadronic matter at finite temperatures. The medium modifications of the masses arise due to the interaction of these heavy quarkonium states with the gluon condensates of QCD. The gluon condensates in the hot hadronic matter are computed from the medium modification of a scalar dilaton field within a chiral SU(3) model, introduced in the hadronic model to incorporate the broken scale invariance of QCD. There is seen to be drop in the masses of the bottomonium states and the mass shifts are observed to be quite considerable at high densities for the excited states. The effects of density, isospin asymmetry, strangeness as well as temperature of the medium on the masses of the $\\Upsilon$-states are investigated. The effects of the isopsin asymmetry as well as strangeness fraction of the medium are seen to be appreciable at high densities and small temperat...

  19. Strangeness production in hadronic models and recombination models

    CERN Document Server

    Gräf, Gunnar; Petersen, Hannah; Steinheimer, Jan; Mitrovski, Michael; Bleicher, Marcus

    2010-01-01

    We present recent results on the production, spectra and elliptic flow of strange particles in dynamic simulations employing hadronic degrees of freedom and from recombination models. The main focus will be on the Ultra-relativistic Molecular Dynamics (UrQMD) Boltzmann approach to relativistic heavy ion collisions and a hybrid approach with intermediate hydrodynamic evolution based on UrQMD (available for download as UrQMD v3.3). Compared to the standard binary collision approach, an enhancement of the strange particle particle yields is found in the hybrid approach due to the assumption of local equilibration. The production origins of the Phi-meson in the hybrid approach are studied in further detail. We also present results on the transverse momentum spectra of baryon to meson ratios of strange particles. Due to the approximate energy independent scaling of this ratio as a function of p_T we argue, that a maximum in these spectra may not be a unique sign for quark coalescence but can be understood in terms...

  20. Is RXJ1856.5-3754 a strange quark star?

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Marshall, Herman L

    2003-05-05

    Deep Chandra LETGS observations of the isolated neutron star candidate RXJ1856.5-3754 have demonstrated that, to within the accuracy of the observations, the X-ray spectrum is consistent with a blackbody with a temperature of 7 x 10{sup 5} K and a radiation radius R{sub {infinity}} {approx} 5 km--much too small for current neutron star equations of state. The small apparent radius, lack of X-ray pulsations down to a level of 3%, and failure to explain the observations in terms of current neutron star models, lead to the suggestion that RXJ1856.5-3754 might be a strange quark star. We discuss some issues associated with this interpretation and look briefly at RX J1856.5-3754 in the context of other have smooth featureless spectra. Both X-ray and optical spectra of some of these objects might be explained by 'naked' crusted neutron stars or strange quark stars with thin coronae. RX J1856.5-3754 remains an interesting strange quark star candidate.

  1. Strange and Charm Quark Spins from Anomalous Ward Identity

    CERN Document Server

    Gong, Ming; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei

    2015-01-01

    We present a calculation of the strange and charm quark contributions to the nucleon spin from anomalous Ward identity (AWI). It is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations on a $24^3 \\times 64$ lattice with the light sea mass at $m_{\\pi} = 330$ MeV. To satisfy the AWI, the overlap fermion for the pseudoscalar density and the overlap Dirac operator for the topological density, which do not have multiplicative renormalization, are used to renormalize the form factor of the local axial-vector current at finite $q^2$. For the charm quark, we find the positive pseudoscalar term almost cancels the negative topological term for each $q^2$, leading to a very small net contribution. For the strange quark, the pseudoscalar term is less positive than that of the charm and this results in a negative strange quark spin when combined with the topological contribution. The $g_A(q^2)$ at $q^2 =0$ is obtained by a global fit of the pseudoscalar and the topological form fact...

  2. Strange meson spectroscopy in Kω and Kφ at 11 GeV/c and Cherenkov ring imaging at SLD

    International Nuclear Information System (INIS)

    This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (CRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part 1: The CRID system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at √s = mZ0. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, π/K/p separation will be achieved up to ∼30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a ∼1% spatial resolution in the charge-division, low-noise CRID preamplifier prototypes were developed and tested resulting in 5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. Part 2: Results from the partial wave analysis of strange meson final states in the reactions K-p → K-ωp and K-p → bar K0φn are presented. The analyses are based on data from a 4.1 event/nb exposure of the LASS spectrometer in K-p interactions at 11 GeV/c. The data sample of K-ωp final state contains ∼105 events. From the partial wave analysis, resonance structures of JP = 2-, 3- and 2+ amplitudes are observed in the Kω system. The analysis of 2- amplitudes provides an evidence for two strange meson states in the mass region around 1.75 GeV/c2. The appropriate branching fractions are calculated and compared with the SU(3) predictions. The partial wave analysis of bar K0φ system favors JP = 1- and 2+ states in the 1.9--2.0 GeV/c2 region

  3. Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013

    Science.gov (United States)

    Manninen, J.; Kleimenova, N. G.; Kozlovsky, A.; Kornilov, I. A.; Gromova, L. I.; Fedorenko, Y. V.; Turunen, T.

    2015-08-01

    We investigate a non-typical very low frequency (VLF) 1-4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency-time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2-3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8-1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth-ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1-10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF (ultra low frequency-very low frequency) wave interaction and the ionosphere waveguide propagation.

  4. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  5. Study of the production of strange and multi-strange particles in lead-lead interactions at the CERN SPS the NA57 experiment

    CERN Document Server

    Antinori, Federico; Barbera, R; Bloodworth, Ian J; Botje, M; Caliandro, R; Campbell, M; Cantatore, E; Carena, W; Carrer, N; De Haas, A P; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Fanebust, K; Fedorisin, J; Feofilov, G A; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Gulino, M; Helstrup, H; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Klempt, W; Knudson, K; Kocper, B; Kolojvari, A A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Lupták, M; Manzari, V; Mazzoni, M A; Martinská, G; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Muigg, D; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Sené, M; Sené, R; Segato, G F; Snoeys, W; Staroba, P; Thompson, M; Tomasicchio, G; Torrieri, G D; Tulina, T A; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Vannucci, Luigi; Vascotto, Alessandro; Villalobos Baillie, O; Vinogradov, I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P

    2001-01-01

    The NA57 experiment studies the production of strange and multi- strange baryons and antibaryons in ultrarelativistic nucleus-nucleus collisions at the SPS. The main aim of NA57 is to investigate the behaviour of the enhancement of the production of particles with strangeness |s|=1,2,3 in nucleus-nucleus collisions at the variation of the energy and of the centrality of the collision defined, e.g. as the number of participant nucleons. We shall recall the main features of the experimental set-up, and we shall illustrate the collected data samples and the status of their analysis.

  6. Baryon-Strangeness Correlations in Au+Au Collisions at RHIC BES energies from UrQMD model

    CERN Document Server

    Yang, Zhenzhen; Mohanty, Bedangadas

    2016-01-01

    Fluctuations and correlations of conserved charges are sensitive observables for studying the QCD phase transition and critical point in high-energy heavy-ion collisions. We have studied the centrality and energy dependence of mixed-cumulants (up to fourth order) between net-baryon and net-strangeness in Au+Au collisions at $\\sqrt{s_{NN}}$= 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV from UrQMD model. To compare with other theoretical calculations, we normalize these mixed-cumulants by various order cumulants of net-strangeness distributions. We found that the results obtained from UrQMD calculations are comparable with the results from Lattice QCD at low temperature and hadron resonance gas model. The ratios of mixed-cumulants ($R_{11}^{BS},R_{13}^{BS},R_{22}^{BS}$,$R_{31}^{BS}$) from UrQMD calculations show weak centrality dependence. However, the mixed-cumulant ratios $R_{11}^{BS}$ and $R_{31}^{BS}$ show strong increase at low energy, while the $R_{13}^{BS}$ snd $R_{22}^{BS}$ are similar at different energies. ...

  7. Lateral Distribution of NBD-PC Fluorescent Lipid Analogs in Membranes Probed by Molecular Dynamics-Assisted Analysis of Förster Resonance Energy Transfer (FRET) and Fluorescence Quenching

    OpenAIRE

    Luís M. S. Loura

    2012-01-01

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simul...

  8. D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Dian-Yong [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Liu, Xiang [Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); RIKEN, Theoretical Research Division, Nishina Center, Saitama (Japan)

    2015-01-01

    Newly observed two charmed-strange resonances, D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), i.e., 1D(2{sup -}) and 1D'(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D'(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments. (orig.)

  9. D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); University of Chinese Academy of Sciences, 100049, Beijing (China); Chen, Dian-Yong, E-mail: chendy@impcas.ac.cn [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); Liu, Xiang, E-mail: xiangliu@lzu.edu.cn [Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); School of Physical Science and Technology, Lanzhou University, 730000, Lanzhou (China); Matsuki, Takayuki, E-mail: matsuki@tokyo-kasei.ac.jp [Tokyo Kasei University, 1-18-1 Kaga, Itabashi, 173-8602, Tokyo (Japan); Theoretical Research Division, Nishina Center, RIKEN, 351-0198, Saitama (Japan)

    2015-01-27

    Newly observed two charmed-strange resonances, D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), are investigated by calculating their Okubo–Zweig–Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), i.e., 1D(2{sup -}) and 1D{sup ′}(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D{sup ′}(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments.

  10. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  11. USW area analogs

    OpenAIRE

    Everett, Keith R.

    2005-01-01

    The purpose of this project is to investigate the feasibility of and methodology for the development of a set of environmental analogs of operational Undersea Warfare (USW) areas within fleet training areas. It is primarily a discussion of the identification of parameters that characterize the tactical USW environment, prioritization of these parameters, identification of existing databases that contain these parameters and an outline of the processes required to extract the desired data fro...

  12. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  13. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  14. The pulsar PSR J0348-0432 and strange stars

    Science.gov (United States)

    Vartanyan, Yu. L.; Grigoryan, A. K.; Shaginyan, A. A.

    2015-07-01

    The possible constraints on the equation of state for superdense baryonic matter to which an accurate measurement of the mass for the binary radio pulsar PSR J0348-0432 ( M/ M⊙ = 2.01 ± 0.04) leads have been determined. We use the bag model for strange quark matter (SQM), where the transition to the SQM state occurs at an energy density that does not exceed twice the density in atomic nuclei. Therefore, on the curve of mass M for equilibrium superdense configurations versus central energy density ρ c (the M( ρ c ) curve), low-mass neutron stars and configurations consisting of SQM form one family in central density. The sets of three phenomenological bag constants (the vacuum pressure B, the quarkgluon interaction constant α c , and the strange quark mass ms) have been determined. Using them in the equation of state for SQM leads to maximum masses M max of equilibrium configurations greater than 2.01 M ⊙ ( M max ≥ 2.01 M ⊙). For such equations of state for configurations with M max and M/ M ⊙ = 2.01, we have calculated themass, the radius, the total number of baryons, and the redshift fromthe stellar surface as a function of the central energy density ρ c . It turns out that if we restrict the quark-gluon interaction constant α c , in terms of which the expansion is performed in the perturbation theory when determining the thermodynamic potentials Ω i , i = u, d, and s, to α c < 0.6, then, according to the derived equations of state, the above-mentioned pulsar can be a possible candidate for strange stars.

  15. TRANSITION TEMPERATURE IN QCD WITH PHYSICAL LIGHT AND STRANGE QUARK MASSES.

    Energy Technology Data Exchange (ETDEWEB)

    KARSCH, F.

    2006-11-14

    We present results from a calculation of the transition temperature in QCD with two light (up, down) and one heavier (strange) quark mass as well as for QCD with three degenerate quark masses. Furthermore, we discuss first results from an ongoing calculation of the QCD equation of state with almost realistic light and strange quark masses.

  16. Search for Strange Quark Matter Produced in Relativistic Heavy Ion Collisions

    OpenAIRE

    Collaboration, T. A. Armstrong et al. The E864

    2000-01-01

    We present the final results from Experiment 864 of a search for charged and neutral strange quark matter produced in interactions of 11.5 GeV/c per nucleon Au beams with Pt or Pb targets. Searches were made for strange quark matter with A>4. Approximately 30 billion 10% most central collisions were sampled and no strangelet states with A

  17. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shusu Shi

    2016-01-01

    Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.

  18. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas Ottmar

    2010-01-29

    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  19. Exploring strange nucleon form factors on the lattice

    CERN Document Server

    Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David

    2010-01-01

    We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.

  20. Properties of excited charm and charm-strange mesons

    Science.gov (United States)

    Godfrey, Stephen; Moats, Kenneth

    2016-02-01

    We calculate the properties of excited charm and charm-strange mesons. We use the relativized quark model to calculate their masses and wave functions that are used to calculate radiative transition partial widths and the 3P0 quark-pair-creation model to calculate their strong decay widths. We use these results to make quark model spectroscopic assignments for recently observed charm and charm-strange mesons. In particular, we find that the properties of the DJ(2550 )0 and DJ*(2600 )0 are consistent with those of the 2 1S0 (c u ¯) and the 2 3S1 (c u ¯) states respectively, and the D1*(2760 )0, D3*(2760 )-,and DJ(2750 )0with those of the 1 3D1 (c u ¯), 1 3D3 (d c ¯), and 1 D2(c u ¯) states respectively. We tentatively identify the DJ*(3000 )0 as the 1 3F4 (c u ¯ ) and favor the DJ(3000 )0 to be the 3 1S0 (c u ¯ ) although we do not rule out the 1 F3 and 1 F3' assignment. For the recently observed charm-strange mesons we identify the Ds1 *(2709 )±,Ds1 *(2860 )-,andDs3 *(2860 )-as the 2 3S1 (c s ¯), 1 3D1 (s c ¯), and 1 3D3 (s c ¯) states respectively and suggest that the Ds J(3044 )± is most likely the Ds 1(2 P1' ) or Ds 1(2 P1) state although it might be the Ds2 *(2 3P2 ) with the D K final state too small to be observed with current statistics. Based on the predicted properties of excited states, that they do not have too large a total width and that they have a reasonable branching ratio to simple final states, we suggest states that should be able to be found in the near future. We expect that the tables of properties summarizing our results will be useful for interpreting future observations of charm and charm-strange mesons.

  1. A class of exact strange quark star model

    Indian Academy of Sciences (India)

    S Thirukkanesh; F C Ragel

    2013-08-01

    Static spherically symmetric space-time is studied to describe dense compact star with quark matter within the framework of MIT Bag Model. The system of Einstein’s field equations for anisotropic matter is expressed as a new system of differential equations using transformations and it is solved for a particular general form of gravitational potential with parameters. For a particular parameter, as an example, it is shown that the model satisfies all major physical features expected in a realistic star. The generated model also smoothly matches with the Schwarzschild exterior metric at the boundary of the star. It is shown that the generated solutions are useful to model strange quark stars.

  2. Exploring strange nonchaotic attractors through Jacobian elliptic functions

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Hoz, A Martinez [Departamento de Fisica Aplicada, Escuela Universitaria Politecnica, Universidad de Castilla La Mancha, E-13400 Almaden (Ciudad Real) (Spain); Chacon, R, E-mail: rchacon@unex.es [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain)

    2011-11-15

    We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of quasiperiodically forced systems. We found similar scenarios of SNAs from the analysis of two representative examples: a quasiperiodically forced damped pendulum and a two-dimensional map. This clearly well-suited and advantageous use of the JEFs, which in their own right lie at the heart of nonlinear physics, may encourage students at intermediate university levels to study them in depth.

  3. Weak production of strange particles off the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Alam, M. Rafi; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Dipartimento di Fisica, Universitá degli Studi di Trento Via Sommarive 14, Povo (Trento) I-38123 (Italy); Alvarez-Ruso, L.; Vacas, M. J. Vicente [Departamento de Física Teórica and Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)

    2015-05-15

    The strange particle production off the nucleon induced by neutrinos and antineutrinos is investigated at low and intermediate energies. We develop a microscopic model based on the SU(3) chiral Lagrangian. The studied mechanisms are the main source of single kaon production for (anti)neutrino energies up to 1.5 GeV. Using this model we have also studied the associated production of kaons and hyperons. The cross sections are large enough to be measured by experiments such as MINERνA, T2K and NOνA.

  4. Connected, Disconnected and Strange Quark Contributions to HVP

    CERN Document Server

    Bijnens, Johan

    2016-01-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of $-1/10$ derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  5. Emergence of Strange Spatial Pattern in a Spatial Epidemic Model

    Institute of Scientific and Technical Information of China (English)

    SUN Gui-Quan; JIN Zhen; LIU Quan-Xing; LI Li

    2008-01-01

    Pattern formation of a spatial epidemic model with nonlinear incidence rate kI2 S/ (1 + αI2) is investigated. Our results show that strange spatial dynamics, i.e., filament-like pattern, can be obtained by both mathematical analysis and numerical simulation, which are different from the previous results in the spatial epidemic model such as stripe-like or spotted or coexistence of both pattern and so on. The obtained results well extend the finding of pattern formation in the epidemic model and may well explain the distribution of the infected of some epidemic.

  6. Embeddings of a strange attractor into R3.

    Science.gov (United States)

    Tsankov, Tsvetelin D; Nishtala, Arunasri; Gilmore, Robert

    2004-05-01

    The algorithm for determining a global Poincaré section is applied to a previously studied dynamical system on R2 x S1 and a one-parameter family of embeddings of the strange attractor it generates into R3. We find that the topological properties of the attractor are embedding dependent to a limited extent. These embeddings rigidly preserve mechanism, which is a simple stretch and fold. The embeddings studied show three discrete topological degrees of freedom: parity, global torsion, and braid type of the genus-one torus bounding the embedded attractor. PMID:15244912

  7. Radial Oscillations of Rotating Strange Stars in Strong Magnetic Fields

    CERN Document Server

    Singh, S; Gupta, V K; Sen-Gupta, A; Anand, J D; Gupta, Asha

    2000-01-01

    In this paper we study radial oscillations of rotating strange stars in strong magnetic fields in the Density Dependent Quark Mass (DDQM) model. We see that increase of frequency i.e. difference in frequency of rotating and non-rotating stars is more for higher magnetic fields. The change is small for low mass stars but it increases with the mass of the star. This change of frequency is significant for maximum mass whereas it is marginal for a 1.4 solar mass star.

  8. Antisymmetry in strangeness -1 and -2 three-baryon systems

    International Nuclear Information System (INIS)

    Using the generalized Pauli principle by adding particle labels to the usual space and spin labels a symmetric Hamiltonian and a corresponding antisymmetric wave function are constructed for systems of three baryons in the strangeness sectors S = -1 and -2. Applications are the ΞNN-ΛΛN and NNΛ-NNΣ systems. Minimal sets of generalized coupled Faddeev equations for breakup and rearrangement operators as well as (possible) bound states are derived that have the ordinary Pauli principle for identical particles built in. The equations found confirm our previous sets of coupled Faddeev equations whose derivation was made for distinguishable particles and not using the generalized Pauli principle. (author)

  9. What Do We Know About the Strange Magnetic Radius?

    OpenAIRE

    Hammer, H. -W.; Puglia, S. J.; Ramsey-Musolf, M. J.; Zhu, Shi-Lin

    2002-01-01

    We analyze the q^2-dependence of the strange magnetic form factor, \\GMS(q^2), using heavy baryon chiral perturbation theory (HBChPT) and dispersion relations. We find that in HBChPT a significant cancellation occurs between the O(p^2) and O(p^3) loop contributions. Consequently, the slope of \\GMS at the origin displays an enhanced sensitivity to an unknown O(p^3) low-energy constant. Using dispersion theory, we estimate the magnitude of this constant, show that it may have a natural size, and...

  10. A novel strange attractor and its dynamic analysis

    Directory of Open Access Journals (Sweden)

    Zhongtang Wu

    2014-03-01

    Full Text Available In this paper, not only a novel three-dimensional autonomous strange attractor is proposed, but also an idea to generate a more complex chaotic system was introduced. Of particular interest is that this novel system has complex phase diagram, big positive Lyapunov exponent and broad frequency spectrum. With either analytical or numerical methods, basic properties of the system, such as dynamical behaviors (time history and phase diagrams, Poincáre mapping, bifurcation diagram and Lyapunov exponents are investigated to observe chaotic motions. The obtained results clearly show that this is a new chaotic system which has good application prospects.

  11. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    S D Maharaj; S Thirukkanesh

    2009-03-01

    We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact relativistic body allows for anisotropic pressures in the presence of the electromagnetic field. New exact solutions are found to the Einstein–Maxwell system. A particular case is shown to be regular at the stellar centre. In the isotropic limit we regain the general relativistic isothermal Universe. We show that the mass corresponds to the values obtained previously for quark stars when anisotropy and charge are present.

  12. Importance of multimesonic fusion processes on (strange) antibaryon production

    CERN Document Server

    Greiner, C

    2002-01-01

    Sufficiently fast chemical equilibration of (strange) antibaryons in an environment of nucleons, pions and kaons during the course of a relativistic heavy ion collision can be understood by a `clustering' of mesons to built up baryon-antibaryon pairs. This multimesonic (fusion-type) process has to exist in medium due to the principle of detailed balance. Novel numerical calculations for a dynamical setup are presented. They show that at maximum SPS energies - yields of each antihyperon specie are obtained which are consistent with chemical saturated populations of T approximately=150-160 MeV, in line with popular chemical freeze-out parameters extracted from thermal model analyses. (17 refs).

  13. Proposal for a digital converter of analog magnetic signals

    OpenAIRE

    Ertler, Christian; Fabian, Jaroslav

    2006-01-01

    A device which converts analog magnetic signals directly into digital information is proposed. The device concept is based on the monostable-bistable transition logic element, which consists of two resonant tunneling diodes (load and driver) connected in series and employs the monostable to bistable working point transition of the circuit. Using a magnetic resonant tunneling diode as the driver allows to control the resulting working point of the bistable region by an external magnetic field ...

  14. The Age of Analog Networks

    OpenAIRE

    Mattiussi, Claudio; Swiss Federal Institute of Technology in Lausanne (EPFL); Marbach, Daniel; Swiss Federal Institute of Technology in Lausanne (EPFL); Dürr, Peter; Swiss Federal Institute of Technology in Lausanne (EPFL); Floreano, Dario; Swiss Federal Institute of Technology in Lausanne (EPFL)

    2008-01-01

    A large class of systems of biological and technological relevance can be described as analog networks, that is, collections of dynamical devices interconnected by links of varying strength. Some examples of analog networks are genetic regulatory networks, metabolic networks, neural networks, analog electronic circuits, and control systems. Analog networks are typically complex systems which include nonlinear feedback loops and possess temporal dynamics at different timescales. When tackled b...

  15. Chlorine isotope enrichment on a strong alkaline anion exchanger in dependence of type and concentration of the strange electrolytic solution

    International Nuclear Information System (INIS)

    Chlorine isotope enrichment for heterogenous ionexchange equilibria was studied. The dependence of element separation effects on the anion of the strange electrolyte (for same cation), on the cation of the strange electrolyte (for same anion), on the concentration of the strange electrolyte and also on the acetone: water ratio of the solvent was investigated. (orig./HBR)

  16. Strange and non-strange baryon and antibaryon production in sulphur-tungsten and sulphur-sulphur interactions at 200 A Gev/c

    International Nuclear Information System (INIS)

    The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs

  17. Strange and non-strange baryon and antibaryon production in sulphur-tungsten and sulphur-sulphur interactions at 200 A Gev/c

    Energy Technology Data Exchange (ETDEWEB)

    Holme, A.K.

    1995-11-01

    The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs.

  18. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  19. Study of strange particle production in pp collisions with the ALICE detector

    CERN Document Server

    Ricaud, H; Maire, A

    2010-01-01

    ALICE is well suited for strange particles production studies since it has very good reconstruction capabilities in the low transverse momentum ($p_{t}$) region and it also allows to extend the identification up to quite high $p_{t}$. Charged strange mesons ($\\kp$, $\\km$,) are reconstructed via energy loss measurements whereas neutral strange mesons ($\\ks$) and strange hyperons ($\\lam$, $\\Xi$, $\\Omega$) are identified via vertex reconstruction. All these particles carry important information: first, the measurement of production yields and the particle ratio within the statistical models can help to understand the medium created and secondly the dynamics at intermediate $p_{t}$ investigated via the baryon over meson ratio ($\\lam / \\ks$) allows a better understanding of the hadronization mechanisms and of the underlying event processes. We present these two aspects of the strange particles analysis in pp collisions using simulated data.

  20. Associated strangeness production in the pp to pK^+K^-p and pp to pK^+ pi^0 Sigma^0 reactions

    CERN Document Server

    Xie, Ju-Jun

    2010-01-01

    The total and differential cross sections for associated strangeness production in the $pp \\to pK^+K^-p$ and $pp \\to pK^+\\pi^0\\Sigma^0$ reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the $K^-p$ and $\\pi^0\\Sigma^0$ final states originate from the decay of the $\\Lambda(1405)$ resonance which was formed in the production chain $pp\\to p(N^*(1535)\\to K^+\\Lambda(1405))$. The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the $N^*(1535)$ resonance to $\\Lambda(1405) K$ is further evidence for large $s \\bar{s}$ components in the quark wave function of the $N^*(1535)$ resonance.

  1. Transverse momentum distributions of strange hadrons produced in p- p collisions at √ s NN = 200 GeV

    Science.gov (United States)

    Bashir, Inam-ul; Bhat, Riyaz Ahmad; Uddin, Saeed

    2015-08-01

    The mid-rapidity transverse momentum spectra of strange hadrons (, and Ω) produced in p- p collisions at the highest RHIC energy √ s NN = 200 GeV have been studied using a statistical unified thermal freeze-out model. The calculated results are found to be in good agreement with the experimental data taken from STAR and BRAHMS experiments. The fits of the transverse momentum spectra to the model calculations provide the thermal freeze-out conditions in terms of the temperature and collective flow effect parameters for different particle species. The model incorporates a longitudinal and a transverse hydrodynamic flow. The rapidity distributions of kaons and their ratios are also reproduced successfully, which reveals the presence of partial nuclear transparency effects in p- p collisions at √ s NN = 200 GeV. The contributions from heavier decay resonances are also taken into account.

  2. First Observation of Inclusive B Decays to the Charmed Strange Baryons Ξ0c and Ξ+c

    International Nuclear Information System (INIS)

    Using data collected in the region of the Υ(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring (CESR), we present the first observation of B mesons decaying into the charmed strange baryons Ξ0c and Ξ+c . We find 79±27 Ξ0c and 125±28 Ξ+c candidates from B decays, leading to product branching fractions of B(bar B→Ξ0cX)B(Ξ0c→Ξ-π+)= (0.144±0.048 ±0.021) x10-3 and B(bar B→Ξ+cX)B(Ξ+C→ Ξ-π+π+) =(0.453± 0.096+0.085-0.065)x 10-3 . copyright 1997 The American Physical Society

  3. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  4. Study of natural spin-parity strange meson radial excitations in K-p → K-π+n at 11 GeV/c

    International Nuclear Information System (INIS)

    Results are presented from a high statistics study of the reaction K-p → K-π+n at 11 GeV/c. This data was selected offline from an approx. 1000 event/μb K-p experiment run on the Large Aperture Solenoid Spectrometer (LASS) at SLAC which triggered on essentially the total inelastic cross section. This K-π+n sample, after cuts, contained approx. 42,000 events in the Kπ invariant mass region from 0.65 GeV to 2.30 GeV, and absolute value t' 2. A spherical harmonic angular moments analysis of this data is presented, as well as an energy independent partial wave analysis (PWA) of these angular moments. The nearly uniform acceptance characteristics of this data allowed a detailed analysis, which yielded information on natural spin-parity strange meson resonances in the Kπ invariant mass range from 0.65 GeV to 2.30 GeV. The well established K*(895), K*(1430), and K*(1780) are observed, and clear evidence is presented for a J/sup P/ = 4+ strange meson state at a mass of 2.08 GeV. The K-π+ elastic scattering partial waves extracted in this PWA show unambiguous evidence for a relatively narrow S wave resonance near 1.42 GeV in the Kπ invariant mass. This state is a confirmation of the 0+ K(1500) seen in previous PWA's. A new higher S wave resonance is clearly seen unambiguously near 1.90 GeV. Unambiguous evidence is presented for a relatively wide P wave resonance in the 1.70 GeV region.A second new P wave resonance also is seen in two of four ambiguous partial wave solutions in the 2.10 GeV region. These resonance states are discussed within the framework of a simple harmonic oscillator quark model. In particular three of the underlying resonances are discussed as possible natural spin-parity strange meson radial excitations

  5. Study of Diffractive Dissociation Especially into Strange and Charmed Particles with EHS

    CERN Multimedia

    2002-01-01

    .PP The diffractive production of heavy quark-antiquark pairs leading to strangeness-antistrangeness and charm-anticharm systems is intended to be measured in this experiment. The use of the rapid cycling bubble chamber (RCBC) with a volume of 100 x 40 x 40 cm|3 and a picture taking rate of 15 Hz as vertex detector and EHS as forward spectrometer is suitable for the first step of this physics programme. Inclusive cross-sections for diffraction dissociation into ss are lacking whereas diffractive cc production is already better known. The gain of more insight into the mechanism of heavy quark-antiquark production, exclusive diffractive reactions with @p|0's, diffractive resonance production and also the extraction of data for the double Pomeron exchange mechanism are envisage This experiment will be run in two parts, the first one recording the entire unbiased sample of pp and @p|-p interactions, the second however using triggering for beam and high mass target diffraction dissociation against elastic scatteri...

  6. Decays of negative parity non-strange baryons in the 1/Nc expansion

    Energy Technology Data Exchange (ETDEWEB)

    Jose L. Goity; Carlos L. Schat; Norberto Scoccola

    2004-04-01

    The decays of non-strange negative parity baryons via the emission of single {pi} and {eta} mesons are analyzed in the framework of the 1/N{sub c} expansion. A basis of spin-flavor operators is established to that order, and with this basis the different partial wave decay amplitudes are obtained. The unknown effective coefficients are determined by fitting to the S- and D-wave partial widths as provided by the PDG. A full set of relations between widths that result at the leading order, i.e. order N{sub c0}, is given and tested with the data. The rather large errors of the input partial widths, that result from the often discrepant results for the resonance parameters from different analyses of the data, lead to a rather good fit at the leading order N{sub c0}. The next to leading order fit fails for that reason to pin down with satisfactory accuracy the effective sub leading effective constants.

  7. "Making strange": a role for the humanities in medical education.

    Science.gov (United States)

    Kumagai, Arno K; Wear, Delese

    2014-07-01

    Stories, film, drama, and art have been used in medical education to enhance empathy, perspective-taking, and openness to "otherness," and to stimulate reflection on self, others, and the world. Yet another, equally important function of the humanities and arts in the education of physicians is that of "making strange"-that is, portraying daily events, habits, practices, and people through literature and the arts in a way that disturbs and disrupts one's assumptions, perspectives, and ways of acting so that one sees the self, others, and the world anew. Tracing the development of this concept from Viktor Shklovsky's "enstrangement" (ostranenie) through Bertolt Brecht's "alienation effect," this essay describes the use of this technique to disrupt the "automaticity of thinking" in order to discover new ways of perceiving and being in the world.Enstrangement may be used in medical education in order to stimulate critical reflection and dialogue on assumptions, biases, and taken-for-granted societal conditions that may hinder the realization of a truly humanistic clinical practice. In addition to its ability to enhance one's critical understanding of medicine, the technique of "making strange" does something else: By disrupting fixed beliefs, this approach may allow a reexamination of patient-physician relationships in terms of human interactions and provide health care professionals an opportunity-an "open space"-to bear witness and engage with other individuals during challenging times. PMID:24751976

  8. Equilibrium and stability of charged strange quark stars

    CERN Document Server

    Arbañil, José D V

    2015-01-01

    The hydrostatic equilibrium and the stability against radial perturbation of charged strange quark stars composed of a charged perfect fluid are studied. For this purpose, it is considered that the perfect fluid follows the MIT bag model equation of state and the radial charge distribution follows a power-law. The hydrostatic equilibrium and the stability of charged strange stars are investigated through the numerical solutions of the Tolman-Oppenheimer-Volkoff equation and the Chandrasekhar's pulsation equation, being these equations modified from their original form to include the electrical charge. In order to appreciably affect the stellar structure, it is found that the total charge should be of order $10^{20}[\\rm C]$, implying an electric field of around $10^{22}[\\rm V/m]$. We found the electric charge that produces considerable effect on the structure and stability of the object is close to the star's surface. We obtain that for a range of central energy density the stability of the star decreases with...

  9. Strange quark asymmetry in the proton in chiral effective theory

    CERN Document Server

    Wang, X G; Melnitchouk, W; Salamu, Y; Thomas, A W; Wang, P

    2016-01-01

    We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of $\\delta$-function contributions to the $\\bar s$ PDF at $x=0$, with a corresponding valence-like component of the $s$-quark PDF at larger $x$, which allows greater flexibility for the shape of $s-\\bar s$. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the $s$ and $\\bar s$ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange quark PDFs in global QCD analysis.

  10. Electroproduction of baryon-meson states and strangeness suppression

    Science.gov (United States)

    Santopinto, E.; García-Tecocoatzi, H.; Bijker, R.

    2016-08-01

    We describe the electroproduction ratios of baryon-meson states from nucleon, inferring from the sea quarks in the nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: ΛK+, Σ* K, ΣK, pπ0, and nπ+. These predictions are in agreement with the new JLab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial tests of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we compute the so called strangeness suppression factor, λs, that is the suppression of strange quark-antiquark pairs compared to nonstrange pairs, and we found that our finding with this simple extension of the quark model is in good agreement with the results of JLab and CERN experiments.

  11. Neutral strangeness production with the ZEUS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chuanlei

    2007-12-15

    The inclusive production of the neutral strange particles, {lambda}, anti {lambda} and K{sup 0}{sub S} has been studied with the ZEUS detector at HERA. The measurement provides a way to understand the fragmentation process in ep collisions and to check the universality of this process. The strangeness cross sections have been measured and compared with Monte Carlo (MC) predictions. Over the kinematic regions of interest, no {lambda} to anti {lambda} asymmetry was observed. The relative yield of {lambda} and K{sup 0}{sub S} was determined and the result was compared with MC calculations and results from other experiments. A good agreement was found except for the enhancement in the photoproduction process. Clear rapidity correlation was observed for particle pairs where either quark flavor or baryon number compensation occurs. The K{sup 0}{sub S}K{sup 0}{sub S} Bose-Einstein correlation measurement gives a result consistent with those from LEP measurements. The {lambda} polarizations were measured to be consistent with zero for HERA I data. (orig.)

  12. Neutral strange particle production in neutrino interactions at Tevatron energies

    International Nuclear Information System (INIS)

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2> = 23 (GeV/c)2. Rates for K0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K0 meson and the Λ baryon. The production rates of K0's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K0's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K0's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  13. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  14. Resonance decay effect on conserved number fluctuations in a hadron resonance gas model

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Mohanty, A K

    2016-01-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  15. Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model

    Science.gov (United States)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.

    2016-07-01

    We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.

  16. Energy Harvesting Using an Analog Circuit under Multimodal Vibration

    Directory of Open Access Journals (Sweden)

    Shigeru Shimose

    2013-01-01

    Full Text Available The efficiency of harvesting energy from a vibrating structure using a piezoelectric transducer and a simple analog circuit is investigated experimentally. This analog circuit was originally invented for a synchronized switch damping on inductor (SSDI technique, which enhances the damping of mechanical vibration. In this study, the circuit is used to implement a synchronized switch harvesting on inductor (SSHI technique. A multiple degree of freedom (MDOF structure is excited by single sinusoidal forces at its resonant frequencies and by random forces. The piezoelectric transducer converts this mechanical energy into electrical energy which is harvested using a standard rectifier bridge circuit with and without our analog circuit. Experimental results show that our analog circuit makes it possible to harvest twice as much energy under both single sinusoidal and random vibration excitations.

  17. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  18. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  19. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model

    Indian Academy of Sciences (India)

    V K Gupta; Asha Gupta; S Singh; J D Anand

    2003-10-01

    We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We find that the effect of magnetic field, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.

  20. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  1. Analog and digital signal processing

    Science.gov (United States)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  2. Feshbach Resonance Induced Fano Interference in Photoassociation

    CERN Document Server

    Deb, Bimalendu

    2009-01-01

    We consider photoassociation from a state of two free atoms when the continuum state is close to a magnetic field induced Feshbach resonance and demonstrate the possibility of Fano interference in photoassociation. We introduce an analog of Fano asymmetry parameter which characterizes the minimum in photoassociation profiles. We further show a nonlinear analog of Fano effect, which was recently observed in quantum dots.

  3. Lateral Distribution of NBD-PC Fluorescent Lipid Analogs in Membranes Probed by Molecular Dynamics-Assisted Analysis of Förster Resonance Energy Transfer (FRET and Fluorescence Quenching

    Directory of Open Access Journals (Sweden)

    Luís M. S. Loura

    2012-11-01

    Full Text Available Förster resonance energy transfer (FRET is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino] hexanoyl- sn-glycero-3-phosphocholine (C6-NBD-PC or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]dodecanoyl-sn-glycero-3-phosphocholine (C12-NBD-PC as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C. Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol% is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed.

  4. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster Resonance Energy Transfer (FRET) and fluorescence quenching.

    Science.gov (United States)

    Loura, Luís M S

    2012-01-01

    Förster resonance energy transfer (FRET) is a powerful tool used for many problems in membrane biophysics, including characterization of the lateral distribution of lipid components and other species of interest. However, quantitative analysis of FRET data with a topological model requires adequate choices for the values of several input parameters, some of which are difficult to obtain experimentally in an independent manner. For this purpose, atomistic molecular dynamics (MD) simulations can be potentially useful as they provide direct detailed information on transverse probe localization, relative probe orientation, and membrane surface area, all of which are required for analysis of FRET data. This is illustrated here for the FRET pairs involving 1,6-diphenylhexatriene (DPH) as donor and either 1-palmitoyl,2-(6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] hexanoyl)- sn-glycero-3-phosphocholine (C6-NBD-PC) or 1-palmitoyl,2-(12-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]dodecanoyl)-sn-glycero-3-phosphocholine (C12-NBD-PC) as acceptors, in fluid vesicles of 1,2-dipalmitoyl-sn-3-glycerophosphocholine (DPPC, 50 °C). Incorporation of results from MD simulations improves the statistical quality of model fitting to the experimental FRET data. Furthermore, the decay of DPH in the presence of moderate amounts of C12-NBD-PC (>0.4 mol%) is consistent with non-random lateral distribution of the latter, at variance with C6-NBD-PC, for which aggregation is ruled out up to 2.5 mol% concentration. These conclusions are supported by analysis of NBD-PC fluorescence self-quenching. Implications regarding the relative utility of these probes in membrane studies are discussed. PMID:23203080

  5. Strange quark matter and strangelets in the improved quasiparticle model

    International Nuclear Information System (INIS)

    In this work, the properties of strange quark matter and strangelets are investigated within the framework of the improved quasiparticle model. The energy per baryon and particle chemical potentials as a function of the quark matter density are given. In particular, within the multiple reflection expansion method, the finite-size effects of strangelets are discussed in detail. The stable radius of a strangelet in the present model is smaller than, but comparable with that of the corresponding nucleus with the same baryon number. With the baryon number increment of stable strangelets, it is found that the surface tension decreases to 33 MeV fm-2 for strangelets with the baryon number greater than 104. (orig.)

  6. Direct observation of the strange b baryon Xi_b^{-}

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clement, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutíerrez, P; Gutíerrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G L; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Panov, G; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Polozov, P; Pompo, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; Van den Berg, P J; van Eijk, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-01-01

    We report the first direct observation of the strange b baryon Xi_b^{-}. We reconstruct the decay Xi_b^{-} to J/psi Xi^{-}, with J/psi to dimuons and Xi^{-} to Lambda pion, in ppbar collisions at sqrt(s) = 1.96 TeV. Using 1.3 fb^{-1} of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat.)+ 1.9/-0.4(syst.) Xi_b^{-} candidates at a mass of 5.774 +/- 0.011(stat.) +/- 0.015 (syst.) GeV. The significance of the observed signal is 5.5 sigmas, equivalent to a probability of 3.3 X 10^{-8} of it arising from a background fluctuation. Normalizing to the decay Lambda_b to J/psi Lambda, we measure the relative rate to be 0.28 +/- 0.09(stat.)+ 0.09/-0.08 (syst.).

  7. Degree of freedom of strangeness in hadron matter

    International Nuclear Information System (INIS)

    Hadron matter was investigated as many body system of hadron with interactions. The interactions between meson and baryon were described by the chiral perturbation theory (χPT) and the phenomenology of relatively mean field (RMF). When parameters of RMF were given and the density of baryon was decreased at constant temperature, many strangeness particles, especially K and Λ, were excited. If the density was increased more than it, K(K+,K0) meson began to condense. When meson condensation phase was realized by heavy ion collision, it's effect on lepton pair was studied. Lepton pair generation from the condensed phase of meson was distinguished by the peaks of axial vector meson, of which mechanism was simple, that is to mix vector meson with axial vector meson by means of the condensed phase. (S.Y.)

  8. Strange Attractors in Multipath propagation Detection and characterisation

    CERN Document Server

    Tannous, C; Angus, A G

    2001-01-01

    Multipath propagation of radio waves in indoor/outdoor environments shows a highly irregular behavior as a function of time. Typical modeling of this phenomenon assumes the received signal is a stochastic process composed of the superposition of various altered replicas of the transmitted one, their amplitudes and phases being drawn from specific probability densities. We set out to explore the hypothesis of the presence of deterministic chaos in signals propagating inside various buildings at the University of Calgary. The correlation dimension versus embedding dimension saturates to a value between 3 and 4 for various antenna polarizations. The full Liapunov spectrum calculated contains two positive exponents and yields through the Kaplan-Yorke conjecture the same dimension obtained from the correlation sum. The presence of strange attractors in multipath propagation hints to better ways to predict the behaviour of the signal and better methods to counter the effects of interference. The use of Neural Netwo...

  9. Strange Quark Stars as Probe of Dark Matter

    CERN Document Server

    Zheng, Hao

    2016-01-01

    We show that the observation of old strange quark stars (SQSs) can set important limits on the scattering cross sections $\\sigma_q$ between the light quarks and the bosonic non-interacting dark matter (DM). By analyzing $1403$ sets of solitary pulsarlike compact stars in the Milky Way and converting the $\\sigma_q$ into the DM-proton scattering cross sections $\\sigma_p$ based on the effective operator analyses, we find the resulting $\\sigma_p$ limit from the old SQSs could be comparable with that of the current direct detection experiments but much weaker (by several orders of magnitude) than that obtained from the old neutron stars (NSs), which requires an extremely small $\\sigma_p$ far beyond the limits of direct detection experiments. Our findings imply that the old pulsars are favored to be SQSs rather than NSs if the bosonic DM were observed by future terrestrial experiments.

  10. Strange b baryon production and lifetime in Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E

    1996-01-01

    In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Xi_b is performed with a study of Xi-lepton correlations. Forty-four events with same sign Xi- l- combinations are found whereas 8.4 are expected based on on the rate of opposite sign Xi- l+ combinations. This significant excess is interpreted as evidence for Xi_b semileptonic decays. The measured product branching ratio is: Br( b -> Xi_b) Br( Xi_b -> Xc X l- nu) Br( Xc -> Xi- X') = (5.4 +/- 1.1(stat) +/- 0.8(syst) ) 10**-4 per lepton species, averaged over electrons and muons, with Xc a charmed baryo\\ n. The Xi_b lifetime is measured to be : tau = 1.35 (+0.37 -0.28 (stat)) (+0.15 -0.17 (syst)) ps.

  11. Searches for a possible strangeness S = -2 dibaryon

    International Nuclear Information System (INIS)

    Since the advent of QCD there has been a strong interest in manifestations of quark degrees of freedom in medium energy nuclear and particle physics. Within the framework of multiquark states the emphasis has centered on states with more than three quarks bound by colour forces rather than by the conventional mesonic forces. Dibaryon systems have played an important role within that framework. One of the most spectacular and exciting predictions is the possible existence, according to the MIT bag model, of a stable, flavor-singlet, strangeness = -2,J/sup P/ = 0+ dihyperon, called by R. Jaffe the H particle. It is a six-quark object (2u, 2d, 2s quarks) with a predicted mass around 2150 MeV, i.e., below the ΛΛ mass with a binding energy around 80 MeV. Its decay channels would be restricted to ΣN and ΛN, via the weak interaction. The relevant two body states are shown. A similar prediction was obtained on the basis of the same model by Mulders et al., with a mass of 2164 MeV for this state. For completeness it should be mentioned that in a recent estimate of the center-of-mass correction to the static MIT bag model, the authors suggest that the dilambda mass moves up to just above the ΛΛ threshold. These calculations are undergoing further tets. Although all these results come from a specific model, Lipkin has argued that the general features of QCD and the known baryon mass splittings imply that the six-quark state with charge zero, spin zero, and strangeness = -2 would have the greatest binding potential

  12. FET comparator detects analog signal levels without loading analog device

    Science.gov (United States)

    Wallace, H. L.

    1966-01-01

    FET comparator circuit detects discrete analog computer output levels without excessively loading the output amplifier of the computer. An FET common source amplifier is coupled by a differential amplifier to a bistable transistor flip-flop. This circuit provides a digital output for analog voltages above or below a predetermined level.

  13. [Analogies and analogy research in technical biology and bionics].

    Science.gov (United States)

    Nachtigall, Werner

    2010-01-01

    The procedural approaches of Technical Biology and Bionics are characterized, and analogy research is identified as their common basis. The actual creative aspect in bionical research lies in recognizing and exploiting technically oriented analogies underlying a specific biological prototype to indicate a specific technical application.

  14. O-H...O versus O-H...S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog.

    Science.gov (United States)

    Biswal, Himansu S; Wategaonkar, Sanjay

    2010-05-20

    In this work the hydrogen bonded complexes of diethyl ether (DEE) and diethyl sulfide (DES) with p-cresol (p-CR) were investigated. Only one conformer of the p-CR.DEE complex and three conformers of the p-CR.DES complex were found to be present under the supersonic jet expansion conditions. The conformational assignments were done with the help of IR-UV double resonance studies and ab initio calculations. The red shifts in the OH stretching frequency for the O-H...O and O-H...S hydrogen bonded complexes were quite close to each other. In fact, one of the p-CR.DES conformers showed a slightly larger red shift in the OH stretch than that in the p-CR.DEE conformer, which suggests that in this case sulfur is not a weak hydrogen bond acceptor as noted previously in case of the p-CR.H(2)O and p-CR.H(2)S complexes (Biswal et al. J. Phys. Chem. A 2009, 113, 5633). The natural bond orbital analysis also shows that the extent of overlap between sulfur lone pair orbitals (LP) and OH antibonding orbital (sigma*(OH)) was comparable to the oxygen (LP) and sigma*(OH) overlap, consistent with the similar magnitudes of the red shifts of OH stretch in the DES and DEE complexes. The computed binding energy of the p-CR.DES complex, however, was about 80% of the p-CR.DEE complex. The electron densities at the bond critical points indicated that the O-H...S interaction was weaker than the O-H...O interaction in this particular system also. The important finding of this study was that the IR red shifts in the H-bond donor X-H stretching frequency were not quite consistent with the computed binding energies and the atoms-in-molecules analysis contrary to the general understanding. Energy decomposition analysis suggests that O-H...S hydrogen bonding interaction is dispersive in nature and the dispersion contribution decreases with the increase in the length of the alkyl chain of the "S" hydrogen bond acceptor.

  15. Strangeness Production in Au+Au Reactions at √ {SNN} = 62.4\\ GeV

    Science.gov (United States)

    Arsene, Ionut-Cristian

    The measurement of strangeness is a valuable tool for understanding the reaction mechanism of nuclear collisions since all the strange particles need to be created during the reaction. Also, strangeness enhancement is one of the predicted signals of the QGP. In the present work we will discuss the behaviour of the strangeness production (i.e. K/π ratio) with rapidity and baryo-chemical potential in Au+Au collisions at 62.4 A GeV. In this particular reaction, BRAHMS is able to identify particles over 3.5 rapidity units and thereby cover a wide range of bar {p}/p ratios, including the fragmentation region. We will show spectra and ratios of identified particles as a function of pT and rapidity.

  16. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Lea, Ramona [Dipartimento di Fisica dell’Universita and Sezione INFN, Trieste (Italy)

    2016-01-22

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, {sup 3}He and {sup 4}He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p–Pb and Pb–Pb collision and of light (anti-)nuclei and (anti-)hypertritons in Pb–Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.

  17. Strangeness production in light and intermediate size nucleus–nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gorenstein, M.I. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Frankfurt Institute for Advanced Studies, Frankfurt (Germany); Greiner, W. [Frankfurt Institute for Advanced Studies, Frankfurt (Germany); Rustamov, A. [Goethe-University Frankfurt, Frankfurt (Germany); Institute of Radiation Problems, Baku (Azerbaijan)

    2014-04-04

    Within the statistical model, the net strangeness conservation and incomplete total strangeness equilibration lead to the suppression of strange particle multiplicities. Furthermore, suppression effects appear to be stronger in small systems. By treating the production of strangeness within the canonical ensemble formulation we developed a simple model which allows to predict the excitation function of K{sup +}/π{sup +} ratio in nucleus–nucleus collisions. In doing so we assumed that different values of K{sup +}/π{sup +}, measured in p + p and Pb + Pb interactions at the same collision energy per nucleon, are driven by the finite size effects only. These predictions may serve as a baseline for experimental results from NA61/SHINE at the CERN SPS and the future CBM experiment at FAIR.

  18. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  19. Strangeness and the quark-gluon plasma: An experimenter`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.

    1994-02-01

    Current status of experimental results on strange particle production in relativistic nucleus-nucleus collisions is reviewed. Emphasis is placed on the relevance to the hypothetical quark-gluon plasma formation and the origin of the Universe.

  20. Exploring High Strangeness Dibaryons with the Extended Quark Delocalization and Color Screening Model

    Institute of Scientific and Technical Information of China (English)

    PANG Hou-Rong; PING Jia-Lun; WANG Fan; ZHAO En-Guang

    2004-01-01

    Promising high strangeness dibaryons are studied by the extended quark delocalization and color screening model. It is shown that besides H particle and di-Ω, there might be other dibaryon candidates worth to be searched experimentally such as NΩ.

  1. Critical phenomena of strange hadronic matter in the extended Zimanyi-Moszkowski model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have studied the liquid-gas phase transition of warm strange hadronic matter (SHM) in the extended Zimanyi-Moszkowski model. We implement the Nijmegen soft-core potential model NSC97f of hyperon-hyperon interactions in terms of the (hidden) strange mesons. The saturation properties of pure Lambda and Xi matter by the potential essentially determine the dependence of the critical temperature on the strangeness fraction of SHM. We treat the liquid-gas phase transition of SHM as the first-order one and employ Maxwell construction so as to calculate the phase coexistence curves. The derived critical exponents beta \\simeq 1/3 and gamma=1.22 are almost independent of the strangeness fraction of SHM and almost agree with the empirical values derived from the recent multifragmentation reactions. Consequently, we have confirmed the universality of the critical phenomena in the liquid-gas phase transition of hadronic system.

  2. Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT

    International Nuclear Information System (INIS)

    I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.

  3. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their

  4. Natural analog studies: Licensing perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J.W. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    This report describes the licensing perspective of the term {open_quotes}natural analog studies{close_quotes} as used in CFR Part 60. It describes the misunderstandings related to its definition which has become evident during discussions at the U.S Nuclear Regulatory Commission meetings and tries to clarify the appropriate applications of natural analog studies to aspects of repository site characterization.

  5. Drawing Analogies in Environmental Education

    Science.gov (United States)

    Affifi, Ramsey

    2014-01-01

    Reconsidering the origin, process, and outcomes of analogy-making suggests practices for environmental educators who strive to disengage humans from the isolating illusions of dichotomizing frameworks. We can view analogies as outcomes of developmental processes within which human subjectivity is but an element, threading our sense of self back…

  6. Multi-strange-quark states at ultra-relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J P Coffin; C Kuhn; B Hippolyte; J Baudot; I Belikov

    2003-05-01

    We examine the possibility of producing and evidencing exotic strange matter (strangelets and metastable multi-hypernuclear objects, MEMO’s), including also pure hyperonic bound states ((), (Ξ )), at RHIC and LHC. Simulations are presented to estimate the sensitivity of the STAR and ALICE experiments to the detection of these objects, focusing mainly on metastable short-lived (weak decaying) strange dibaryons, with a particular emphasis on the -dibaryon, a six quark-bag bound state (uuddss).

  7. Foundations of Strangeness Nuclear Physics derived from chiral Effective Field Theory

    CERN Document Server

    Meißner, Ulf-G

    2016-01-01

    Dense compact objects like neutron stars or black holes have always been one of Gerry Brown's favorite research topics. This is closely related to the effects of strangeness in nuclear physics. Here, we review the chiral Effective Field Theory approach to interactions involving nucleons and hyperons, the possible existence of strange dibaryons, the fate of hyperons in nuclear matter and the present status of three-body forces involving hyperons and nucleons.

  8. A TFD model for the Electrospheres of Bare Strange Quark Stars

    CERN Document Server

    Guo, Hai-Chuan; Zhang, Cheng-Min

    2007-01-01

    We study the layer of electrons on bare strange star surfaces, taking the Dirac exchange-energy into account. Because electrons are fermions, the electron wave function must be of exchange-antisymmetry. The Dirac exchange-energy originates, consequently, from the exchange-antisymmetry of electron wave functions. This consideration may result in changing the electron distribution and the electric field on the surface of bare strange star. The strong magnetic field effect on the structures of the electrospheres is also discussed.

  9. Strange particles production in relativistic nucleus-nucleus collisions at the RHIC BES energy region

    CERN Document Server

    Zhang, Cong-Cong; Feng, Sheng-Qin; Yin, Zhong-Bao

    2015-01-01

    The parton and hadron cascade model PACIAE is utilized to investigate strange particle productions in Au + Au collision at $\\sqrt{s}$=62.4 GeV in different centralities and at $\\sqrt{s}$= 39, 11.5 and 7.7 GeV in the most central collision, respectively. It is shown that the transverse momentum distributions of strange particles by the PACIAE model fit well the RHIC BES experimental results.

  10. Resonances and final state interactions in the reaction pp->pK^+Lambda

    CERN Document Server

    Sibirtsev, A A; Hammer, H W; Krewald, S

    2006-01-01

    A study of the strangeness production reaction pp->pK^+Lambda for excess energies of epsilon \\le 150 MeV, accessible at high-luminosity accelerator facilities like COSY, is presented. Methods to analyze the Dalitz plot distribution and angular spectra in the Jackson and helicity frames are worked out and suitable observables for extracting information on low lying resonances that couple to the K-Lambda system and for determining the Lambda-p effective-range parameters from the final state interaction are identified and discussed. Furthermore, the chances for identifying the reaction mechanism of strangeness production are investigated.

  11. Resonances and final-state interactions in the reaction pp{yields}pK{sup +}{lambda}

    Energy Technology Data Exchange (ETDEWEB)

    Sibirtsev, A.; Hammer, H.-W. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Bonn (Germany); Haidenbauer, J.; Krewald, S. [Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany)

    2006-03-15

    A study of the strangeness production reaction pp{yields}pK{sup +}{lambda} for excess energies of {epsilon}{<=}150 MeV, accessible at high-luminosity accelerator facilities like COSY, is presented. Methods to analyze the Dalitz plot distribution and angular spectra in the Jackson and helicity frames are worked out and suitable observables for extracting information on low-lying resonances that couple to the K{lambda} system and for determining the {lambda}p effective-range parameters from the final-state interaction are identified and discussed. Furthermore, the chances for identifying the reaction mechanism of strangeness production are investigated. (orig.)

  12. Intrinsic strange distributions in the nucleon from the light-cone models

    CERN Document Server

    Salajegheh, Maral

    2016-01-01

    Precise knowledge of the strange and antistrange quark distributions of the nucleon is a major step toward better understanding of the strong interaction and the nucleon structure. Moreover, the $ s-\\bar s $ asymmetry in the nucleon plays an important role in some physical processes involving hadrons. The goal of this paper is the study of intrinsic strange contribution to the strange sea of the nucleon. To this aim, we calculate the intrinsic strange distributions from the various light-cone models including BHPS, scalar five-quark and meson-baryon models and then compare their results. These models can lead to the rather different distributions for the intrinsic strange that are dominated in different values of $ x $. Furthermore, the meson-baryon model leads to the $ s-\\bar s $ asymmetry that can be comparable in some situations to the result obtained from the global analysis of PDFs. We also present a simple parametrization for each model prediction of intrinsic strange distribution.

  13. Appropriate observables for investigating narrow resonances in kaon photoproduction off a proton

    CERN Document Server

    Mart, T

    2011-01-01

    The existence of non-strange partner of pentaquark, the J^p = 1/2^+ narrow resonance, has been investigated by utilizing kaon photoproduction off a proton. It is found that the corresponding mass is 1650 MeV and the appropriate observables for investigating this resonance are the recoiled hyperon polarization, the beam-recoil double polarization C_x, and differential cross section at backward angles. Future kaon photoproduction experiments at low energies should focus on these observables.

  14. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  15. PREFACE: SQM2007 International Conference on Strangeness in Quark Matter

    Science.gov (United States)

    Šafařík, Karel; Šándor, Ladislav; Tomášik, Boris

    2008-04-01

    The International Conference on `Strangeness in Quark Matter' (SQM) was held from 24-29 June 2007 at the Congress Hall of the city cultural centre in the charming mediaeval town of Levoča in north-eastern Slovakia. The Institute of Experimental Physics of the Slovak Academy of Science and the Faculty of Science of the P J Šafárik University in Košice shared the duties of main organizers of the conference. SQM2007 was attended by more than 100 participants from about 20 countries. The natural beauty and the rich cultural and historical monuments of the surrounding Spiš (Scepusium) region created an inspiring setting for the scientific, social and cultural framework of the conference. Continuing the trend started at the SQM2006 conference, heavy flavour physics in heavy-ion collisions was a topic given equal importance in the SQM2007 programme alongside strange quark physics. The Symposium for Students, from Students, organized by Christian Klein-Boesing and Boris Tomášik on the basis of the contributed abstracts, was again an integral and successful part of the conference. The jury, drawn from the organizers, awarded William A Horowitz (Columbia University) the title of best student contribution. The good news is that many students and younger researchers attended the conference. This could not have happened without generous support from our sponsors whom we would like to thank for valuable financial support: CERN, Journal of Physics G, the Prešov self-governing region authorities and the Slovak Physical Society. The kind assistance of the mayor of the town of Levoča is also warmly acknowledged. We would like to extend our gratitude to our colleagues and students from the organizing institutions for their diligent work prior to and during the conference, which ensured that everything worked smoothly. Our special thanks go to our secretaries, Adri Chomičová and Mery Šemš'aková, as well as to the management of the SATEL Hotel in Levoča for their highly

  16. Analog Systems for Gravity Duals

    OpenAIRE

    Hossenfelder, S.

    2014-01-01

    We show that analog gravity systems exist for charged, planar black holes in asymptotic Anti-de Sitter space. These black holes have been employed to describe, via the gauge-gravity duality, strongly coupled condensed matter systems on the boundary of AdS-space. The analog gravity system is a different condensed matter system that, in a suitable limit, describes the same bulk physics as the theory on the AdS boundary. This combination of the gauge-gravity duality and analog gravity therefore ...

  17. Molecular modeling of fentanyl analogs

    Directory of Open Access Journals (Sweden)

    LJILJANA DOSEN-MICOVIC

    2004-11-01

    Full Text Available Fentanyl is a highly potent and clinically widely used narcotic analgesic. A large number of its analogs have been synthesized, some of which (sufentanil and alfentanyl are also in clinical use. Theoretical studies, in recent years, afforded a better understanding of the structure-activity relationships of this class of opiates and allowed insight into the molecular mechanism of the interactions of fentanyl analogs with their receptors. An overview of the current computational techniques for modeling fentanyl analogs, their receptors and ligand-receptor interactions is presented in this paper.

  18. Sulfonimidamide analogs of oncolytic sulfonylureas.

    Science.gov (United States)

    Toth, J E; Grindey, G B; Ehlhardt, W J; Ray, J E; Boder, G B; Bewley, J R; Klingerman, K K; Gates, S B; Rinzel, S M; Schultz, R M; Weir, L C; Worzalla, J F

    1997-03-14

    A series of sulfonimidamide analogs of the oncolytic diarylsulfonylureas was synthesized and evaluated for (1) in vitro cytotoxicity against CEM cells, (2) in vivo antitumor activity against subaxillary implanted 6C3HED lymphosarcoma, and (3) metabolic breakdown to the o-sulfate of p-chloroaniline. The separated enantiomers of one sulfonimidamide analog displayed very different activities in the in vivo screening model. In general, several analogs demonstrated excellent growth inhibitory activity in the 6C3HED model when dosed orally or intraperitoneally. A correlative structure-activity relationship to the oncolytic sulfonylureas was not apparent.

  19. A Study of Excited Charm-Strange Baryons withEvidence for new Baryons Xi_c(3055)+ and Xi_c(3123)+

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration, The BABAR; Aubert, B.

    2007-10-30

    We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e+e storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {Lambda}{sub c}{sup +}K{sub S}{sup 0}, {Lambda}{sub c}{sup +}K{sup -}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup -}{pi}{sup +}. This study confirms the existence of the states {Xi}{sub c}(2980){sup +}, {Xi}{sub c}(3077){sup +}, and {Xi}{sub c}(3077){sup -}, with a more accurate determination of the {Xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +}, decaying through the intermediate resonant modes {Sigma}{sub c}(2455){sup ++}K{sup -} and {Sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross-section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.

  20. Analog computing using reflective plasmonic metasurfaces

    CERN Document Server

    Pors, Anders; Bozhevolnyi, Sergey I

    2016-01-01

    Motivated by the recent renewed interest in compact analog computing using light and metasurfaces (Silva, A. et al., Science 2014, 343, 160-163), we suggest a practical approach to its realization that involves reflective metasurfaces consisting of arrayed gold nanobricks atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances. Using well established numerical routines, we demonstrate that these metasurfaces enable independent control of the light phase and amplitude, and design differentiator and integrator metasurfaces featuring realistic system parameters. Proof-of-principle experiments are reported along with the successful realization of a high-quality poor-man's integrator metasurface operating at the wavelength of 800 nm.

  1. Comparison of analog and digital transceiver systems for MR imaging.

    Science.gov (United States)

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2014-01-01

    We critically evaluated analog and digital transceivers for magnetic resonance (MR) imaging systems under identical experimental conditions to identify and compare their advantages and disadvantages. MR imaging experiments were performed using a 4.74-tesla vertical-bore superconducting magnet and a high sensitivity gradient coil probe. We acquired 3-dimensional spin echo images of a kumquat with and without using a gain-stepping scan technique to extend the dynamic range of the receiver systems. The acquired MR images clearly demonstrated nearly identical image quality for both transceiver systems, but DC and ghosting artifacts were obtained for the analog transceiver system. We therefore concluded that digital transceivers have several advantages over the analog transceivers.

  2. Comparison of analog and digital transceiver systems for MR imaging.

    Science.gov (United States)

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2014-01-01

    We critically evaluated analog and digital transceivers for magnetic resonance (MR) imaging systems under identical experimental conditions to identify and compare their advantages and disadvantages. MR imaging experiments were performed using a 4.74-tesla vertical-bore superconducting magnet and a high sensitivity gradient coil probe. We acquired 3-dimensional spin echo images of a kumquat with and without using a gain-stepping scan technique to extend the dynamic range of the receiver systems. The acquired MR images clearly demonstrated nearly identical image quality for both transceiver systems, but DC and ghosting artifacts were obtained for the analog transceiver system. We therefore concluded that digital transceivers have several advantages over the analog transceivers. PMID:25167877

  3. Passive control of chaotic system with multiple strange attractors

    Institute of Scientific and Technical Information of China (English)

    Song Yun-Zhong; Zhao Guang-Zhou; Qi Dong-Lian

    2006-01-01

    In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form.Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one,and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.

  4. Baryon-baryon interaction of strangeness S=-1 sector

    CERN Document Server

    Nemura, Hidekatsu

    2012-01-01

    We present our recent studies on hyperon-nucleon (YN) interactions in the strangeness S=-1 that $p\\Lambda, \\Sigma^0 p$ and $\\Sigma^+ n$, by extracting corresponding potentials through Nambu-Bethe-Salpeter wave functions. We calculate $\\Lambda N$ and $\\Sigma N$ potentials in the isospin I=3/2 channel, using the $N_f=2+1$ gauge configurations generated by PACS-CS collaboration and employing an improved method to obtain potentials in lattice QCD simulations. For the $^1S_0$ channel, the central $\\Sigma N (I=3/2, ^1S_0)$ potential and the central $\\Lambda N (^1S_0)$ potential are found to be very similar. In the spin triplet ($^3S_1-^3D_1$) channels, the central $\\Lambda N(^3S_1-^3D_1)$ potential is attractive while the central $\\Sigma N(I=3/2, ^3S_1-^3D_1)$ potentials is repulsive. Tensor potentials, on the other hand, are rather weak in the diagonal part of both $\\Lambda N$ and $\\Sigma N(I=3/2)$ systems.

  5. The Art of Reflection: Turning the Strange into the Familiar.

    Science.gov (United States)

    Weingarten, Kaethe

    2016-06-01

    There are a great many useful articles on the dynamics and pragmatics of reflecting teams but few articles address what constitutes a good or inept reflection and why. I provide a conceptual model for thinking about what a good reflection does, distinguishing it from a nice reflection. With some further refinements in place, I then illustrate how reflections can be part of any relationship, not just clinical ones. We have opportunities to make them and to recognize when others make them to us. By using examples from my personal life-as a grandmother, daughter, radio listener, cancer survivor, and client-I attempt to ease the personal/professional binary, a project of mine for the last 35 years. In the second part of the article, I address how writing can serve reflection. Although best offered at the moment one is called for, it is never too late for a reflection. Writing allows people to offer reflections after the fact to those who have shared their stories. Sometimes, it is to ourselves we offer those reflections, when the reflector has long since dropped the thread of obligation or interest. I provide an example of working with iconic imagery to unpack meaning so that reflection can eventually take place, allowing integration to proceed, facilitating the strange becoming the familiar. PMID:26118842

  6. Properties of strange vector mesons in dense and hot matter

    International Nuclear Information System (INIS)

    We investigate the in-medium properties of strange vector mesons (K⁎ and K¯⁎) in dense and hot nuclear matter based on chirally motivated models of the meson self-energies. We parameterise medium effects as density or temperature dependent effective masses and widths, obtain the vector meson spectral functions within a Breit–Wigner prescription (as often used in transport simulations) and study whether such an approach can retain the essential features of full microscopic calculations. For μB≠0 the medium corrections arise from K¯⁎(K⁎)N scattering and the K¯⁎(K⁎)→K¯(K)π decay mode (accounting for in-medium K¯(K) dynamics). We calculate the scattering contribution to the K⁎ self-energy based on the hidden local symmetry formalism for vector meson nucleon interactions, whereas for the K¯⁎ self-energy we implement recent results from a self-consistent coupled-channel determination within the same approach. For μB≃0 and finite temperature we rely on a phenomenological approach for the kaon self-energy in a hot pionic medium consistent with chiral symmetry, and evaluate the K¯⁎(K⁎)→K¯(K)π decay width. The emergence of a mass shift at finite temperature is studied with a dispersion relation over the imaginary part of the vector meson self-energy

  7. What do we know about the strange magnetic radius?

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H.-W.; Puglia, S.J.; Ramsey-Musolf, M.J.; Zhu Shilin

    2003-06-12

    We analyze the q{sup 2}-dependence of the strange magnetic form factor, G{sub M}{sup (s)}(q{sup 2}), using heavy baryon chiral perturbation theory (HB{chi}PT) and dispersion relations. We find that in HB{chi}PT a significant cancellation occurs between the O(p{sup 3}) and O(p{sup 4}) loop contributions. Consequently, the slope of G{sub M}{sup (s)} at the origin displays an enhanced sensitivity to an unknown O(p{sup 4}) low-energy constant. Using dispersion theory, we estimate the magnitude of this constant, show that it may have a natural size, and conclude that the low-q{sup 2} behavior of G{sub M}{sup (s)} could be dominated by non-perturbative physics. We also discuss the implications for the interpretation of parity-violating electron scattering measurements used to measure G{sub M}{sup (s)}(q{sup 2})

  8. Chiral extrapolations and strangeness in the baryon ground states

    CERN Document Server

    Lutz, Matthias F M

    2013-01-01

    We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.

  9. Search for the Charmed Strange Baryon A$^{o}$

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to search for inclusive production of the charmed strange baryon A|0 using @S|- with a momentum of 135 GeV/c on a Be-target. A|0 with lab-momenta between 70-120 GeV/c will be accepted, corresponding to X(A|0) $>$ 0.5. \\\\ \\\\ The apparatus is a modified version of the one used for WA42. The incoming @S|- are identified by a DISC Cerenkov counter. The A|0 detection is restricted to decay channels which contains only charged particles in the final state (e.g. A|0 @A @L K|-@p|+). \\\\ \\\\ The decay products are analysed in a magnetic spectrometer equipped with multiwire proportional chambers (B,C,D,E) and drift chambers (DC). Two multicell gas Cerenkov counters (C1,C2) allow the separation of K's and p's from @p's. A second magnet (SM2) reduces the geometrical overlap of @p's and heavier particles in the Cerenkov counters due to their different momentum spectra. The scintillator hodoscopes H^4 and H^5 and the chambers E and F behind SM2 allow a geometrical correlation of tracks with the C...

  10. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  11. Mie scattering analog in graphene: Lensing, particle confinement, and depletion of Klein tunneling

    Science.gov (United States)

    Heinisch, R. L.; Bronold, F. X.; Fehske, H.

    2013-04-01

    Guided by the analogy to Mie scattering of light on small particles, we show that the propagation of a Dirac-electron wave in graphene can be manipulated by a circular gated region acting as a quantum dot. Large dots enable electron lensing, while for smaller dots resonant scattering entails electron confinement in quasibound states. Forward scattering and Klein tunneling can be almost switched off for small dots by a Fano resonance arising from the interference between resonant scattering and the background partition.

  12. Mie scattering analog in graphene: lensing, particle confinement, and depletion of Klein tunneling

    OpenAIRE

    Heinisch, R. L.; Bronold, F. X.; Fehske, H.

    2013-01-01

    Guided by the analogy to Mie scattering of light on small particles we show that the propagation of a Dirac-electron wave in graphene can be manipulated by a circular gated region acting as a quatum dot. Large dots enable electron lensing, while for smaller dots resonant scattering entails electron confinement in quasibound states. Forward scattering and Klein tunneling can be almost switched off for small dots by a Fano resonance arising from the interference between resonant scattering and ...

  13. Metastatic Insulinoma Managed with Radiolabeled Somatostatin Analog

    Science.gov (United States)

    Costa, Ricardo; Bacchi, Carlos E.; Almeida Filho, Paulo

    2013-01-01

    Insulinoma is a rare pancreatic neuroendocrine tumor. Overproduction of insulin and associated hypoglycemia are hallmark features of this disease. Diagnosis can be made through demonstration of hypoglycemia and elevated plasma levels of insulin or C-Peptide. Metastatic disease can be detected through computerized tomography (CT) scans, magnetic resonance imaging (MRI), and positron emission tomography (PET)/CT. Somatostatin receptor scintigraphy can be used not only to document metastatic disease but also as a predictive marker of the benefit from therapy with radiolabeled somatostatin analog. Unresectable metastatic insulinomas may present as a major therapeutic challenge for the treating physician. When feasible, resection is the mainstay of treatment. Prevention of hypoglycemia is a crucial goal of therapy for unresectable/metastatic tumors. Diazoxide, hydrochlorothiazide, glucagon, and intravenous glucose infusions have been used for glycemic control yielding temporary and inconsistent results. Sandostatin and its long-acting depot forms have occasionally been used in the treatment of Octreoscan-positive insulinomas. Herein, we report a case of metastatic insulinoma with very difficult glycemic control successfully treated with the radiolabeled somatostatin analog lutetium (177LU). PMID:24455330

  14. Metastatic Insulinoma Managed with Radiolabeled Somatostatin Analog

    Directory of Open Access Journals (Sweden)

    Ricardo Costa

    2013-01-01

    Full Text Available Insulinoma is a rare pancreatic neuroendocrine tumor. Overproduction of insulin and associated hypoglycemia are hallmark features of this disease. Diagnosis can be made through demonstration of hypoglycemia and elevated plasma levels of insulin or C-Peptide. Metastatic disease can be detected through computerized tomography (CT scans, magnetic resonance imaging (MRI, and positron emission tomography (PET/CT. Somatostatin receptor scintigraphy can be used not only to document metastatic disease but also as a predictive marker of the benefit from therapy with radiolabeled somatostatin analog. Unresectable metastatic insulinomas may present as a major therapeutic challenge for the treating physician. When feasible, resection is the mainstay of treatment. Prevention of hypoglycemia is a crucial goal of therapy for unresectable/metastatic tumors. Diazoxide, hydrochlorothiazide, glucagon, and intravenous glucose infusions have been used for glycemic control yielding temporary and inconsistent results. Sandostatin and its long-acting depot forms have occasionally been used in the treatment of Octreoscan-positive insulinomas. Herein, we report a case of metastatic insulinoma with very difficult glycemic control successfully treated with the radiolabeled somatostatin analog lutetium (177LU.

  15. A Broadband Dipolar Resonance in THz Metamaterials

    CERN Document Server

    Sangala, Bagvanth Reddy; Gopal, Achanta Venu; Prabhu, S S

    2014-01-01

    We demonstrate a THz metamaterial with broadband dipole resonance originating due to the hybridization of LC resonances. The structure optimized by finite element method simulations is fabricated by electron beam lithography and characterized by terahertz time-domain spectroscopy. Numerically, we found that when two LC metamaterial resonators are brought together, an electric dipole resonance arises in addition to the LC resonances. We observed a strong dependence of the width of these resonances on the separation between the resonators. This dependence can be explained based on series and parallel RLC circuit analogies. The broadband dipole resonance appears when both the resonators are fused together. The metamaterial has a stopband with FWHM of 0.47 THz centered at 1.12 THz. The experimentally measured band features are in reasonable agreement with the simulated ones. The experimental power extinction ratio of THz in the stopbands is found to be 15 dB.

  16. Using the Moon as a low-noise seismic detector for strange quark nuggets

    Energy Technology Data Exchange (ETDEWEB)

    Banerdt, W. Bruce [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Chui, Talso [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)], E-mail: talso.c.chui@jpl.nasa.gov; Griggs, Cornelius E. [Physics Department, University of Maryland, College Park, MD 20742 (United States); Herrin, Eugene T. [Department of Geology, Southern Methodist University, Dallas, TX 75275 (United States); Nakamura, Yosio [Institute for Geophysics, University of Texas at Austin, Austin, TX 78759-8500 (United States); Paik, Ho Jung [Physics Department, University of Maryland, College Park, MD 20742 (United States); Penanen, Konstantin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Rosenbaum, Doris [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); Teplitz, Vigdor L. [Physics Department, Southern Methodist University, Dallas, TX 75275 (United States); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Young, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2007-04-15

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [E. Witten, Phys. Rev D 30 (1984) 279]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10{sup 14} gm/cm{sup 3}). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [A. de Rujula and S. Glashow, Nature 312 (1984) 734], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  17. Strange quark mass from the invariant mass distribution of Cabibbo-suppressed tau decays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Davier, M.; Hoecker, A. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Gamiz, E.; Prades, J. [Granada Univ., Dept. de Fisica Teorica y del Cosmos (Spain); Pich, A. [Valencia Univ. (Spain). Dept. de Fisica Teorica

    2001-06-01

    Quark mass corrections to the {tau} hadronic width play a significant role only for the strange quark, hence providing a method for determining its mass. The experimental input is the vector plus axial-vector strange spectral function derived from a complete study of tau decays into strange hadronic final states performed by ALEPH. New results on strange decay modes from other experiments are also incorporated. The present analysis determines the strange quark mass at the M{sub {tau}} mass scale using moments of the spectral function. Justified theoretical constraints are applied to the nonperturbative components and careful attention is paid to the treatment of the perturbative expansions of the moments which exhibit convergence problems. The result obtained, m{sub s} (M{sup 2}{sub {tau}}) = (120 {+-} 11{sub exp} {+-} 8v{sub us} {+-} 19th) MeV (120{sup +21}{sub -26}) MeV, is stable over the scale from M{tau} down to about 1.4 GeV. Evolving this result to customary scales yields m{sub s}(1 GeV{sup 2}) (160{sup +28}{sub -35}) MeV and m{sub s}(4 GeV{sup 2}) = (116{sup +20}{sub -25}) MeV. (authors)

  18. Silas Weir Mitchell and "The Strange Case of George Dedlow".

    Science.gov (United States)

    Kline, David G

    2016-07-01

    It has been said of Silas Weir Mitchell (1829-1914) that as a young man he was first among the physiologists of his day, in middle age first among physicians, and as an older man, one of the most noted novelists of his country. Mitchell's novels were written in his later life as a means to avoid boredom during lengthy summer vacations that were the norm for that time among the affluent members of Philadelphia society. These novels were criticized by some because of poor plots, which in some instances failed to move along, or for text that offered a stereotyped depiction of genteel society and the effects that war or personal disaster had on the characters' behavior The criticism came despite the fact that all critics agreed that Mitchell's portrayals of psychopathology in his fictional characters was unique and accurate. However, in his 30s, Mitchell had written and by chance had published a fictional short story that not only transcended such criticisms but became immensely popular. "The Strange Case of George Dedlow" portrays a union officer who was not a physician but who had some medical background and who sustained a series of war wounds leading to severe nerve pain, the author's first description of causalgia, multiple amputations, and the psychological as well as physical symptoms of phantom limb syndrome. The protagonist tells of his torments in the first person in a very engaging fashion. Thus, long before he began writing his, at that time, acclaimed novels in the 1880s, Mitchell wrote a piece of fiction that combines accurate and very important medical observations with fiction of great historical interest. The following rendering of this now classic short story includes selected quotes and some interpretation and is perhaps appropriate for this year, 2 years after the centenary year of his death in 1914.

  19. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  20. Search for (exotic) strange matter in the Star and Alice experiments with the ultra-relativistic heavy ion colliders RHIC and LHC; Recherche de matiere etrange (exotique) dans les experiences STAR et ALICE aupres des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, R

    2006-02-15

    Ultra-relativistic heavy ion collisions offer the possibility to create conditions of temperature and density that could lead nuclear matter to a state of deconfined partons, the quark-gluon plasma. Strange baryon production is one of the essential observables to understand the mechanisms involved in the medium. Furthermore, theories predict a possible production of strange dibaryons, still hypothetical particles, from which one could draw important inferences in nuclear physics and astrophysics. The experiments STAR at RHIC, and, soon, ALICE at LHC, allow one to search for strange baryons and dibaryons. The STAR sensitivity to the metastable dibaryon H{sup 0} in the {lambda}p{pi}{sup -} decay mode was calculated thanks to a dedicated simulation. The search for the H{sup 0}, and for the {xi}{sup -}p resonance as well, was performed in the STAR Au+Au data at {radical}(s{sub NN}) = 62.4 and 200 GeV energies. Within the framework of the preparation of ALICE to the first Pb+Pb data, the detector ability to identify strange baryons {lambda}, {xi} and {omega}, was estimated via several simulations. So as to favour the reconstruction efficiency in a large range of transverse momentum while keeping a reasonable S/B ratio, the influence of the geometrical selections and the size of the reconstruction zone was emphasized. The ALICE sensitivities to the metastable strange dibaryons H{sup 0} and ({xi}{sup 0}p){sub b} and to the {lambda}{lambda} resonance were calculated as well. (author)

  1. eta Photoproduction and N* resonances

    CERN Document Server

    Choi, Ki-Seok; Hosaka, Atsushi; Kim, Hyun-Chul

    2007-01-01

    We investigate the eta photoproduction from the nucleon using the effective Lagrangian approach at tree level. We focus on the nucleon resonance N*(1675) of possibly exotic nature, which was reported by the GRAAL, Tohoku LNS and CB-ELSA examining its spin and parity theoretically. In addition, we consider six nucleon resonances, D_{13}(1520), S_{11}(1535), S_{11}(1650), D_{15}(1675), P_{11}(1710), P_{13}(1720) as well as possible background contributions. We calculate the differential cross sections and beam asymmetries for the neutron and proton targets. They indicate that there is isospin asymmetry which can be interpreted as the large difference in the the transition photon couplings: mu_{gamma p p*} << mu_{gamma n n*}. Moreover, we find that the spin-1/2 state is preferred in order to reproduce the experimental data, although its parity remains undetermined. This observation implies that the new resonance may be identified as a non-strangeness member of the baryon antidecuplet.

  2. An Examination of Changes in Emotion Co-Regulation among Mother and Child Dyads during the Strange Situation

    Science.gov (United States)

    Guo, Yuqing; Leu, Szu-Yun; Barnard, Kathryn E.; Thompson, Elaine A.; Spieker, Susan J.

    2015-01-01

    The present study applied state-space grid analysis to describe how preschooler-mother dyads co-regulate emotion in the Strange Situation. Second-to-second mother and child affect during pre-separation play (baseline) and the final reunion (post perturbation) episodes of the Strange Situation were coded for 80 dyads. Change in emotion…

  3. (In)stability in dense strange hadronic matter and compact stars

    CERN Document Server

    Torres, James R; Menezes, Debora P

    2016-01-01

    Background : The emergence of hyperon degrees of freedom in neutron star matter has been associated to first order phase transitions in some phenomenological models, but conclusions on the possible physical existence of an instability in the strangeness sector are strongly model dependent. Purpose : The purpose of the present study is to assess whether strangeness instabilities are related to specific values of the largely unconstrained hyperon interactions, and to study the effect of the strange meson couplings on phenomenological properties of neutron stars and supernova matter, once these latter are fixed to fulfill the constraints imposed by hypernuclear data. Method : We consider a phenomenological RMF model sufficiently simple to allow a complete exploration of the parameter space. Results : We show that no instability at supersaturation density exists for the RMF model, as long as the parameter space is constrained by basic physical requirements. This is at variance with a non-relativistic functional, ...

  4. Nucleon strange $s\\bar s$ asymmetry to the $\\Lambda/\\bar\\Lambda$ fragmentation

    CERN Document Server

    Chi, Yujie; Ma, Bo-Qiang

    2014-01-01

    The difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers in the semi-inclusive deep inelastic scattering process is intensively studied. The study is performed in the current fragmentation region, by considering the intermediate hyperon decay processes and sea quark fragmentation processes, while the strange sea $s\\bar s$ asymmetry in the nucleon is taken into account. The calculation in the light-cone quark-diquark model shows that the strange sea asymmetry gives a proper trend to the difference between the $\\Lambda$ and $\\bar \\Lambda$ longitudinal spin transfers. When considering the nonzero final hadron transverse momentum, our results can explain the COMPASS data reasonably. The nonzero final hadron transverse momentum is interpreted as a natural constraint to the final hadron $z$ range where the longitudinal spin transfer is more sensitive to the strange sea $s\\bar s$ asymmetry.

  5. Analysis of strange-mode instability with time-dependent convection in hot massive stars

    CERN Document Server

    Sonoi, Takafumi

    2013-01-01

    We carry out nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC) for the first time. Although convective luminosity in envelopes of hot massive stars is not as dominative as in stars near the red edge of the classical Cepheid instability strip in the Hertzsprung-Russell (H-R) diagram, we have found that the strange-mode instability can be affected by the treatment of convection. However, existence of the instability around and over the Humphreys-Davidson (H-D) limit is independent of the treatment. This implies that the strange-mode instability could be responsible for the lack of observed stars over the H-D limit regardless of uncertainties on convection theories.

  6. Strange Nonchaotic Oscillations in The Quasiperiodically Forced Hodgkin-Huxley Neuron

    CERN Document Server

    Lim, Woochang; 10.1088/1751-8113/42/26/265103

    2011-01-01

    We numerically study dynamical behaviors of the quasiperiodically forced Hodgkin-Huxley neuron and compare the dynamical responses with those for the case of periodic stimulus. In the periodically forced case, a transition from a periodic to a chaotic oscillation was found to occur via period doublings in previous numerical and experimental works. We investigate the effect of the quasiperiodic forcing on this period-doubling route to chaotic oscillation. In contrast to the case of periodic forcing, new type of strange nonchaotic (SN) oscillating states (that are geometrically strange but have no positive Lyapunov exponents) are found to exist between the regular and chaotic oscillating states as intermediate ones. Their strange fractal geometry leads to aperiodic "complex" spikings. Various dynamical routes to SN oscillations are identified, as in the quasiperiodically forced logistic map. These SN spikings are expected to be observed in experiments of the quasiperiodically forced squid giant axon.

  7. Search for Stable Strange Quark Matter in Lunar Soil using the Mass Spectrometry Technique

    CERN Document Server

    Han, Ke

    2008-01-01

    Strange quark matter is a postulated state which may be the true ground state of cold hadronic matter. Physicists have been searching for strange quark matter in the last several decades but found no definite evidence of its existence. In our experiment, we used the Yale tandem accelerator as a mass spectrometer to identify possible stable strangelets (small chunks of strange quark matter) in lunar soil. The search covers the mass range from A=42 to A=70 amu for nuclear charges 6, 8, and 9. No strangelets are found at sensitivity levels down to $\\sim10^{-17}$. The implied limit on strangelet flux in cosmic rays is the most sensitive to date for the covered mass range.

  8. Liquid-gas phase transition in strange hadronic matter with relativistic models

    CERN Document Server

    Torres, James R; Menezes, Débora P

    2015-01-01

    Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...

  9. $\\pi$N and strangeness sigma terms at the physical point with chiral fermions

    CERN Document Server

    Yang, Yi-Bo; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2015-01-01

    Lattice QCD calculation with chiral fermions for the $\\pi$N sigma term $\\sigma_{\\pi N}$ and strangeness sigma term $\\sigma_{sN}$ including chiral interpolation with continuum and volume corrections are provided in this work. We calculate the scalar matrix element for the light/strange quark directly and find $\\sigma_{\\pi N}=44.4(3.2)(4.5)$ MeV with the disconnected insertion part contributing 30(6)(4)%, and $\\sigma_{sN}=32.3(4.7)(4.9)$ MeV, which is somewhat smaller than $\\sigma_{\\pi N}$. The ratio of the strange/light scalar matrix elements $y$ = 0.058(6)(8).

  10. Characteristics of Strange Hadron Production in Some High Energy Collisions and The Role of Power Laws

    CERN Document Server

    Biswas, Sunil Kumar; Ghosh, Amar Chandra Das; Bhattacharyya, Subrata; 10.4236/ojm.2012.21001

    2012-01-01

    Studies on `strange' particle production have always occupied a very important space in the domain of Particle Physics. This was and is so, just because of some conjectures about specially abundant or excess production of `strange' particles, at certain stages and under certain conditions arising out of what goes by the name of `Standard' model in Particle Physics. With the help of Hagedornian power laws we have attempted to understand and interpret here the nature of the $p_T$-spectra for the strange particle production in a few high energy nuclear collisions, some interesting ratio-behaviours and the characteristics of the nuclear modification factors that are measured in laboratory experiments. After obtaining and analysing the final results we do not confront any peculiarities or oddities or extraneous excesses in the properties of the relevant observables with no left-over problems or puzzles. The model(s) used by us work(s) quite well for explaining the measured data.

  11. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  12. Test Wiseness and Analogy Test Performance

    Science.gov (United States)

    Moore, James C.

    1971-01-01

    Subjects received self instruction on how to approach analogy questions. Instruction was directed toward knowledge of the general format of analogy questions in standarized tests and the 15 types of relationships commonly asked for in analogy questions. An analogies post-test showed a significant effect for the group. (Author)

  13. Neutral strange particle production at top SPS energy measured by the CERES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Radomski, S.

    2006-07-05

    Systematics of strange particle production in collisions of ultrarelativistic nuclei provides an insight into the properties of the strongly interacting matter. Hadrochemistry, the study of the relative yields, provides information about chemical freeze-out and the position of the system in the phase diagram. Strangeness production at Super Proton Synchrotron (SPS) energies is not fully explained by the thermal model of hadron gas. Data reported by one experiment show sharp structures as a function of energy which are interpreted as a signature for a phase transition, but due to discrepancies in the results between two different experiments, a conclusion can not be drawn. This thesis is part of an effort to build a database of the strangeness production at SPS energy. The particular subject of this work is a precise measurement of the production of K{sub S}{sup 0}. The results are compared with two other experiments and the prediction of the thermal model. The high precision data shed light on the systematics of strangeness production and allow clarification of the experimental status. The study of transverse momentum spectra provides information about the temperature and the radial expansion of the system. Here, as in the case of particle yields, interesting structures are visible as a function of energy. A rapid increase in the number of degrees of freedom is visible in the SPS region. A large part of the strangeness is carried by the neutral strange baryon {lambda}. Here the experimental situation is even more complicated because the reconstruction of the {lambda} yield requires large extrapolation to low transverse momentum. In this work first results on {lambda} production will be presented. (orig.)

  14. Strange and nonstrange baryon spectra in the relativistic interacting quark-diquark model with a G\\"ursey and Radicati-inspired exchange interaction

    CERN Document Server

    Santopinto, E

    2014-01-01

    The relativistic interacting quark-diquark model, constructed in the framework of point form dynamics, is extended to strange baryons. The strange and non-strange baryon spectra are calculated and compared with the experimental data. The mass of $\\Lambda^*(1405)$, which is a long standing problem of three quarks constituent quark models, is well reproduced in our quark-diquark picture of baryons.

  15. Multilateral Collaborations in Analog Research

    Science.gov (United States)

    Cromwell, R. l.

    2016-01-01

    International collaborations in studies utilizing ground-based space flight analogs are an effective means for answering research questions common to participating agencies. These collaborations bring together worldwide experts to solve important space research questions. By collaborating unnecessary duplication of science is reduced, and the efficiency of analog use is improved. These studies also share resources among agencies for cost effective solutions to study implementation. Recently, NASA has engaged in collaborations with international partners at a variety of analog sites. The NASA Human Exploration Research Analog (HERA) is currently hosting investigator studies from NASA and from the German Space Agency (DLR). These isolation studies will answer questions in the areas of team cohesion, sleep and circadian rhythms, and neurobehavioral correlates to function. Planning for the next HERA campaign is underway as proposal selections are being made from the International Life Sciences Research Announcement (ILSRA). Studies selected from the ILSRA will be conducted across 4 HERA missions in 2017. NASA is planning collaborative studies with DLR at the :envihab facility in Cologne, Germany. Investigations were recently selected to study the effects of 0.5% CO2 exposure over 30 days of bed rest. These studies will help to determine the fidelity of this ground-based analog for studying the visual impairment intracranial pressure syndrome. NASA is also planning a multilateral collaboration at :envihab with DLR and the European Space Agency (ESA) to examine artificial gravity as a countermeasure to mitigate the effects of 60 days of bed rest. NASA is also considering collaborations with the Russian Institute for Biomedical Problems (IBMP) in studies that will utilize their Ground-based Experimental Facility (NEK). The NEK is comprised of 4 interconnected modules and a Martian surface simulator. This isolation analog can support 3 -10 crew members for long duration

  16. A determination of the strange quark mass for unquenched clover fermions using the AWI

    International Nuclear Information System (INIS)

    Using the O(a) Symanzik improved action an estimate is given for the strange quark mass for unquenched (nf=2) QCD. The determination is via the axial Ward identity (AWI) and includes a non-perturbative evaluation of the renormalisation constant. Numerical results have been obtained at several lattice spacings, enabling the continuum limit to be taken. Results indicate a value for the strange quark mass (in the MS-scheme at a scale of 2 GeV) in the range 100-130 MeV. (orig.)

  17. Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    OpenAIRE

    E687 Collaboration; al, T. A. Armstrong et

    1997-01-01

    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model indep...

  18. Multiplicity dependence of light flavour hadron production at LHC energies in the strangeness canonical suppression picture

    CERN Document Server

    Vislavicius, Vytautas

    2016-01-01

    We present an analysis of data on light flavour hadron production as function of event multiplicity at LHC energies measured by the ALICE collaboration. The strangeness-canonical approach within the framework of the THERMUS statistical hadronisation model is used for a simultaneous description of pp, p-Pb, and Pb-Pb collisions. The rapidity window dependence of the strangeness correlation volume is addressed and a value of $\\Delta y = 1.43 \\pm 0.13$ is found. With the exception of the $\\phi$-meson, an excellent description of the experimental data is found.

  19. Strange goings-on in the proton: a case for Cheshire cat

    International Nuclear Information System (INIS)

    Three strange hadronic phenomena at low energy - the nucleon size problem, the strange quark content of the nucleon and the proton spin problem - are discussed in the context of manifestation of the Cheshire Cat Principle in hadronic systems. A simple resolution of these problems is provided by a chiral bag description combined with the topological notion of the baryon based on the skyrmion model. Absence of smoking-gun signals for quark-gluon presence in the nonperturbative sector of QCD is claimed to be a natural consequence of the Cheshire Cat Principle

  20. New upper limit on strange quark matter flux with PAMELA space experiment

    Science.gov (United States)

    Casolino, Marco

    We present an upper limit for search of Strange Quark Matter (SQM) in cosmic rays with PAMELA experiment. These hypothetical particles could be detected as nuclei having high and anomalous mass/charge (A=Z) ratio, exhibiting a low velocity in the PAMELA Time-of-Flight ystem and an high rigidity in the magnetic spectrometer. We will discuss upper limits in terms of normal/strange matter for Z=1,2 up to 8. Furthermore PAMELA can provide an upper limit covering the mass range 10 SQM.

  1. Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data

    CERN Document Server

    Alekhin, S; Caminadac, L; Lipka, K; Lohwasser, K; Moch, S; Petti, R; Placakyte, R

    2014-01-01

    We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of $W^\\pm$-bosons with $c$-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.

  2. Determination of strange sea quark distributions from fixed-target and collider data

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J.; Lohwasser, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Caminada, L. [Zuerich Univ. (Switzerland). Physik Inst.; Lipka, K.; Placakyt e, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2014-04-15

    We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of W{sup ±}-bosons with c-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.

  3. Near-threshold production of the multi-strange $\\Xi^-$ hyperon

    CERN Document Server

    Chung, P; Alexander, J M; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Cole, B; Crowe, K; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Holzmann, W; Huo, L; Issah, M; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; Milan, J; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R P; Srivastava, B; Stone, N T B; Symons, T J M; Taranenko, A V; Whitfield, J; Wienold, T; Witt, R; Wood, L; Zhang Wei Ning; Oeschler, H

    2003-01-01

    The yield for the multi-strange $\\Xi^{-}$ hyperon has been measured in 6 AGeV Au+Au collisions via reconstruction of its decay products $\\pi^{-}$ and $\\Lambda$, the latter also being reconstructed from its daughter tracks of $\\pi^{-}$ and p. The measurement is rather close to the threshold for $\\Xi^{-}$ production and therefore provides an important test of model predictions. The measured yield of $\\Xi^{-}$ in central collisions is found to be in excellent agreement with statistical and transport model predictions, suggesting that multi-strange hadron production approaches chemical equilibrium in high baryon density nuclear matter.

  4. Rho resonance parameters from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  5. Rho resonance parameters from lattice QCD

    Science.gov (United States)

    Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael

    2016-08-01

    We perform a high-precision calculation of the phase shifts for π -π scattering in the I =1 , J =1 channel in the elastic region using elongated lattices with two mass-degenerate quark flavors (Nf=2 ). We extract the ρ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to mπ=226 MeV and mπ=315 MeV , and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase shifts around the resonance for both quark masses. We find that the extrapolated value, mρ=720 (1 )(15 ) MeV , is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.

  6. Electromagnetically induced absorption in a three-resonator metasurface system.

    Science.gov (United States)

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  7. 49205 ANALOGE OG DIGITALE FILTRE

    DEFF Research Database (Denmark)

    Gaunholt, Hans

    1997-01-01

    Theese lecture notes treats the fundamental theory and the most commonly used design methods for passive- active and digital filters with special emphasis on microelectronic realizations. The lecture notes covers 75% of the material taught in the course 49205 Analog and Digital Filters...

  8. Analog Input Data Acquisition Software

    Science.gov (United States)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  9. Multichannel analog temperature sensing system

    Science.gov (United States)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer.

  10. International Alligator Rivers Analog Project

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organization (ANSTO), the Japan Atomic Energy Research Institute, the Swedish Nuclear Power Inspectorate, the U.K. Department of the Environment, the US Nuclear Regulatory Commission (NRC), and the Power Reactor and Nuclear Fuel Development Corporation of Japan are participating under the aegis of the Nuclear Energy Agency in the International Alligator Rivers Analog Project. The project has a duration of 3 yr, starting in 1988. The project has grown out of a research program on uranium ore bodies as analogs of high-level waste (HLW) repositories undertaken by ANSTO supported by the NRC. A primary objective of the project is to develop an approach to radionuclide transport model validation that may be used by the participants to support assessments of the safety of radioactive waste repositories. The approach involves integrating mathematical and physical modeling with hydrological and geochemical field and laboratory investigations of the analog site. The Koongarra uranium ore body has been chosen as the analog site because it has a secondary ore body that has formed over the past million years as a result of leaching by groundwater flowing through fractures in the primary ore body

  11. Analogy between Thermodynamics and Mechanics.

    Science.gov (United States)

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  12. Multichannel analog temperature sensing system

    International Nuclear Information System (INIS)

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer

  13. Saw Blades and Resonance

    Science.gov (United States)

    Liebl, Michael

    2005-05-01

    This paper describes an inexpensive, classroom experiment that allows students to quantitatively investigate resonance using a hacksaw blade. The blade clamped to the edge of a table forms a cantilever that may vibrate at any of a number of preferred frequencies. A small cylindrical magnet is fixed to the saw blade. An electromagnetic coil powered by a frequency generator causes large-amplitude vibrations of the saw blade at the resonant frequencies. Vibrations of a similar system, a vibrating car antenna, have been discussed by Newburgh and Newburgh. The dramatic increases in the oscillation amplitude are both instructive and fascinating. Analogies may be drawn to systems ranging from a child on a swing to the Tacoma Narrows bridge.

  14. Bayesian model selection for electromagnetic kaon production in the Regge-plus-resonance framework

    OpenAIRE

    De Cruz, Lesley

    2011-01-01

    A long-standing goal of hadronic physics is to obtain a detailed map of the nucleon's resonance spectrum. This would help bridge the gap between hadrodynamical models on the one hand and constituent quark models on the other hand. Some quark models predict so-called "missing resonances" that have not been found in analyses of pion-nucleon scattering data. Input from non-pionic reactions such as open-strangeness photoproduction is key to resolve the status of these missing resonances, as some ...

  15. Using the Moon and Mars as Giant Detectors for Strange Quark Nuggets

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin; Strayer, Don; Banerdt, Bruce; Tepliz, Vigdor; Herrin, Eugene

    2004-01-01

    On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.

  16. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  17. Study of double-strangeness nuclei with hybrid-emulsion method (KEK-PS E373)

    CERN Document Server

    Ichikawa, A; Akaishi, Y; Akikawa, H; Aoki, S; Bahk, S Y; Baik, K M; Chung, M S; Fukuda, T; Hoshino, K; Ichikawa, A; Ieiri, M; Imai, K; Iwata, Y; Kanda, H; Kaneko, M; Kawai, T; Kim, C O; Kim, J Y; Kim, S J; Kondo, Y; Motoba, T; Nagoshi, C; Nakazawa, K; Noumi, H; Ogawa, S; Okabe, H; Oyama, K; Park, H M; Park, I G; Ra, Y S; Rhee, J T; Sekimoto, M; Shibuya, H; Sim, K S; Song, J S; Takahashi, H; Takahashi, T; Takeutchi, F; Tanaka, H; Tojo, J; Torie, H A; Torikai, S; Ushida, N; Yamamoto, K; Yamamoto, Y; Yang, J T; Yasuda, N; Yoon, C J; Yoshida, T; Yosoi, Y

    2000-01-01

    An experiment to search for double-strangeness nuclei in nuclear emulsion is now being carried on as KEK-PS E373. Preliminary results of the data analysis for the K sup + spectrometer and the scintillating fiber detectors are presented. Status of the automatic track finding method for the emulsion is reported.

  18. Learning the spelling of strange words in Dutch benefits from regularized reading

    NARCIS (Netherlands)

    Bosman, A.M.T.; Hell, J.G. van; Verhoeven, L.T.W.

    2006-01-01

    In 2 experiments, the authors tested the effect of 2 types of reading on the spelling memory of strange or sound-spelling inconsistent words in Dutch students with and without learning disabilities: standard reading and regularized reading. Standard reading refers to reading the word the way it has

  19. Are We Losing the Next Generation? A Strange Experience on a Poetry Course.

    Science.gov (United States)

    Holbrook, David

    1981-01-01

    Examining the attitudes and behaviors of his adolescent students in rural Yorkshire, the author finds in them a strange lack of respect for adults, which he attributes to disruptions of consciousness caused by the constant bombardment of pop music and television. Two other authors comment on pp128-30. (SJL)

  20. An interacting quark-diquark model. Strange and nonstrange baryon spectroscopy and other observables

    CERN Document Server

    De Sanctis, M; Vsevolodovna, R Magaña; Saracco, P; Santopinto, E

    2016-01-01

    We describe the relativistic interacting quark-diquark model formalism and its application to the calculation of strange and nonstrange baryon spectra. The results are compared to the existing experimental data. We also discuss the application of the model to the calculation of other baryon observables, like baryon magnetic moments, open-flavor strong decays and baryon masses with self-energy corrections.

  1. A mathematical explanation via "intelligent" PID controllers of the strange ubiquity of PIDs

    CERN Document Server

    Novel, Brigitte D'Andrea; Join, Cédric; Mounier, Hugues; Steux, Bruno

    2010-01-01

    The ubiquity of PID controllers in the industry has remained mysterious until now. We provide here a mathematical explanation of this strange phenomenon by comparing their sampling with the the one of "intelligent" PID controllers, which were recently introduced. Some computer simulations nevertheless confirm the superiority of the new intelligent feedback design.

  2. Measurement of the strange quark contribution to the proton spin using neutral kaons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shaojun

    2007-03-15

    This thesis reports a new ''isoscalar'' measurement of {delta}s + {delta} anti s. Because strange quarks carry no isospin, the strange seas in the proton and neutron are identical. In the deuteron, an isoscalar target, the fragmentation process in DIS can be described without any assumptions regarding isospin dependent fragmentation. In the isoscalar extraction of {delta}s + {delta} anti s only the spin asymmetry for K{sup 0}{sub s} A{sup K{sup 0}{sub s1,d}} (x,Q{sup 2}, z) and the inclusive asymmetry A{sub 1,d}(x,Q{sup 2}) are used. An accurate measurement of the total non-strange quark polarisation {delta}Q = {delta}u + {delta} anti u + {delta}d + {delta} anti d comes directly from A{sub 1,d}(x,Q{sup 2}). The fragmentation functions needed for a leading order (LO) extraction of {delta}S = {delta}s + {delta} anti s are measured directly at HERMES kinematics using the same data. As a result of this analysis, the helicity densities for the strange quarks are consistent with zero with the experimental uncertainty over the measured x kinematic range. (orig.)

  3. Keplerian frequencies and innermost stable circular orbits of rapidly rotating strange stars

    CERN Document Server

    Stergioulas, N; Bulik, T

    1999-01-01

    It has been suggested that the frequency in the co-rotating innermost stable circular orbit (ISCO) about a compact stellar remnant can be determined through X-ray observations of low-mass X-ray binaries, and that its value can be used to constrain the equation of state of ultradense matter. Upon constructing numerical models of rapidly rotating strange (quark) stars in general relativity, we find that for stars rotating at the equatorial mass-shedding limit, the ISCO is indeed above the stellar surface, for a wide range of central energy densities at a height equal to 11% of the circumferential stellar radius, which scales inversely with the square root of the energy density, of self-bound quark matter at zero presure. In contrast to static stars, the ISCO frequencies of rapidly rotating strange stars can be as low as 0.9 kHz for a 1.3 solar mass strange star. Hence, the presence of strange stars in low-mass X-ray binaries cannot be excluded on the basis of the currently observed frequencies of kHz QPOs, such...

  4. Silent Films and Strange Stories: Theory of Mind, Gender, and Social Experiences in Middle Childhood

    Science.gov (United States)

    Devine, Rory T.; Hughes, Claire

    2013-01-01

    In this study of two hundred and thirty 8- to 13-year-olds, a new "Silent Films" task is introduced, designed to address the dearth of research on theory of mind in older children by providing a film-based analogue of F. G. E. Happe's (1994) Strange Stories task. Confirmatory factor analysis showed that all items from both tasks loaded onto a…

  5. Strange and charm baryon masses with two flavors of dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica

    2012-10-15

    The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.

  6. Semi-empirical mass formula for drops of strange matter and constrains from recent experiments

    International Nuclear Information System (INIS)

    Fixed-target experiments with relativistic heavy-ion collisons at BNL and CERN search for small metastable drops of strange matter, S drops. A useful semi-empirical mass formula for S drops is presented here. This mass formula can easily be fitted to the experimental results. The results of an experiment at BNL are used to constrain the parameters

  7. Analog circuit design art, science and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    This book is far more than just another tutorial or reference guide - it's a tour through the world of analog design, combining theory and applications with the philosophies behind the design process. Readers will learn how leading analog circuit designers approach problems and how they think about solutions to those problems. They'll also learn about the `analog way' - a broad, flexible method of thinking about analog design tasks.A comprehensive and useful guide to analog theory and applications. Covers visualizing the operation of analog circuits. Looks at how to rap

  8. Difference in brain activations during appreciating paintings and photographic analogs.

    Science.gov (United States)

    Mizokami, Yoshinori; Terao, Takeshi; Hatano, Koji; Hoaki, Nobuhiko; Kohno, Kentaro; Araki, Yasuo; Kodama, Kensuke; Makino, Mayu; Izumi, Toshihiko; Shimomura, Tsuyoshi; Fujiki, Minoru; Kochiyama, Takanori

    2014-01-01

    Several studies have investigated neural correlates of aesthetic appreciation for paintings but to date the findings have been heterogeneous. This heterogeneity may be attributed to previous studies' measurement of aesthetic appreciation of not only the beauty of paintings but also the beauty of motifs of the paintings. In order to better elucidate the beauty of paintings, it seems necessary to compare aesthetic appreciation of paintings and photographic analogs which included corresponding real images. We prepared for famous painters' pictures and their photographic analogs which were set up to resemble each painting in order to investigate the hypothesis that there exist specific neural correlates associated with the aesthetic appreciation for paintings. Forty-four subjects participated in functional magnetic resonance study which required comparisons of aesthetic appreciation of paintings of still life and landscape versus photographic analogs including corresponding real images of still life and landscape. Bilateral cuneus and the left lingual gyrus were activated in the comparison of aesthetic appreciation of paintings versus photographic analogs. In conclusion, the present findings suggest a possibility of the existence of specific neural correlates associated with the aesthetic appreciation for paintings and that bilateral cuneus and the left lingual gyrus may be involved.

  9. Testing the hadronic spectrum in the strange sector

    CERN Document Server

    Parotto, Paolo

    2016-01-01

    Heavier resonances are continually being added to the hadronic spectrum from the Particle Data Group that follow an exponentially increasing mass spectrum. However, it has been suggested that even further states predicted from Quark Models are needed in the hadronic spectrum in order to improve the agreement between the hadron resonance gas model predictions and lattice QCD data. We find that the inclusion of such states with extrapolated branching ratios slightly decreases the freezeout temperature. To eliminate ambiguities, we introduce a first principle method to extract the freeze-out temperature for charged kaons from experimental data, which yields a lower bound of $T_{\\text{fo}} \\gtrsim $145 MeV for the highest collision energy at RHIC.

  10. Do the $P_c^+$ Pentaquarks Have Strange Siblings?

    CERN Document Server

    Lebed, Richard F

    2015-01-01

    The recent LHCb discovery of states $P_c^+(4380)$, $P_c^+(4450)$, believed to be $c\\bar c uud$ pentaquark resonances, begs the question of whether equivalent states with $c\\bar c \\to s\\bar s$ exist, and how they might be produced. The precise analogue to the $P_c^+$ discovery channel $\\Lambda_b \\to J/\\psi \\, K^- \\! p$, namely, $\\Lambda_c \\to \\phi \\pi^0 \\! p$, is feasible for this study and indeed is less Cabibbo-suppressed, although its limited phase space suggests that evidence of a $s\\bar s uud$ resonance $P_s^+$ would be confined to the kinematic endpoint region.

  11. Mechanical Analogies of Fractional Elements

    Institute of Scientific and Technical Information of China (English)

    HU Kai-Xin; ZHU Ke-Qin

    2009-01-01

    A Fractional element model describes a special kind of viscoelastic material.Its stress is proportional to the fractional-order derivative of strain. Physically the mechanical analogies of fractional elements can be represented by spring-dashpot fractal networks. We introduce a constitutive operator in the constitutive equations of viscoelastic materials.To derive constitutive operators for spring-dashpot fractal networks, we use Heaviside operational calculus, which provides explicit answers not otherwise obtainable simply.Then the series-parallel formulas for the constitutive operator are derived. Using these formulas, a constitutive equation of fractional element with 1/2-order derivative is obtained.Finally we find the way to derive the constitutive equations with other fractional-order derivatives and their mechanical analogies.

  12. Analog Nonvolatile Computer Memory Circuits

    Science.gov (United States)

    MacLeod, Todd

    2007-01-01

    In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types: In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design). Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations. Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited. The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value

  13. Splitting Compounds by Semantic Analogy

    OpenAIRE

    Daiber, Joachim; Quiroz, Lautaro; Wechsler, Roger; Frank, Stella

    2015-01-01

    Compounding is a highly productive word-formation process in some languages that is often problematic for natural language processing applications. In this paper, we investigate whether distributional semantics in the form of word embeddings can enable a deeper, i.e., more knowledge-rich, processing of compounds than the standard string-based methods. We present an unsupervised approach that exploits regularities in the semantic vector space (based on analogies such as "bookshop is to shop as...

  14. Strangeness Production in Au--Au collisions at $\\sqrt{s_{NN}}=62.4$ GeV

    CERN Document Server

    Petran, Michal; Petracek, Vojtech; Rafelski, Jan

    2011-01-01

    We obtain strangeness production as function of centrality in a statistical hadronization model analysis of all experimental hadron production data in Au--Au collisions at $\\sqrt{s_{NN}}=62.4\\GeV$. Our analysis describes successfully the yield of strange and multi-strange hadrons recently published. We explore condition of hadronization as a function of centrality and find universality for the case of chemical non-equilibrium in the hadron phase space corresponding to quark--gluon plasma (QGP) in chemical equilibrium.

  15. Analytical model of strange star in the low-mass X-ray binary 4U 1820-30

    OpenAIRE

    Kalam, Mehedi; Rahaman, Farook; Molla, Sajahan; Jafry, Md. Abdul Kayum(Department of Physics, Shibpur Dinobundhoo Institution (College), 711102, Howrah , West Bengal, India); Hossein, Sk. Monowar

    2014-01-01

    In this article, we propose a model for a realistic strange star under Tolman VII metric (Tolman, Phys Rev 55:364, 1939 ). Here the field equations are reduced to a system of three algebraic equations for anisotropic pressure. Mass, central density and surface density of strange star in the low-mass X-ray binary 4U 1820-30 are matched with the observational data according to our model. Strange materials clearly satisfy the stability condition (i.e. sound velocities < 1) and TOV equation. H...

  16. Comments on Phys. Rev. D89 (2014) 097101 "Reevaluation of the parton distribution of strange quarks in the nucleon"

    CERN Document Server

    Stolarski, M

    2014-01-01

    The HERMES collaboration in Phys. Rev. D89 (2014) 097101 extracted information about the strange quark density in the nucleon. One of the main results is an observation that the shape of the extracted density is very different from the shapes of the strange quark density from global QCD fits and also from that of the light antiquarks. In this paper systematic studies on the HERMES published multiplicity of pion and kaon data are presented. It is shown that the conclusions concerning the strange quark distribution in the nucleon reached in Phys. Rev. D89 (2014) 097101 are at the moment premature.

  17. Centrality Dependence of Azimuthal Anisotropy of Strange Hadrons in 200 GeV Au+Au Collisions

    CERN Document Server

    Oldenburg, M

    2006-01-01

    Measurements of azimuthal anisotropy for strange and multi-strange hadrons are presented for the first time in their centrality dependence. The high statistics results of v2(pT) allow for a more detailed comparison to hydrodynamical model calculations. Number-of-constituent-quark scaling was tested for different centrality classes separately. Higher order anisotropies like v4(pT) are measured for multi-strange hadrons. While we observe agreement between measured data and models a deeper understanding and refinement of the models seem to be necessary in order to fully understand the details of the data.

  18. A Global Analog of Cheshire Charge

    OpenAIRE

    McGraw, Patrick

    1994-01-01

    It is shown that a model with a spontaneously broken global symmetry can support defects analogous to Alice strings, and a process analogous to Cheshire charge exchange can take place. A possible realization in superfluid He-3 is pointed out.

  19. Nucleon resonance decay by the $K^{0} \\sum^{+}$ channel: Preliminary results

    Indian Academy of Sciences (India)

    S V Shende; R Castelijns; J C S Bacelar; H Löhner; J Messchendorp; CBELSA/TAPS Collaboration

    2006-05-01

    The strange meson production on a proton target in the $K^{0} \\sum^{+}$ channel is sensitive to nucleon resonance contributions. The $K^{0}$ production on a deuteron target can provide information on the hyperon-nucleon final-state interaction. The experiments $ p → K^{0} \\sum^{+}$ and $ d → K^{0} \\sum^{+} n$ have been carried out at the ELSA facility at Bonn. In this paper, we report the preliminary results of both experiments.

  20. Hegel, Analogy, and Extraterrestrial Life

    Science.gov (United States)

    Ross, Joseph T.

    Georg Wilhelm Friedrich Hegel rejected the possibility of life outside of the Earth, according to several scholars of extraterrestrial life. Their position is that the solar system and specifically the planet Earth is the unique place in the cosmos where life, intelligence, and rationality can be. The present study offers a very different interpretation of Hegel's statements about the place of life on Earth by suggesting that, although Hegel did not believe that there were other solar systems where rationality is present, he did in fact suggest that planets in general, not the Earth exclusively, have life and possibly also intelligent inhabitants. Analogical syllogisms are superficial, according to Hegel, insofar as they try to conclude that there is life on the Moon even though there is no evidence of water or air on that body. Similar analogical arguments for life on the Sun made by Johann Elert Bode and William Herschel were considered by Hegel to be equally superficial. Analogical arguments were also used by astronomers and philosophers to suggest that life could be found on other planets in our solar system. Hegel offers no critique of analogical arguments for life on other planets, and in fact Hegel believed that life would be found on other planets. Planets, after all, have meteorological processes and therefore are "living" according to his philosophical account, unlike the Moon, Sun, and comets. Whereas William Herschel was already finding great similarities between the Sun and the stars and had extended these similarities to the property of having planets or being themselves inhabitable worlds, Hegel rejected this analogy. The Sun and stars have some properties in common, but for Hegel one cannot conclude from these similarities to the necessity that stars have planets. Hegel's arguments against the presence of life in the solar system were not directed against other planets, but rather against the Sun and Moon, both of which he said have a different