WorldWideScience

Sample records for analog electronics based

  1. Mixing Problem Based Learning and Conventional Teaching Methods in an Analog Electronics Course

    Science.gov (United States)

    Podges, J. M.; Kommers, P. A. M.; Winnips, K.; van Joolingen, W. R.

    2014-01-01

    This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year 'analog electronics course', when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data between the experimental group and the control group that…

  2. Mixing Problem Based Learning And Conventional Teaching Methods In An Analog Electronics Course

    NARCIS (Netherlands)

    Podges, J.M.; Kommers, P.A.M.; Winnips, K.; Joolingen, van W.R.

    2014-01-01

    This study, undertaken at the Walter Sisulu University of Technology (WSU) in South Africa, describes how problem-based learning (PBL) affects the first year ‘analog electronics course’, when PBL and the lecturing mode is compared. Problems were designed to match real-life situations. Data betwee

  3. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  4. Practical analog electronics for technicians

    CERN Document Server

    Kimber, W A

    2013-01-01

    'Practical Analog Electronics for Technicians' not only provides an accessible introduction to electronics, but also supplies all the problems and practical activities needed to gain hands-on knowledge and experience. This emphasis on practice is surprisingly unusual in electronics texts, and has already gained Will Kimber popularity through the companion volume, 'Practical Digital Electronics for Technicians'. Written to cover the Advanced GNVQ optional unit in electronics, this book is also ideal for BTEC National, A-level electronics and City & Guilds courses. Together with 'Practical Digit

  5. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  6. An Analog Computer for Electronic Engineering Education

    Science.gov (United States)

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  7. Analog and mixed-signal electronics

    CERN Document Server

    Stephan, Karl

    2015-01-01

    A practical guide to analog and mixed-signal electronics, with an emphasis on design problems and applications This book provides an in-depth coverage of essential analog and mixed-signal topics such as power amplifiers, active filters, noise and dynamic range, analog-to-digital and digital-to-analog conversion techniques, phase-locked loops, and switching power supplies. Readers will learn the basics of linear systems, types of nonlinearities and their effects, op-amp circuits, the high-gain analog filter-amplifier, and signal generation. The author uses system design examples to motivate

  8. Low power analog front-end electronics in deep submicrometer CMOS technology based on gain enhancement techniques

    International Nuclear Information System (INIS)

    This paper evaluates the design of front-end electronics in modern technologies to be used in a new generation of heavy ion detectors—HYDE (FAIR, Germany)—proposing novel architectures to achieve high gain in a low voltage environment. As conventional topologies of operational amplifiers in modern CMOS processes show limitations in terms of gain, novel approaches must be raised. The work addresses the design using transistors with channel length of no more than double the feature size and a supply voltage as low as 1.2 V. A front-end system has been fabricated in a 90 nm process including gain boosting techniques based on regulated cascode circuits. The analog channel has been optimized to match a detector capacitance of 5 pF and exhibits a good performance in terms of gain, speed, linearity and power consumption

  9. Electronic devices for analog signal processing

    CERN Document Server

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  10. Analog Electronic Filters Theory, Design and Synthesis

    CERN Document Server

    Dimopoulos, Hercules G

    2012-01-01

    Filters are essential subsystems in a huge variety of electronic systems. Filter applications are innumerable; they are used for noise reduction, demodulation, signal detection, multiplexing, sampling, sound and speech processing, transmission line equalization and image processing, to name just a few. In practice, no electronic system can exist without filters. They can be found in everything from power supplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to home cinema systems and broadband Internet connections. This textbook introduces basic concepts and methods and the associated mathematical and computational tools employed in electronic filter theory, synthesis and design.  This book can be used as an integral part of undergraduate courses on analog electronic filters. Includes numerous, solved examples, applied examples and exercises for each chapter. Includes detailed coverage of active and passive filters in an independent but correlated manner. Emphasizes real filter...

  11. BOOK REVIEW: An Analog Electronics Companion

    Science.gov (United States)

    Hamilton, Scott

    2003-09-01

    The expression 'Analog electronics' here means the sum of a vast quantity of scientific and technical knowledge and topics. By the same token, the electronic analogue and circuit designer should also have a vast cultural and scientific know-how. The aim of this book is to be a guide for neophytes as well as a useful 'travelling companion' for the mature designer confronted with such a vast world. In my opinion it successfully meets these intentions. The subjects are treated in a concise, clear and self-contained fashion, always helped by a broad exhaustive bibliography, and cover all the necessary aspects for electronic design, such as: the essential elements of mathematical analysis, trigonometry and logarithms to reach Fourier and Laplace transforms and differential equations; physics phenomena and laws from electrostatics and electrodynamics up to Maxwell equations and electronic noise; the fundamental elements of electronic circuit theory and their methods of analysis up to the theory of feedback and control systems; an analysis of the electrical characteristics of the main passive and active electronic components. The above mentioned points take up about half of the text. The remaining topics deal with circuit applications often faced by the electronic designer. In the second part, circuit analysis is treated analytically as well as by the use of CAD, and Pspice software is provided on a CD which illustrates examples. The list of topics treated is long and ranges from operational amplifier circuits to rectifier circuits as well as current feedback amplifiers and high frequency transformers. The book closes by mentioning chaos theory. Daniele Marioli

  12. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  13. Programmable Analog Memory Resistors For Electronic Neural Networks

    Science.gov (United States)

    Ramesham, Rajeshuni; Thakoor, Sarita; Daud, Taher; Thakoor, Anilkumar P.

    1990-01-01

    Electrical resistance of new solid-state device altered repeatedly by suitable control signals, yet remains at steady value when control signal removed. Resistance set at low value ("on" state), high value ("off" state), or at any convenient intermediate value and left there until new value desired. Circuits of this type particularly useful in nonvolatile, associative electronic memories based on models of neural networks. Such programmable analog memory resistors ideally suited as synaptic interconnects in "self-learning" neural nets. Operation of device depends on electrochromic property of WO3, which when pure is insulator. Potential uses include nonvolatile, erasable, electronically programmable read-only memories.

  14. Electronics basic, analog, and digital with PSpice

    CERN Document Server

    Sabah, Nassir H

    2009-01-01

    Preface Foreword: Brief History and Impact of Electronics Convention for Symbols Basic Diode Circuits Overview Learning Objectives Ideal and Practical Diodes Ideal Diode Ideal Si pn Junction Diode Practical Diodes Incremental Diode Resistance Basic Analysis of Diode Circuits Piecewise Linear Approximation Bias Point Small-Signal Model Rectifier Circuits Half-Wave Rectifier Full-Wave Rectifier Smoothing of Output Capacitor-Input Filter Approximate Analysis of Capacitor-Input Filter Zener Voltage Regulator Voltage-Current Characteristic Analysis of Zener Regulator Load regulation and Line Regula

  15. Electronic analogy of Goos-H\\"{a}nchen effect: a review

    OpenAIRE

    Chen, Xi; Lu, Xiao-Jing; Ban, Yue; Li, Chun-Fang

    2013-01-01

    The analogies between optical and electronic Goos-H\\"{a}nchen effects are established based on electron wave optics in semiconductor or graphene-based nanostructures. In this paper, we give a brief overview of the progress achieved so far in the field of electronic Goos-H\\"{a}nchen shifts, and show the relevant optical analogies. In particular, we present several theoretical results on the giant positive and negative Goos-H\\"{a}nchen shifts in various semiconductor or graphen-based nanostruct...

  16. Graphene-on-semiconductor substrates for analog electronics

    Science.gov (United States)

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  17. Analogies: Explanatory Tools in Web-Based Science Instruction

    Science.gov (United States)

    Glynn, Shawn M.; Taasoobshirazi, Gita; Fowler, Shawn

    2007-01-01

    This article helps designers of Web-based science instruction construct analogies that are as effective as those used in classrooms by exemplary science teachers. First, the authors explain what analogies are, how analogies foster learning, and what form analogies should take. Second, they discuss science teachers' use of analogies. Third, they…

  18. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  19. 基于CDIO模式下的模拟电子技术教学研究%Research on analog electronic technology teaching based on CDIO model

    Institute of Scientific and Technical Information of China (English)

    房俊杰; 张桂凤; 赵承滨

    2014-01-01

    Closely contacting with students and teachers,focusing on ability education,according to the characteristics of the analog electronic technology,adopt the CDIO mode,it can expand the knowledge level,improve the operation ability and innovative thinking deeply.Through the theory with practice,teach them according to their aptitude,and increasing the chance of students physical operation to meet the needs of engineering.Through the advantage of the characteristics of different grade students,complementing each other,they jointly complete the task.In this way, it can improve the students' practical ability,and improve the ability of team work,make the students' overall ability to get promoted.%紧密联系教师与学生,以能力教育为重点,针对模拟电子技术的特点,采用CDIO模式,扩展知识层面,提高操作能力,深入创新思想。理论联系实际,因材施教,增加学生操作实物机会,并结合工程需要,利用不同年级学生的特点,取长补短,共同完成任务。通过这种方式既提高了学生的动手能力,又提高了团队协作能力,使学生的整体能力得到提升。

  20. Electronic Circuit Analog of Synthetic Genetic Networks: Revisited

    CERN Document Server

    Hellen, Edward H

    2016-01-01

    Electronic circuits are useful tools for studying potential dynamical behaviors of synthetic genetic networks. The circuit models are complementary to numerical simulations of the networks, especially providing a framework for verification of dynamical behaviors in the presence of intrinsic and extrinsic noise of the electrical systems. Here we present an improved version of our previous design of an electronic analog of genetic networks that includes the 3-gene Repressilator and we show conversions between model parameters and real circuit component values to mimic the numerical results in experiments. Important features of the circuit design include the incorporation of chemical kinetics representing Hill function inhibition, quorum sensing coupling, and additive noise. Especially, we make a circuit design for a systematic change of initial conditions in experiment, which is critically important for studies of dynamical systems' behavior, particularly, when it shows multistability. This improved electronic ...

  1. A neurocomputer based on an analog-digital hybrid architecture

    Science.gov (United States)

    Moopenn, A.; Thakoor, A. P.; Duong, T.; Khanna, S. K.

    1987-01-01

    A novel analog-digital hybrid architecture based on the utilization of high density digital random access memories for the storage of the synaptic weights of a neural network, and high speed analog hardware to perform neural computation is described. An electronic neurocomputer based on such an architecture is ideally suited for investigating the dynamics, associative recall properties, and computational capabilities of neural networks and provides significant speed improvement in comparison to conventional software based neural network simulations. As a demonstration of the feasibility of the hybrid architectural concept, a prototype breadboard hybrid neurocomputer system with 32 neurons has been designed and fabricated with off-the-shelf hardware components. The performance of the breadboard system has been tested for variety of applications including associative memory and combinatorial problem solving such as Graph Coloring, and is discussed in this paper.

  2. Analysis and application of analog electronic circuits to biomedical instrumentation

    CERN Document Server

    Northrop, Robert B

    2012-01-01

    All chapters include an introduction and chapter summary.Sources and Properties of Biomedical SignalsSources of Endogenous Bioelectric SignalsNerve Action PotentialsMuscle Action PotentialsThe ElectrocardiogramOther BiopotentialsElectrical Properties of BioelectrodesExogenous Bioelectric SignalsProperties and Models of Semiconductor Devices Used in Analog Electronic Systemspn Junction DiodesMidfrequency Models for BJT BehaviorMidfrequency Models for Field-Effect TransistorsHigh-Frequency Models for Transistors and Simple Transistor AmplifiersPhotons, Photodiodes, Photoconductors, LEDs, and Las

  3. The Discourse on Printed and Electronic Books: Analogies, Oppositions, and Perspectives

    Science.gov (United States)

    Velagic, Zoran

    2014-01-01

    Introduction: The point of departure for this paper is the twofold analogy (analogy of content, analogy of medium) between printed and electronic books, the aim being to draw attention to the usual perception of their capacities and relationships, to provide a rather detailed analysis of the outcome and sustainability of such analogies and…

  4. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Directory of Open Access Journals (Sweden)

    Manolopoulos K.

    2016-01-01

    Full Text Available GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  5. Reconfiguration of Analog Electronics for Extreme Environments: Problem or Solution?

    Science.gov (United States)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Guo, Xin

    2005-01-01

    This paper argues in favor of adaptive reconfiguration as a technique to expand the operational envelope of analog electronics for extreme environments (EE). In addition to hardening-by-process and hardening-by-design, "hardening-by-reconfiguration", when applicable, could be used to mitigate drifts, degradation, or damage on electronic devices (chips) in EE, by using re-configurable devices and an adaptive self-reconfiguration of their circuit topology. Conventional circuit design exploits device characteristics within a certain temperature/radiation range; when that is exceeded, the circuit function degrades. On a reconfigurable device, although component parameters change in EE, as long as devices still operate, albeit degraded, a new circuit design, suitable for new parameter values, may be mapped into the reconfigurable structure to recover the initial circuit function. Partly degraded resources are still used, while completely damaged resources are bypassed. Designs suitable for various environmental conditions can be determined prior to operation or can be determined in-situ, by adaptive reconfiguration algorithms running on built-in digital controllers. Laboratory demonstrations of this technique were performed by JPL in several independent experiments in which bulk CMOS reconfigurable devices were exposed to, and degraded by, low temperatures (approx. 196 C), high temperatures (approx.300 C) or radiation (300kRad TID), and then recovered by adaptive reconfiguration using evolutionary search algorithms. Taking this technology from Technology Readiness Level (TRL) 3 to TRL 5 is the target of a current NASA project.

  6. Analogies in electronic properties of graphene wormhole and perturbed nanocylinder

    Science.gov (United States)

    Pincak, R.; Smotlacha, J.

    2013-11-01

    The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the "graphene blackhole" is introduced.

  7. Asymmetric bilayer graphene nanoribbon MOSFETs for analog and digital electronics

    Science.gov (United States)

    Dinarvand, A.; Ahmadi, V.; Darvish, Gh.

    2016-05-01

    In this paper, a new structure was proposed for bilayer graphene nanoribbon field-effect transistor (BGNFET) mainly to enhance the electrical characteristics in analog and digital applications. The proposed device uses two metallic gates on the top and bottom of a bilayer graphene nanoribbon, which is surrounded by SiO2 and connected to heavily doped source/drain contacts. Electrical properties of the proposed device were explored using fully self-consistent solution of Poisson and Schrödinger equations based on the nonequilibrium Green's function (NEGF) formalism. Significant improvements in the electrical behavior was seen in the simulation results for gates asymmetrically biased. The comparison with graphene nanoribbon FET showed that the proposed structure benefited from higher intrinsic voltage gain and cut-off frequency and improved switching characteristics such as delay and Ion/Ioff ratio.

  8. Analogs of Basic Electronic Circuit Elements in a Free-Space Atom Chip

    Science.gov (United States)

    Lee, Jeffrey G.; McIlvain, Brian J.; Lobb, C. J.; Hill, W. T., III

    2013-01-01

    Using a thermal sample of laser-cooled rubidium atoms, we have constructed a neutral-atom circuit analogous to an electronic capacitor discharged through a resistor. The atoms are confined using what we call a free-space atom chip, an optical dipole trap created using a generalized phase-contrast imaging technique. We have also calculated theoretical values for the capacitance and resistance, which agree with our experiments, as well as theoretical value for an atomic analog of electrical inductance. We show that atomic capacitance is analogous to the quantum capacitance, the atomic resistance is analogous to the ballistic, or Sharvin resistance, and the atomic inductance is analogous to kinetic inductance.

  9. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    Science.gov (United States)

    Velentzas, Athanasios

    2014-11-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such experiments. It would, however, be possible for students to analyze data from scientific experiments by analogy to experiments they themselves had performed. Based on this rationale, this paper describes two pairs of experiments that may be of interest to teachers aiming to teach the wave nature of light and of particles to upper secondary school (or to college) students. Specifically, students are asked to (i) carry out a double-slit experiment by using monochromatic light, thus repeating in a way the historical experiment of Young,1 and then analyze real data from Jönsson's2-3 scientific double-slit experiment with electrons, and (ii) perform an experiment involving diffraction of monochromatic light using a compact disc (CD) as a reflection grating, and then by analogy analyze data from the experiment of Davisson and Germer.4 The proposed real experiments are not original, and different versions of them have been wi dely described in the literature.5,6 The educational value of the present work lies in the use of the analogy between experiments carried out in the school lab and experiments performed in the scientific lab.

  10. Application of Research-based Teaching Mode in Analog Electronic Technology Course%研究型教学在“模拟电子技术”中的应用

    Institute of Scientific and Technical Information of China (English)

    史雪飞; 李江昀; 李擎; 刘蕴络

    2012-01-01

    Research-based teaching mode is applied to the class of Analog Electronic Technology according to the features of the course and the practical problems which students have during their study. Many teaching cases and seminar topics are presented in detail in this paper. For every topic the proposed background and cultivating object are also analyzed in the following part. Evaluation about this new teaching mode among students is discussed in the end.%本文从“模拟电子技术”课程的特点和学生的实际问题出发,开展了将研究型教学模式引入“模拟电子技术”课堂的实践和探索工作。文章还详细介绍了具体的研究型教学案例和多个研讨专题,并分析了每个专题提出的背景和设置的培养目标,最后给出了学生对于本课程研究型教学模式的评价。

  11. Electronic design automation of analog ICs combining gradient models with multi-objective evolutionary algorithms

    CERN Document Server

    Rocha, Frederico AE; Lourenço, Nuno CC; Horta, Nuno CG

    2013-01-01

    This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the resp

  12. An analog bipolar-JFET master slice array for front-end electronics design

    International Nuclear Information System (INIS)

    An analog bipolar-JFET Master Slice Array (MSA) has been designed for implementation of ICs used in nuclear physics front-end electronics. The universal conception of MSAs active and passive elements provides great functional complexity to ICs in using them. The quality of active element parameters, number and values of available resistors and capacitors made it possible to integrate a four channel amplifier-shaper-discriminator with a base line restorer into the MSA die with dimensions 2.7 mmx3.6 mm. Eight-channel ICs can be made by connection of two chips by metal wiring on a wafer

  13. An Implementation of POPBL for Analog Electronics (BEL10203 Course at the Faculty Of Electrical and Electronic Engineering, Uthm

    Directory of Open Access Journals (Sweden)

    Masnani Mohamed

    2012-04-01

    Full Text Available A Project Oriented Problem Based Learning (POPBL has been introduced to the first year students in the Analog Electronics (BEL10203 course at the Faculty of Electrical and Electronic Engineering, UTHM. The aim is to design an electronic circuit using transistors and diodes that can function as electronic appliances with low cost, low power consumption, and has the features of smart and portable. The total of 143 students were divided into groups and assigned to setup an electronic based company that will be manufacturing the electronic product. Each group had to conduct their regular meetings and develop different kind of products with their creativity. The overall evaluation is divided for both lecturer and peer assessment which carried 20% of their course work. The assessment covered 60% of evaluation for the group management, attitude, progress presentation, report writing while another 40% for the functionality and features of their product. As a result, the POPBL session has increased the student’s ability to analyze and design an analog circuit using various kinds of transistors and diodes. They also gained practical understanding on transistor and diode operation. The POPBL not only expanded their experience in using software tools for circuit design and simulation, but also developed greater awareness to conduct professional presentation and technical report. They also learned to work as professional, keen to ethical responsibilities and committed to the group. The analysis conducted has shown that 95% of the students agreed that the problem given helped them understands better the course syllabus and developed a good problem solving skills.

  14. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications

    Science.gov (United States)

    Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong

    2016-03-01

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor’s analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.

  15. Analog Front-End Electronics in Beam Instrumentation

    CERN Document Server

    Boscolo, A

    2005-01-01

    The work gives an overview of present and near future technological opportunities for the first analog conditioning and subsequent signal processing of sensor signal. The interactions between beam sensor capability, their signals characteristics and the system requirements are analyzed from different approaches as: full analog continuous, sampled time discrete, full digital time and amplitude discrete. Special attention will be given to the impact of measurement methods and new devices in circuits and instrumentation architecture design, especially from the metrological point of view. A lot of measurement methods and related systems have been developed in order to overcome technological drawbacks and to reach the best cost-performances ratio. By a system revamping, some of these still now show the capability of reaching the actual technological limits in a simpler way in many applications as: ADC, linear and non linear signal processing, ultra high speed logic, etc. These methods could be carried out by the n...

  16. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    OpenAIRE

    Mansour Barari; Hamid Reza Karimi; Farhad Razaghian

    2014-01-01

    This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs). Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization) algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environmen...

  17. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications

    OpenAIRE

    Changhong Wang; Wei He; Yi Tong; Rong Zhao

    2016-01-01

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor’s analog behaviors is still lacking. In this work, we reveal that compliance current (I comp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of c...

  18. Analog IC techniques for low-voltage low-power electronics

    OpenAIRE

    Serdijn, W. A.; Verhoeven, C.J.M.; Van Roermund, A.H.M.

    1995-01-01

    Analog IC Techniques lor Low-Voltage Low Power Electronics addresses many very important, but recent, techniques which enable electronics to operate at a low supply voltage and consume a minimum amount of power. Apart from investigations at the device, circuit and system levels, the book provides a wealth of practical implementations, many worked out in silicon realizations. The book is intended for both the professional designer of low-voltage low-power analog integrated circuits and the gra...

  19. A gravito-electromagnetic analogy based on tidal tensors

    CERN Document Server

    Costa, L F; Herdeiro, Carlos A. R.

    2006-01-01

    We propose a new approach to a physical analogy between General Relativity and Electromagnetism, based on comparing tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, from which the regime of validity of the analogy becomes manifest. Two explicit realisations of the analogy are given. The first one matches linearised gravitational tidal tensors to exact electromagnetic tidal tensors in Minkwoski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultra-stationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. We then establish a new proof for a class of tensor identities that define invariants of the type $\\vec{E}^2-\\vec{B}^2$ and $\\vec{E}\\cdot\\vec{B}$, and we exhibit the invariants built from tidal tensors in both gravity and electromagnetism. We contrast our approach with the two gravito-electromagnetic analogies commonly found in the literature, which are reviewed...

  20. Analysis and application of analog electronic circuits to biomedical instrumentation

    CERN Document Server

    Northrop, Robert B

    2003-01-01

    This book introduces the basic mathematical tools used to describe noise and its propagation through linear systems and provides a basic description of the improvement of signal-to-noise ratio by signal averaging and linear filtering. The text also demonstrates how op amps are the keystone of modern analog signal conditioning systems design, and illustrates their use in isolation and instrumentation amplifiers, active filters, and numerous biomedical instrumentation systems and subsystems. It examines the properties of the ideal op amp and applies this model to the analysis of various circuits

  1. Investigating student learning in upper-division laboratory courses on analog electronics

    Science.gov (United States)

    Stetzer, Mackenzie

    2015-03-01

    There are many important learning goals associated with upper-division laboratory instruction; however, until recently, relatively little work has focused on assessing the impact of these laboratory-based courses on students. As part of an ongoing, in-depth investigation of student learning in upper-division laboratory courses on analog electronics, we have been examining the extent to which students enrolled in these courses develop a robust and functional understanding of both canonical electronics topics (e.g., diode, transistor, and op-amp circuits) and foundational circuits concepts (e.g., Kirchhoff's laws and voltage division). This focus on conceptual understanding is motivated in part by a large body of research revealing significant student difficulties with simple dc circuits at the introductory level and by expectations that students finish electronics courses with a level of understanding suitable for building common, practical circuits in a real-world environment. Recently, we have extended the scope of our investigation to include more laboratory-focused learning goals such as the development of (1) troubleshooting proficiency and (2) circuit chunking and design abilities. In this talk, I will highlight findings from written questions and interview tasks that have been designed to probe student understanding in sufficient depth to identify conceptual and reasoning difficulties. I will also use specific examples to illustrate the ways in which this research may inform instruction in upper-division laboratory courses on analog electronics. This work has been supported in part by the National Science Foundation under Grant Nos. DUE-1323426, DUE-1022449, DUE-0962805, and DUE-0618185.

  2. Analog IC techniques for low-voltage low-power electronics

    NARCIS (Netherlands)

    Serdijn, W.A.; Verhoeven, C.J.M.; Van Roermund, A.H.M.

    1995-01-01

    Analog IC Techniques lor Low-Voltage Low Power Electronics addresses many very important, but recent, techniques which enable electronics to operate at a low supply voltage and consume a minimum amount of power. Apart from investigations at the device, circuit and system levels, the book provides a

  3. Studies of chaos and thermal noise in a driven Josephson junction using an electronic analog

    Energy Technology Data Exchange (ETDEWEB)

    Pegrum, C.M.; Gurney, W.S.C.; Nisbet, R.M.

    1989-03-01

    Using an electronic analog of a resistively shunted driven Josephson junction, the authors have demonstrated a number of effects, including the appearance of a devil's staircase in the current-voltage characteristic, the onset of chaos, and the effect of noise on these phenomena. The authors stress that the analog is simple, but models the junction behavior with a high degree of accuracy and detail.

  4. Analog Group Delay Equalizers Design Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    M. Laipert

    2006-04-01

    Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.

  5. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  6. Phononics: Manipulating heat flow with electronic analogs and beyond

    OpenAIRE

    Li, Nianbei; Ren, Jie; Wang, Lei; Zhang, Gang; Hänggi, Peter; Li, Baowen

    2011-01-01

    The form of energy termed heat that typically derives from lattice vibrations, i.e. the phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, with this colloquium, we attempt to rebut this common view: By use of tailored models we demonstrate that phonons can be manipulated like electrons and photons can, thus enabling controlled heat transport. Moreover, we explain that phonons can be put to beneficial use to carry and process informati...

  7. Analogy between gambling and measurement-based work extraction

    Science.gov (United States)

    Vinkler, Dror A.; Permuter, Haim H.; Merhav, Neri

    2016-04-01

    In information theory, one area of interest is gambling, where mutual information characterizes the maximal gain in wealth growth rate due to knowledge of side information; the betting strategy that achieves this maximum is named the Kelly strategy. In the field of physics, it was recently shown that mutual information can characterize the maximal amount of work that can be extracted from a single heat bath using measurement-based control protocols, i.e. using ‘information engines’. However, to the best of our knowledge, no relation between gambling and information engines has been presented before. In this paper, we briefly review the two concepts and then demonstrate an analogy between gambling, where bits are converted into wealth, and information engines, where bits representing measurements are converted into energy. From this analogy follows an extension of gambling to the continuous-valued case, which is shown to be useful for investments in currency exchange rates or in the stock market using options. Moreover, the analogy enables us to use well-known methods and results from one field to solve problems in the other. We present three such cases: maximum work extraction when the probability distributions governing the system and measurements are unknown, work extraction when some energy is lost in each cycle, e.g. due to friction, and an analysis of systems with memory. In all three cases, the analogy enables us to use known results in order to obtain new ones.

  8. Documentary Realism, Sampling Theory and Peircean Semiotics: electronic audiovisual signs (analog or digital as indexes of reality

    Directory of Open Access Journals (Sweden)

    Hélio Godoy

    2007-07-01

    Full Text Available This paper addresses Documentary Realism, focusing on thephysical phenomena of transduction that take place in analog and digital audiovisual systems, herein analyzed in the light of the Sampling Theory, within the framework of Shannon and Weaver’s Information Theory. Transduction is a process by which one type of energy is transformed into another, or by which information is transcodified. Within the scope of Documentary Realism, it cannotbe claimed that electronic audiovisual signs, because of their technical digital features lead to a rupture with reality. Rather, the digital documentary, based on electronic digital cinematography, is still an index of reality.

  9. Wavelet neural network based fault diagnosis in nonlinear analog circuits

    Institute of Scientific and Technical Information of China (English)

    Yin Shirong; Chen Guangju; Xie Yongle

    2006-01-01

    The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.

  10. Hamiltonian system for orthotropic plate bending based on analogy theory

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.

  11. Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks

    Institute of Scientific and Technical Information of China (English)

    HU Mei; WANG Hong; HU Geng; YANG Shiyuan

    2007-01-01

    Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.

  12. Analog Optical Computing Based on Dielectric Meta-reflect-array

    CERN Document Server

    Chizari, Ata; Jamali, Mohammad Vahid; Salehi, Jawad A

    2016-01-01

    In this paper, we realize the concept of analog computing using an array of engineered gradient dielectric meta-reflect-array. The proposed configuration consists of individual subwavelength silicon nanobricks in combination with fused silica spacer and silver ground plane realizing a reflection beam with full phase coverage $2\\pi$ degrees as well as amplitude range $0$ to $1$. Spectrally overlapping electric and magnetic dipole resonances, such high-index dielectric metasurfaces can locally and independently manipulate the amplitude and phase of the incident electromagnetic wave. This practically feasible structure overcomes substantial limitations imposed by plasmonic metasurfaces such as absorption losses and low polarization conversion efficiency in the visible range. Using such CMOS-compatible and easily integrable platforms promises highly efficient ultrathin planar wave-based computing systems which circumvent the drawbacks of conventional bulky lens-based signal processors. Based on these key properti...

  13. Low Voltage Analog Circuit Design Based on the Flipped Voltage Follower

    Directory of Open Access Journals (Sweden)

    Neeraj Yadav

    2012-03-01

    Full Text Available The desire for portability of electronics equipment generated a need for low power system in battery products like hearing aids, implantable cardiac pacemakers, cell phones and hand held multimedia terminals. Low voltage analog circuit design differs considerably from those of high voltage analog circuit design. This paper present the basic cell knows as “flipped voltage follower” for low voltage/ low power operation. The detailed classification of basic topologies derived from the FVF cell is presented and there is a low voltage current mirror based on FVF cell has been presented. All the Circuit has been simulated using Hspice tool 0.18µm CMOS Technology. Different quality factors such as frequency response, power consumption are considered. A compression also made between previous current mirror and new designed current mirror. The layout of the current mirror has been also designed using Cadence tool.

  14. The Analog Front-end Prototype Electronics Designed for LHAASO WCDA

    CERN Document Server

    Ma, Cong; Guo, Yu-Xiang; Liu, Jian-Feng; Liu, Shu-Bin; An, Qi

    2015-01-01

    In the readout electronics of the Water Cerenkov Detector Array (WCDA) in the Large High Altitude Air Shower Observatory (LHAASO) experiment, both high-resolution charge and time measurement are required over a dynamic range from 1 photoelectron (P.E.) to 4000 P.E. The Analog Front-end (AFE) circuit is one of the crucial parts in the whole readout electronics. We designed and optimized a prototype of the AFE through parameter calculation and circuit simulation, and conducted initial electronics tests on this prototype to evaluate its performance. Test results indicate that the charge resolution is better than 1% @ 4000 P.E. and remains better than 10% @ 1 P.E., and the time resolution is better than 0.5 ns RMS, which is better than application requirement.

  15. Puzzling electron behavior analogous to the Braess paradox in a mesoscopic network

    Science.gov (United States)

    Toussaint, Sébastien; Faniel, Sébastien; Martins, Frederico; Pala, Marco; Desplanque, Ludovic; Wallart, Xavier; Huant, Serge; Sellier, Hermann; Bayot, Vincent; Hackens, Benoit

    A counterintuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel in the network paradoxically leads to an increased network conductance. Our scanning gate microscopy experiments reveals this puzzling conductance variation, thanks to tip-induced localized modifications of electron flow throughout the network's channels at low temperature, in the ballistic and coherent regime of transport. We compare the amplitude of the measured anomalous conductance variation with conductance changes induced by other mechanisms at play in the mesoscopic network, such as interference phenomena between different paths, and Coulomb blockade due to disorder-induced localized states. The robustness of this puzzling behavior is inspected by varying the global 2DES density, magnetic field and temperature. S.T. acknowledges support from the Belgian FRS-FNRS (FRIA).

  16. Puzzling electron behavior analogous to the Braess paradox in a mesoscopic networ

    Science.gov (United States)

    Toussaint, Sébastien; Faniel, Sébastien; Martins, Frederico; Pala, Marco; Desplanque, Ludovic; Wallart, Xavier; Huant, Serge; Sellier, Hermann; Bayot, Vincent; Hackens, Benoit

    A counterintuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel in the network paradoxically leads to an increased network conductance. Our scanning gate microscopy experiments reveals this puzzling conductance variation, thanks to tip-induced localized modifications of electron flow throughout the network's channels at low temperature, in the ballistic and coherent regime of transport. We compare the amplitude of the measured anomalous conductance variation with conductance changes induced by other mechanisms at play in the mesoscopic network, such as interference phenomena between different paths, and Coulomb blockade due to disorder-induced localized states. The robustness of this puzzling behavior is inspected by varying the global 2DES density, magnetic field and temperature S.T. acknowledges support from the Belgian FRS-FNRS (FRIA).

  17. Low power analog readout front-end electronics for time and energy measurements

    International Nuclear Information System (INIS)

    We report on the design and measurements of an analog front-end readout electronics dedicated for silicon microstrip detectors with relatively large capacitance of the order of tens pF for time and energy measurements of incoming pulses. The front-end readout electronics is required to process input pulses with an average rate of 150 kHz/channel with low both power consumption and noise at the same time. In the presented solution the single channel is built of two different parallel processing paths: fast and slow. The fast path includes the fast CR–RC shaper with the peaking time tp=40 ns and is optimized to determine the input charge arrival time. The slow path, which consists of the slow CR–(RC)2 shaper with the peaking time tp=80 ns, is dedicated for low noise accurate energy measurement. The analog front-end electronics was implemented in UMC 180 nm CMOS technology as a prototype ASIC AFE. The AFE chip contains 8 channels with the size of 58 μm×1150 μm each. It has low power dissipation Pdiss=3.1 mW per single channel. The article presents the details of the front-end architecture and the measurement results

  18. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  19. π to σ Radical Tautomerization in One-Electron Oxidized 1-Methylcytosine and its Analogs

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T.; Wiegand, Tyler J.; Hindi, Ragda M.; Adhikary, Ananya; Sevilla, Michael D.

    2015-01-01

    In this work iminyl σ-radical formation in several one-electron oxidized cytosine analogs including 1-MeC, cidofovir, 2′-deoxycytidine (dCyd), and 2′-deoxycytidine 5′-monophosphate (5′-dCMP) were investigated in homogeneous aqueous (D2O or H2O) glassy solutions at low temperatures employing electron spin resonance (ESR) spectroscopy. Employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones thus confirming its assignment. ESR and DFT studies show that the cytosine-iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical (cytosine π-aminyl radical, C(N4-H)•). Employing 1-MeC samples at various pHs ranging ca. 8 to ca. 11, ESR studies show that the tautomeric equilibrium between C(N4-H)• and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that in the iminyl-σ radical, the unpaired spin is localized to the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG= −32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA-radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in dsDNA by a radiation-induced ionization–deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  20. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  1. Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs

    Science.gov (United States)

    Pelorosso, Leandro; Diehl, Alexandra; Matković, Krešimir; Delrieux, Claudio; Ruiz, Juan; Gröeller, M. Eduard; Bruckner, Stefan

    2016-04-01

    Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembles can be expressed as probabilistic forecasts, which have proven to be very effective in the decision-making processes [DE06]. The ensemble of forecasts represents only some of the possible future atmospheric states, usually underestimating the degree of uncertainty in the predictions [KAL03, PH06]. Hamill and Whitaker [HW06] introduced the "Reforecast Analog Regression" (RAR) technique to overcome the limitations of ensemble forecasting. This technique produces probabilistic predictions based on the analysis of historical forecasts and observations. Visual analytics provides tools for processing, visualizing, and exploring data to get new insights and discover hidden information patterns in an interactive exchange between the user and the application [KMS08]. In this work, we introduce Albero, a visual analytics solution for probabilistic weather forecasting based on the RAR technique. Albero targets at least two different type of users: "forecasters", who are meteorologists working in operational weather forecasting and "researchers", who work in the construction of numerical prediction models. Albero is an efficient tool for analyzing precipitation forecasts, allowing forecasters to make and communicate quick decisions. Our solution facilitates the analysis of a set of probabilistic forecasts, associated statistical data, observations and uncertainty. A dashboard with small-multiples of probabilistic forecasts allows the forecasters to analyze at a glance the distribution of probabilities as a function of time, space, and magnitude. It provides the user with a more

  2. Human Time Allocation in Time-based Analog of Concurrent Interval-ratio Schedules

    OpenAIRE

    TAJIMA, HIROYUKI

    1999-01-01

    Six undergraduates participated in concurrent-choice experiment with monetary reinforcers. Each subject was exposed to a time-based analog of concurrent variable-interval variable-ratio schedule with equal time interval values. The time-based analog of variable-interval schedule arranged reinforcers throughout the session, and delivered them while the schedule was chosen. The time-based analog of variable-ratio schedule arranged and immediately delivered reinforcers only while the schedule wa...

  3. Piezoelectric energy harvesting from colored fat-tailed fluctuations: An electronic analogy

    Directory of Open Access Journals (Sweden)

    J. I. Peña Rosselló

    2015-09-01

    Full Text Available Aiming to optimize piezoelectric energy harvesting from strongly col-ored fat-tailed fluctuations, we have recently studied the performance ofa monostable inertial device under a noise whose statistics depends on aparameter q (bounded for q 1.We have studied the interplay between the potential shape (interpolatingbetween square-well and harmonic-like behaviors and the noise’s statis-tics and spectrum, and showed that its output power grows as q increasesabove 1. We now report a real experiment on an electronic analog of theproposed system, which sheds light on its operating principle. Received: 20 Novembre 2014, Accepted: 7 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070014 Cite as: J I Peña Rosselló, R Deza, J . Deza, H S Wio, Papers in Physics 7, 070014 (2015

  4. Solid-state reprogrammable analog resistive devices for electronic neural networks

    Science.gov (United States)

    Ramesham, R.; Thakoor, S.; Daud, T.; Thakoor, A. P.

    1990-01-01

    The fabrication and performance of WO3-based, solid-state, three-terminal device configurations as programmable analog memory elements are reported. These transistorlike device structures exhibit good resistance progammability with a remarkable resolution of a few percent of the resistive strength over a four orders of magnitude dynamic range. The most critical component of these devices is an insulating layer between the active WO3 and the cation donor layer. The progamming characteristics and operation mechanisms of the device are described, and probable reaction mechanisms critical to the device stability are discussed.

  5. Analog computing

    CERN Document Server

    Ulmann, Bernd

    2013-01-01

    This book is a comprehensive introduction to analog computing. As most textbooks about this powerful computing paradigm date back to the 1960s and 1970s, it fills a void and forges a bridge from the early days of analog computing to future applications. The idea of analog computing is not new. In fact, this computing paradigm is nearly forgotten, although it offers a path to both high-speed and low-power computing, which are in even more demand now than they were back in the heyday of electronic analog computers.

  6. Market price simulator based on analog electrical circuit

    OpenAIRE

    Aki-Hiro Sato; Hideki Takayasu

    2001-01-01

    We constructed an analog electrical circuit which generates fluctuations in which probability density function has power law tails. In the circuit fluctuations with an arbitrary exponent of the power law can be obtained by adjusting the resistance. With this low cost circuit the random fluctuations which have the similar statistics to foreign exchang rates can be generated as fast as an expensive digital computer.

  7. Dataset Quality Assessment: An extension for analogy based effort estimation

    Directory of Open Access Journals (Sweden)

    Mohammad Azzeh

    2013-03-01

    Full Text Available Estimation by Analogy(EBAisanincreasingly active researchmethod in the area ofsoftwareengineering. Thefundamentalassumption of this method is thatthesimilarprojects in terms of attributevalueswillalsobesimilar in terms of effortvalues.It is well recognized thatthequality ofsoftwaredatasets hasaconsiderable impact on the reliability and accuracy of such method.Therefore,if thesoftwaredataset does notsatisfythe aforementionedassumptionthenitis notratherusefulfor EBAmethod.This paperpresentsa new methodbased on Kendall’s row-wise rank correlationthat enablesdataqualityevaluationandproviding a data pre-processing stagefor EBA.The proposedmethodprovidessound statistical basis and justification for the processofdataquality evaluation. Unlike Analogy-X,ourmethodhastheability to deal withcategorical attributesindividually withoutthe need for partitioningthedataset.Experimental results showed thatthe proposed method could formauseful extension forEBAas itenables: dataset quality evaluation, attribute selection and identifying abnormal observation

  8. Fluorescent difluoroboron-curcumin analogs: An investigation of the electronic structures and photophysical properties

    Science.gov (United States)

    Margar, Sachin N.; Rhyman, Lydia; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2016-01-01

    A comprehensive approach based on the density functional theory method was used to elicit the molecular and photophysical properties of four difluoroboron analogs of curcumin. The ground state geometry optimization, vertical absorption and the first excited state optimization were carried out using the B3LYP/6-31G(d) method. The geometry of the molecules remains planar both in the ground and excited states. There is a good correlation between the observed absorption (maximum deviation of 8%) and emission wavelength (maximum deviation of 22%) with the computed values. Different polarizability parameters were computed and compared with urea. The values obtained for the difluoroboron dyes are larger than those of urea, suggesting considerable charge transfer characteristics of the first excited state. This is further supported by the significant difference in the dipole moment. The outcome of this work should be useful towards the industrial applications of these curcumin-based dyes.

  9. Dynamic mesh optimization based on the spring analogy

    Directory of Open Access Journals (Sweden)

    Schmidt Jonas

    2014-01-01

    Full Text Available We present an implementation of the spring analogy for three dimensional meshes in OpenFOAM. All parameters of the spring system are treated as fields that can either be pre-defined by the user, or updated at each time step according to specified geometrical regions or diffusion equations. The purpose of the method is to provide a pre-processing tool for mesh optimization. We study three simple test cases, a deformed block, an airfoil and a hill, and we analyze the evolution of skewness, non-orthogonality and aspect ratio during the approach of dynamic equilibrium.

  10. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    Science.gov (United States)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  11. A Loudness Function for Analog and Digital Sound Systems based on Equal Loudness Level Contours

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    2016-01-01

    frequency balance will been changed both for LL lower or higher than ML. The differences in ELLC ask for a level based equalization using fractional-order filters. A designing technique for both analog and digital fractional-order filters was developed. The analog solution is based on OPAMs and the digital...... solution is realized in a 16/32 bit fixed point DSP and could be implemented in any sound producing system....

  12. An FPGA-Based Electronic Cochlea

    Directory of Open Access Journals (Sweden)

    M. P. Leong

    2003-06-01

    Full Text Available A module generator which can produce an FPGA-based implementation of an electronic cochlea filter with arbitrary precision is presented. Although hardware implementations of electronic cochlea models have traditionally used analog VLSI as the implementation medium due to their small area, high speed, and low power consumption, FPGA-based implementations offer shorter design times, improved dynamic range, higher accuracy, and a simpler computer interface. The tool presented takes filter coefficients as input and produces a synthesizable VHDL description of an application-optimized design as output. Furthermore, the tool can use simulation test vectors in order to determine the appropriate scaling of the fixed point precision parameters for each filter. The resulting model can be used as an accelerator for research in audition or as the front-end for embedded auditory signal processing systems. The application of this module generator to a real-time cochleagram display is also presented.

  13. Electromagnetic compatibility of new installations of digital/analog and electrical/electronic equipment in nuclear power plants

    International Nuclear Information System (INIS)

    This paper recommends electromagnetic compatibility (EMC) requirements of new digital/analog and electrical/electronic equipment installations in nuclear power plant areas including control rooms, remote shutdown panels, cable spreading rooms, equipment/relay rooms and the turbine deck. A nuclear plant electromagnetic environment (EME) consists of electromagnetic noises from portable two-way radios, arc welders, etc; and high-energy fast transients from generator and transmission / distribution voltages. Trends in current plant modifications suggest that Instrumentation and Control (I and C) systems with analog equipment are being replaced with more efficient computerized/microprocessor-based digital systems. As digital systems are evolving with higher clock frequencies and lower logic level voltages, digital equipment are more vulnerable to electromagnetic/radio frequency interference (EMI/RFI) random noise causing errors in their logic functions. US NRC Regulatory Guide (RG) 1.180, providing guidelines for evaluating EMI/RFI in safety-related I and C systems, endorsed EPRI guidelines TR-102323-RI for EMI emission/susceptibility testing and limiting practices as an acceptable qualification method of digital equipment EMC. Numerous US nuclear utilities have used these EPRI requirements in their equipment specifications. The basis for this paper is derived from these guidelines, military/industry standards, federal regulations and various international publications on EMC. Plant emission levels are selected 8dB below digital equipment susceptibility testing levels and the equipment emissions are conservatively limited to 22dB or more below these levels depending on frequency. Digital equipment is also required to satisfy the EMI limiting practices of EPRI TR-102323-R1 and IEEE 1050-1996. On the other hand, electrical/electronic equipment that operates at higher voltages at power frequency is not as vulnerable to the plant EMI as digital equipment, but could

  14. 基于 Moodle 的“电路与模拟电子”网络教学平台的设计与实现%Design and Implementation of the Network Platform for the Circuit and Analog Electronic Teaching Based on Moodle

    Institute of Scientific and Technical Information of China (English)

    李惠; 杨洋

    2013-01-01

      针对高校的《电路与模拟电子技术》课程,设计了一个基于 moodle 平台的网络教学平台模型。该模型包括登陆、管理、交互、资源四大模块。使用 XAMMP 软件包和 Moodle2.1开发包进行架构。实践证明,该平台不仅可以有效提高学生的学习兴趣和创新能力,而且还可以成为学生的个人,提高学习效率。%The paper designs a network teaching platform based on Moodle for the "circuit and analog electronic technology"curriculum,which includes the login modules,management modules,interaction modules,resources modules.The platform is constructed using the XAMMP software package and the Moodle2.1 development package.The practice shows that the platform not only can improve the students' interest in learning and innovation ability effectively,but also can become the personal knowledge management system for students,improving learning efficiency.

  15. Application of carbon nanotubes and graphene for digital and analog electronics

    Science.gov (United States)

    Badmaev, Alexander

    2011-07-01

    Carbon nanomaterials, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, exhibit the highest electron mobility (˜100,000 cm 2/V/s at room temperature) among all conductors, and huge current carrying capacity of more than 109 A/cm2. Additionally, single-atomic thickness provides ideal electrostatic geometry for field effect devices. These properties make carbon nanomaterials to be strong candidates to replace or supplement conventional semiconductors. Theoretical and experimental studies on individual nanotubes and graphene flakes demonstrated superior performance of carbon based field-effect transistors (FETs). However, in order to realize this potential in electronic applications, scalable synthesis and assembly of carbon nanomaterials, as well as further devices design and fabrication, still remain to be a significant challenge. In this thesis, I present our developments in order to overcome some of the critical problems in practical implementation of carbon based electronics. In our approaches, we address issues starting from the scalable controllable synthesis of carbon nanomaterials and their assembly, including design of electronic devices and material methods for their fabrication, and, finally, integration of these devices into functional circuits. This broad range of issues is tightly and often inseparably inter-connected with each other, as can be seen from an example of very large scale integrated (VLSI) silicon electronics, therefore, ultimately presenting one major goal of developing carbon based electronics. The structure of the thesis is as follows. Chapter 1 gives introduction to nano-scale carbon materials, their electronic properties and problems towards realization of carbon-based electronics. Chapter 2 presents chemical vapor deposition (CVD) methods for synthesis of carbon nanotubes and graphene. CVD synthesis methods proved to be highly promising for large scale synthesis of high quality carbon nanomaterials. The

  16. Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks

    Science.gov (United States)

    Huant, S.; Baltazar, S.; Liu, P.; Sellier, H.; Hackens, B.; Martins, F.; Bayot, V.; Wallart, X.; Desplanque, L.; Pala, M. G.

    2013-12-01

    By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxically degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network.

  17. Delay-based reservoir computing: noise effects in a combined analog and digital implementation.

    Science.gov (United States)

    Soriano, Miguel C; Ortín, Silvia; Keuninckx, Lars; Appeltant, Lennert; Danckaert, Jan; Pesquera, Luis; van der Sande, Guy

    2015-02-01

    Reservoir computing is a paradigm in machine learning whose processing capabilities rely on the dynamical behavior of recurrent neural networks. We present a mixed analog and digital implementation of this concept with a nonlinear analog electronic circuit as a main computational unit. In our approach, the reservoir network can be replaced by a single nonlinear element with delay via time-multiplexing. We analyze the influence of noise on the performance of the system for two benchmark tasks: 1) a classification problem and 2) a chaotic time-series prediction task. Special attention is given to the role of quantization noise, which is studied by varying the resolution in the conversion interface between the analog and digital worlds.

  18. An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Chih-Heng Pan

    2012-12-01

    Full Text Available This study examines an analog circuit comprising a multilayer perceptron neural network (MLPNN. This study proposes a low-power and small-area analog MLP circuit to implement in an E-nose as a classifier, such that the E-nose would be relatively small, power-efficient, and portable. The analog MLP circuit had only four input neurons, four hidden neurons, and one output neuron. The circuit was designed and fabricated using a 0.18 μm standard CMOS process with a 1.8 V supply. The power consumption was 0.553 mW, and the area was approximately 1.36 × 1.36 mm2. The chip measurements showed that this MLPNN successfully identified the fruit odors of bananas, lemons, and lychees with 91.7% accuracy.

  19. Liquid chromatographic resolution of mexiletine and its analogs on crown ether-based chiral stationary phases.

    Science.gov (United States)

    Jin, Kab Bong; Kim, Hee Eun; Hyun, Myung Ho

    2014-05-01

    Mexiletine, an effective class IB antiarrhythmic agent, and its analogs were resolved on three different crown ether-based chiral stationary phases (CSPs), one (CSP 1) of which is based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid and the other two (CSP 2 and CSP 3) are based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Mexiletine was resolved with a resolution (R(S)) of greater than 1.00 on CSP 1 and CSP 3 containing residual silanol group-protecting n-octyl groups on the silica surface, but with a resolution (R(S)) of less than 1.00 on CSP 2. The chromatographic behaviors for the resolution of mexiletine analogs containing a substituted phenyl group at the chiral center on the three CSPs were quite dependent on the phenoxy group of analytes. Namely, mexiletine analogs containing 2,6-dimethylphenoxy, 3,4-dimethylphenoxy, 3-methylphenoxy, 4-methylphenoxy, and a simple phenoxy group were resolved very well on the three CSPs even though the chiral recognition efficiencies vary with the CSPs. However, mexiletine analogs containing 2-methylphenoxy group were not resolved at all or only slightly resolved. Among the three CSPs, CSP 3 was found to show the highest chiral recognition efficiencies for the resolution of mexiletine and its analogs, especially in terms of resolution (R(S)). PMID:24677299

  20. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    Science.gov (United States)

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  1. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    Science.gov (United States)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  2. Feature evaluation and extraction based on neural network in analog circuit fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Yuan Haiying; Chen Guangju; Xie Yongle

    2007-01-01

    Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit.The feature evaluation and extraction methods based on neural network are presented.Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently.The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency.A fault diagnosis illustration validated this method.

  3. Larger bases and mixed analog/digital neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  4. FDSAC-SPICE: fault diagnosis software for analog circuit based on SPICE simulation

    Science.gov (United States)

    Cao, Yiqin; Cen, Zhao-Hui; Wei, Jiao-Long

    2009-12-01

    This paper presents a novel fault diagnosis software (called FDSAC-SPICE) based on SPICE simulator for analog circuits. Four important techniques in AFDS-SPICE, including visual user-interface(VUI), component modeling and fault modeling (CMFM), fault injection and fault simulation (FIFS), fault dictionary and fault diagnosis (FDFD), greatly increase design-for-test and diagnosis efficiency of analog circuit by building a fault modeling-injection-simulationdiagnosis environment to get prior fault knowledge of target circuit. AFDS-SPICE also generates accurate fault coverage statistics that are tied to the circuit specifications. With employing a dictionary diagnosis method based on node-signalcharacters and regular BPNN algorithm, more accurate and effective diagnosis results are available for analog circuit with tolerance.

  5. Model atmospheres for Mercury based on a lunar analogy

    Science.gov (United States)

    Hodges, R. R., Jr.

    1974-01-01

    Similarities in daytime spectral reflectivities and nighttime infrared emission from Mercury and the moon are shown to imply that the atmosphere of Mercury must be tenuous, like that of the moon. The theory of formation, transport, and loss in the lunar atmosphere is applied to Mercury. Models of the Hermian atmosphere at perihelion and aphelion are presented, based on the solar wind as the dominant source of gases. Only the noncondensable species - hydrogen, helium and neon - are considered. Of these, helium is the most abundant atmospheric gas, with maximum concentration of about 40,000,000 per cu cm at the nighttime surface. The maximum concentration of H2 is 6,000,000 per cu cm, and that of neon is 700,000 per cu cm.

  6. A Novel Prediction Method about Single Components of Analog Circuits Based on Complex Field Modeling

    Directory of Open Access Journals (Sweden)

    Jingyu Zhou

    2014-01-01

    Full Text Available Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits’ single components. At last, it uses particle filter (PF to update parameters for the model and predicts remaining useful performance (RUP of analog circuits’ single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments.

  7. Diagnosis of soft faults in analog integrated circuits based on fractional correlation

    Institute of Scientific and Technical Information of China (English)

    Deng Yong; Shi Yibing; Zhang Wei

    2012-01-01

    Aiming at the problem of diagnosing soft faults in analog integrated circuits,an approach based on fractional correlation is proposed.First,the Volterra series of the circuit under test (CUT) decomposed by the fractional wavelet packet are used to calculate the fractional correlation functions.Then,the calculated fractional correlation functions are used to form the fault signatures of the CUT.By comparing the fault signatures,the different soft faulty conditions of the CUT are identified and the faults are located.Simulations of benchmark circuits illustrate the proposed method and validate its effectiveness in diagnosing soft faults in analog integrated circuits.

  8. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf;

    2009-01-01

    We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tCO, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors...... as the number of bases separating tCO and tC(nitro) is varied. A set of DNA strands containing the FRET-pair at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from orientation-changes using FRET. In combination with the good nucleobase analog properties, this points...

  9. A MEMS-Based Power-Scalable Hearing Aid Analog Front End.

    Science.gov (United States)

    Deligoz, I; Naqvi, S R; Copani, T; Kiaei, S; Bakkaloglu, B; Sang-Soo Je; Junseok Chae

    2011-06-01

    A dual-channel directional digital hearing aid front end using microelectromechanical-systems microphones, and an adaptive-power analog processing signal chain are presented. The analog front end consists of a double differential amplifier-based capacitance-to-voltage conversion circuit, 40-dB variable gain amplifier (VGA) and a power-scalable continuous time sigma delta analog-to-digital converter (ADC), with 68-dB signal-to-noise ratio dissipating 67 μ W from a 1.2-V supply. The MEMS microphones are fabricated using a standard surface micromachining technology. The VGA and power-scalable ADC are fabricated on a 0.25-μ m complementary metal-oxide semciconductor TSMC process.

  10. Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators.

    Science.gov (United States)

    Yang, Lin; Ding, Jianfeng; Chen, Qiaoshan; Zhou, Ping; Zhang, Fanfan; Zhang, Lei

    2014-10-01

    We propose an N-bit optical digital-to-analog converter based on silicon microring resonators (MRRs), which can transform an N-bit electrical digital signal to an optical analog signal. A 3-bit optical digital-to-analog convertor is fabricated as proof of concept through a CMOS-compatible process on a silicon-on-insulator platform. The silicon MRRs are modulated through the electric-field-induced carrier injection in forward biased PN junctions embedded in the ring waveguides. The electro-optical 3-dB bandwidths of the silicon MRRs are approximately 800 MHz. The device works well at a speed of 500  MSample/s under driving voltage swings of 0.75 V. PMID:25360972

  11. Canadian Tire Money: An Analogy for Use When Discussing Weak Acid Strong Base Titrations

    Science.gov (United States)

    Last, Arthur M.

    2003-12-01

    A simple analogy can often provide an instructor with a means of helping students to understand an unfamiliar concept. An analogy involving money can be particularly helpful as most students have experience in dealing with a range of financial transactions in their everyday lives. In this article, use is made of the practice of one well-known Canadian retail chain in returning to its customers a small percentage of an item's purchase price in the form of imitation bank notes that can subsequently be spent in the chain's stores. An analogy is drawn between this practice and the determination of the pKa of a weak acid by titrating it with a strong base, taking into account the hydrolysis of the anion produced.

  12. Property-Based Monitoring of Analog and Mixed-Signal Systems

    Science.gov (United States)

    Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan

    In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.

  13. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path.

  14. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    Science.gov (United States)

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  15. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    Science.gov (United States)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  16. Energy storage in the photosynthetic electron-transport chain. An analogy with Michaelis-Menten kinetics

    Directory of Open Access Journals (Sweden)

    DEJAN MARKOVIC

    2003-09-01

    Full Text Available Simultaneous measurements of fluorescence and thermal emission have been performed by applying combined fluorescence and photoacoustic techniques on isolated thylakoids pretreated by prolonged illumination with saturating light. The traces were used to create Lineweaver-Burk type plots, proving clearly at least a formal analogy between the kinetics of the mechanisms governing fluorescence and thermal emission from isolated thylakoids and Michaelis-Menten kinetics of enzymatic reactions. Two characteristic parameters were calculated from them (energy storage and half-saturation light intensity in order to obtain a basic, initial response of the photosynthetic apparatus functioning under photoinhibition stress.

  17. Communication disruption of guava moth (Coscinoptycha improbana) using a pheromone analog based on chain length.

    Science.gov (United States)

    Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E

    2013-09-01

    The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended. PMID:24026215

  18. Improved Design of Radiation Hardened, Wide-Temperature Analog and Mixed-Signal Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space exploration missions require the electronics for avionic systems, components, and controllers that are capable of operating in the extreme temperature...

  19. 模拟电子技术实践训练课程设计%Design of analog electronic technology practice training course

    Institute of Scientific and Technical Information of China (English)

    戴杨

    2015-01-01

    The process and method of analog electronic tranining curriculum design and practice training was described. Based on the characteristics of curriculum theory, combined with the actual circuit board components, the production process, the comprehensive use of teaching practice, the analog electronic technology theory knowledge implanted into the practical skills training, the implementation of the training process careful arrangement, the expansion of student practice, to truly apply their knowledge, study, consolidate the students to understand the theory of curriculum.%文章叙述了模拟电子技术实训课程设计的方法和实践训练的过程。基于理论课程的特点,并结合实际电路板部件生产过程,综合运用实践教学,把模拟电子技术的理论知识植入到实践技能训练中,实施仔细的实训过程安排,扩展学生操作练习,真正做到学以致用、学有所用,巩固了学生对理论课程的理解。

  20. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  1. Impact of Analog IC Impairments in SiPM Interface Electronics

    OpenAIRE

    Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    The recent realization of Silicon Photomultiplier (SiPM) devices as solid-state detectors for Positron Emission Tomography holds the promise of improving image resolution, integrating a significant portion of the interface electronics, and potentially lowering the power consumption. Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal proc...

  2. Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing

    Science.gov (United States)

    Zhang, Fangzheng; Gao, Bindong; Ge, Xiaozhong; Pan, Shilong

    2016-03-01

    A 2-bit photonic digital-to-analog conversion unit is proposed and demonstrated based on polarization multiplexing. The proposed 2-bit digital-to-analog converter (DAC) unit is realized by optical intensity weighting and summing, and its complexity is greatly reduced compared with the traditional 2-bit photonic DACs. Performance of the proposed 2-bit DAC unit is experimentally investigated. The established 2-bit DAC unit achieves a good linear transfer function, and the effective number of bits is calculated to be 1.3. Based on the proposed 2-bit DAC unit, two DAC structures with higher (>2) bit resolutions are proposed and discussed, and the system complexity is expected to be reduced by half by using the proposed technique.

  3. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which can complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.

  4. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    Science.gov (United States)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  5. Wideband Analog Transmission System Based on the External Intensity Electro-Optic Modulator

    Directory of Open Access Journals (Sweden)

    Jiri Svarny

    2016-01-01

    Full Text Available The work deals with design and integration of an analog electro-optic transmission system suitable for some specialized tasks of diagnostics and measurements. The system is based on principle of external intensity modulation of fiber guided laser radiation. Besides wideband and almost lossless transmission the system tolerates extreme length of the transmitting medium and ensures ultimate galvanic barrier between the input and output.

  6. Design and Exploration of Low-Power Analog to Information Conversion Based on Compressed Sensing

    OpenAIRE

    Mamaghanian, Hossein; Khaled, Nadia; Atienza Alonso, David; Vandergheynst, Pierre

    2012-01-01

    The long-standing analog-to-digital conversion paradigm based on Shannon/Nyquist sampling has been challenged lately, mostly in situations such as radar and communication signal processing where signal bandwidth is so large that sampling architectures constraints are simply not manageable. Compressed Sensing (CS) [1], [2], [3] is a new emerging signal acquisition/compression paradigm that offers a striking alternative to traditional signal acquisition. CS states that a signal having a sparse ...

  7. Time and Frequency Domain Investigation of Selected Memristor Based Analog Circuits

    OpenAIRE

    Dongale, T. D.; Gaikwad, P. K.; Kamat, R. K.

    2016-01-01

    In this paper we investigate few memristor based analog circuits namely the phase shift oscillator, integrator and differentiator which have been explored numerously using the traditional lumped components. We use LTspice-IV platform for simulation of the above said circuits. The investigation resorts to the nonlinear dopent drift model of memristor and the window function portrayed in the literature for nonlinearity realization. The results of our investigations depict good agreement with th...

  8. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    OpenAIRE

    PETREUS, D.; DARABAN S.; CIRSTEA, M.

    2016-01-01

    This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind) and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The inn...

  9. Analogies in optics and micro electronics selected contributions on recent developments

    CERN Document Server

    Lenstra, Daan

    1990-01-01

    This book gives an account of a number of recent developments in two different subfields of research, optics and micro--electronics. The leading principle in presenting them together in one book is the striking similarity between a variety of notions in these two research areas. We mention in this respect tunneling, quantum interference and localization, which are important concepts in quantummechanics and more specifically in condensed matter physics. Miniaturization in solid state engineering has led to new phenomena in which these concepts play their significant roles. As it is the wave character of electrons which is strongly emphasized in these phenomena one's attention is quite naturally directed to the field of optics in which the above quantum-mechanical notions all seem to have their direct classical wavemechanical counterparts. Both micro--electronics and optics have been and still are in a mode of intensifying activity. The possibilities to technically "translate" devices developed within one resea...

  10. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    Science.gov (United States)

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  11. A column-based two-stage analog-to-digital converter for uncooled microbolometer arrays

    Science.gov (United States)

    Toprak, Alperen; Tepegoz, Murat; Akin, Tayfun

    2009-05-01

    This paper presents a column-based, two-stage, 12-bit analog-to-digital converter structure designed for uncooled microbolometer arrays. On-chip analog-to-digital converters prevent the degradation of sensitive analog output by external noise sources as well as providing a more integrated functionality. Despite these advantages, the area and power constraints limit the usage of high performance converters. This paper presents a new structure that provides a balance between area, power, and performance. The structure is composed of two stages: a tracking ADC stage running at each column during integration and a successive approximation ADC stage which is shared by a number of columns depending on the array size and operation frequency. The tracking ADC operates during the integration time, while the second ADC starts after the integration is completed. The converter includes self-calibration to lower the effect of process variations and digital correction mechanisms to eliminate the need for low-offset comparators. The simulations and theoretical calculations based on the simulation results show that the total power dissipation of the proposed structure will be approximately 73.7 mW and 88.4 mW on a 320x240 array operating at 60 Hz and 384x288 array operating at 50 Hz, respectively.

  12. Power pulsing scheme for analog and digital electronics of the vertex detectors at CLIC

    CERN Document Server

    Blanchot, Georges

    2015-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector (< 0.2% of a radiation length, Xo, per layer). To achieve such a low material budget, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. This report summarises the study of a power pulsing scheme to power the vertex barrel electronics of the future CLIC experiment. Its main goal is to describe in more detail what has been already presented in TWEPP conferences and other presentations. The report can therefore serve as an operator manual for future use and development of the system

  13. Work in progress-role of learning strategies in electrical circuits and analog electronics courses

    OpenAIRE

    Ramírez Echeverry, Jhon Jairo; Olarte Dussan, Fredy Andres; García Carrillo, Àgueda

    2014-01-01

    This work-in-progress describes a study intended to determine whether self-regulated learning strategies influence the academic performance of students from the Department of Electrical and Electronics Engineering at Universidad Nacional de Colombia. This research was conducted with 396 students in two terms, who were surveyed about their use of learning strategies using the CEAM II psychometric tool. Later, it was analyzed whether a significant correlation exists between the scores obtained ...

  14. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  15. LANSCE-R WIRE-SCANNER ANALOG FRONT-END ELECTRONICS

    International Nuclear Information System (INIS)

    A new AFE is being developed for the new LANSCE-R wire-scanner systems. The new AFE is implemented in a National Instruments Compact RIO (cRIO) module installed a BiRa 4U BiRIO cRIO chassis specifically designed to accommodate the cRIO crate and all the wire-scanner interface, control and motor-drive electronics. A single AFE module provides interface to both X and Y wire sensors using true DC coupled transimpedance amplifiers providing collection of the wire charge signals, real-time wire integrity verification using the normal dataacquisition system, and wire bias of 0V to +/-50V. The AFE system is designed to accommodate comparatively long macropulses (>1ms) with high PRF (>120Hz) without the need to provide timing signals. The basic AFE bandwidth is flat from true DC to 50kHz with a true first-order pole at 50kHz. Numeric integration in the cRIO FPGA provides real-time pulse-to-pulse numeric integration of the AFE signal to compute the total charge collected in each macropulse. This method of charge collection eliminates the need to provide synchronization signals to the wire-scanner AFE while providing the capability to accurately record the charge from long macropulses at high PRF.

  16. Optical Analog-to-digital Conversion Scheme Based on Tunable Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2007-01-01

    Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.

  17. An analog integrated signal processing circuit for on-chip diffusion-based gas analysis

    International Nuclear Information System (INIS)

    In diffusion-based gas analysis, the transient of gas diffusion process is recorded by a generic gas sensor to serve as a fingerprint for qualitative and quantitative analysis of gaseous samples. Following the acquisition of these specific signals, any standalone gas analyzer requires a pattern recognition system for pattern classification. The classic digital pattern recognition methods require computing hardware of adequate computational throughput. In this paper, we have followed a straightforward mathematical procedure to relate the signals to their associated target gases. We have shown that the procedure can be implemented by a set of analog functions. Based on the results, we have designed an analog integrated circuit, in 0.18 µm standard CMOS process, for processing the diffusion-based transient signals. The main circuit components are a low-pass filter, the differentiator, the feature extractor and an artificial neural network. The output of the circuit is a 2-bit binary code that specifies the target gas. The circuit successfully classified four alcoholic vapors by processing the experimentally obtained response patterns. The proposed signal processing circuit, the semiconductor gas sensor and the diffusion channel can all be implemented on a single substrate to fabricate an integrated micro gas analyzer. (paper)

  18. Effective low-power wearable wireless surface EMG sensor design based on analog-compressed sensing.

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2014-01-01

    Surface Electromyography (sEMG) is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1) they are not able to provide real-time monitoring; (2) they suffer from long processing time and low speed; (3) they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS) architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC). At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL) framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR). In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD) to 24%, Root Mean Squared Error (RMSE) to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR) for the reconstruction process. PMID:25526357

  19. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  20. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    Science.gov (United States)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  1. Design of Multi-Valued Quaternary Based Analog-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    A. H.M.Z. Alam

    2009-01-01

    Full Text Available Problem statement: The design of multi-valued quaternary based Analog-to-Digital Converter (ADC circuit was presented. The ADC generates multi-valued logic outputs rather than the conventional binary output system to overall reduction in circuit complexity and size. Approach: Design was implemented using pipeline ADC architecture and was simulated using model parameters based on standard 0.13 µm CMOS process. Results: Performance analysis of the design showed desirable performance parameters in terms of response, low power consumption, and a sampling rate of 10 MHz at a supply voltage of 1.3V was achieved. Conclusion/Recommendations: The ADC design was suitable for the needs of mixed-signal integrated circuit design and can be implemented as a conversion circuit for systems based on multiple-valued logic design.

  2. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    Science.gov (United States)

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks. PMID:26909015

  3. The Bipolar Field-Effect Transistor:Ⅶ. The Unipolar Current Mode for Analog-RF Operation(Two-MOS-Gates on Pure-Base

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chih-Tang

    2009-01-01

    This paper reports the DC steady-state current-voltage and conductance-voltage characteristics of a Bipolar Field-Effect Transistor (BiFET) under the unipolar (electron) current mode of operation, with bipolar (elec-tron and hole) charge distributions considered. The model BiFET example presented has two MOS-gates on the two surfaces of a thin pure silicon base layer with electron and hole contacts on both edges of the thin base. The hole contacts on both edges of the thin pure base layer are grounded to give zero hole current. This 1-transistor analog-RF Basic Building Block nMOS amplifier circuit, operated in the unipolar current mode, complements the 1-transistor digital Basic Build Block CMOS voltage inverter circuit, operated in the bipolar-current mode just presented by us.

  4. The Effects of Trivalent Lanthanide Cationization on the Electron Transfer Dissociation of Acidic Fibrinopeptide B and its Analogs

    Science.gov (United States)

    Commodore, Juliette J.; Cassady, Carolyn J.

    2016-09-01

    Electrospray ionization (ESI) on mixtures of acidic fibrinopeptide B and two peptide analogs with trivalent lanthanide salts generates [M + Met + H]4+, [M + Met]3+, and [M + Met -H]2+, where M = peptide and Met = metal (except radioactive promethium). These ions undergo extensive and highly efficient electron transfer dissociation (ETD) to form metallated and non-metallated c- and z-ions. All metal adducted product ions contain at least two acidic sites, which suggest attachment of the lanthanide cation at the side chains of one or more acidic residues. The three peptides undergo similar fragmentation. ETD on [M + Met + H]4+ leads to cleavage at every residue; the presence of both a metal ion and an extra proton is very effective in promoting sequence-informative fragmentation. Backbone dissociation of [M + Met]3+ is also extensive, although cleavage does not always occur between adjacent glutamic acid residues. For [M + Met - H ]2+, a more limited range of product ions form. All lanthanide metal peptide complexes display similar fragmentation except for europium (Eu). ETD on [M + Eu - H]2+ and [M + Eu]3+ yields a limited amount of peptide backbone cleavage; however, [M + Eu + H]4+ dissociates extensively with cleavage at every residue. With the exception of the results for Eu(III), metallated peptide ion formation by ESI, ETD fragmentation efficiencies, and product ion formation are unaffected by the identity of the lanthanide cation. Adduction with trivalent lanthanide metal ions is a promising tool for sequence analysis of acidic peptides by ETD.

  5. Modulation of DNA methylation and gene expression in cultured sycamore cells treated by hypomethylating base analog.

    Science.gov (United States)

    Ngernprasirtsiri, J; Akazawa, T

    1990-12-12

    The selective suppression of photosynthetic genes in both the nuclear and plastid genomes of the nonphotosynthetic white wild-type cell line of sycamore (Acer pseudoplatanus) has been found to be inversely related to the presence of a variety of methylated bases, especially 5-methylcytosine (5-MeCyt) and N6-methyladenine (N6-MeAde), localized in regions of the plastid genome containing silent genes. We used hypomethylating base analogs to manipulate the level of cytosine and adenine methylation in the white cells of sycamore, and examined the effects of changes in methylation on gene expression. Treatment with 5-azacytidine (5-AzaCyd) and N6-benzyladenine (N6-BzlAde) decreased cytosine and adenine methylation. This was accompanied by restoration of transcriptional activity in photosynthetic genes which are usually suppressed. Both 5-MeCyt and N6-MeAde suppressed nuclear gene expression, but only 5-MeCyt suppressed plastid gene expression.

  6. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    Science.gov (United States)

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  7. Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog

    Science.gov (United States)

    Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.

    2002-01-01

    Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.

  8. Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Tania; Domingos, Tiago [Environment and Energy Section, DEM, Instituto Superior Tecnico, Avenida Rovisco Pais, 1, 1049-001 Lisboa (Portugal)

    2006-06-10

    The relation between Thermodynamics and Economics is a paramount issue in Ecological Economics. Two different levels can be distinguished when discussing it: formal and substantive. At the formal level, a mathematical framework is used to describe both thermodynamic and economic systems. At the substantive level, thermodynamic laws are applied to economic processes. In Ecological Economics, there is a widespread claim that neoclassical economics has the same mathematical formulation as classical mechanics and is therefore fundamentally flawed because: (1) utility does not obey a conservation law as energy does; (2) an equilibrium theory cannot be used to study irreversible processes. Here, we show that neoclassical economics is based on a wrong formulation of classical mechanics, being in fact formally analogous to equilibrium thermodynamics. The similarity between both formalisms, namely that they are both cases of constrained optimisation, is easily perceived when thermodynamics is looked upon using the Tisza-Callen axiomatisation. In this paper, we take the formal analogy between equilibrium thermodynamics and economic systems far enough to answer the formal criticisms, proving that the formalism of neoclassical economics has irreversibility embedded in it. However, the formal similarity between equilibrium thermodynamics and neoclassical microeconomics does not mean that economic models are in accordance with mass, energy and entropy balance equations. In fact, neoclassical theory suffers from flaws in the substantive integration with thermodynamic laws as has already been fully demonstrated by valuable work done by ecological economists in this field. (author)

  9. Small Molecule AngIV-based Analogs to Treat Alzheimers Disease

    Directory of Open Access Journals (Sweden)

    John W Wright

    2016-06-01

    Full Text Available Alzheimer’s disease (AD patients are presently without adequate treatment thus new therapeutic approaches are needed to slow and hopefully reverse disease progression. Neurotrophic agents such as nerve growth factor and brain-derived neurotrophic factor have received research attention concerning their potential to treat AD but have not progressed to clinical trials due to their large size, inability to penetrate the blood-brain barrier (BBB, and the high cost of synthesis. This review focuses on one over looked neurotrophin, hepatocyte growth factor (HGF that acts via the Type 1 tyrosine kinase receptor Met to mediate stem cell differentiation, synaptogenesis, neurogenesis, and protect against tissue insults in a wide range of cell types including neurons. We have determined that the brain angiotensin and HGF/c-Met systems interact in such a way that angiotensin IV (AngIV-based analogs including Nle1-AngIV, Norleual-AngIV, Dihexa, and others influence HGF dimerization which is a prerequisite to binding at the Met receptor. Several of these analogs have shown the ability to facilitate the formation of new functional synaptic connections in hippocampal slices, promote neurogenesis, and augment memory consolidation and retrieval in animal models of AD. This family of compounds represents a new class of drugs with lead candidates that are orally active, penetrate the BBB sufficiently to reach therapeutic concentrations, and reverse memory deficits seen in animal models of dementia.

  10. Automatic calibration system for analog instruments based on DSP and CCD sensor

    Science.gov (United States)

    Lan, Jinhui; Wei, Xiangqin; Bai, Zhenlong

    2008-12-01

    Currently, the calibration work of analog measurement instruments is mainly completed by manual and there are many problems waiting for being solved. In this paper, an automatic calibration system (ACS) based on Digital Signal Processor (DSP) and Charge Coupled Device (CCD) sensor is developed and a real-time calibration algorithm is presented. In the ACS, TI DM643 DSP processes the data received by CCD sensor and the outcome is displayed on Liquid Crystal Display (LCD) screen. For the algorithm, pointer region is firstly extracted for improving calibration speed. And then a math model of the pointer is built to thin the pointer and determine the instrument's reading. Through numbers of experiments, the time of once reading is no more than 20 milliseconds while it needs several seconds if it is done manually. At the same time, the error of the instrument's reading satisfies the request of the instruments. It is proven that the automatic calibration system can effectively accomplish the calibration work of the analog measurement instruments.

  11. SPIROC: design and performances of a dedicated very front-end electronics for an ILC Analog Hadronic CALorimeter (AHCAL) prototype with SiPM read-out

    Science.gov (United States)

    Conforti Di Lorenzo, S.; Callier, S.; Fleury, J.; Dulucq, F.; De la Taille, C.; Chassard, G. Martin; Raux, L.; Seguin-Moreau, N.

    2013-01-01

    For the future e+ e- International Linear Collider (ILC) the ASIC SPIROC (Silicon Photomultiplier Integrated Read-Out Chip) was designed to read out the Analog Hadronic Calorimeter (AHCAL) equipped with Silicon Photomultiplier (SiPM). It is an evolution of the FLC_SiPM chip designed by the OMEGA group in 2005. SPIROC2 [1] was realized in AMS SiGe 0.35 μm technology [2] and developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of read-out channels. This ASIC is a very front-end read-out chip that integrates 36 self triggered channels with variable gain to achieve charge and time measurements. The charge measurement must be performed from 1 up to 2000 photo-electrons (p.e.) corresponding to 160 fC up to 320 pC for SiPM gain 106. The time measurement is performed with a coarse 12-bit counter related to the bunch crossing clock (up to 5 MHz) and a fine time ramp based on this clock (down to 200 ns) to achieve a resolution of 1 ns. An analog memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. The analog memory content (time and charge) is digitized thanks to an internal 12-bit Wilkinson ADC. The data is then stored in a 4kbytes RAM. A complex digital part is necessary to manage all these features and to transfer the data to the DAQ. SPIROC2 is the second generation of the SPIROC ASIC family designed in 2008 by the OMEGA group. A very similar version (SPIROC2c) was submitted in February 2012 to improve the noise performance and also to integrate a new TDC (Time to Digital Converter) structure. This paper describes SPIROC2 and SPIROC2c ASICs and illustrates the main characteristics thank to a series of measurements.

  12. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    Science.gov (United States)

    Volkov, V. A.; Gordeev, D. A.; Ivanov, S. I.; Lavrov, A. P.; Saenko, I. I.

    2016-08-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates.

  13. Design and synthesis of simplified taxol analogs based on the T-Taxol bioactive conformation

    OpenAIRE

    Zhao, Jielu; Bane, Susan; Snyder, James P.; Hu, Haipeng; Mukherjee, Kamalika; Slebodnick, Carla; Kingston, David G I

    2011-01-01

    A series of compounds designed to adopt a conformation similar to the tubulin-binding T-Taxol conformation of the anticancer drug paclitaxel has been synthesized. Both the internally bridged analogs 37-39, 41 and the open-chain analogs 27-29 and 43 were prepared. The bridged analogs 37-39 and 41 were synthesized by Grubbs' metatheses of compounds 30-32 and 33, which, in turn, were prepared by coupling β-lactams 24-26 with alcohols 22 and 23. Both the bridged and the open-chain analogs showed ...

  14. Modern approaches to the design of analog-digit integrated circuits based on multilevel simulation methods

    International Nuclear Information System (INIS)

    Modern methods for the design of analog and analog-digit integrated circuits have been analyzed. “Top-down” and “bottom-up” design methods are compared. The advantages of the “top-down” method in the rate of the development and verification of integrated circuits have been demonstrated

  15. Automatic generation of analogy questions for student assessment: an Ontology-based approach

    Directory of Open Access Journals (Sweden)

    Bijan Parsia

    2012-08-01

    Full Text Available Different computational models for generating analogies of the form “A is to B as C is to D” have been proposed over the past 35 years. However, analogy generation is a challenging problem that requires further research. In this article, we present a new approach for generating analogies in Multiple Choice Question (MCQ format that can be used for students’ assessment. We propose to use existing high-quality ontologies as a source for mining analogies to avoid the classic problem of hand-coding concepts in previous methods. We also describe the characteristics of a good analogy question and report on experiments carried out to evaluate the new approach.

  16. Analog optical computing based on a dielectric meta-reflect array.

    Science.gov (United States)

    Chizari, Ata; Abdollahramezani, Sajjad; Jamali, Mohammad Vahid; Salehi, Jawad A

    2016-08-01

    In this Letter, we realize the concept of analog computing using an engineered gradient dielectric meta-reflect-array. The proposed configuration consists of individual subwavelength silicon nanobricks, in combination with a fused silica spacer and silver ground plane, realizing a reflection beam with full phase coverage of 2π degrees, as well as an amplitude range of 0 to 1. Spectrally overlapping electric and magnetic dipole resonances, such high-index dielectric metasurfaces can locally and independently manipulate the amplitude and phase of the incident electromagnetic wave. This practically feasible structure overcomes substantial limitations imposed by plasmonic metasurfaces such as absorption losses and low polarization conversion efficiency in the visible range. Using such CMOS-compatible and easily integrable platforms promises highly efficient ultrathin planar wave-based computing systems that circumvent the drawbacks of conventional bulky lens-based signal processors. Based on these key properties and the general concept of spatial Fourier transformation, we design and realize broadband mathematical operators such as the differentiator and integrator in the telecommunication wavelengths.

  17. Analog optical computing based on a dielectric meta-reflect array.

    Science.gov (United States)

    Chizari, Ata; Abdollahramezani, Sajjad; Jamali, Mohammad Vahid; Salehi, Jawad A

    2016-08-01

    In this Letter, we realize the concept of analog computing using an engineered gradient dielectric meta-reflect-array. The proposed configuration consists of individual subwavelength silicon nanobricks, in combination with a fused silica spacer and silver ground plane, realizing a reflection beam with full phase coverage of 2π degrees, as well as an amplitude range of 0 to 1. Spectrally overlapping electric and magnetic dipole resonances, such high-index dielectric metasurfaces can locally and independently manipulate the amplitude and phase of the incident electromagnetic wave. This practically feasible structure overcomes substantial limitations imposed by plasmonic metasurfaces such as absorption losses and low polarization conversion efficiency in the visible range. Using such CMOS-compatible and easily integrable platforms promises highly efficient ultrathin planar wave-based computing systems that circumvent the drawbacks of conventional bulky lens-based signal processors. Based on these key properties and the general concept of spatial Fourier transformation, we design and realize broadband mathematical operators such as the differentiator and integrator in the telecommunication wavelengths. PMID:27472591

  18. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2016-05-01

    Full Text Available This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC for power factor correction (PFC circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.

  19. Synthesis of Novel Homo-N-Nucleoside Analogs Composed of a Homo-1,4-Dioxane Sugar Analog and Substituted 1,3,5-Triazine Base Equivalents

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    2008-12-01

    Full Text Available Enantioselective syntheses from dimethyl tartrate of 1,3,5-triazine homo-N-nucleoside analogs, containing a 1,4-dioxane moiety replacing the sugar unit in natural nucleosides, were accomplished. The triazine heterocycle in the nucleoside analogs was further substituted with combinations of NH2, OH and Cl in the 2,4-triazine positions.

  20. A Vague Decision Method for Analog Circuit Fault Diagnosis Based on Description Sphere

    Institute of Scientific and Technical Information of China (English)

    LUO Hui; WANG Youren; CUI Jiang

    2011-01-01

    This paper proposes a vague decision method for analog circuit fault diagnosis based on description sphere.Firstly,the proposed method uses the wavelet transform as the preprocessor to extract fault features from the output voltages of the circuit under test (CUT).And then,each class sample is trained to produce a minimum description sphere.Finally,the test samples are detected by a defined vague decision rule,which is based on the vague weight distance between the test data and the center of description sphere.The defined decision rule fuses the truth and false membership degrees of the test sample and the weight of the description sphere,and it can effectively deal with the uncertain information.The reliability of the defined decision rule is proved theoretically.This new diagnostic method is first applied to testing two actual circuits,and then it is compared with other two diagnostic methods.The experimental results show that the proposed technique can achieve good performance and reduce the diagnostic time.

  1. Supporting Analogy-based Effort Estimation with the Use of Ontologies

    Directory of Open Access Journals (Sweden)

    Joanna Kowalska

    2014-06-01

    Full Text Available The paper concerns effort estimation of software development projects, in particular, at the level of product delivery stages. It proposes a new approach to model project data to support expert-supervised analogy-based effort estimation. The data is modeled using Semantic Web technologies, such as Resource Description Framework (RDF and Ontology Language for the Web (OWL. Moreover, in the paper, we define a method of supervised case-based reasoning. The method enables to search for similar projects’ tasks at different levels of abstraction. For instance, instead of searching for a task performed by a specific person, one could look for tasks performed by people with similar capabilities. The proposed method relies on ontology that defines the core concepts and relationships. However, it is possible to introduce new classes and relationships, without the need of altering the search mechanisms. Finally, we implemented a prototype tool that was used to preliminary validate the proposed approach. We observed that the proposed approach could potentially help experts in estimating non-trivial tasks that are often underestimated.

  2. Synthesis and anti-HBV activity of α-stereoisomer of aristeromycin based analogs.

    Science.gov (United States)

    Kasula, Mohan; Toyama, Masaaki; Samunuri, Ramakrishnamraju; Rozy, Farhana; Yadav, Monika; Bal, Chandralata; Jha, Ashok Kumar; Baba, Masanori; Sharon, Ashoke

    2016-08-15

    The potential antiviral activity of aristeromycin type of derivatives (I) is limited by associated toxicity due to its possible 5'-O-phosphorylation and S-adenosyl-l-homocysteine hydrolase (SAHase) inhibitory activity. Aristeromycin structure has major pharmacophoric motif as 5'-OH and adenosine base, which may have significant role in enzyme binding followed by activity and or toxicity. Thus, the structural optimization to alter this major motif by replacing with its bioisostere and changing the 5'-O conformation through stereochemistry reversal was of interest. Thus, the inverted stereochemistry at 4'-position coupled with bioisostere of adenosine base in the target compounds (6-7) to access antiviral potential. The stereoselective formation of a key stereoisomer (2a) was achieved exclusively from neplanocin sugar (1a) by reduction in a single step. The novel target molecules (6-7) were synthesized in 4 steps with 55-62% yield. Compound 6 was analyzed by single crystal X-ray diffraction, which confirms the stereoselective formation of α-analogs with highly puckered cyclopentane ring and 2'-endo conformation. The compound 6 shown significant anti-hepatitis B virus activity of 6.5μM with CC50>100μM and yielded a promising lead with novel structural feature. PMID:27426303

  3. The Age of Analog Networks

    OpenAIRE

    Mattiussi, Claudio; Swiss Federal Institute of Technology in Lausanne (EPFL); Marbach, Daniel; Swiss Federal Institute of Technology in Lausanne (EPFL); Dürr, Peter; Swiss Federal Institute of Technology in Lausanne (EPFL); Floreano, Dario; Swiss Federal Institute of Technology in Lausanne (EPFL)

    2008-01-01

    A large class of systems of biological and technological relevance can be described as analog networks, that is, collections of dynamical devices interconnected by links of varying strength. Some examples of analog networks are genetic regulatory networks, metabolic networks, neural networks, analog electronic circuits, and control systems. Analog networks are typically complex systems which include nonlinear feedback loops and possess temporal dynamics at different timescales. When tackled b...

  4. Empirical source strength correlations for rans-based acoustic analogy methods

    Science.gov (United States)

    Kube-McDowell, Matthew Tyndall

    JeNo is a jet noise prediction code based on an acoustic analogy method developed by Mani, Gliebe, Balsa, and Khavaran. Using the flow predictions from a standard Reynolds-averaged Navier-Stokes computational fluid dynamics solver, JeNo predicts the overall sound pressure level and angular spectra for high-speed hot jets over a range of observer angles, with a processing time suitable for rapid design purposes. JeNo models the noise from hot jets as a combination of two types of noise sources; quadrupole sources dependent on velocity fluctuations, which represent the major noise of turbulent mixing, and dipole sources dependent on enthalpy fluctuations, which represent the effects of thermal variation. These two sources are modeled by JeNo as propagating independently into the far-field, with no cross-correlation at the observer location. However, high-fidelity computational fluid dynamics solutions demonstrate that this assumption is false. In this thesis, the theory, assumptions, and limitations of the JeNo code are briefly discussed, and a modification to the acoustic analogy method is proposed in which the cross-correlation of the two primary noise sources is allowed to vary with the speed of the jet and the observer location. As a proof-of-concept implementation, an empirical correlation correction function is derived from comparisons between JeNo's noise predictions and a set of experimental measurements taken for the Air Force Aero-Propulsion Laboratory. The empirical correlation correction is then applied to JeNo's predictions of a separate data set of hot jets tested at NASA's Glenn Research Center. Metrics are derived to measure the qualitative and quantitative performance of JeNo's acoustic predictions, and the empirical correction is shown to provide a quantitative improvement in the noise prediction at low observer angles with no freestream flow, and a qualitative improvement in the presence of freestream flow. However, the results also demonstrate

  5. A Fault Dictionary-Based Fault Diagnosis Approach for CMOS Analog Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Mouna Karmani

    2011-10-01

    Full Text Available In this paper, we propose a simulation-before-test (SBT fault diagnosis methodology based on the use of afault dictionary approach. This technique allows the detection and localization of the most likely defects ofopen-circuit type occurring in Complementary Metal–Oxide–Semiconductor (CMOS analog integratedcircuits (ICs interconnects. The fault dictionary is built by simulating the most likely defects causing thefaults to be detected at the layout level. Then, for each injected fault, the spectre’s frequency responses andthe power consumption obtained by simulation are stored in a table which constitutes the fault dictionary.In fact, each line in the fault dictionary constitutes a fault signature used to identify and locate aconsidered defect. When testing, the circuit under test is excited with the same stimulus, and the responsesobtained are compared to the stored ones. To prove the efficiency of the proposed technique, a full customCMOS operational amplifier is implemented in 0.25 μm technology and the most likely faults of opencircuittype are deliberately injected and simulated at the layout level.

  6. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  7. Multisim 11在模拟电子技术实验中的应用%Application of Multisim11 in Experimental Teaching of Analog Electronic Technology

    Institute of Scientific and Technical Information of China (English)

    刘君; 杨晓苹; 吕联荣; 刘津丽; 郭晓倩

    2013-01-01

    It is of great importance to use Multisimll to aid experimental teaching in analog electronic technology. Using Multisimll in experimental teaching of analog electronic technology can solve the problems in the traditional experimental teaching and can help students understand the working principle of analog circuits, laying a good foundation for the design of electronic circuits. In the National Undergraduate Electronic Design Contest, Multisimll was used to help students complete the design of the filter. The simulation results were accurate and the designs met the requirements, which proved that Multisimll is an effective tool to cultivate the problem-analyzing, problem solving and operation abilities of students.%在模拟电子技术实验课程教学中,应用Multisim11进行辅助实验教学具有重要意义.通过实例分析和讨论,将Multisim11引入模拟电子技术实验教学中,可很好地解决传统实验受时间、地点、设备制约的现状,能帮助学生更好地理解模拟电路工作原理,为电子电路的设计制作打下良好基础.以全国大学生电子竞赛为例,采用Multisim11软件设计滤波器,设计方便可靠,仿真分析准确,可很快达到设计要求,从而得知Multisim11软件是培养学生分析问题、解决问题和实际动手能力培养的有效工具.

  8. Advances in Analog Circuit Design 2015

    CERN Document Server

    Baschirotto, Andrea; Harpe, Pieter

    2016-01-01

    This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing.

  9. A reuse-based framework for the design of analog and mixed-signal ICs

    Science.gov (United States)

    Castro-Lopez, Rafael; Fernandez, Francisco V.; Rodriguez Vazquez, Angel

    2005-06-01

    Despite the spectacular breakthroughs of the semiconductor industry, the ability to design integrated circuits (ICs) under stringent time-to-market (TTM) requirements is lagging behind integration capacity, so far keeping pace with still valid Moore"s Law. The resulting gap is threatening with slowing down such a phenomenal growth. The design community believes that it is only by means of powerful CAD tools and design methodologies - and, possibly, a design paradigm shift - that this design gap can be bridged. In this sense, reuse-based design is seen as a promising solution, and concepts such as IP Block, Virtual Component, and Design Reuse have become commonplace thanks to the significant advances in the digital arena. Unfortunately, the very nature of analog and mixed-signal (AMS) design has hindered a similar level of consensus and development. This paper presents a framework for the reuse-based design of AMS circuits. The framework is founded on three key elements: (1) a CAD-supported hierarchical design flow that facilitates the incorporation of AMS reusable blocks, reduces the overall design time, and expedites the management of increasing AMS design complexity; (2) a complete, clear definition of the AMS reusable block, structured into three separate facets or views: the behavioral, structural, and layout facets, the two first for top-down electrical synthesis and bottom-up verification, the latter used during bottom-up physical synthesis; (3) the design for reusability set of tools, methods, and guidelines that, relying on intensive parameterization as well as on design knowledge capture and encapsulation, allows to produce fully reusable AMS blocks. A case study and a functional silicon prototype demonstrate the validity of the paper"s proposals.

  10. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  11. Optical flow in a smart sensor based on hybrid analog-digital architecture.

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system's performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  12. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Eleonora; Bansal, Ruchi

    2015-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  13. Interferon Analogs

    NARCIS (Netherlands)

    Poelstra, Klaas; Prakash, Jai; Beljaars, Leonie; Bansal, Ruchi

    2010-01-01

    The invention relates to the field of medicine. Among others, it relates to biologically active analogs of interferons (IFNs) which show less unwanted side-effects and to the therapeutic uses thereof. Provided is an IFN analog, wherein the moiety mediating binding to its natural receptor is at least

  14. Tip-based electron source for femtosecond electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jan-Paul; Hoffrogge, Johannes; Schenk, Markus; Krueger, Michael; Baum, Peter; Hommelhoff, Peter [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching bei Muenchen (Germany)

    2012-07-01

    Illumination of a sharp tungsten tip with femtosecond laser pulses leads to the emission of ultrashort, high brightness electron pulses that are ideally suited for ultrafast electron diffraction (UED) experiments [1]. The tip's small virtual source size ({proportional_to}5 nm) results in a large transverse coherence length of the electron pulse and therefore better spatial resolution as compared to a conventional flat cathode design. The enhanced electric field at the tip apex (2 GV/m) is about two orders of magnitude larger than the maximum electric field applicable in a plate capacitor based setup (20 MV/m). This reduces the influence of the initial energy distribution on the pulse duration at the target and improves the timing jitter. Simulations show that a setup with a sharp tip as the cathode in combination with two anodes yields an electron pulse duration of about 50 fs at the sample. The electron energy is 30 keV and the gun to sample distance is 3 cm. We implemented the two anode setup with the tip experimentally. We present the experimental characteristics of the emitted electron beam both in static field emission and in laser triggered emission.

  15. Characterization of front-end electronics for CZT based handheld radioisotope identifier

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai; Ibrahim, Maslina Mohd; Yussup, Nolida; Yazid, Khairiah; Jaafar, Zainudin

    2016-01-22

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  16. Biomaterials-Based Organic Electronic Devices

    Science.gov (United States)

    Bettinger, Christopher J.; Bao, Zhenan

    2010-01-01

    Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics, and biotechnology. The traditional interface of organic electronics with biology, biotechnology, and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials-based components has the potential to realize a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. PMID:20607127

  17. Electronic Seal Stamping Based on Group Signature

    OpenAIRE

    Girija Srikanth

    2011-01-01

    This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted b...

  18. Graphene-Based Flexible and Stretchable Electronics.

    Science.gov (United States)

    Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun

    2016-06-01

    Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics.

  19. A mixed analog-digital radiation hard technology for high energy physics electronics DMILL (Durci Mixte sur Isolant Logico-Linéaire)

    CERN Document Server

    Beuville, E; Borgeaud, P; Fourches, N T; Rouger, M; Blanc, J P; Bruel, M; Delevoye-Orsier, E; Gautier, J; Du Port de Pontcharra, J; Truche, R; Dupont-Nivet, E; Flament, O; Leray, J L; Martin, J L; Montaron, J; Borel, G; Brice, J M; Chatagnon, P; Terrier, C; Aubert, Jean-Jacques; Delpierre, P A; Habrard, M C; Potheau, R; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The high radiation level expected in the inner regions of the high luminosity LHC detectors (gamma and neutron) will require radiation hardened electronics. A consortium between the CEA (Commissariat a l'Energie Atomique) and Thomson TMS (Thomson Composants Militaires et Spatiaux) has been created to push for the development and the industrialization of a nascent technology which looks particularly adapted to the needs of HEP electronics. This technology, currently under development at the LETI(CEA), uses a SIMOX substrate with an epitaxial silicon film. It includes CMOS, JFETs and vertical bipolar transistors with a potential multi-megarad hardness. The CMOS and bipolar transistors constitute a rad-hard BiCMOS which will be useful to design analog and digital high-speed architectures. JFETs, which have intrinsically high hardness behaviour and low noise performances even at low temperature will enable very rad-hard, low noise front end electronics to be designed. Present results, together with the improvemen...

  20. Friction factor correlation for CICC's based on a porous media analogy

    CERN Document Server

    Bottura, L; Lewandowska, M

    2010-01-01

    We use an analogy to porous media to derive a correlation for the friction factor in CICC s We start with a review of selected literature work on this topic We then recall the principles of the porous medium analogy and present the main body of our work on the analysis of pressure drop data We finally conclude with the proposed correlation The main novelty of our work is to propose predictive correlations for the permeability and drag factor that include the dependency on void fraction of the CICC s.

  1. Flexible Analog Front Ends of Reconfigurable Radios Based on Sampling and Reconstruction with Internal Filtering

    Directory of Open Access Journals (Sweden)

    Poberezhskiy Gennady Y

    2005-01-01

    Full Text Available Bandpass sampling, reconstruction, and antialiasing filtering in analog front ends potentially provide the best performance of software defined radios. However, conventional techniques used for these procedures limit reconfigurability and adaptivity of the radios, complicate integrated circuit implementation, and preclude achieving potential performance. Novel sampling and reconstruction techniques with internal filtering eliminate these drawbacks and provide many additional advantages. Several ways to overcome the challenges of practical realization and implementation of these techniques are proposed and analyzed. The impact of sampling and reconstruction with internal filtering on the analog front end architectures and capabilities of software defined radios is discussed.

  2. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast

    Directory of Open Access Journals (Sweden)

    Kozmin Stanislav G

    2005-06-01

    Full Text Available Abstract Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP and 2-amino-6-hydroxylaminopurine (AHA, are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.

  3. Fair Electronic Payment Scheme Based on DSA

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-bin; HONG Fan; ZHU Xian

    2005-01-01

    We present a multi-signature scheme based on DSA and describes a fair electronic payment scheme based on improved DSA signatures. The scheme makes both sides in equal positions during the course of electronic transaction. A Trusted Third Party (TTP) is involved in the scheme to guarantee the fairness of the scheme for both sides. However, only during the course of registration and dispute resolution will TTP be needed. TTP is not needed during the normal payment stage.

  4. The development and demonstration of hybrid programmable attitude control electronics. [with adaptable analog/digital design approach

    Science.gov (United States)

    Smith, L. S.; Kopf, E. H., Jr.

    1974-01-01

    HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, spacecraft changes, etc., through programing. This enabled broad multimission flexibility of application in a cost-effective manner. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs. The success of this effort resulted in the concept being selected for the Mariner/Jupiter/Saturn 1977 spacecraft application.

  5. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    classroom setting. We hope to encourage discussion from session attendees on the use of physical analog models and real-time quantitative model-based inquiry in the development of the next generation of geoscientists.

  6. Superconductivity in SnO: A Nonmagnetic Analog to Fe-Based Superconductors?

    DEFF Research Database (Denmark)

    Forthaus, M. K.; Sengupta, K.; Heyer, O.;

    2010-01-01

    We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., β-FeSe, undergoes a transition to a superconducting state for p≳6  GPa with a maximum Tc of 1.4 K at p=9.3  GPa. The pressure dependence of Tc reveals a domelike shape...... and superconductivity disappears for p≳16  GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc...

  7. Anonymous Fingerprinting Based on Electronic Cash

    Institute of Scientific and Technical Information of China (English)

    CHENXiaofeng; ZHANGFangguo; WANGJilin; WANGYumin

    2003-01-01

    A new anonymous fingerprinting protocol based on the principle of electronic cash is proposed in this paper.Redistributing a data item is equal to doublespending electronic cash.Contrasting with the previous coin-based anonymous fingerprinting protocol,we use the real electronic cash to trace traitors instead of the "coins" which serve only as a cryptographic primitive and have no monetary value,so it is easily understood and the bank does not need key-distribution and registration to prepare the "coina".

  8. Space Station Habitability Recommendations Based on a Systematic Comparative Analysis of Analogous Conditions

    Science.gov (United States)

    Stuster, Jack W.

    1986-01-01

    Conditions analogous to the proposed NASA Space Station are systematically analyzed in order to extrapolate design guidelines and recommendations concerning habitability and crew productivity. Analogous environments studied included Skylab, Sealab, Tektite, submarines, Antarctic stations and oil drilling platforms, among others. These analogues were compared and rated for size and composition of group, social organization, preparedness for mission, duration of tour, types of tasks, physical and psychological isolation, personal motivation, perceived risk, and quality of habitat and life support conditions. One-hundred design recommendations concerning, sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy and personal space, waste disposal, onboard training, simulation and task preparation, and behavioral and physiological requirements associated with a microgravity environment, are provided.

  9. Mars extant-life campaign using an approach based on Earth-analog habitats

    Science.gov (United States)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  10. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs

    Science.gov (United States)

    Nuthanakanti, Ashok; Srivatsan, Seergazhi G.

    2016-02-01

    proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes. Electronic supplementary information (ESI) available: Supplementary figures, tables, experimental procedures, crystallography data and NMR spectra. See DOI: 10.1039/c5nr07490h

  11. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  12. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    Science.gov (United States)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  13. Electronic Seal Stamping Based on Group Signature

    Directory of Open Access Journals (Sweden)

    Girija Srikanth

    2011-05-01

    Full Text Available This paper describes a new electronic official seal stamping based on Group Signature, USB Key. Bill/Contract in E-commerce must be seal stamped to gain tamper proof and non-repudiation. The seal stamping control is designed based on the certificate-based public key. This technique is more efficient for generating and verifying individual/group signatures in terms of computational efforts and communication costs. Web page electronic seal-stamping system is implemented which has been adopted by CNBAB platform since Mar., 2008

  14. TSET: Token based Secure Electronic Transaction

    OpenAIRE

    Borgohain, Rajdeep; Singh, Moirangthem Tiken; Sakharwade, Chandrakant; Sanyal, Sugata

    2012-01-01

    Security and trust are the most important factors in online transaction, this paper introduces TSET a Token based Secure Electronic Transaction which is an improvement over the existing SET, Secure Electronic Transaction protocol. We take the concept of tokens in the TSET protocol to provide end to end security. It also provides trust evaluation mechanism so that trustworthiness of the merchants can be known by customers before being involved in the transaction. Moreover, we also propose a gr...

  15. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  16. MOF-based electronic and opto-electronic devices.

    Science.gov (United States)

    Stavila, V; Talin, A A; Allendorf, M D

    2014-08-21

    Metal-organic frameworks (MOFs) are a class of hybrid materials with unique optical and electronic properties arising from rational self-assembly of the organic linkers and metal ions/clusters, yielding myriads of possible structural motifs. The combination of order and chemical tunability, coupled with good environmental stability of MOFs, are prompting many research groups to explore the possibility of incorporating these materials as active components in devices such as solar cells, photodetectors, radiation detectors, and chemical sensors. Although this field is only in its incipiency, many new fundamental insights relevant to integrating MOFs with such devices have already been gained. In this review, we focus our attention on the basic requirements and structural elements needed to fabricate MOF-based devices and summarize the current state of MOF research in the area of electronic, opto-electronic and sensor devices. We summarize various approaches to designing active MOFs, creation of hybrid material systems combining MOFs with other materials, and assembly and integration of MOFs with device hardware. Critical directions of future research are identified, with emphasis on achieving the desired MOF functionality in a device and establishing the structure-property relationships to identify and rationalize the factors that impact device performance. PMID:24802763

  17. Associative Pattern Recognition In Analog VLSI Circuits

    Science.gov (United States)

    Tawel, Raoul

    1995-01-01

    Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.

  18. Peripheral substitution as a tool for tuning electron-accepting properties of phthalocyanine analogs in intramolecular charge transfer.

    Science.gov (United States)

    Cidlina, Antonin; Novakova, Veronika; Miletin, Miroslav; Zimcik, Petr

    2015-04-21

    The intramolecular charge transfer (ICT), which is a pathway for excited state relaxation, was studied on the newly synthesized zinc(ii) complexes of tetrapyrazinoporphyrazines bearing one fixed donor (i.e., a dialkylamino substituent). The rest of the peripheral substituents on the core was designed with respect to their different electronic effects (OBu, neopentyl, StBu, COOBu). The photophysical (singlet oxygen and fluorescence quantum yields) and electrochemical (reduction potentials) properties were determined and compared within the series and with compounds that did not contain a donor moiety. The ICT efficiency correlated well with both the electron-deficient character of the core and the Hammett substituent constants σp. The most efficient ICT was observed for the core with the most electron-accepting substituent (COOBu), and the lowest ICT efficiency was detected for the least electron-deficient core (substituted by OBu). Titration of DMSO solutions of target compounds with H2SO4 indicated that basicity of the azomethine bridges was largely influenced by the character of the peripheral substituents while the dialkylamino donor center remained nearly unaffected. Furthermore, protonation of the donor nitrogen caused partial restoration of the fluorescence quantum yield (increase up to 90 times) due to blocking of ICT. The results implied that the ICT efficiency was strongly dependent on the electron-accepting properties of the core whose properties can be readily affected by suitable selection of peripheral substituents. PMID:25782137

  19. Novel acridine-based N-acyl-homoserine lactone analogs induce endoreduplication in the human oral squamous carcinoma cell line SAS

    International Nuclear Information System (INIS)

    The cytotoxicity of novel acridine-based N-acyl-homoserine lactone (AHL) analogs was investigated on the human oral squamous carcinoma cell line SAS. One analog induced G2/M phase arrest at 5.3-10.6 μM and induced polyploidy at a higher dose (21.2 μM). Importantly, treatment of SAS cells with a combination of the AHL analog and the Jun N-terminal kinase (JNK) inhibitor, SP600125, prevented mitosis and induced polyploidy. The AHL analog synergized with X-irradiation to inhibit clonogenic survival of SAS cells; however, its radiosensitizing effects were relative to not X-irradiation-induced apoptosis but mitotic failure following enhanced expression of Aurora A and B. These results suggest that the active AHL analog showed growth-suppressive and radiosensitizing effects, which involve polyploidy followed by G2/M accumulation and atypical cell death in the SAS cell line. (author)

  20. A Mars Analog for Wet-Based Glacial Alteration of Volcanic Terrains: Thermal Infrared Remote Sensing at Three Sisters, Oregon, U.S.A.

    Science.gov (United States)

    Rutledge, A. M.; Scudder, N. A.; Horgan, B.; Rampe, E. B.

    2016-09-01

    This study characterizes wet-based glacial weathering products at a volcanic Mars analog site using thermal infrared remote sensing. Decorrelation stretches are used to examine the geographic relationships between compositional units.

  1. Low Noise Electronics for BASE Collaboration

    CERN Document Server

    Besirli, Mustafa

    2015-01-01

    In my summer student period, I worked within the BASE (Baryon Antibaryon Symmetry Experiment) Collaboration and I developed low noise electronics such as cryogenic low noise amplifier and high voltage filters. In this report, you can find designs and measurements of my projects.

  2. Single electron tunneling based arithmetic computation

    NARCIS (Netherlands)

    Lageweg, C.R.

    2004-01-01

    In this dissertation we investigate the implementation of computer arithmetic operations with Single Electron Tunneling (SET) technology based circuits. In our research we focus on the effective utilization of the SET technologys specific characteristic, i.e., the ability to control the transport of

  3. Challenges in Analogical Reasoning

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same physics principle is involved but that is more difficult to handle. Here, we examine introductory physics students' ability to use analogies in solving problems involving Newton's second law. Students enrolled in an algebra-based introductory physics course were given a solved problem involving tension in a rope and were then asked to solve another problem for which the physics is very similar but involved a frictional force. They were asked to point out the similarities between the two problems and then use the analogy to solve the friction problem.

  4. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  5. Determining the electronic triplet-singlet transition probability in double quantum dots: Analogy with the double slit experiment

    OpenAIRE

    Domínguez, Fernando; Platero, Gloria

    2009-01-01

    We apply an elementary measurement scheme to calculate the electronic triplet-singlet transition mediated by hyperfine interaction in a double quantum dot. We show how the local character of the hyperfine interaction and the nuclear back-action process (flip-flop) are crucial to cancel destructive interferences of the triplet-singlet transition probability. It is precisely this cancellation which differentiates the hyperfine interaction from an anisotropic magnetic field which mixes the tripl...

  6. Alternate source term models for Yucca Mountain performance assessment based on natural analog data and secondary mineral solubility

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, W.M.; Codell, R.B.

    1999-07-01

    Performance assessment calculations for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, were conducted using the Nuclear Regulatory Commission Total-System Performance Assessment (TPA 3.2) code to test conceptual models and parameter values for the source term based on data from the Pena Blanca, Mexico, natural analog site and based on a model for coprecipitation and solubility of secondary schoepite. In previous studies the value for the maximum constant oxidative alteration rate of uraninite at the Nopal I uranium body at Pena Blanca was estimated. Scaling this rate to the mass of uranium for the proposed Yucca Mountain repository yields an oxidative alteration rate of 22 kg/y, which was assumed to be an upper limit on the release rate from the proposed repository. A second model was developed assuming releases of radionuclides are based on the solubility of secondary schoepite as a function of temperature and solution chemistry. Releases of uranium are given by the product of uranium concentrations at equilibrium with schoepite and the flow of water through the waste packages. For both models, radionuclides other than uranium and those in the cladding and gap fraction were modeled to be released at a rate proportional to the uranium release rate, with additional elemental solubility limits applied. Performance assessment results using the Pena Blanca oxidation rate and schoepite solubility models for Yucca Mountain were compared to the TPA 3.2 base case model, in which release was based on laboratory studies of spent fuel dissolution, cladding and gap release, and solubility limits. Doses calculated using the release rate based on natural analog data and the schoepite solubility models were smaller than doses generated using the base case model. These results provide a degree of confidence in safety predictions using the base case model and an indication of how conservatism in the base case model may be reduced in future analyses.

  7. Alternate source term models for Yucca Mountain performance assessment based on natural analog data and secondary mineral solubility

    International Nuclear Information System (INIS)

    Performance assessment calculations for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, were conducted using the Nuclear Regulatory Commission Total-System Performance Assessment (TPA 3.2) code to test conceptual models and parameter values for the source term based on data from the Pena Blanca, Mexico, natural analog site and based on a model for coprecipitation and solubility of secondary schoepite. In previous studies the value for the maximum constant oxidative alteration rate of uraninite at the Nopal I uranium body at Pena Blanca was estimated. Scaling this rate to the mass of uranium for the proposed Yucca Mountain repository yields an oxidative alteration rate of 22 kg/y, which was assumed to be an upper limit on the release rate from the proposed repository. A second model was developed assuming releases of radionuclides are based on the solubility of secondary schoepite as a function of temperature and solution chemistry. Releases of uranium are given by the product of uranium concentrations at equilibrium with schoepite and the flow of water through the waste packages. For both models, radionuclides other than uranium and those in the cladding and gap fraction were modeled to be released at a rate proportional to the uranium release rate, with additional elemental solubility limits applied. Performance assessment results using the Pena Blanca oxidation rate and schoepite solubility models for Yucca Mountain were compared to the TPA 3.2 base case model, in which release was based on laboratory studies of spent fuel dissolution, cladding and gap release, and solubility limits. Doses calculated using the release rate based on natural analog data and the schoepite solubility models were smaller than doses generated using the base case model. These results provide a degree of confidence in safety predictions using the base case model and an indication of how conservatism in the base case model may be reduced in future analyses

  8. TSET: Token based Secure Electronic Transaction

    CERN Document Server

    Borgohain, Rajdeep; Sakharwade, Chandrakant; Sanyal, Sugata

    2012-01-01

    Security and trust are the most important factors in online transaction, this paper introduces TSET a Token based Secure Electronic Transaction which is an improvement over the existing SET, Secure Electronic Transaction protocol. We take the concept of tokens in the TSET protocol to provide end to end security. It also provides trust evaluation mechanism so that trustworthiness of the merchants can be known by customers before being involved in the transaction. Moreover, we also propose a grading mechanism so that quality of service in the transactions improves.

  9. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  10. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  11. Communication: Electron ionization of DNA bases

    Science.gov (United States)

    Rahman, M. A.; Krishnakumar, E.

    2016-04-01

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  12. Communication: Electron ionization of DNA bases.

    Science.gov (United States)

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space. PMID:27131520

  13. Design of A 5-Bit Fully Parallel Analog to Digital Converter Using Common Gate Differrential Mos Pair-Based Comparator

    Science.gov (United States)

    Aytar, Oktay

    2015-09-01

    This paper presents a novel comparator structure based on the common gate differential MOS pair. The proposed comparator has been applied to fully parallel analog to digital converter (A/D converter). Furthermore, this article presents 5 bit fully parallel A/D Converter design using the cadence IC5141 design platform and NCSU(North Carolina State University) design kit with 0.18 μm CMOS technology library. The proposed fully parallel A/D converter consist of resistor array block, comparator block, 1-n decoder block and programmable logic array. The 1-n decoder block includes latch block and thermometer code circuit that is implemented using transmission gate based multiplexer circuit. Thus, sampling frequency and analog bandwidth are increased. The INL and DNL of the proposed fully parallel A/D converter are (0/ + 0.63) LSB and (-0.26/ + 0.31) LSB at a sampling frequency of 5 GS/s with an input signal of 50 MHz, respectively. The proposed fully parallel A/D Converter consumes 340 mW from 1.8 V supply.

  14. A Sub Threshold Source Coupled Logic Based Design of Low Power CMOS Analog Multiplexer

    Directory of Open Access Journals (Sweden)

    G.Deepika

    2014-08-01

    Full Text Available A novel approach for designing Ultra Low Power and wide dynamic range circuit for multiplexing analog signals is presented. The design operates in weak i nversion (Sub threshold region and uses Source - Coupled Logic ( SCL circuit. The bias current of t he SCL gates is varied to scale down linearly the p ower consumption and the operating frequency. The multip lexer design employs CMOS transistors as transmission gate with dynamic threshold voltage. T he design exhibits low power dissipation, high dynamic range and good linearity. The design was im plemented in 180 nm technology and was operated at a supply voltage of 400 mV with a bias current rang ing in the order of few Pico-amperes. The ON and OFF resistance of the transmission gate achieved we re 27 ohms and 10 M ohms respectively. The power dissipation achieved is around 0.79 μ W for a dynami c range of 1μ V to 0.4 V.

  15. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions

    Science.gov (United States)

    Pilling, Sergio; Nair, Binu G.; Escobar, Antonio; Fraser, Helen; Mason, Nigel

    2014-03-01

    Glycine is the simplest proteinaceous amino acid that has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, such species is exposed to several radiation fields at different temperatures. In aqueous solutions, this species appears mainly as zwitterionic glycine (+NH3CH2COO-) however, in solid phase, it may be found in amorphous or crystalline forms. Here, we present an experimental study on the destruction of two zwitterionic glycine crystals ( α- and β-form) at two different temperatures (300 K and 14 K) by 2 keV electrons in an attempt to test the behavior and stability of this molecular species in different space environments. The samples were analyzed in situ by Fourier transform infrared spectrometry at electron fluences. The experiments were carried out under ultra-high vacuum conditions at the Molecular Physics Laboratory at the Open University at Milton Keynes, UK. The dissociation cross section of glycine is approximately 5 times higher for the 14 K samples when compared to the 300 K samples. In contrast, no significant differences emerged between the dissociation cross sections of α- and β-forms of glycine for fixed temperature experiments. We therefore conclude that the destruction cross section is more heavily dependent on temperature than the phase of the condensed glycine material. This may be associated with the opening of additional reaction routes in the frozen samples involving the trapped daughter species (e.g. CO2 and CO). The half-life of studied samples extrapolated to space conditions shows that glycine molecules on the surface of interstellar grains has less survivability and they are highly sensitive to ambient radiations, however, they can survive extended period of time in the solar system like environments. Survivability increases by a factor of 5 if the samples are at 300 K when compared to low temperature experiments at 14

  16. Graphene-based Electronically Tuneable Microstrip Attenuator

    Directory of Open Access Journals (Sweden)

    L. Pierantoni

    2014-06-01

    Full Text Available This paper presents the design of a graphene- based electronically tuneable microstrip attenuator operating at a frequency of 5 GHz. The use of graphene as a variable resistor is discussed and the modelling of its electromagnetic properties at microwave frequencies is fully addressed. The design of the graphene-based attenuator is described. The structure integrates a patch of graphene, whose characteristics can range from being a fairly good conductor to a highly lossy material, depending on the applied voltage. By applying the proper voltage through two high-impedance bias lines, the surface resistivity of graphene can be modified, thereby changing the insertion loss of the microstrip attenuator.

  17. Fault Modeling and Testing for Analog Circuits in Complex Space Based on Supply Current and Output Voltage

    Directory of Open Access Journals (Sweden)

    Hongzhi Hu

    2015-01-01

    Full Text Available This paper deals with the modeling of fault for analog circuits. A two-dimensional (2D fault model is first proposed based on collaborative analysis of supply current and output voltage. This model is a family of circle loci on the complex plane, and it simplifies greatly the algorithms for test point selection and potential fault simulations, which are primary difficulties in fault diagnosis of analog circuits. Furthermore, in order to reduce the difficulty of fault location, an improved fault model in three-dimensional (3D complex space is proposed, which achieves a far better fault detection ratio (FDR against measurement error and parametric tolerance. To address the problem of fault masking in both 2D and 3D fault models, this paper proposes an effective design for testability (DFT method. By adding redundant bypassing-components in the circuit under test (CUT, this method achieves excellent fault isolation ratio (FIR in ambiguity group isolation. The efficacy of the proposed model and testing method is validated through experimental results provided in this paper.

  18. A Study of an Architecture Design Learning Process Based on Social Learning, Course Teaching, Interaction, and Analogical Thinking

    Directory of Open Access Journals (Sweden)

    Yun-Wu Wu

    2014-01-01

    Full Text Available The students in the vocational education of architecture design in Taiwan often face many learning obstacles, such as no problem solving ability and lack of creativity. Therefore, this study used a social learning model as a learning strategy in the architecture design learning process to solve related learning difficulties. Firstly, this study used cognitive development teaching activities and a learning process based on analogical thinking and analogical reasoning to build the social learning model. Secondly, the social learning model of this study was implemented in the teaching of a required course of architecture design for 120 freshmen in China University of Technology. The questionnaire survey results were then statically analyzed and compared to measure the differences in the students’ knowledge about architecture designs before and after the teaching in this study. In this study, the social learning model is proven helpful in inspiring the students’ creativity by converting new knowledge of architecture design into schemas and hence retaining the new knowledge for future application. The social learning model can be applied in the teaching of architecture design in other schools, while more research can be conducted in the future to further confirm its feasibility to promote effective learning.

  19. Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2016-09-01

    In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.

  20. DIRECT DETECTION OF COMPLEX ORGANIC PRODUCTS IN ULTRAVIOLET (Lyα) AND ELECTRON-IRRADIATED ASTROPHYSICAL AND COMETARY ICE ANALOGS USING TWO-STEP LASER ABLATION AND IONIZATION MASS SPECTROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bryana L.; Gudipati, Murthy S. [Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-02-10

    As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H{sub 2}O, CH{sub 3}OH, and NH{sub 3} ices at 5 K and 70 K led to complex irradiation products, including HCO, CH{sub 3}CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH{sub 3}CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system.

  1. DIRECT DETECTION OF COMPLEX ORGANIC PRODUCTS IN ULTRAVIOLET (Lyα) AND ELECTRON-IRRADIATED ASTROPHYSICAL AND COMETARY ICE ANALOGS USING TWO-STEP LASER ABLATION AND IONIZATION MASS SPECTROMETRY

    International Nuclear Information System (INIS)

    As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H2O, CH3OH, and NH3 ices at 5 K and 70 K led to complex irradiation products, including HCO, CH3CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH3CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system

  2. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility

  3. Explanation-based knowledge acquisition of electronics

    Science.gov (United States)

    Kieras, David E.

    1992-08-01

    This is the final report in a project that examined how knowledge of practical electronics could be acquired from materials similar to that appearing in electronics training textbooks, from both an artificial intelligence perspective and an experimental psychology perspective. Practical electronics training materials present a series of basic circuits accompanied by an explanation of how the circuit performs the desired function. More complex circuits are then explained in terms of these basic circuits. This material thus presents schema knowledge for individual circuit types in the form of explanations of circuit behavior. Learning from such material would thus consist of first instantiating any applicable schemas, and then constructing a new schema based on the circuit structure and behavior described in the explanation. If the basic structure of the material is an effective approach to learning, learning about a new circuit should be easier if the relevant schemas are available than not. This result was obtained for both an artificial intelligence system that used standard explanation-based learning mechanisms and with human learners in a laboratory setting, but the benefits of already having the relevant schemas were not large in these materials. The close examination of learning in this domain, and the structure of knowledge, should be useful to future cognitive analyses of training in technical domains.

  4. Electron-avalanche amplifier based on the electronic Venturi effect

    Science.gov (United States)

    Taubert, D.; Schinner, G. J.; Tranitz, H. P.; Wegscheider, W.; Tomaras, C.; Kehrein, S.; Ludwig, S.

    2010-10-01

    Scattering of otherwise ballistic electrons far from equilibrium is investigated in a cold two-dimensional electron system. The interaction between excited electrons and the degenerate Fermi liquid induces a positive charge in a nanoscale region which would be negatively charged for diffusive transport at local thermal equilibrium. In a three-terminal device we observe avalanche amplification of electrical current, resulting in a situation comparable to the Venturi effect in hydrodynamics. Numerical calculations using a random-phase approximation are in agreement with our data and suggest Coulomb interaction as the dominant scattering mechanism.

  5. How strategists really think. Tapping the power of analogy.

    Science.gov (United States)

    Gavetti, Giovanni; Rivkin, Jan W

    2005-04-01

    Leaders tend to be so immersed in the specifics of strategy that they rarely stop to think how much of their reasoning is done by analogy. As a result, they miss useful insights that psychologists and other scientists have generated about analogies' pitfalls. Managers who pay attention to their own analogical thinking will make better strategic decisions and fewer mistakes. Charles Lazarus was inspired by the supermarket when he founded Toys R Us; Intel promoted its low-end chips to avoid becoming like U.S. Steel; and Circuit City created CarMax because it saw the used-car market as analogous to the consumer-electronics market. Each example displays the core elements of analogical reasoning: a novel problem or a new opportunity, a specific prior context that managers deem to be similar in its essentials, and a solution that managers can transfer from its original setting to the new one. Analogical reasoning is a powerful tool for sparking breakthrough ideas. But dangers arise when analogies are built on surface similarities (headlong diversification based on loose analogies played a role in Enron's collapse, for instance). Psychologists have discovered that it's all too easy to overlook the superficiality of analogies. The situation is further complicated by people's tendency to hang on to beliefs even after contrary evidence comes along (a phenomenon known as anchoring) and their tendency to seek only the data that confirm their beliefs (an effect known as the confirmation bias). Four straightforward steps can improve a management team's odds of using an analogy well: Recognize the analogy and identify its purpose; thoroughly understand its source; determine whether the resemblance is more than superficial; and decide whether the original strategy, properly translated, will work in the target industry. PMID:15807039

  6. Developments of gamma-ray imagers using CdTe semiconductors based on the analog ASIC technology

    International Nuclear Information System (INIS)

    Cadmium Telluride (CdTe) is one of the most promising semiconductor materials for hard X-ray and gamma-ray detection because of the high detection efficiency, and of the good energy resolution. Moreover, CdTe detectors with Schottky junction work as diode detectors, and show superior energy resolution. Based on the CdTe diode devices, we have developed CdTe pixel/strip imagers, and also realized a Si/CdTe Compton camera. These devices will be used for the Hard X-ray Imager (HXI) and the Soft Gamma-ray Detector (SGD) onboard ASTRO-H X-ray satellite to be launched in 2015. These developments are briefly reported in this article. We also describe our recent development of low-noise analog readout ASICs to be used for future development of CdTe gamma-ray imagers. (author)

  7. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  8. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  9. The Design of an Analogical Encoding Tool for Game-Based Virtual Learning Environments

    Science.gov (United States)

    Williams, Douglas; Ma, Yuxin; Feist, Steven; Richard, Charles E.; Prejean, Louise

    2007-01-01

    Game-based virtual learning environments have the potential to provide opportunities for engagement in authentic contexts while completing authentic tasks such as problem solving. However, research in problem-based learning indicates that scaffolding should be provided for learners to benefit from such learning environments. This paper describes…

  10. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  11. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  12. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  13. Parametric estimation in the wave buoy analogy - an elaborated approach based on energy considerations

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam

    2014-01-01

    the ship’s wave-induced responses based on different statistical inferences including parametric and non-parametric approaches. This paper considers a concept to improve the estimate obtained by the parametric method for sea state estimation. The idea is illustrated by an analysis made on full-scale...

  14. Design of Butterworth analog filter based on Matlab%基于Matlab的巴特沃斯滤波器设计

    Institute of Scientific and Technical Information of China (English)

    王大伟; 贾荣丛; 王划一

    2012-01-01

    为了得到较纯净的真实信号,对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,利用Matlab程序,设计了巴特沃斯模拟滤波器,给出了Matlab设计程序,并分析了巴特沃斯模拟滤波器的幅频特性.利用Matlab程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换.由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果.%The paper described the amplitude-frequency characteristics, the design method and procedure of Butterworth analog filter to obtain real signal. Butterworth analog filter was designed based on Matlab. The paper presented the design procedure of the filter based on Matlab and analyzed the amplitude-frequency characteristics of Butterworth analog filter. Matlab program was used to draw the amplitude-frequency characteristic curve of Butterworth analog filter and realize the conversion from analog filter prototype to analog low-pass, high-pass, band-pass and band-stop filter. Through the design of analog filter prototype, high-pass filter simulation shows the effects of frequency conversion.

  15. Simulation analysis of analog IQ based LLRF control of RF cavity

    International Nuclear Information System (INIS)

    This paper presents the simulation work and results in Matlab Simulink for the analogue Inphase-Quadrature (IQ) based Low Level Radio Frequency (LLRF) control of RF cavity voltage. The RF cavity chosen here is the Radio Frequency Quadrupole (RFQ) cavity in our RIB project. All the subsystems in the IQ based RF control were modelled using the Simulink blocks/components. The envelope simulation was carried out using the IQ model of RF cavity. The PI controller was properly tuned to achieve good control performance in time. The simulation graphs showing the time evolution of the RF cavity voltage with a step change of the input reference signal is presented. The simulation graphs showing the control response time needed to correct a disturbance is presented. The simulation results showing Nichols plots of the control loop and the gain and phase margin values obtained from them are presented, which are good enough for stability considerations. (author)

  16. Time-to-digital converter based on analog time expansion for 3D time-of-flight cameras

    Science.gov (United States)

    Tanveer, Muhammad; Nissinen, Ilkka; Nissinen, Jan; Kostamovaara, Juha; Borg, Johan; Johansson, Jonny

    2014-03-01

    This paper presents an architecture and achievable performance for a time-to-digital converter, for 3D time-of-flight cameras. This design is partitioned in two levels. In the first level, an analog time expansion, where the time interval to be measured is stretched by a factor k, is achieved by charging a capacitor with current I, followed by discharging the capacitor with a current I/k. In the second level, the final time to digital conversion is performed by a global gated ring oscillator based time-to-digital converter. The performance can be increased by exploiting its properties of intrinsic scrambling of quantization noise and mismatch error, and first order noise shaping. The stretched time interval is measured by counting full clock cycles and storing the states of nine phases of the gated ring oscillator. The frequency of the gated ring oscillator is approximately 131 MHz, and an appropriate stretch factor k, can give a resolution of ≍ 57 ps. The combined low nonlinearity of the time stretcher and the gated ring oscillator-based time-to-digital converter can achieve a distance resolution of a few centimeters with low power consumption and small area occupation. The carefully optimized circuit configuration achieved by using an edge aligner, the time amplification property and the gated ring oscillator-based time-to-digital converter may lead to a compact, low power single photon configuration for 3D time-of-flight cameras, aimed for a measurement range of 10 meters.

  17. A comparison of acceptance- and control-based strategies for coping with food cravings: an analog study.

    Science.gov (United States)

    Forman, Evan M; Hoffman, Kimberly L; McGrath, Kathleen B; Herbert, James D; Brandsma, Lynn L; Lowe, Michael R

    2007-10-01

    The present study utilized an analog paradigm to investigate the effectiveness of two strategies for coping with food cravings, which was theorized to be critical to the maintenance of weight loss. Ninety-eight undergraduate students were given transparent boxes of chocolate Hershey's Kisses and instructed to keep the chocolates with them, but not to eat them, for 48 h. Before receiving the Kisses, participants were randomized to receive either (a) no intervention, (b) instruction in control-based coping strategies such as distraction and cognitive restructuring, or (c) instruction in acceptance-based strategies such as experiential acceptance and defusion techniques. Measures included the Power of Food Scale (PFS; a measure of psychological sensitivity to the food environment), self-report ratings of chocolate cravings and surreptitiously recorded chocolate consumption. Results suggested that the effect of the intervention depended on baseline PFS levels, such that acceptance-based strategies were associated with better outcomes (cravings, consumption) among those reporting the highest susceptibility to the presence of food, but greater cravings among those who scored lowest on the PFS. It was observed that craving self-report measures predicted chocolate consumption, and baseline PFS levels predicted both cravings and consumption. Results are discussed in terms of the implications for weight loss maintenance strategies. PMID:17544361

  18. Anti-Cocaine Vaccine Based on Coupling a Cocaine Analog to a Disrupted Adenovirus

    OpenAIRE

    Koob, George; Hicks, Martin J.; Wee, Sunmee; Rosenberg, Jonathan B; De, Bishnu P.; Kaminksy, Stephen M.; Moreno, Amira; Kim D. Janda; Crystal, Ronald G.

    2011-01-01

    The challenge in developing an anti-cocaine vaccine is that cocaine is a small molecule, invisible to the immune system. Leveraging the knowledge that adenovirus (Ad) capsid proteins are highly immunogenic in humans, we hypothesized that linking a cocaine hapten to Ad capsid proteins would elicit high-affinity, high-titer antibodies against cocaine, sufficient to sequester systemically administered cocaine and prevent access to the brain, thus suppressing cocaine-induced behaviors. Based on t...

  19. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Directory of Open Access Journals (Sweden)

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  20. Fair Electronic Cash Based on Double Signatures

    Institute of Scientific and Technical Information of China (English)

    陈晓峰; 王常杰; 王育民

    2002-01-01

    In order to decrease crimes such as money laundering, blackmailing etc. inelectronic cash systems, fair electronic cash has been a major focus of academic research inelectronic commence. When a bank finds some dubious cash or owner, the trusted entity ortrustee can help him to revoke the anonymity of the cash. In the previous protocols, the trusteeknows all the information of the cash whether he is trusted or not, that is, he can trace the useror cash unconditionally. Furthermore, the dishonest trustee may deceive a user, which meansthat he may withdraw cash while tracing other users. Such cases are unfair to the honest users.A new fair electronic cash protocol based on untrustworthy trustees is proposed in thispaper. The key idea is that the coin structure should include the signatures of both the trusteeand the bank so that the trustee shares the information of the cash with the bank, while we donot use the secret sharing scheme. In contrast with the previous protocols, neither the trusteenor the bank can trace the money without the help of the other entity. In this way, the privacyof the user is protected furthest. Also, the trustee is off-line in the protocol, which meansthat he will not be involved in withdrawing the cash. Therefore, the protocol is efficient forimplementation.

  1. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mengjie [Colorado School of Mines, Golden; Xiao, Feng [Colorado School of Mines, Golden; Johnson-Paben, Rebecca [Colorado School of Mines, Golden; Retterer, Scott T [ORNL; Yin, Xiaolong [Colorado School of Mines, Golden; Neeves, Keith B [ORNL

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.

  2. Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme

    Science.gov (United States)

    Sha, Li; Zhi-Guo, Shi; Zhe, Kang; Chong-Xiu, Yu; Jian-Ping, Wang

    2016-04-01

    An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm–1580 nm. A dispersion coefficient as high as –19800 ps/(km·nm) with ±0.5 ps/(km·nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective-number-of-bit and Gray code output. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-030A1) and China Postdoctoral Science Foundation (Grant No. 2015M580978).

  3. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    Science.gov (United States)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  4. Application of polymer films based on bacteriorhodopsin and its analogs for low-light-level imaging systems

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Djukova, T. V.; Druzhko, Anna B.; Vsevolodov, Nicolai N.

    1995-03-01

    In recent years polymer films based on bacteriorhodopsin (BR) have attracted a lot of attention in the area of optical imaging systems. The high photosensitivity of these films allows the processing of low-power optical signals (several mW/cm2 CW gas laser irradiation). Spatial resolution does not fall below 5000 lines/mm, photoresponse time is 50 microsecond(s) and images can be recorded and erased over million cycles. Polymer film with BR combine a dynamic recording with optical image processing. The characteristics of anisotropically-saturating nonlinearity of polymer films with BR allow a suppression of the background with greater intensity than usable signal intensity of be performed. Low saturation intensity of the polymer films with BR allows the operation of the polarization of low-intensity signals to be realized. Nonlinear photoresponse of the high photosensitivity BR genetic variant Asp96-Glu is studied in this work too. We hope that the polymer films based on BR and its analogs will find potential use precisely in the medical low- light-level imaging systems.

  5. Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

    Directory of Open Access Journals (Sweden)

    Irina S.-R. Waisertreiger

    2010-01-01

    Full Text Available Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP deoxynucleoside triphosphate and thus regulates nucleotide pools and protects cells from DNA damage. We demonstrate that the model purine base analog HAP induces DNA breaks in human cells and leads to elevation of levels of ITPA. A human polymorphic allele of the ITPA, 94C->A encodes for the enzyme with a P32T amino-acid change and leads to accumulation of nonhydrolyzed ITP. The polymorphism has been associated with adverse reaction to purine base-analog drugs. The level of both spontaneous and HAP-induced DNA breaks is elevated in the cell line with the ITPA P32T variant. The results suggested that human ITPA plays a pivotal role in the protection of DNA from noncanonical purine base analogs.

  6. The Effect of Combining Analogy-Based Simulation and Laboratory Activities on Turkish Elementary School Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Unlu, Zeynep Koyunlu; Dokme, Ibilge

    2011-01-01

    The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…

  7. Using aeroelastic structures with nonlinear switching electronics to increase potential energy yield in airflow: investigating analog control circuitry for automated peak detection

    Science.gov (United States)

    Mihalca, Alexander G.; Drosinos, Jonathan G.; Grayson, Malika; Garcia, Ephrahim

    2015-03-01

    Bending piezoelectric transducers have the ability to harvest energy from aeroelastic vibrations induced by the ambient airflow. Such harvesters can have useful applications in the operation of low power devices, and their relatively small size makes them ideal for use in urban environments over civil infrastructure. One of the areas of focus regarding piezoelectric energy harvesting is the circuit topology used to store the harvested power. This study aims to further investigate the increase in potential energy yield from the piezoelectric harvester by optimizing the circuitry connecting the piezoelectric transducer and the power storage interface. When compared to an optimal resistive load case, it has been shown that certain circuit topologies, specifically synchronized switching and discharging to a storage capacitor through an inductor (SSDCI), can increase the charging power by as much as 400% if the circuit is completely lossless. This paper proposes a strategy for making a self-sufficient SSDCI circuit capable of peak detection for the synchronized switching using analog components. Using circuit simulation software, the performance of this proposed self-sufficient circuit is compared to an ideal case, and the effectiveness of the self-sufficient circuit strategy is discussed based on these simulation results. Further investigation of a physical working model of the new circuit proposal will be developed and experimental results of the circuit's performance obtained and compared to the estimated performance from the model.

  8. Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET

    Science.gov (United States)

    Biswal, Sudhansu Mohan; Baral, Biswajit; De, Debashis; Sarkar, Angsuman

    2016-03-01

    In this paper, we present a simulation study to report the effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire (NW) Tunnel FET (TFET). The different RF/analog and linearity figure of merits such as gm, RO, gm*RO, fT, fmax, GBW and 1-dB compression point of a NW TFET are extracted and the influence of gate-length downscaling on these parameters is analyzed. The RF/analog performance parameters obtained from InAs TFET is compared with an InAs MOSFET of identical dimension. Results reveal that superior RF and Linearity performance was obtained with gate-length downscaling for both devices under consideration. However, advantages of achieving improved RF performance with gate-length downscaling diminishes in terms of poor analog performance with gate-length downscaling for both the devices. This clearly indicates a trade-off between the analog and RF performance of a down-scaled InAs-based NW TFET and MOSFET. The results reveal that InAs TFET provides better fT, fmax and linearity performance in the saturation region than its MOSFET counterpart. It provides a reasonable RO, gm*RO at lower values of gate-overdrive voltage as compared to the InAs MOSFET. Therefore, this paper concludes that InAs NW TFETs have enormous potential to be a promising contender to the conventional bulk MOSFETs for realization of future generation low-power analog/RF applications.

  9. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy

    Directory of Open Access Journals (Sweden)

    Batra Surinder K

    2011-08-01

    Full Text Available Abstract Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2, sonic hedgehog (SHH/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB and signal transducers and activators of transcription (STATs. In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers.

  10. Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions.1 We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA's VESsel GENeration Analysis (VESGEN) software2 before and after head-down tilt (HDT), a ground-based microgravity analog For our preliminary study of masked images, two groups of venous trees with and without small veins (G=7) were clearly identified by VESGEN analysis. Upon completing all images and unmasking the subject status of pre- and post- HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged HDT and microgravity. Greater peripapillary retinal thickening was measured following 70-day HDT bed rest than 14-day HDT bed rest, suggesting that time of HDT may increase the amount of optic disc swelling.3 Spectralis OCT detected retinal nerve fiber layer thickening post HDT, without clinical signs of optic disc edema. Such changes may have resulted from HDT-induced cephalad fluid shifts. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

  11. Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter

    Science.gov (United States)

    Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-07-01

    Compressive sensing (CS) in the photonic domain is highly promising for analog-to-information conversion of sparse signals due to its potential capability of high input bandwidth and digitization with sub-Nyquist sampling. In this paper, we suggest that the concept of delay-line based microwave photonic filter be used in photonic CS to realize the low-pass filtering (LPF) function which is required in CS. A microwave photonic filter (MPF) with a dispersive element and fiber delay lines is applied in photonic CS to achieve better performance and flexibility. In the approach, the input radio-frequency signal and the pseudorandom bit sequence (PRBS) are modulated on a multi-wavelength optical carrier and propagate through a dispersive element. The modulated optical signal is split into multiple channels with tunable delay lines. The multiple wavelengths, dispersive element and multiple channels constitute a reconfigurable low-pass microwave filter. Experiment and simulations are presented to demonstrate the feasibility and potentials of this approach.

  12. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors

    International Nuclear Information System (INIS)

    This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35 μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF / √Hz capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/°C after optimized compensation. (semiconductor integrated circuits)

  13. Analog Delta-Back-Propagation Neural-Network Circuitry

    Science.gov (United States)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  14. Analog Testing of Operations Concepts for Integration of an Earth-Based Science Team During Human Exploration of Mars

    Science.gov (United States)

    Chappell, Steven P.; Beaton, Kara H.; Graff, Trevor; Newton, Carolyn; Abercromby, Andrew F.; Gernhardt, Michael L.

    2017-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21. The mission was performed at the Aquarius undersea research habitat. During the mission, the effects of varying operations concepts on representative communication latencies associated with Mars missions were studied. Six subjects were weighed out to simulate near-zero or partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including pre-sampling surveys and marine science-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars. A one-way communication latency of 15 minutes between space and mission control was simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for ST to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery and listen to audio streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. Results were collected and will be presented on the acceptability of the operations concepts studied and which capabilities are the most enabling/enhancing in the operations concept. Discussion is presented on the importance of designing EVA timelines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency.

  15. High-energy attosecond nanoplasmonic-based electron gun

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-03-01

    We present the design of an ultrafast conical lens based nanoplasmonic electron gun. Through excitation with a radially polarized laser pulse, and a combination of magnetostatic and spatial filtering, high energy electron packets with attosecond durations can be achieved.

  16. Electronic structure of hybrid interfaces for polymer-based electronics

    International Nuclear Information System (INIS)

    The fundamentals of the energy level alignment at anode and cathode electrodes in organic electronics are described. We focus on two different models that treat weakly interacting organic/metal (and organic/organic) interfaces: the induced density of interfacial states model and the so-called integer charge transfer model. The two models are compared and evaluated, mainly using photoelectron spectroscopy data of the energy level alignment of conjugated polymers and molecules at various organic/metal and organic/organic interfaces. We show that two different alignment regimes are generally observed: (i) vacuum level alignment, which corresponds to the lack of vacuum level offsets (Schottky-Mott limit) and hence the lack of charge transfer across the interface, and (ii) Fermi level pinning where the resulting work function of an organic/metal and organic/organic bilayer is independent of the substrate work function and an interface dipole is formed due to charge transfer across the interface. We argue that the experimental results are best described by the integer charge transfer model which predicts the vacuum level alignment when the substrate work function is above the positive charge transfer level and below the negative charge transfer level of the conjugated material. The model further predicts Fermi level pinning to the positive (negative) charge transfer level when the substrate work function is below (above) the positive (negative) charge transfer level. The nature of the integer charge transfer levels depend on the materials system: for conjugated large molecules and polymers, the integer charge transfer states are polarons or bipolarons; for small molecules' highest occupied and lowest unoccupied molecular orbitals and for crystalline systems, the relevant levels are the valence and conduction band edges. Finally, limits and further improvements to the integer charge transfer model are discussed as well as the impact on device design. (topical review)

  17. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  18. Terrestrial Spaceflight Analogs: Antarctica

    Science.gov (United States)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  19. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  20. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  1. An Internet Based Anonymous Electronic Cash System

    Directory of Open Access Journals (Sweden)

    Israt Jahan

    2015-04-01

    Full Text Available There is an increase activity in research to improve the current electronic payment system which is parallel with the progress of internet. Electronic cash system is a cryptographic payment system which offers anonymity during withdrawal and purchase. Electronic cash displays serial numbers which can be recorded to allow further tracing. Contrary to their physical counterparts, e-cash have an inherent limitation; they are easy to copy and reuse (double-spending. An observer is a tamper-resistant device, issued by the Internet bank, which is incorporated with the Internet user’s computer that prevents double-spending physically, i.e., the user has no access to her e-cash and therefore he cannot copy them. In this paper, we shall present an anonymous electronic cash scheme on the internet which incorporates tamper-resistant device with user-module.

  2. Introducing the ELMCIP Electronic Literature Knowledge Base

    OpenAIRE

    Rettberg, Scott

    2013-01-01

    Focusing on a particular creative community, of electronic literature practitioners, the central research question of the ELMCIP collaborative research project is how creative communities of practitioners form within transnational and transcultural contexts, within a globalised and distributed communications environment. We seek to gain insight into and understanding of the social effects and manifestations of creativity. Our research seeks to exploit the characteristics of electronic literat...

  3. Flexible, fpga-based electronics for modular robots

    DEFF Research Database (Denmark)

    Brandt, David; Larsen, Jørgen Christian; Christensen, David Johan;

    2008-01-01

    In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays (FPGAs). The immediate advantage of using FPGAs is that some of the module’s electronics can be moved into the FPGA, thereby the number of components can be reduced. In the case...... the FPGA and therefore integrate task-specific electronics without physically changing the electronics or we can reconfigure the electronics for specific tasks. The disadvantages of an FPGA-based design include the cost of FPGAs, the extra layer of complexity in programming, and a limited increase in power...... consumption compared to micro-controllers. However, overall FPGAs make the electronics of modular robots more flexible and therefore may make them more suitable for real applications. AB - In this paper we introduce electronics for the ATRON self-reconfigurable robot based on field programmable gate arrays...

  4. Design and simulation of an integrated optical ring-resonator based frequency discriminator for analog optical links

    NARCIS (Netherlands)

    Timens, R.B.; Marpaung, D.A.I.; Roeloffzen, C.G.H.; Etten, van W.

    2008-01-01

    The performance of a conventional intensity modulation direct detection analog optical links is limited by the high noise power associated with large optical carrier power. This optical carrier can be suppressed by using optical frequency modulation in conjunction with a frequency discriminator. In

  5. Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents

    OpenAIRE

    Chennamaneni, Naveen Kumar; Arif, Jenifer; Buckner, Frederick S.; Gelb, Michael H

    2009-01-01

    We developed a synthetic route to prepare isoquinoline analogs of the cancer drug clinical candidate tipifarnib. We show that these compounds kill Trypanosoma cruzi amastigotes grown in mammalian host cells at concentrations in the low nanomolar range. These isoquinolines represent new leads for the development of drugs to treat Chagas disease.

  6. Science Teachers' Analogical Reasoning

    Science.gov (United States)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  7. Automatic generation of a metamodel from an existing knowledge base to assist the development of a new analogous knowledge base.

    Science.gov (United States)

    Bouaud, J; Séroussi, B

    2002-01-01

    Knowledge acquisition is a key step in the development of knowledge-based systems and methods have been proposed to help elicitating a domain-specific task model from a generic task model. We explored how an existing validated knowledge base (KB) represented by a decision tree could be automatically processed to infer a higher level domain-specific task model. On-codoc is a guideline-based decision support system applied to breast cancer therapy. Assuming task identity and ontological proximity between breast and lung cancer domains, the generalization of the breast can-cer KB should allow to build a metamodel to serve as a guide for the elaboration of a new specific KB on lung cancer. Two types of parametrized generalization methods based on tree structure simplification and ontological abstraction were used. We defined a similarity distance and a generalization coefficient to select the best metamodel identified as the closest to the original decision tree of the most generalized metamodels. PMID:12463788

  8. 模拟电子技术课程教学改革研究与实践%Research and Practice on the Teaching Reform of Analog Electronic Technology Course

    Institute of Scientific and Technical Information of China (English)

    卢翠珍; 陆冬妹

    2016-01-01

    For courses of electronic information engineering ma-jor, Analog Electronic Technology course is a relatively difficult one with more content, therefore, many students feel it difficult to learn the course and their academic performance is affected by the situation to a certain extent. This paper briefly analyzes the teaching reform of Analog Electronic Technology course, hoping to provide some help for electronic information engineer-ing undergraduates to improve their academic performance.%对电子信息工程专业的课程来说,模拟电子技术课程的难度较大、课程内容较多,因此,有很多学生在学习这门课程的过程中感到压力大,同时对于学习成绩也造成了一定的影响。文章针对模拟电子技术课程的教学改革进行了简单的分析,以期为提高电子信息工程专业本科学生的学生成绩提供有力帮助。

  9. Developing a model for application of electronic banking based on electronic trust

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Nazarpoori

    2014-05-01

    Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.

  10. Animation Based Learning of Electronic Devices

    Science.gov (United States)

    Gero, Aharon; Zoabi, Wishah; Sabag, Nissim

    2014-01-01

    Two-year college teachers face great difficulty when they teach the principle of operation of the bipolar junction transistor--a subject which forms the basis for electronics studies. The difficulty arises from both the complexity of the device and by the lack of adequate scientific background among the students. We, therefore, developed a unique…

  11. Lumped time-delay compensation scheme for coding synchronization in the nonlinear spectral quantization-based all-optical analog-to-digital conversion

    OpenAIRE

    Kang, Zhe; Yuan, Jinhui; Wu, Qiang; WANG, Tao; Li, Sha; Sang, Xinzhu; Yu, Chongxiu; Farrell, Gerald

    2013-01-01

    In this paper, we propose a novel lumped time-delay compensation scheme for the all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. By inserting a segment of negative dispersion fiber between the quantization and the coding module, the time delay of different quantized pulses can be accurately compensated with a simple structure compared to the multiple time-delay lines. The simulation results show that the coding pulses...

  12. The Roads to LPA Based Free Electron Laser

    OpenAIRE

    Zhu, Xiongwei

    2014-01-01

    In this paper, we simply outline the present status of the free electron laser and the laser plasma based accelerator, and we simply discuss the potential possible roads appearing in the accelerator community to use the laser plasma based accelerator into the field of the free electron laser.

  13. EDITORIAL: Nanotechnology-based flexible electronics Nanotechnology-based flexible electronics

    Science.gov (United States)

    Subramanian, Vivek; Lee, Takhee

    2012-08-01

    Research on flexible electronics has grown exponentially over the last decade. Researchers around the globe are developing a wide range of flexible systems, including displays [1, 2], sensors [3-5], RFID tags [6, 7] and other similar devices [8]. Innovations in materials have been key to the increased research success in this field of research in recent years [9]. Transistors, interconnects, memory cells, passive components and other assorted devices all have challenging material demands for flexible electronics to become a reality. Nanomaterials of various kinds have been found to represent a tremendously powerful tool, with nanoparticles [10], nanotubes, nanowires [3, 11] and engineered organic molecules [12, 13] contributing to the realization of high-performance semiconductors, dielectrics and conductors for flexible electronics applications. Nanomaterials offer tunability in terms of performance, solution processability and processing temperature requirements, which makes them very attractive as building blocks for flexible electronic systems. Indeed, such systems represent some of the largest families of commercially produced nanomaterials today, and numerous commercial products based on nanoparticle formulations are widely available. This special issue focuses on the rapidly blossoming field of flexible electronics, with a particular focus on the use of nanotechnology to facilitate flexible electronic materials, processes, devices and systems. Contributions to the issue describe the development of nanomaterials—including nanoparticles, nanotubes, nanowires and carbon-based thin films—for use in conductors, transparent electrodes, semiconductors and dielectrics. The articles feature innovations in nanomanufacturing and novel materials, as well as the application of these technologies to advanced flexible devices and systems. As flexible electronics systems move rapidly towards successful commercial deployment, it is extremely likely that they will exploit

  14. A Mixed Analog-Digital Radiation Hard Technology for High Energy Physics Electronics: DMILL~(Durci~Mixte~sur~Isolant~Logico-Lineaire)

    CERN Multimedia

    Lugiez, F; Leray, J; Rouger, M; Fourches, N T; Musseau, O; Potheau, R

    2002-01-01

    %RD29 %title\\\\ \\\\Physics experiments under preparation with the future LHC require a fast, low noise, very rad-hard (>10 Mrad and >10$^{14}$ neutron/cm$^{2}$), mixed analog-digital microelectronics VLSI technology.\\\\ \\\\The DMILL microelectronics technology (RD29) was developed between 1990 and 1995 by a Consortium gathering the CEA and the firm Thomson-TCS, with the collaboration of IN2P3. The goal of the DMILL program, which is now completed, was to provide the High Energy Physics community, space industry, nuclear industry, and other applications, with an industrial very rad-hard mixed analog-digital microelectronics technology.\\\\ \\\\DMILL integrates mixed analog-digital very rad-hard (>10 Mrad and >10$^{14}$ neutron/cm$^{2}$) vertical bipolar, 0.8 $\\mu$m CMOS and 1.2 $\\mu$m PJFET transistors. Its SOI substrate and its dielectric trenches strongly reduce SEU sensitivity and completely eliminate any possibility of latch-up. Its four transistors are optimized to obtain low-noise features. DMILL also integrates...

  15. Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to- Digital Converter Based on a Polyphase Demultiplexing Architecture

    Directory of Open Access Journals (Sweden)

    C. Villa-Angulo

    2013-01-01

    Full Text Available In this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexingarchitecture for optoelectronics analog-to-digital converters (OADCs. The architecture consists of a one-stage divideby-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, anddemultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in toelectrical-out data format is maintained through the sampling, demultiplexing and quantization processes of thearchitecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. Weexperimentally demonstrate a 10.24 giga samples per second (GS/s, 12-bit resolution OADC system comprising theoptically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on theOADC yielded an effective bit resolution (ENOB of 10.3 bits, spurious free dynamic range (SFDR of -32 dB andsignal-to-noise and distortion ratio (SNDR of 63.7 dB.

  16. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    OpenAIRE

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological ac...

  17. 脉冲控制忆阻模拟存储器%Analog Memory Based on Pulse Controlled Memristor

    Institute of Scientific and Technical Information of China (English)

    胡小方; 段书凯; 王丽丹; 李传东

    2011-01-01

    In this paper, the charge-controlled and flux-controlled memristor mathematical models are derived detailedly. The continuously variable conductance and memory properties of memristors are researched. An implementation scheme for analog memory using pulse controlled memristors is proposed, and its effectiveness is verified through theoretical analysis and simulation experiments. With crossbar array structure, the scheme is expected to achieve large-scale analog storage arrays, which may greatly promote the development of artificial neural networks and analog computers.%推导了忆阻器的电荷控制和磁通量控制数学模型,在该基础上研究了其电导状态连续可变的性质和记忆功能.提出了用脉冲控制忆阻器实现模拟信息存储的方案,通过理论分析、实验仿真验证了方案的有效性.结合交叉阵列结构,该方案有望实现大规模模拟存储阵列,推进人工神经网络和模拟式计算机的发展.

  18. Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion

    International Nuclear Information System (INIS)

    We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. A digital-analog hybrid random numb er generator based on memristor%基于忆阻器的数模混合随机数发生器∗

    Institute of Scientific and Technical Information of China (English)

    袁泽世; 李洪涛; 朱晓华

    2015-01-01

    integral system. In this paper, a novel digital-analog hybrid chaotic system with only one analog device is constructed for the pro-duction of RN. The chosen analog device is a generalized memristor consisting of a diode bridge and a parallel RC filter. Memristor is the fourth fundamental electronic component which has provoked extensive researches since the suc-cessful realization by Stan Williams’s group at HP Labs in 2008. The paper is arranged as follows. Firstly, a generalized memristor realized by a memristive circuit is introduced and its basic properties are given. Then the block diagram of the digital-analog hybrid system based on a single memristor feedback is depicted, and the mathematical model of the system is derived from the block diagram. Thirdly, the simple Logistic map is applied to the hybrid model and its dynamic behaviors are simulated and compared with those from the ideal Logistic before a more complex two-way coupled saw tooth map is applied to the same simulation, verifying the effectiveness of the proposed hybrid system. Finally, the complex coupled map is applied to the practical circuit producing RN which passes the NIST test suite smoothly. The hybrid system has the following advantages: firstly, the introduction of the analog memristor is able to over-come the dynamical degradation in a digital system, avoiding the limited word length effect essentially. Secondly, the least analog device alleviates the sensibility to parameters and the restriction on bit rate in analog systems, ensuring that the hybrid system is robust. Thirdly, the system structure can be easily integrated into a relevant system. By designing the circuits of the system, the field programmable logic gate array of digital part can be used to realize chaotic map while the single memristor acts as a feedback to the digital part. The experimental results show that the novel hybrid system is insensitive to the variations of circuit parameters and the produced RN is of great

  20. Creating a transducer electronic datasheet using I2C serial EEPROM memory and PIC32-based microcontroller development board

    Science.gov (United States)

    Croitoru, Bogdan; Tulbure, Adrian; Abrudean, Mihail; Secara, Mihai

    2015-02-01

    The present paper describes a software method for creating / managing one type of Transducer Electronic Datasheet (TEDS) according to IEEE 1451.4 standard in order to develop a prototype of smart multi-sensor platform (with up to ten different analog sensors simultaneously connected) with Plug and Play capabilities over ETHERNET and Wi-Fi. In the experiments were used: one analog temperature sensor, one analog light sensor, one PIC32-based microcontroller development board with analog and digital I/O ports and other computing resources, one 24LC256 I2C (Inter Integrated Circuit standard) serial Electrically Erasable Programmable Read Only Memory (EEPROM) memory with 32KB available space and 3 bytes internal buffer for page writes (1 byte for data and 2 bytes for address). It was developed a prototype algorithm for writing and reading TEDS information to / from I2C EEPROM memories using the standard C language (up to ten different TEDS blocks coexisting in the same EEPROM device at once). The algorithm is able to write and read one type of TEDS: transducer information with standard TEDS content. A second software application, written in VB.NET platform, was developed in order to access the EEPROM sensor information from a computer through a serial interface (USB).

  1. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    Science.gov (United States)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  2. 基于五光谱TDICCD的模拟信号发生器设计%Design of Analog Signal Generator Based on Five-spectral TDICCD

    Institute of Scientific and Technical Information of China (English)

    王旭; 刘正敏; 樊奔; 何志宽

    2014-01-01

    首先介绍了延迟积分电荷耦合器件(TDICCD)的基本原理,并根据某高分辨率多光谱航天相机定制的一款五光谱TDICCD的输出特性,设计了一种基于五光谱TDICCD的模拟信号发生器,给出了该模拟信号发生器的系统组成,包括图像处理电路、数模转换电路和模拟信号滤波电路。最后通过测试验证了该系统的信号波形、信号噪声和输出图像都满足设计要求,其输出的16通道模拟五光谱TDICCD信号频率可以达到20MHz,噪声控制在10mV以内,具有高精度、多通道和低噪声等特点。目前该模拟信号发生器已成功应用到新一代高分辨率多光谱TDICCD相机成像电路系统的研制中。%The paper introduces the principle of TDICCD firstly, and then designs an analog signal generator based on five-spectral TDICCD, according to the output characteristic of five-spectral TDICCD customized by a high resolution multi-spectral TDICCD camera. Analog signal generator consists of image processing circuit, digital-to-analog conversion circuit and analog signal filter circuit. Finally, verified by the system of signal, signal to noise ratio and the output images meet the design requirements. The system has the characteristics of high precision, multi-channel and low noise, whose 16 channels can analog five-spectral TDICCD signal frequency up to 20MHz and the signal to noise ratio is less than 10mV. The analog signal generator has been successfully applied in the development of imaging circuit system of the new generation high resolution multi-spectral TDICCD camera.

  3. Time-stretch analog-to-digital conversion with a photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    TENG Yun; YU Chong-xiu; YUAN Jin-hui; CHEN Jing-xuan; JIN Cang; XU Qian

    2011-01-01

    All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-todigital (A/D) conversion system through generating low noise, linear chirp distribution and fiat super-continuum (SC).Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.

  4. Graph-based linear scaling electronic structure theory.

    Science.gov (United States)

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations. PMID:27334148

  5. Graph-based linear scaling electronic structure theory

    CERN Document Server

    Niklasson, Anders M N; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Djidjev, Hristo

    2016-01-01

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  6. Firing Efficiency of Cluster Bomb Based on Method of Analogy%基于类比法的子母弹射击效率评定研究

    Institute of Scientific and Technical Information of China (English)

    殷培江; 李君; 张立生

    2012-01-01

    The method of analogy is a familiar logistic organon used in the mess of research domain, but it's rarely used in evaluation martial category. The firing efficiency of cluster bomb based on method of analogy have many advantage, for instance it is briefness, practicability, economy, and convenient for largely reckon. The paper builds the evaluation index system of the firing efficiency with cluster bomb, we found the comparable from cluster bomb to another ammunition in classical model, build the mathematics model based on method of analogy in the next place. The paper serve as an example of several emblematic targets, and display status of firing efficiency with several emblematic targets used the radar chart, we have compared the conclusions with method of analogy and emulation mode, validate the firing efficiency of cluster bomb based on method of analogy is feasible.%类比法是一种较为常见的逻辑推理方法,在各研究领域均有应用,但在军事评估领域却应用甚少.基于类比法的子母弹射击效率评定具有简单、实用、经济、便于大量计算等优点.根据子母弹与传统弹药在射击效率评定过程中的相似性,在经典毁伤评估模型的基础上,通过类比法建立字母弹的射击效率评定模型.列举了几种典型目标,并以子母弹的类比法模型进行射击效率评定,最后将类比法所得结论与目标仿真法的结论反映在雷达图上,通过数据比对验证了类比法对子母弹射击效率评定的可行性.

  7. Synaptic devices based on purely electronic memristors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruobing [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Li, Jun; Zhuge, Fei, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Fu, Bing; Li, Kang [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-01-04

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  8. Synaptic devices based on purely electronic memristors

    Science.gov (United States)

    Pan, Ruobing; Li, Jun; Zhuge, Fei; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao; Fu, Bing; Li, Kang

    2016-01-01

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  9. 基于Aspen Plus的克劳斯硫回收过程模拟%Analog of ClausSulfur Recovery Process Based on Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    林发现; 丁玲; 陈延林; 李繁荣; 师慧灵; 邹隐文

    2011-01-01

    Adopting Aspen Plus process analog calculation software,process flow for Claus sulfur recovery was simulated,simulated data was good coincident with the data demarcated by analog software used specially for sulfur recovery;on that basis,author has studied the influence of Claus key data on process flow by use of Aspen Plus modular analysis function,its conclusion was coincident with practical production process;result indicates that it has optimizing role for both design calculation and production operation based on the Claus sulfur recovery process analog.%采用Aspen P lus工艺模拟计算软件模拟了克劳斯硫回收工艺过程,模拟数据与硫回收专用模拟软件的标定数据吻合较好;在此基础上,利用Aspen P lus模块化分析功能,研究了克劳斯工艺的关键数据对工艺过程的影响,其结论与实际生产过程相符合;结果表明,基于Aspen P lus的克劳斯硫回收过程模拟,对设计计算和生产操作均具有优化作用。

  10. Using Electronic Resources to Support Problem-Based Learning

    Science.gov (United States)

    Chang, Chen-Chi; Jong, Ay; Huang, Fu-Chang

    2012-01-01

    Students acquire skills in problem solving and critical thinking through the process as well as team work on problem-based learning courses. Many courses have started to involve the online learning environment and integrate these courses with electronic resources. Teachers use electronic resources in their classes. To overcome the problem of the…

  11. A generic converter for experimentation based power electronics learning

    OpenAIRE

    Leite, V; Barbosa, José; Teixeira, H.; Araújo, R.

    2005-01-01

    This paper presents a low cost, modular, configurable and fully protected education tool based on a generic electronic converter to be used by students, providing them with skills regarding power electronics and converters, and enabling them to learn from experience the most important issues concerning DC and AC electric drives.

  12. Selection of the optimum combination of responses for Wave Buoy Analogy - An approach based on local sensitivity analysis

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    One method to estimate the wave spectrum onboard ships is to use measured ship responses. In this method, known also as Wave Buoy Analogy, amongst various responses that are available from sensor measurements, a couple of responses (at least three) are usually utilized. Selec-tion of the best...... combination of ship responses is important. Optimally, this selection should not be implemented manually in onboard applications. Therefore, availability of an automatic response selection procedure would be a great advantage for decision support. In this paper, a local sensitivity analysis is applied to...

  13. Selection of the optimum combination of responses for Wave Buoy Analogy - An approach based on local sensitivity analysis

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2016-01-01

    One method to estimate the wave spectrum onboard ships is to use measured ship responses. In this method, known also as Wave Buoy Analogy, amongst various responses that are available from sensor measurements, a couple of responses (at least three) are usually utilized. Selec-tion of the best...... combination of ship responses is important. Optimally, this selection should not be implemented manually in onboard applications. Therefore, availability of an automatic response selection procedure would be a great advantage for decision support. In this paper, a local sensitivity analysis is applied...

  14. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  15. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    Science.gov (United States)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper. PMID:24689606

  16. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system

    Science.gov (United States)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  17. Electronic Commerce Logistics Network Optimization Based on Swarm Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Yabing Jiao

    2013-09-01

    Full Text Available This article establish an efficient electronic commerce logistics operation system to reduce distribution costs and build a logistics network operation model based on around the B2C electronic commerce enterprise logistics network operation system. B2C electronic commerce transactions features in the enterprise network platform. To solve the NP-hard problem this article use hybrid ant colony algorithm, particle swarm algorithm and group swarm intelligence algorithm to get a best solution. According to the intelligent algorithm, design of electronic commerce logistics network optimization system, enter the national 22 electronic commerce logistics network for validation. Through the experiment to verify the optimized logistics cost greatly decreased. This research can help B2C electronic commerce enterprise logistics network to optimize decision-making under the premise of ensuring the interests of consumers and service levels also can be an effective way for enterprises to improve the efficiency of logistics services and reduce operation costs

  18. A Low-cost 4 Bit, 10 Giga-samples-per-second Analog-to-digital Converter Printed Circuit Board Assembly for FPGA-based Backends

    Science.gov (United States)

    Jiang, Homin; Yu, Chen-Yu; Kubo, Derek; Chen, Ming-Tang; Guzzino, Kim

    2016-11-01

    In this study, a 4 bit, 10 giga-samples-per-second analog-to-digital converter (ADC) printed circuit board assembly (PCBA) was designed, manufactured, and characterized for digitizing radio telescopes. For this purpose, an Adsantec ANST7120A-KMA flash ADC chip was used. Together with the field-programmable gate array platform, developed by the Collaboration for Astronomy Signal Processing and Electronics Research community, the PCBA enables data acquisition with a wide bandwidth and simplifies the intermediate frequency section. In the current version, the PCBA and the chip exhibit an analog bandwidth of 10 GHz (3 dB loss) and 20 GHz, respectively, which facilitates second, third, and even fourth Nyquist sampling. The following average performance parameters were obtained from the first and second Nyquist zones of the three boards: a spurious-free dynamic range of 31.35/30.45 dB, a signal-to-noise and distortion ratio of 22.95/21.83 dB, and an effective number of bits of 3.65/3.43, respectively.

  19. A Novel Calibrator for Electronic Transformers Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Baoxiang PAN

    2013-01-01

    Full Text Available It is necessary for electronic transformer to make calibration before putting it into practice. To solve the problems in actual calibration process, a novel electronic transformer calibrator is designed. In principle, this system adopts both the direct method and the difference method, which are two popular methods for electronic transformer calibration, by this way the application of the system is extended with its reliability improved. In the system design, based on virtual instrument technology, LabVIEW and WinPCap toolkit are used to develop the application software, and it is able to calibrate those electronic transformers following the standard of IEC 61850. In the calculation of ratio and phase error based on fast Fourier transform, a new window function is introduced, and thus the accuracy of calibration, influenced by the frequency vibration, is improved. This research provides theoretic support and practical reference to the development of intelligent calibrator for electronic transformers.

  20. 3 dimensional ionospheric electron density reconstruction based on GPS measurements

    Science.gov (United States)

    Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N.

    When radio waves as sended by the naviagtion system GPS are passing through the ionosphere they are subject to delays in phase, travel time and polarisation which is an effect of the free electrons. The measured integrated value of Total Electron Content can be utilised for three-dimensional reconstruction of electron density patterns in the ionosphere. Here a tomographic approach is represented. Scince the distribution of data is very sparse and patchy we decided for an algebraic iterative algorithm. The ground based GPS data collected by IGS receivers can be combined by space based GPS of radio limb sounding, incoherent scatter radar and ionosondes data. Hereby, radio occultation data improve beside the amount of available data especially the vertical resolution of electron density distribution. Ionosonde peack electron densities are taken as stop criteria determination for iteration. Reconstructed ionospheric scenarios and validations of the system by independent measurements are presented.

  1. Chemical Functionalization Effects on Cubane-Based Chain Electronic Transport

    Directory of Open Access Journals (Sweden)

    Konstantin P. Katin

    2015-01-01

    Full Text Available We report electronic structure calculations in chemically functionalized linear cubane-based chains. The effects of covalent chemical attachments on chain transport properties are examined with nonorthogonal tight-binding model (NTBM considering Landauer-Büttiker formalism. The covalent bonding of even a single-type functional group is shown to considerably alter the conductance of the chain. For similar radical doping density, electronic characteristics are found to range from insulator to narrow-gap semiconductor depending on the nature of the covalent bonding. Therefore it has become possible to tune electronic properties of the cubane-based one-dimensional oligomers by the functionalization for nanoelectronic applications.

  2. 基于GEP的模拟电路系统辨识技术%System Identification of Analog Circuits Based on Gene Expression Programming

    Institute of Scientific and Technical Information of China (English)

    王俊亚; 陈棣湘; 潘孟春

    2011-01-01

    Identifying the mathematical model of the analog circuit through the IO data is the key technology in the model - based fast equipment test method. According to the electrical characteristics of the analog circuit system, we designed R-square-based fitness function, and the selection strategy combined with elitism and roulette. The establishment method of analog circuit system identification based on gene expression programming (GEP) was constituted with the partially mapped crossover operator, the heuristic mutation operator, and the sequence insertion operator. Compared with the MATLAB system identification toolbox, this method can identify not only the system parameter, but also the structure. If you set the suitable identification precision, we can get the theoretical system model via the SISO and MIMO tests.%根据模拟电路系统的输入输出数据辨识,其数学模型是基于模型的装备快速测试方法中的关键技术之一.针对模拟电路系统的特点,设计了基于R-square的适应度函数、基于精英主义和轮盘赌算法的选择策略,采用部分映射、启发式变异算子,提出了一种基于基因表达式编程算法的模拟电路系统辨识方法并进行了系统实现.与MATLAB系统辨识工具箱对比,该方法不仅能够辨识电路系统的参数,而且还能辨识系统的结构.实验表明,通过设置适当的辨识精度,可以得到与理论模型一致的系统模型.

  3. Digital-Analog Converter Based on Pulse Width Modulated Force Feedback in Sigma-Delta Accelerometer%Σ△微加速度计中基于脉宽调制的力反馈回路

    Institute of Scientific and Technical Information of China (English)

    陶呈瑶; 邓康发

    2013-01-01

    针对微加速度计接口电路的Sigma-Delta(撞驻)数字反馈系统,提出了一种基于脉宽调制( PWM)的力反馈回路:利用模拟低通滤波器将PWM波解调成模拟输出信号,具有滤波和数模转换功能。首先建立微加速度计撞驻闭环反馈系统的Simulink模型并进行了系统级仿真。之后采用Filter Solutions滤波器设计软件确定三阶低通巴特沃斯滤波器,并采用Pspice仿真软件进行电路级仿真。最后将制作的PCB版电路进行测试:PWM波通过力反馈回路能还原成高保真度的模拟信号,输出信号和输入信号的频率相对误差小于0.36%,等效DAC分辨率为8 bit。试验表明,此方案结构简单、成本低,能以较低电路复杂度实现高精度的模拟信号输出。%Aiming at the Sigma-Delta(Σ△) digital force feedback system in Mcro-accelerometer interface circuit,this paper presents a force feedback loop based on Pulse Width Modulator(PWM). The PWM wave can be translated into output analog singal using low pass filter,indicating that this circuit has a dual function of filter and digital to analog conversion( DAC) . Firstly,Σ△closed loop feedback system was simulated in Simulink model for system level simulation,then Filter Solutions software was used for designing three-order Butterworth low pass filter,and Pspice software was adopted for circuit level simulation. Finally electronic circuit was made by PCB and then tested. Through the force back loop,the wave can be successfully translate to undistorted analog signal,and the maximun relative error is below 0. 36% compared to the input signal,the equivalent DAC resolution is 8 bit. This experiment shows that this method has the advantages of simple structure,low cost,and easy way to produce high precise output analog signal.

  4. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  5. Controlled cooling of an electronic system based on projected conditions

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  6. Analog to Digital Conversion in Physical Measurements

    OpenAIRE

    Kapitaniak, T.; Zyczkowski, K.; Feudel, U.; Grebogi, C.

    1999-01-01

    There exist measuring devices where an analog input is converted into a digital output. Such converters can have a nonlinear internal dynamics. We show how measurements with such converting devices can be understood using concepts from symbolic dynamics. Our approach is based on a nonlinear one-to-one mapping between the analog input and the digital output of the device. We analyze the Bernoulli shift and the tent map which are realized in specific analog/digital converters. Furthermore, we d...

  7. Understanding the link between circumferential dikes and eruptive fissures around calderas based on numerical and analog models

    Science.gov (United States)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Acocella, Valerio

    2016-06-01

    Active calderas are seldom associated with circumferential eruptive fissures, but eroded magmatic complexes reveal widespread circumferential dikes. This suggests that, while the conditions to emplace circumferential dikes are easily met, mechanisms must prevent them from reaching the surface. We explain this discrepancy with experiments of air injection into gelatin shaped as a volcano with caldera. Analog dikes show variable deflection, depending on the competition between overpressure, Pe, and topographic unloading, Pl; when Pl/Pe = 4.8-5.3, the dikes propagate orthogonal to the least compressive stress. Due to the unloading, they become circumferential and stall below the caldera rim; buoyancy is fundamental for the further rise and circumferential fissure development. Numerical models quantitatively constrain the stress orientation within the gelatin, explaining the observed circumferential dikes. Our results explain how dikes propagate below the rim of felsic and mafic calderas, but only in the latter they are prone to feed circumferential fissures.

  8. Multilateral Collaborations in Analog Research

    Science.gov (United States)

    Cromwell, R. l.

    2016-01-01

    International collaborations in studies utilizing ground-based space flight analogs are an effective means for answering research questions common to participating agencies. These collaborations bring together worldwide experts to solve important space research questions. By collaborating unnecessary duplication of science is reduced, and the efficiency of analog use is improved. These studies also share resources among agencies for cost effective solutions to study implementation. Recently, NASA has engaged in collaborations with international partners at a variety of analog sites. The NASA Human Exploration Research Analog (HERA) is currently hosting investigator studies from NASA and from the German Space Agency (DLR). These isolation studies will answer questions in the areas of team cohesion, sleep and circadian rhythms, and neurobehavioral correlates to function. Planning for the next HERA campaign is underway as proposal selections are being made from the International Life Sciences Research Announcement (ILSRA). Studies selected from the ILSRA will be conducted across 4 HERA missions in 2017. NASA is planning collaborative studies with DLR at the :envihab facility in Cologne, Germany. Investigations were recently selected to study the effects of 0.5% CO2 exposure over 30 days of bed rest. These studies will help to determine the fidelity of this ground-based analog for studying the visual impairment intracranial pressure syndrome. NASA is also planning a multilateral collaboration at :envihab with DLR and the European Space Agency (ESA) to examine artificial gravity as a countermeasure to mitigate the effects of 60 days of bed rest. NASA is also considering collaborations with the Russian Institute for Biomedical Problems (IBMP) in studies that will utilize their Ground-based Experimental Facility (NEK). The NEK is comprised of 4 interconnected modules and a Martian surface simulator. This isolation analog can support 3 -10 crew members for long duration

  9. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  10. Compact electron gun based on secondary emission through ionic bombardment.

    Science.gov (United States)

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory.

  11. Insulin analogs and cancer

    Directory of Open Access Journals (Sweden)

    Laura eSciacca

    2012-02-01

    Full Text Available Today, insulin analogs are used in millions of diabetic patients. Insulin analogs have been developed to achieve more physiological insulin replacement in terms of time course of the effect. Modifications in the amino acid sequence of the insulin molecule change the pharmacokinetics and pharmacodynamics of the analogs in respect to human insulin. However, these changes can also modify the molecular and biological effects of the analogs. The rapid-acting insulin analogs, lispro, aspart and glulisine, have a rapid onset and shorter duration of action. The long-acting insulin analogs glargine and detemir have a protracted duration of action and a relatively smooth serum concentration profile. Insulin and its analogs may function as growth factors and therefore have a theoretical potential to promote tumor proliferation. A major question is whether analogs have an increased mitogenic activity in respect to insulin. These ligands can promote cell proliferation through many mechanisms like the prolonged stimulation of the insulin receptor, stimulation of the IGF-1 receptor (IGF-1R, prevalent activation of the ERK rather than the AKT intracellular post-receptor pathways. Studies on in vitro models indicate that short-acting analogs elicit molecular and biological effects that are similar to those of insulin. In contrast, long-acting analogs behave differently. Although not all data are homogeneous, both glargine and detemir have been found to have a decreased binding to IR but an increased binding to IGF-1R, a prevalent activation of the ERK pathway, and an increased mitogenic effect in respect to insulin. Recent retrospective epidemiological clinical studies have suggested that treatment with long-acting analogs (specifically glargine may increase the relative risk for cancer. Results are controversial and methodologically weak. Therefore prospective clinical studies are needed to evaluate the possible tumor growth-promoting effects of these insulin

  12. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  13. Readout electronic for multichannel detectors

    CERN Document Server

    Kulibaba, V I; Naumov, S V

    2001-01-01

    Readout electronics based on the 128-channel chip 'Viking' (IDE AS inc., Norway) is considered. The chip 'Viking' integrates 128 low noise charge-sensitive preamplifiers with tunable CR-(RC) sup 2 shapers,analog memory and multiplexed readout to one output. All modules of readout electronics were designed and produced in KIPT taking into account the published recommendations of IDE AS inc.

  14. Priming analogical reasoning with false memories.

    Science.gov (United States)

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems. PMID:25784574

  15. Demonstration of an online tool to assist managed care formulary evidence-based decision making: meta-analysis of topical prostaglandin analog efficacy

    Directory of Open Access Journals (Sweden)

    Kymes SM

    2011-07-01

    Full Text Available Steven M Kymes1, Caroline Burk2, Todd Feinman3, Julia M Williams4, David A Hollander41Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA; 2Health Outcomes, Allergan Inc, Irvine, CA, USA; 3Doctor Evidence LLC, Santa Monica, CA, USA; 4Global Medical Affairs, Allergan Inc, Irvine, CA, USABackground: The purpose of this paper was to demonstrate the use of an online service for conducting a systematic review and meta-analysis of the efficacy of topical prostaglandin analogs in reducing intraocular pressure (IOP in glaucoma and ocular hypertension.Methods: An online service provider (Doctor Evidence reviewed and extracted data from the peer-reviewed literature through September 2009. Randomized controlled studies of at least three months' duration assessing at least two prostaglandin analogs in patients with primary open-angle glaucoma, ocular hypertension, or normal-tension glaucoma were included. The primary endpoint was mean IOP. Summary estimates were created using random-effects models. The Q Chi-square test was used to assess statistical heterogeneity.Results: Sixteen studies satisfied the inclusion criteria and were analyzed. On average, greater IOP-lowering was seen with bimatoprost relative to latanoprost (1 mmHg, P = 0.025 and travoprost (0.8 mmHg, P = 0.033 based on mean IOP after 12–26 weeks of treatment. No statistical difference was observed in IOP-lowering between latanoprost and travoprost (P = 0.841. Findings were similar to previously published meta-analyses of topical prostaglandin analogs.Conclusion: Systematic reviews relying on meta-analytic techniques to create summary statistics are considered to be the "gold standard" for synthesizing evidence to support clinical decision-making. However, the process is time-consuming, labor-intensive, and outside the capability of most formulary managers. We have demonstrated the effectiveness of a commercial service that facilitates

  16. RFID-based Electronic Identity Security Cloud Platform in Cyberspace

    OpenAIRE

    Bing Chen; Chengxiang Tan; Bo Jin; Xiang Zou; Yuebo Dai

    2012-01-01

    With the moving development of networks, especially Internet of Things, electronic identity administration in cyberspace is becoming more and more important. And personal identity management in cyberspace associated with individuals in reality has been one significant and urgent task for the further development of information construction in China. So this paper presents a RFID-based electronic identity security cloud platform in cyberspace to implement an efficient security management of cyb...

  17. Graphene Electronic Device Based Biosensors and Chemical Sensors

    OpenAIRE

    Jiang, Shan

    2014-01-01

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first...

  18. Secure electronic commerce communication system based on CA

    Science.gov (United States)

    Chen, Deyun; Zhang, Junfeng; Pei, Shujun

    2001-07-01

    In this paper, we introduce the situation of electronic commercial security, then we analyze the working process and security for SSL protocol. At last, we propose a secure electronic commerce communication system based on CA. The system provide secure services such as encryption, integer, peer authentication and non-repudiation for application layer communication software of browser clients' and web server. The system can implement automatic allocation and united management of key through setting up the CA in the network.

  19. COMPUTER OF TESTING ON DISCIPLINE "BASES ELECTRICAL ENGINEERS AND ELECTRONICS"

    OpenAIRE

    Zarzhetskaja, N.; Noskov, M.

    2010-01-01

    In the given work application of program Electronics Workbench for teaching a rate is described: « Bases electrical engineers and electronics ». It is offered to use the program for carrying out of laboratory works and testing's of quality of knowledge of students. This approach raises quality of mastering of material students. It is the tool for independent check of results. Use of the program fixes the basic skills of calculations of electric circuits. In work the block from six laboratory ...

  20. A Power Conditioning Stage Based on Analog-Circuit MPPT Control and a Superbuck Converter for Thermoelectric Generators in Spacecraft Power Systems

    Science.gov (United States)

    Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan

    2014-06-01

    A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.

  1. A low-power inverter-based CMOS level-crossing analog-to-digital converter for low-frequency biosignal sensing

    Science.gov (United States)

    Tanaka, Suiki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Low-power analog-to-digital conversion is a key technique for power-limited biomedical applications such as power-limited continuous glucose monitoring. However, a conventional uniform-sampling analog-to-digital converter (ADC) is not suitable for nonuniform biosignals. A level-crossing ADC (LC-ADC) is a promising candidate for low-power biosignal processing because of its event-driven properties. The LC-ADC acquires data by level-crossing sampling. When an input signal crosses the threshold level, the LC-ADC samples the signal. The conventional LC-ADC employs a power-hungry comparator. In this paper, we present a low-power inverter-based LC-ADC. By adjusting the threshold level of the inverter, it can be used as a threshold-fixed window comparator. By using the inverter as an alternative to a comparator, power consumption can be markedly reduced. As a result, the total power consumption is successfully reduced by 90% of that of previous LC-ADC. The inverter-based LC-ADC was found to be very suitable for use in power-limited biomedical devices.

  2. Analog circuit diagnosis with fault dictionary method based on DAGSVC*%基于DAGSVC的模拟电路故障字典法

    Institute of Scientific and Technical Information of China (English)

    姜媛媛; 韩振云; 崔江

    2011-01-01

    Focusing on the design of problem of fault diagnosis of analog circuit and classifier with support vector machines(SVMs) ,a new method of fault dictionary based on directed acyclic graph SVMs classifier (DAGSVC) is presented, and a specification for estimating the average test complexity of the support vector machine classifier (SVC) is also compared. Two actual analog filter are tested to validate the proposed method,whose performance is proven to be superior to the traditional methods, such as “1-v-r” SVC and “l-v-1” SVC. The proposed method, being proper to perform analog circuit diagnosis and faults isolation,could also achieve almost the same diagnosis rate as the clustering binary tree SVC,whose test structure is not unique.%针对模拟电路的故障诊断和支持向量机分类器的设计问题,讨论了一种基于有向无环图支持向量机分类器(DAGSVC)的故障字典新方法,并比较了几种支持向量机故障分类器的平均测试复杂度指标.通过对2个实际模拟滤波器的实际测试和验证表明:该方法性能要优于"1-v-r"SVC,"1-v-1"SVC等常规的故障分类器,并和聚类二叉树SVC的诊断性能接近,适合模拟电路的故障分类和诊断.

  3. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon

    Indian Academy of Sciences (India)

    B Sivaraman

    2016-01-01

    Carbon dioxide (CO2) and carbon disulphide (CS2) molecular ice mixture was prepared under low temperature (85 K) astrochemical conditions. The icy mixture irradiated with keV electrons simulates the irradiation environment experienced by icy satellites and Interstellar Icy Mantles (IIM). Upon electron irradiation the chemical composition was found to have altered and the new products from irradiation were found to be carbonyl sulphide (OCS), sulphur dioxide (SO2), ozone (O3), carbon trioxide (CO3), sulphur trioxide (SO3), carbon subsulphide (C3S2) and carbon monoxide (CO). Results obtained confirm the presence of CS2 molecules in lunar south-pole probed by the Moon Impact Probe (MIP).

  4. Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity.

    Science.gov (United States)

    André, Sonia; Washington, Shannon K; Darby, Emily; Vega, Marvin M; Filip, Ari D; Ash, Nathaniel S; Muzikar, Katy A; Piesse, Christophe; Foulon, Thierry; O'Leary, Daniel J; Ladram, Ali

    2015-10-16

    Short antimicrobial peptides represent attractive compounds for the development of new antibiotic agents. Previously, we identified an ultrashort hydrophobic and phenylalanine-rich peptide, called temporin-SHf, representing the smallest natural amphibian antimicrobial peptide known to date. Here, we report on the first structure-activity relationship study of this peptide. A series of temporin-SHf derivatives containing insertion of a basic arginine residue as well as residues containing neutral hydrophilic (serine and α-hydroxymethylserine) and hydrophobic (α-methyl phenylalanine and p-(t)butyl phenylalanine) groups were designed to improve the antimicrobial activity, and their α-helical structure was investigated by circular dichroism and nuclear magnetic resonance spectroscopy. Three compounds were found to display higher antimicrobial activity with the ability to disrupt (permeabilization/depolarization) the bacterial membrane while retaining the nontoxic character of the parent peptide toward rat erythrocytes and human cells (THP-1 derived macrophages and HEK-293). Antimicrobial assays were carried out to explore the influence of serum and physiological salt concentration on peptide activity. Analogs containing d-amino acid residues were also tested. Our study revealed that [p-(t)BuF(2), R(5)]SHf is an attractive ultrashort candidate that is highly potent (bactericidal) against Gram-positive bacteria (including multidrug resistant S. aureus) and against a wider range of clinically interesting Gram-negative bacteria than temporin-SHf, and also active at physiological salt concentrations and in 30% serum. PMID:26181487

  5. Regioselective enzymatic undecylenoylation of 8-chloroadenosine and its analogs with biomass-based 2-methyltetrahydrofuran as solvent.

    Science.gov (United States)

    Gao, Wen-Li; Liu, Huan; Li, Ning; Zong, Min-Hua

    2012-08-01

    2-Methyltetrahydrofuran (MeTHF), a biomass-derived compound, is a promising medium for biocatalysis and organometallic reactions. The regioselective acylation of 8-chloroadenosine (8-Cl-Ado) and its analogs was carried out in MeTHF with immobilized Penicillium expansum lipase. The lipase displayed more than twofold higher catalytic activity and much better thermostability in MeTHF than in other organic solvents and co-solvent systems. The optimum reaction medium, enzyme dosage, molar ratio of viny ester to nucleoside and reaction temperature for the enzymatic acylation of 8-Cl-Ado were MeTHF, 25 U/mL, 7.5 and 35 °C, respectively, under which the desirable 5'-O-undecylenoyl-8-Cl-Ado was obtained with a yield of 95% and a regioselectivity of >99% in 3 h. In addition, the lipase catalyzed regioselective undecylenoylation of other purine nucleosides, producing 5'-undecylenic acid esters with moderate to high yields (63-94%) and excellent 5'-regioselectivities (94->99%). Use of biomass-derived solvents might open up novel opportunities for sustainable and greener biocatalytic processes. PMID:22705510

  6. Mineral formation on metallic copper in a 'Future repository site environment': Textural considerations based on natural analogs

    International Nuclear Information System (INIS)

    Copper mineral formation in the Swedish 'repository site environment' is discussed. Special attention is given to ore mineral textures (=the spatial relation among minerals), with examples given from nature. It is concluded: By analogy with observations from natural occurrences, an initial coating of Cu-oxide on the canister surface (because of entrapped air during construction) will probably not hinder a later sulphidation process. Early formation of Cu-sulphides on the canister surface may be accompanied by formation of CuFe-sulphides. The latter phase(s) may form through replacement of the Cu-sulphides or, alternatively, by means of reaction between dissolved copper and fine-grained iron sulphide (pyrite) in the surrounding bentonite. Should for some reason the bentonite barrier fail and the conditions become strongly oxidizing, we can expect crustifications and rhythmic growths of Cu(II)-phases, like malachite (Cu2(OH)2CO3). A presence of Fe2 in the clay minerals making up the bentonite might prove to have an adverse effect on the canister stability, since, in this case, the bentonite might be expected to act as a sink for dissolved copper. The mode of mineral growth along the copper - bentonite interface remains an open question

  7. Ground Base Skylab Electron Beam Welds in Tantalum

    Science.gov (United States)

    2004-01-01

    Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.

  8. Electronic Forms-Based Computing for Evidentiary Analysis

    Directory of Open Access Journals (Sweden)

    Andy Luse

    2009-09-01

    Full Text Available The paperwork associated with evidentiary collection and analysis is a highly repetitive and time-consuming process which often involves duplication of work and can frequently result in documentary errors. Electronic entry of evidencerelated information can facilitate greater accuracy and less time spent on data entry. This manuscript describes a general framework for the implementation of an electronic tablet-based system for evidentiary processing. This framework is then utilized in the design and implementation of an electronic tablet-based evidentiary input prototype system developed for use by forensic laboratories which serves as a verification of the proposed framework. The manuscript concludes with a discussion of implications and recommendations for the implementation and use of tablet-based computing for evidence analysis.

  9. Several Forms of Fuzzy Analogical Reasoning

    OpenAIRE

    Bouchon-Meunier, B; Delechamp, J.; Marsala, C.; Rifqi, M.

    1997-01-01

    We present a general framework representing analogy, on the basis of a link between variables and measures of comparison between values of variables. This analogical scheme is proven to represent a common description of several forms of reasoning used in fuzzy control or in the management of knowledge-based systems, such as deductive reasoning, inductive reasoning or prototypical reasoning, gradual reasoning.

  10. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  11. Analog pulse processor

    Science.gov (United States)

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  12. Hydraulic Capacitor Analogy

    Science.gov (United States)

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  13. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2002-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  14. Digital to Analog Converter

    NARCIS (Netherlands)

    Westra, Jan R.; Annema, Anne J.; Boom, van den Jeroen M.; Dijkmans, Eise C.

    2006-01-01

    A digital to analog converter (DAC) for converting a digital signal (DS) having a maximum voltage range which corresponds to a first supply voltage (UL) into an analog signal (UOUT) having a maximum voltage range which corresponds to a second supply voltage (UH). The first supply voltage (UL) is off

  15. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling is...

  16. Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation.

    Science.gov (United States)

    Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel

    2009-08-28

    We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603

  17. Estimation of channel mismatches in time-interleaved analog-to-digital converters based on fractional delay and sine curve fitting.

    Science.gov (United States)

    Guo, Lianping; Tian, Shulin; Jiang, Jun

    2015-03-01

    This paper proposes an algorithm to estimate the channel mismatches in time-interleaved analog-to-digital converter (TIADC) based on fractional delay (FD) and sine curve fitting. Choose one channel as the reference channel and apply FD to the output samples of reference channel to obtain the ideal samples of non-reference channels with no mismatches. Based on least square method, the sine curves are adopted to fit the ideal and the actual samples of non-reference channels, and then the mismatch parameters can be estimated by comparing the ideal sine curves and the actual ones. The principle of this algorithm is simple and easily understood. Moreover, its implementation needs no extra circuits, lowering the hardware cost. Simulation results show that the estimation accuracy of this algorithm can be controlled within 2%. Finally, the practicability of this algorithm is verified by the measurement results of channel mismatch errors of a two-channel TIADC prototype. PMID:25832264

  18. Cyclic pentapeptide analogs based on endomorphin-2 structure: cyclization studies using liquid chromatography combined with on-line mass spectrometry and tandem mass spectrometry.

    Science.gov (United States)

    Piekielna, Justyna; Kluczyk, Alicja; Perlikowska, Renata; Janecka, Anna

    2014-05-01

    The cyclization of linear analogs based on endomorphin-2 structure, Tyr/Dmt-d-Lys-Phe-Phe-Asp-NH2 and Tyr/Dmt-d-Cys-Phe-Phe-Cys-NH2 (where Dmt=2',6'-dimethyltyrosine), resulting in obtaining lactam or disulfide derivatives, was studied using liquid chromatography combined with on-line mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). In case of cyclization via an amide bond, the formation of the cyclic monomers, cyclic but not linear dimers and even traces of cyclic trimers was observed. Disulfide bridge containing peptides was obtained by the solid-phase synthesis of the linear sequences, followed by either in-solution or on-resin cyclization. In case of the in-solution cyclization, the expected cyclic monomers were the only products. When oxidation of the cysteine residues was performed when the peptides were still on the resin, cyclic monomer and two cyclodimers, parallel and antiparallel, were found. Digestion of the isolated cyclodimers with α-chymotrypsin allowed for their unambiguous identification. The comparison of the cyclic monomer/dimer ratios for analogs with Tyr versus Dmt in position 1 revealed that the presence of the exocyclic Dmt favored formation of the cyclic monomer, most likely due to the increased steric bulk of this amino acid side-chain as compared with Tyr. PMID:24525024

  19. Cyclic pentapeptide analogs based on endomorphin-2 structure: cyclization studies using liquid chromatography combined with on-line mass spectrometry and tandem mass spectrometry.

    Science.gov (United States)

    Piekielna, Justyna; Kluczyk, Alicja; Perlikowska, Renata; Janecka, Anna

    2014-05-01

    The cyclization of linear analogs based on endomorphin-2 structure, Tyr/Dmt-d-Lys-Phe-Phe-Asp-NH2 and Tyr/Dmt-d-Cys-Phe-Phe-Cys-NH2 (where Dmt=2',6'-dimethyltyrosine), resulting in obtaining lactam or disulfide derivatives, was studied using liquid chromatography combined with on-line mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS). In case of cyclization via an amide bond, the formation of the cyclic monomers, cyclic but not linear dimers and even traces of cyclic trimers was observed. Disulfide bridge containing peptides was obtained by the solid-phase synthesis of the linear sequences, followed by either in-solution or on-resin cyclization. In case of the in-solution cyclization, the expected cyclic monomers were the only products. When oxidation of the cysteine residues was performed when the peptides were still on the resin, cyclic monomer and two cyclodimers, parallel and antiparallel, were found. Digestion of the isolated cyclodimers with α-chymotrypsin allowed for their unambiguous identification. The comparison of the cyclic monomer/dimer ratios for analogs with Tyr versus Dmt in position 1 revealed that the presence of the exocyclic Dmt favored formation of the cyclic monomer, most likely due to the increased steric bulk of this amino acid side-chain as compared with Tyr.

  20. Practical Research of Electronic Transformer Based on Interpolation Algorithm

    Directory of Open Access Journals (Sweden)

    Fu Yang

    2013-02-01

    Full Text Available As a result of the adoption of new photovoltaic technology, electronic transformers have great advantages compared with traditional electromagnetic type, such as anti-saturated, high linearity, compact and lightweight etc. The working principle of sensing head of electronic current/voltage transformers is introduced in the paper. The causes of phase error in electronic transformer are analyzed. And a set of phase compensation methods based on the signal transfer principle of electronic transformer is presented. The phase-difference caused by Rogowski coil and time-delay in signal transferring from high voltage side to merging unit are analyzed, and the higher sampling rate and the method of linear interpolation is used to solve the problem. In the simulation test the phase error compensation effect is very good, and the simulation result shows that the integrated error after compensation is able to meet the requirements of the measurement and protection, and demonstrates the validity of the method.

  1. ICE-HEART Study of Survival of Organics in Ice Analogs under simulated Europa's Surface MeV-Electron Radiation on the Trailing Hemisphere

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred; Kang, Shawn; Garrett, Henrey

    2016-10-01

    Europa's surface receives high-energy radiation from Jovian magnetosphere that consists of MeV electrons, protons, and ions. This radiation environment is on one hand a source for energetic oxidants that can support life's energy/oxidant needs, but on the other hand, could be harmful for the potential life or tracers of life such as organic biomolecules. With a planned Europa orbiter and lander mission concept on the horizon, it is critical to understand and quantify the role of Europa's radiation environment on potential life, if existed close to the surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation – Bremsstrahlung in X-ray wavelengths – is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa's surface.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL's internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. The telescopic chamber can accommodate ice cores up to 110 cm in length and diameters of ~ 6 cm.We have also devised a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice. Preliminary results from these studies will be presented and the relevance to the Europa lander mission concept will be discussed.This work has been carried out at

  2. Study of the electron transfer in analog compounds of the Prussia blue; Estudio de transferencia electronica en compuestos analogos del azul de Prusia

    Energy Technology Data Exchange (ETDEWEB)

    Romero V, S.; Damaso C, L.F. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Reguera R, E.; Yee M, H.T. [CICATA-IPN, 11500 Mexico D.F. (Mexico)

    2006-07-01

    As answer to the necessity of the search of new nano structured materials, the present work was carried out that it studies the electron transfer in compound similar of the Prussia blue (CAAP), which are representative molecular materials, because its chromophore, magnetic, and electric properties, depend mainly on the processes that are made in their levels or orbital energy. It is known that these made up with octahedra symmetry that its are presented in form of powders, suffer processes of electron transfer when its are exposed to external stimulation by means of light (embracing the regions from the ultraviolet one until the infrared in the electromagnetic spectrum), because they are made up of mixed valency. To know that types of electronic transfers are those that are made in the study materials, 4 series of CAAP its were synthesized by the method of mixtures of aqueous solutions: M[Fe{sup +3}CN){sub 6}]{sub 2}nH{sub 2}O, M[Cr{sup +3}(CN){sub 6}]{sub 2}nH{sub 2}O, M[Mn{sup +3}(CN){sub 6}]{sub 3}nH{sub 2}O y M[Co{sup +3}(CN){sub 6}]{sub 3}nH{sub 2}O, and later on studied by means of the electron spectroscopy technique with a UV-SENSE spectrophotometer (Perkin-Elmer) in or n range of work of 250 to 1100 nm. Because to discuss the electronic structures of any compound, it is required the calculation of the energy levels, they took like reference the data tabulated by John Alexander and Harry Gray calculated by the modified theoretical approach of Wolfsberg-Helmhoz. When comparing the obtained spectra with the theoretical data, it was concludes that in the CAAP, its are carried out electronic transfers among orbital molecular metallic of the type d {yields} d, and load transfer (TC) among orbital molecular of the ligand and metal. When being carried out a load transfer in the CAAP that initially are made up of under-spin these its are photoinduced to an excited state of high spin. In consequence it is possible to vary the interactions among the metals of

  3. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  4. Structures and Energetics of Protonated Clusters of Methylamine with Phenylalanine Analogs, Characterized by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations.

    Science.gov (United States)

    Kleisath, Elizabeth; Marta, Rick A; Martens, Sabrina; Martens, Jon; McMahon, Terry

    2015-06-25

    Gas-phase clusters of protonated methylamine and phenylalanine (Phe) derivatives have been studied using infrared multiple photon dissociation (IRMPD) spectroscopy in combination with electronic structure calculations at the MP2/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. Experiments were performed on several Phe derivatives including 4-chloro-l-phenylalanine (4Chloro-Phe), 4-nitro-l-phenylalanine (4Nitro-Phe), 3-cyano-l-phenylalanine (3Cyano-Phe), and 3-trifluoromethyl-l-phenylalanine (3CF3-Phe). Through comparisons between experimental IRMPD spectra and stimulated spectra obtained by electronic structure calculations, charge-solvated structures were found to be prevalent in both 4Chloro-Phe and 4Nitro-Phe, whereas 3Cyano-Phe favored zwitterionic structures and 3-CF3-Phe likely have both zwitterionic and charge-solvated structures present.

  5. Splitting Compounds by Semantic Analogy

    OpenAIRE

    Daiber, Joachim; Quiroz, Lautaro; Wechsler, Roger; Frank, Stella

    2015-01-01

    Compounding is a highly productive word-formation process in some languages that is often problematic for natural language processing applications. In this paper, we investigate whether distributional semantics in the form of word embeddings can enable a deeper, i.e., more knowledge-rich, processing of compounds than the standard string-based methods. We present an unsupervised approach that exploits regularities in the semantic vector space (based on analogies such as "bookshop is to shop as...

  6. Carbon based materials for electronic bio-sensing

    Directory of Open Access Journals (Sweden)

    Maria D. Angione

    2011-09-01

    Full Text Available Bio-sensing represents one of the most attractive applications of carbon material based electronic devices; nevertheless, the complete integration of bioactive transducing elements still represents a major challenge, particularly in terms of preserving biological function and specificity while maintaining the sensor's electronic performance. This review highlights recent advances in the realization of field-effect transistor (FET based sensors that comprise a bio-receptor within the FET channel. A birds-eye view will be provided of the most promising classes of active layers as well as different device architectures and methods of fabrication. Finally, strategies for interfacing bio-components with organic or carbon nano-structured electronic active layers are reported.

  7. Computational approaches to analogical reasoning current trends

    CERN Document Server

    Richard, Gilles

    2014-01-01

    Analogical reasoning is known as a powerful mode for drawing plausible conclusions and solving problems. It has been the topic of a huge number of works by philosophers, anthropologists, linguists, psychologists, and computer scientists. As such, it has been early studied in artificial intelligence, with a particular renewal of interest in the last decade. The present volume provides a structured view of current research trends on computational approaches to analogical reasoning. It starts with an overview of the field, with an extensive bibliography. The 14 collected contributions cover a large scope of issues. First, the use of analogical proportions and analogies is explained and discussed in various natural language processing problems, as well as in automated deduction. Then, different formal frameworks for handling analogies are presented, dealing with case-based reasoning, heuristic-driven theory projection, commonsense reasoning about incomplete rule bases, logical proportions induced by similarity an...

  8. Meat analog: a review.

    Science.gov (United States)

    Malav, O P; Talukder, S; Gokulakrishnan, P; Chand, S

    2015-01-01

    The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers. PMID:24915320

  9. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price

    2016-02-01

    Full Text Available Orbital thermal infrared (TIR remote sensing is an important tool for characterizing geologic surfaces on Earth and Mars. However, deposition of material from volcanic or eolian activity results in bedrock surfaces becoming significantly mantled over time, hindering the accuracy of TIR compositional analysis. Moreover, interplay between particle size, albedo, composition and surface roughness add complexity to these interpretations. Apparent Thermal Inertia (ATI is the measure of the resistance to temperature change and has been used to determine parameters such as grain/block size, density/mantling, and the presence of subsurface soil moisture/ice. Our objective is to document the quantitative relationship between ATI derived from orbital visible/near infrared (VNIR and thermal infrared (TIR data and tephra fall mantling of the Mono Craters and Domes (MCD in California, which were chosen as an analog for partially mantled flows observed at Arsia Mons volcano on Mars. The ATI data were created from two images collected ~12 h apart by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument. The results were validated with a quantitative framework developed using fieldwork that was conducted at 13 pre-chosen sites. These sites ranged in grain size from ash-sized to meter-scale blocks and were all rhyolitic in composition. Block size and mantling were directly correlated with ATI. Areas with ATI under 2.3 × 10−2 were well-mantled with average grain size below 4 cm; whereas values greater than 3.0 × 10−2 corresponded to mantle-free surfaces. Correlation was less accurate where checkerboard-style mixing between mantled and non-mantled surfaces occurred below the pixel scale as well as in locations where strong shadowing occurred. However, the results validate that the approach is viable for a large majority of mantled surfaces on Earth and Mars. This is relevant for determining the volcanic history of Mars, for

  10. Investigation of Higher Brain Functions in Music Composition Using Models of the Cortex Based on Physical System Analogies.

    Science.gov (United States)

    Leng, Xiaodan

    The trion model was developed using the Mountcastle organizational principle for the column as the basic neuronal network in the cortex and the physical system analogy of Fisher's ANNNI spin model. An essential feature is that it is highly structured in time and in spatial connections. Simulations of a network of trions have shown that large numbers of quasi-stable, periodic spatial-temporal firing patterns can be excited. Characteristics of these patterns include the quality of being readily enhanced by only a small change in connection strengths, and that the patterns evolve in certain natural sequences from one to another. With only somewhat different parameters than used for studying memory and pattern recognition, much more flowing and intriguing patterns emerged from the simulations. The results were striking when these probabilistic evolutions were mapped onto pitches and instruments to produce music: For example different simple mappings of the same evolution give music having the "flavor" of a minuet, a waltz, folk music, or styles of specific periods. A theme can be learned so that evolutions have this theme and its variations reoccurring more often. That the trion model is a viable model for the coding of musical structure in human composition and perception is suggested. It is further proposed that model is relevant for examining creativity in the higher cognitive functions of mathematics and chess, which are similar to music. An even higher level of cortical organization was modeled by coupling together several trion networks. Further, one of the crucial features of higher brain function, especially in music composition or appreciation, is the role of emotion and mood as controlled by the many neuromodulators or neuropeptides. The MILA model whose underlying basis is zero-level representation of Kac-Moody algebra is used to modulate periodically the firing threshold of each network. Our preliminary results show that the introduction of "neuromodulation

  11. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger;

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  12. Weblog-Based Electronic Portfolios for Student Teachers in Taiwan

    Science.gov (United States)

    Chuang, Hsueh-Hua

    2010-01-01

    This paper explored how the use of weblogs within the portfolio framework affected portfolio production and development for student teachers, and how the weblog-based electronic portfolio (WBEP) shaped student teachers' reflective practice during the student teaching practicum. The individuals participating in this study consisted of 31 elementary…

  13. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils w

  14. Evaluation of Cobalt-Labeled Octreotide Analogs for Molecular Imaging and Auger Electron-Based Radionuclide Therapy

    DEFF Research Database (Denmark)

    Thisgaard, Helge; Olsen, Birgitte Brinkmann; Dam, Johan Hygum;

    2014-01-01

    )Co-DOTATATE via DNA double-strand break and proliferation assays. Comparisons with the therapeutic effects of (111)In- and (177)Lu-DOTATATE were also performed. Tumor uptake and normal tissue uptake were characterized in a subcutaneous pancreatic tumor mouse model. RESULTS: All 3 cobalt-conjugated peptides...

  15. Wafer-level chip-scale packaging analog and power semiconductor applications

    CERN Document Server

    Qu, Shichun

    2015-01-01

    This book presents a state-of-art and in-depth overview in analog and power WLCSP design, material characterization, reliability, and modeling. Recent advances in analog and power electronic WLCSP packaging are presented based on the development of analog technology and power device integration. The book covers in detail how advances in semiconductor content, analog and power advanced WLCSP design, assembly, materials, and reliability have co-enabled significant advances in fan-in and fan-out with redistributed layer (RDL) of analog and power device capability during recent years. Along with new analog and power WLCSP development, the role of modeling is a key to assure successful package design. An overview of the analog and power WLCSP modeling and typical thermal, electrical, and stress modeling methodologies is also provided. This book also: ·         Covers the development of wafer-level power discrete packaging with regular wafer-level design concepts and directly bumping technology ·    �...

  16. All-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an analog on the electromagnetically induced transparency effect

    Science.gov (United States)

    Wang, Boyun; Xiong, Liangbin; Zeng, Qingdong; Chen, Zhihong; Lv, Hao; Ding, Yaoming; Du, Jun; Yu, Huaqing

    2016-06-01

    We theoretically and numerically investigate all-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an all-optical analog on the electromagnetically induced transparency effect. The free-carrier plasma dispersion effect modulation method is applied to improve the tuning rate with a response time of picoseconds. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Compared with no phase-shift multiplication effect, the average pump power of all-optical switching required to yield the π-phase shift difference decreases by 55.1%, and the size of the modulation region is reduced by 50.1% when the average pump power reaches 60.8 mW. This work provides a new direction for low-power consumption and miniaturization of microstructure integration light-controlled switching devices in optical communication and quantum information processing.

  17. A High-Resolution Transmission-Type (TT) Phaser Based on Reflection-Type (RT) Units for Radio Analog Signal Processing (R-ASP)

    CERN Document Server

    Zou, Lianfeng

    2014-01-01

    A high Radio Analog Signal Processing (R-ASP) resolution transmission-type (TT) phaser based on reflection-type (RT) phaser units is introduced, theoretically studied and experimentally demonstrated. It is first shown that RT phasers inherently exhibit higher R-ASP resolution than their TT counterparts because their group delay swing is proportional to the reflection coefficient associated with a resonator coupling mechanism (admittance inverter), easy to maximize towards unity, rather than to a coupled-line coupling coefficient, typically restricted to values will inferior to unity, as in the RT case. Moreover, a detailed sensitivity analysis reveals that the proposed phaser is simultaneously features high R-ASP resolution and low sensitivity to fabrication tolerance, which makes it an ideal solution for R-ASP. The proposed phaser exhibits a 5 ns group delay swing over a fractional bandwidth of about 50% around 4 GHz.

  18. Full characterization of self-phase-modulation based low-noise, cavity-less pulse source for photonic-assisted analog-to-digital conversion.

    Science.gov (United States)

    Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2012-12-10

    A high quality cavity-less pulse source, realized as a combination of linear pulse compression and self-phase-modulation (SPM) based regeneration is demonstrated and strictly characterized for the first time. The regenerated pulses, with 3.6 GHz repetition rate, are optimized through rigorous relative intensity-noise (RIN) measurement. Temporal intensity and chirp characterizations demonstrate that the pulses exhibit characteristic of low RIN, and are chirp- and pedestal-free. The cavity-less pulse source is further tested in a photonic-assisted analog-to-digital (ADC) configuration as the sampling source. A record result of more than 8 effective quantization bits at 202 MHz is demonstrated. PMID:23262840

  19. Classical analogy of Fano resonances

    International Nuclear Information System (INIS)

    We present an analogy of Fano resonances in quantum interference to classical resonances in the harmonic oscillator system. It has a manifestation as a coupled behaviour of two effective oscillators associated with propagating and evanescent waves. We illustrate this point by considering a classical system of two coupled oscillators and interfering electron waves in a quasi-one-dimensional narrow constriction with a quantum dot. Our approach provides a novel insight into Fano resonance physics and provides a helpful view in teaching Fano resonances

  20. Model Checking Electronic Commerce Security Protocols Based on CTL

    Institute of Scientific and Technical Information of China (English)

    XIAO De-qin; ZHANG Huan-guo

    2005-01-01

    We present a model based on Computational Temporal Logic (CTL) methods for verifying security requirements of electronic commerce protocols. The model describes formally the authentication, confidentiality integrity,non-repudiation, denial of service and access control of the electronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocol proposed by Lu-Smolka.Moreover, we have discovered two attacks that allow a dishonest user to purchase a good debiting the amount to another user. And also, we compared our work with relative research works and found that the formal way of this paper is more general to specify security protocols for E-Commerce.

  1. A laser printing based approach for printed electronics

    Science.gov (United States)

    Zhang, T.; Hu, M.; Liu, Y.; Guo, Q.; Wang, X.; Zhang, W.; Lau, W.; Yang, J.

    2016-03-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  2. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  3. Electronic properties of graphene-based bilayer systems

    Science.gov (United States)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco

    2016-08-01

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin-orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  4. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  5. A count rate based contamination control standard for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  6. Portable audio electronics for impedance-based measurements in microfluidics

    International Nuclear Information System (INIS)

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1–50 mM), flow rate (2–120 µL min−1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ∼10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems. (technical note)

  7. FGF growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  8. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  9. Synthesis of Paclitaxel Analogs

    OpenAIRE

    Xu, Zhibing

    2010-01-01

    Paclitaxel is one of the most successful anti-cancer drugs, particularly in the treatment of breast cancer and ovarian cancer. For the investigation of the interaction between paclitaxel and MD-2 protein, and development of new antagonists for lipopolysaccharide, several C10 A-nor-paclitaxel analogs have been synthesized and their biological activities have been evaluated. In order to reduce the myelosuppression effect of the paclitaxel, several C3â ² and C4 paclitaxel analogs have been synth...

  10. Thermionic field electron emission from graphite-based nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lyashenko, S.; Kleshch, V. [Department of Physics, Moscow State University, Moscow (Russian Federation); Obraztsov, A. [Department of Physics, Moscow State University, Moscow (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu (Finland)

    2011-11-15

    Thermionic and field electron emissions governed by Richardson-Dushman and Fowler-Nordheim equations, respectively, normally coexist under typical experimental conditions. However, some carbon-based cathodes demonstrate deviations of temperature dependencies of the current-voltage characteristics from those predicted by these equations. The nature of deviations cannot be ascribed to insufficient variations of work function or surface topology, which result from temperature variations. In this work, the temperature dependencies of the electron emission characteristics were experimentally investigated for the nanographite film cathodes obtained by a chemical vapor deposition method. It was found that self-consistent explanation of the experimental observations of the thermionic and field electron emissions from the nanocarbon cathodes may be given by taking into account the temperature dependence of free carrier density. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. ERL Based Electron-Ion Collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Bai, Mei; Beebe-Wang, Joanne; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Joseph M; Calaga, Rama; Chang, Xiangyun; Deshpande, Abhay A; Farkhondeh, Manouchehr; Fedotov, Alexei V; Fischer, Wolfram; Kayran, Dmitry; Kewisch, Jorg; MacKay, William W; Montag, Christoph; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Ruggiero, Alessandro; Satogata, Todd; Surrow, Bernd; Tepikian, Steven; Trbojevic, Dejan; Yakimenko, Vitaly; Zhang, S Y

    2005-01-01

    We present the designs of a future polarized electron-hadron collider, eRHIC* based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV. We plan to operate eRHIC in both dedicated (electron-hadrons only) and parallel(with the main hadron-hadron collisions) modes. The eRHIC has very large tunability range of c.m. energies while maintaining very high luminosity up to 1034 cm-2 s-1 per nucleon. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

  12. Synthesis of a fluorescence resonance energy transfer-based probe containing a tricyclic nucleoside analog for single nucleotide polymorphism typing.

    Science.gov (United States)

    Hayai, Aya; Maeda, Yusuke; Ueno, Yoshihito

    2016-08-01

    Here, we report the synthesis of a fluorescence resonance energy transfer (FRET)-based probe for single nucleotide polymorphism (SNP) typing. The probe contains a fluorescent tricyclic base, 8-amino-3-(2,3-dihydroxypropyl)imidazo[4',5':5,6]pyrido[2,3-d]pyrimidine, as a donor molecule and 7-diethylaminocoumarin-3-carboxylic acid as an acceptor molecule. FRET was observed between the donor and acceptor molecules on the probe. The identity of the target bases on DNA and RNA strands could be determined using the probe. PMID:27329795

  13. Electron injection and transport mechanism in organic devices based on electron transport materials

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M A; Xu Wei; Khizar-ul-Haq; Zhang Xiaowen; Bai Yu; Jiang, X Y; Zhang, Z L; Zhu, W Q [Department of Materials Science, Shanghai University, Jiading 201800 (China)

    2008-11-21

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at {approx}8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J {approx} V{sup m} with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be {approx}5 x 10{sup 18} cm{sup -3}. The critical voltage (V{sub c}) is found to be {approx}45 V and is almost independent of the materials.

  14. A computational model of analogical reasoning

    Institute of Scientific and Technical Information of China (English)

    李波; 赵沁平

    1997-01-01

    A computational model of analogical reasoning is presented, which divides analogical reasoning process into four subprocesses, i.e. reminding, elaboration, matching and transfer. For each subprocess, its role and the principles it follows are given. The model is discussed in detail, including salient feature-based reminding, relevance-directed elaboration, an improved matching model and a transfer model. And the advantages of this model are summarized based on the results of BHARS, which is an analogical reasoning system implemented by this model.

  15. The design and simulation of a titanium oxide memristor-based programmable analog filter in a simulation program with integrated circuit emphasis

    Institute of Scientific and Technical Information of China (English)

    Tian Xiao-Bo; Xu Hui

    2013-01-01

    In many communication and signal routing applications,it is desirable to have a programmable analog filter.According to this practical demand,we consider the titanium oxide memristor,which is a kind of nano-scale electron device with low power dissipation and nonvolatile memory.Such characteristics could be suitable for designing the desired filter.However,both the non-analytical relation between the memristance and the charges that pass through it,and the changeable V-I characteristics in physical tests make it difficult to accurately set the memristance to the target value.In this paper,the conductive mechanism of the memristor is analyzed,a method of continuously programming the memristance is proposed and simulated in a simulation program with integrated circuit emphasis,and its feasibility and compatibility,both in simulations and physical realizations,are demonstrated.This method is then utilized in a first-order active filter as an example to show its applications in programmable filters.This work also provides a practical tool for utilizing memristors as resistance programmable devices.

  16. Electronic image stabilization system based on global feature tracking

    Institute of Scientific and Technical Information of China (English)

    Zhu Juanjuan; Guo Baolong

    2008-01-01

    A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch,the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filter-ation. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational,and zooming jitter and robust to local motions.

  17. Atom location using scanning transmission electron microscopy based on electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Full text: The technique of atom location by channelling enhanced microanalysis (ALCHEMI) using cross section data, measured as a function of electron beam orientation, has been widely implemented by many researchers. The accurate application of ALCHEMI, usually based on energy dispersive x-ray analysis (EDX), requires knowledge, from first principles, of the relative delocalization of the inner-shell ionization interaction (see for example Oxley and Allen, 1998; Oxley et al., 1999). Scanning transmission electron microscopy (STEM) based on electron energy loss spectroscopy (EELS) also provides information about the location of atoms of different types within the crystal lattice. Unlike high angle annular dark field (HAADF), EELS provides a unique signal for each atom type. In conjunction with highly focused probes, allowing near atomic resolution, this makes possible, in principle, the application of ALCHEMI like techniques to STEM images to determine the distribution of impurities within the unit cell. The accurate interpretation of STEM results requires that both the inner-shell ionization interaction and resulting ionization cross section or image be correctly modelled. We present model calculations demonstrating the in principle application of ALCHEMI type techniques to STEM images pertinent to EELS. The inner-shell ionisation interaction is modelled using Hartree-Fock wave functions to describe the atomic bound states and Hartree-Slater wave functions to describe the continuum states. The wave function within the crystal is calculated using boundary conditions appropriate for a highly focussed probe (Rossouw and Allen, 2001) and STEM images or ionisation cross sections are simulated using an inelastic cross section formulation that correctly accounts for the contribution from both dynamical electrons and those dechannelled by absorptive scattering processes such as thermal diffuse scattering (TDS). Copyright (2002) Australian Society for Electron Microscopy

  18. Electron-doping of graphene-based devices by hydrazine

    International Nuclear Information System (INIS)

    A facile and effective technique to tune the electronic properties of graphene is essential to facilitate the flexibility of graphene-based device performances. Here, the use of hydrazine as a solution-processable and effective n-type dopant for graphene is described. By dropping hydrazine solutions at different concentrations on a graphene surface, the Dirac point of graphene can be remarkably tuned. The transport behavior of graphene can be changed from p-type to n-type accordingly, demonstrating the controllable and adjustable doping effect of the hydrazine solutions. Accompanying the Dirac point shift is an enhanced hysteretic behavior of the graphene conductance, indicating an increasing trap state density induced by the hydrazine adsorbates. The electron-doping of graphene by the hydrazine solutions can be additionally confirmed with graphene/p-type silicon heterojunctions. The decrease of the junction current after the hydrazine treatment demonstrates an increase of the junction barrier between graphene and silicon, which is essentially due to the electron-doping of graphene and the resultant upshift of the Fermi level. Finally, partially doped graphene is realized and its electrical property is studied to demonstrate the potential of the hydrazine solutions to selectively electron-doping graphene for future electronic applications

  19. Recent advances in molecular electronics based on carbon nanotubes.

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  20. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  1. Electron tomography based on a total variation minimization reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, W. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Heidari Mezerji, H.; Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2012-02-15

    The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms. -- Highlights: Black-Right-Pointing-Pointer A reconstruction algorithm for electron tomography is investigated based on total variation minimization. Black-Right-Pointing-Pointer Missing wedge artefacts are reduced by this algorithm. Black-Right-Pointing-Pointer The reconstruction is easier to segment. Black-Right-Pointing-Pointer More reliable quantitative information can be obtained.

  2. Design of the Q Meter Based on AD633 Analog Phase Detection%基于AD633模拟鉴相的Q表设计

    Institute of Scientific and Technical Information of China (English)

    葛维亮; 奚大顺; 庹先国; 王洪辉; 李怀良; 张赓; 宋茜茜

    2011-01-01

    In order to solve the problem that the multimeters are unable to measure the parameters of Q, D, etc., the Q meter based on AD633 analog phase detection has been designed. In the instrument, the sine energizing signal and reference signal are generated by the DDS chip AD9851, and phase detection of the signal is implemented by using highly integrated analog multiplier AD633. The single end output signal of phase detection is then converted into differential signal by the differential converter AD8138; and the differential signal is converted into digital and processed by the self-contained ADC of C8051F060. This instrument offers the functions of automatic range changeover, LCD real-time display; and features of compact, low cost as well an meets the measurement demands in engineering projects, teaching and research areas.%为解决万用表无法测量Q、D等参数的问题,设计了基于A1D633模拟鉴相的Q表.该测量仪采用DDS芯片AD9851产生正弦激励信号和基准信号,利用高集成度模拟乘法器AD633对信号进行模拟鉴相,并采用差分转换器AD8138对鉴相输出信号进行单端转差分变换,由C8051F060内部自带的ADC对差分信号进行模数转换和数据处理.Q表具有多量程自动切换和LCD实时显示等功能,且体积小、成本低,能满足工程、教学科研测量的需要.

  3. Implementing Electronic Tablet-Based Education of Acute Care Patients.

    Science.gov (United States)

    Sawyer, Tenita; Nelson, Monica J; McKee, Vickie; Bowers, Margaret T; Meggitt, Corilin; Baxt, Sarah K; Washington, Delphine; Saladino, Louise; Lehman, E Philip; Brewer, Cheryl; Locke, Susan C; Abernethy, Amy; Gilliss, Catherine L; Granger, Bradi B

    2016-02-01

    Poor education-related discharge preparedness for patients with heart failure is believed to be a major cause of avoidable rehospitalizations. Technology-based applications offer innovative educational approaches that may improve educational readiness for patients in both inpatient and outpatient settings; however, a number of challenges exist when implementing electronic devices in the clinical setting. Implementation challenges include processes for "on-boarding" staff, mediating risks of cross-contamination with patients' device use, and selling the value to staff and health system leaders to secure the investment in software, hardware, and system support infrastructure. Strategies to address these challenges are poorly described in the literature. The purpose of this article is to present a staff development program designed to overcome challenges in implementing an electronic, tablet-based education program for patients with heart failure. PMID:26830181

  4. Electronic Voting Protocol Using Identity-Based Cryptography

    Science.gov (United States)

    Gallegos-Garcia, Gina; Tapia-Recillas, Horacio

    2015-01-01

    Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps. PMID:26090515

  5. Electronic Voting Protocol Using Identity-Based Cryptography.

    Science.gov (United States)

    Gallegos-Garcia, Gina; Tapia-Recillas, Horacio

    2015-01-01

    Electronic voting protocols proposed to date meet their properties based on Public Key Cryptography (PKC), which offers high flexibility through key agreement protocols and authentication mechanisms. However, when PKC is used, it is necessary to implement Certification Authority (CA) to provide certificates which bind public keys to entities and enable verification of such public key bindings. Consequently, the components of the protocol increase notably. An alternative is to use Identity-Based Encryption (IBE). With this kind of cryptography, it is possible to have all the benefits offered by PKC, without neither the need of certificates nor all the core components of a Public Key Infrastructure (PKI). Considering the aforementioned, in this paper we propose an electronic voting protocol, which meets the privacy and robustness properties by using bilinear maps.

  6. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  7. Accelerator physics in ERL based polarized electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  8. Diffusion of Electronic Medical Record Based Public Hospital Information Systems

    OpenAIRE

    Cho, Kyoung Won; Kim, Seong Min; An, Chang-Ho; Chae, Young Moon

    2015-01-01

    Objectives This study was conducted to evaluate the adoption behavior of a newly developed Electronic Medical Record (EMR)-based information system (IS) at three public hospitals in Korea with a focus on doctors and nurses. Methods User satisfaction scores from four performance layers were analyzed before and two times after the newly develop system was introduced to evaluate the adoption process of the IS with Rogers' diffusion theory. Results The 'intention to use' scores, the most importan...

  9. Electronic Project of Taxation Based on EC Under Single Nation

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; ZENG Xiao-ping

    2002-01-01

    Because of no real location and its virtual interaction, the information flow, the cash flow and the logistic flow of EC(Electronic Commerce) are to be separated individually. So the traditional taxation based on those three flows is challenged. Under this condition, this paper researches how to levy taxes on EC through internet using internet technology. As to simplify the model, it relates under a single nation. But it will also give some measures about the international trades.

  10. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions. Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with

  11. THE ELECTRONIC MARKET LIBERALIZATION IN A KNOWLEDGE BASED ECONOMY

    Directory of Open Access Journals (Sweden)

    Stegăroiu Carina-Elena

    2013-04-01

    Full Text Available In the current context of economic globalization and the advent of the virtual business environment, organizations have registered profound transformations that force companies to reconsider their strategic objectives, especially taking into consideration the opportunities created by the new information and communication technologies. Regardless of their reactive or proactive strategies when facing the changes in the competition, most companies in the developed countries and more and more of the Romanian enterprises are interested in developing technologies and information systems at a intra, inter and extra organizational level, with integrated traits, which are capable to sustain both the managerial process and the traditional functions of the organization. That being said, we herald now the expansion of the electronic commerce or eCommerce, which represents the automatization of the commercial transaction by using information systems and communication technologies. Developing an eCommerce system based on a business-to-business application consists of de-structuring the chain of value in managerial processes and then re-structuring it in order to identify the areas that can be made efficient through electronic means. This study is meant to aid the development of existing models by developing the services in certain less accessible to electronic commerce areas of a knowledge-based economy. As it stands, electronic commerce offers the opportunity of selling products world wide and this increasing the number of potential clients by eliminating the geographical barriers between buyers and seller. Opting for electronic commerce is a solution when the company wants to diversify its services and when it wants to reduce market related costs.

  12. Electronic shift register memory based on molecular electron-transfer reactions

    International Nuclear Information System (INIS)

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip

  13. Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluorophthalocyanine

    Science.gov (United States)

    Yang, J. L.; Sullivan, P.; Schumann, S.; Hancox, I.; Jones, T. S.

    2012-01-01

    We demonstrate organic discrete heterojunction photovoltaic cells based on fullerene (C60) and copper hexadecafluorophthalocyanine (F16CuPc), in which the C60 and F16CuPc act as the electron donor and the electron acceptor, respectively. The C60/F16CuPc cells fabricated with conventional and inverted architectures both exhibit comparable power conversion efficiencies. Furthermore, we show that the photocurrent in both cells is generated by a conventional exciton dissociation mechanism rather than the exciton recombination mechanism recently proposed for a similar C60/F16ZnPc system [Song et al., J. Am. Chem. Soc. 132, 4554 (2010)]. These results demonstrate that new unconventional material systems are a potential way to fabricate organic photovoltaic cells with inverted as well as conventional architectures.

  14. Structure Based Docking and Molecular Dynamic Studies of Plasmodial Cysteine Proteases against a South African Natural Compound and its Analogs.

    Science.gov (United States)

    Musyoka, Thommas M; Kanzi, Aquillah M; Lobb, Kevin A; Tastan Bishop, Özlem

    2016-01-01

    Identification of potential drug targets as well as development of novel antimalarial chemotherapies with unique mode of actions due to drug resistance by Plasmodium parasites are inevitable. Falcipains (falcipain-2 and falcipain-3) of Plasmodium falciparum, which catalyse the haemoglobin degradation process, are validated drug targets. Previous attempts to develop peptide based drugs against these enzymes have been futile due to the poor pharmacological profiles and susceptibility to degradation by host enzymes. This study aimed to identify potential non-peptide inhibitors against falcipains and their homologs from other Plasmodium species. Structure based virtual docking approach was used to screen a small non-peptidic library of natural compounds from South Africa against 11 proteins. A potential hit, 5α-Pregna-1,20-dien-3-one (5PGA), with inhibitory activity against plasmodial proteases and selectivity on human cathepsins was identified. A 3D similarity search on the ZINC database using 5PGA identified five potential hits based on their docking energies. The key interacting residues of proteins with compounds were identified via molecular dynamics and free binding energy calculations. Overall, this study provides a basis for further chemical design for more effective derivatives of these compounds. Interestingly, as these compounds have cholesterol-like nuclei, they and their derivatives might be well tolerated in humans. PMID:27030511

  15. A Group Signature Based Electronic Toll Pricing System

    CERN Document Server

    Chen, Xihui; Mauw, Sjouke; Pang, Jun

    2011-01-01

    With the prevalence and development of GNSS technologies, location-based vehicle services (LBVS) have experienced a rapid growth in recent years. However, location is a sensitive and private piece of information, so the design and development of such services just take the clients' privacy concerns into account. In this paper, we propose a new electronic toll pricing system based on group signatures, which provides a strong guarantee for the clients' anonymity within groups. Our system achieves a balance between privacy and the communication overhead imposed upon the users.

  16. Atomic Electronic Contract Protocol Based on Convertible Signature

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-chun; WANG Li-na; ZHANG Huan-guo

    2005-01-01

    A new class of atomicity, namely contract atomicity is presented. A new technical strategy based on convertible signature and two-phase commitment is proposed for implementing atomicity of electronic contract protocol. A new atomic contract signing protocol is given out by using ElGamal-like convertible undeniable signature and commitment of conversion key, and another new atomic contract signing protocol is brought forward by using RSA-based convertible undeniable signature scheme and commitment of conversion key.These two new protocols are proved to be of atomicity, fairness, privacy, non-repudiation.

  17. Pressure induced phase transition behaviour in -electron based dialuminides

    Indian Academy of Sciences (India)

    P Ch Sahu; N V Chandra Shekar

    2000-05-01

    The rare-earth and actinide based compounds are endowed with several exotic physical and chemical properties due to the presence of -electrons. These properties exhibit interesting changes under the action of various thermodynamic fields and hence continues to be a subject of extensive research. For instance, under pressure, the nature of -electrons can be changed from localized to itinerant, leading to a variety of changes in their structural, physical and chemical properties. The present review on the high pressure phase transition behaviour of dialuminides of rare earths and actinides is an outcome of research in our laboratory during the last five years using a unique combination of a Guinier diffractometer and a diamond anvil cell built in-house. To bring out the correlations between the compressibility and structural behaviour with the electronic structure, we have also carried out electronic structure calculation. Further, the usefulness of Villars' three parameter structure maps in predicting pressure induced structural transitions has been explored and this has been illustrated with the available phase transition data.

  18. A molecularly based theory for electron transfer reorganization energy

    International Nuclear Information System (INIS)

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory

  19. A molecularly based theory for electron transfer reorganization energy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Bilin; Wang, Zhen-Gang, E-mail: zgw@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  20. Advanced electron crystallography through model-based imaging.

    Science.gov (United States)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T; den Dekker, Arnold J; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  1. RFID-based Electronic Identity Security Cloud Platform in Cyberspace

    Directory of Open Access Journals (Sweden)

    Bing Chen

    2012-07-01

    Full Text Available With the moving development of networks, especially Internet of Things, electronic identity administration in cyberspace is becoming more and more important. And personal identity management in cyberspace associated with individuals in reality has been one significant and urgent task for the further development of information construction in China. So this paper presents a RFID-based electronic identity security cloud platform in cyberspace to implement an efficient security management of cyber personal identity, and designs and realizes a strong and pervasive security cloud service platform, and discusses key technology including security authentication mechanism for the electronic identity card, super high frequency RFID with eID cards, multilevel privacy protection mechanism, security cloud service, security isolation and single-oriented transmission, and boundary security gateway protection, and it can well apply to personal identity management with virtual roles of citizens in cyberspace such as E-Government and E-Business, and the electronic identity security platform has been primary implemented and achieved good effects in actual applications.

  2. Kinetics and Mechanisms of the Acid-base Reaction Between NH3 and HCOOH in Interstellar Ice Analogs

    Science.gov (United States)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh; Fayolle, Edith C.

    2016-10-01

    Interstellar complex organic molecules are commonly observed during star formation, and are proposed to form through radical chemistry in icy grain mantles. Reactions between ions and neutral molecules in ices may provide an alternative cold channel to complexity, as ion-neutral reactions are thought to have low or even no-energy barriers. Here we present a study of the kinetics and mechanisms of a potential ion-generating, acid-base reaction between NH3 and HCOOH to form the salt NH{}4+HCOO-. We observe salt growth at temperatures as low as 15 K, indicating that this reaction is feasible in cold environments. The kinetics of salt growth are best fit by a two-step model involving a slow “pre-reaction” step followed by a fast reaction step. The reaction energy barrier is determined to be 70 ± 30 K with a pre-exponential factor 1.4 ± 0.4 × 10-3 s-1. The pre-reaction rate varies under different experimental conditions and likely represents a combination of diffusion and orientation of reactant molecules. For a diffusion-limited case, the pre-reaction barrier is 770 ± 110 K with a pre-exponential factor of ˜7.6 × 10-3 s-1. Acid-base chemistry of common ice constituents is thus a potential cold pathway to generating ions in interstellar ices.

  3. Analog Optical Computing Primitives in Silicon Photonics

    CERN Document Server

    Jiang, Yunshan; Jalali, Bahram

    2015-01-01

    Optical computing accelerators may help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  4. Analog optical computing primitives in silicon photonics

    Science.gov (United States)

    Jiang, Yunshan; DeVore, Peter T. S.; Jalali, Bahram

    2016-03-01

    Optical computing accelerators may help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide.

  5. Analog to Digital Conversion in Physical Measurements

    CERN Document Server

    Kapitaniak, T; Feudel, U; Grebogi, C

    1999-01-01

    There exist measuring devices where an analog input is converted into a digital output. Such converters can have a nonlinear internal dynamics. We show how measurements with such converting devices can be understood using concepts from symbolic dynamics. Our approach is based on a nonlinear one-to-one mapping between the analog input and the digital output of the device. We analyze the Bernoulli shift and the tent map which are realized in specific analog/digital converters. Furthermore, we discuss the sources of errors that are inevitable in physical realizations of such systems and suggest methods for error reduction.

  6. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  7. Digital and analog communication systems

    Science.gov (United States)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  8. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: a technology review and scale-down study

    Science.gov (United States)

    Picard, Francis; Ilias, Samir; Asselin, Daniel; Boucher, Marc-André; Duchesne, François; Jacob, Michel; Larouche, Carl; Vachon, Carl; Niall, Keith K.; Jerominek, Hubert

    2011-02-01

    A MEMS based technology for projection display is reviewed. This technology relies on mechanically flexible and reflective microbridges made of aluminum alloy. A linear array of such micromirrors is combined with illumination and Schlieren optics to produce a pixels line. Each microbridge in the array is individually controlled using electrostatic actuation to adjust the pixels intensities. Results of the simulation, fabrication and characterization of these microdevices are presented. Activation voltages below 250 V with response times below 10 μs were obtained for 25 μm × 25 μm micromirrors. With appropriate actuation voltage waveforms, response times of 5 μs and less are achievable. A damage threshold of the mirrors above 8 kW/cm2 has been evaluated. Development of the technology has produced projector engines demonstrating this light modulation principle. The most recent of these engines is DVI compatible and displays VGA video streams at 60 Hz. Recently applications have emerged that impose more stringent requirements on the dimensions of the MEMS array and associated optical system. This triggered a scale down study to evaluate the minimum micromirror size achievable, the impact of this reduced size on the damage threshold and the achievable minimum size of the associated optical system. Preliminary results of this scale down study are reported. FRAM with active surface as small as 5 μm × 5 μm have been investigated. Simulations have shown that such micromirrors could be activated with 107 V to achieve f-number of 1.25. The damage threshold has been estimated for various FRAM sizes. Finally, design of a conceptual miniaturized projector based on 1000×1 array of 5 μm × 5 μm micromirrors is presented. The volume of this projector concept is about 12 cm3.

  9. Thin-film chemical sensors based on electron tunneling

    Science.gov (United States)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  10. 基于果蝇优化算法的模拟滤波器设计%Design of Analog Filter Based on Fruit Fly Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    肖正安

    2012-01-01

    基于粒子群优化算法的无源模拟滤波器优化设计方法容易陷入局部最优,收敛速度慢迭代次数多、运算量大且稳定性不够好。提出果蝇优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值,实例仿真表明,采用该方法设计的滤波器在相同的带宽准确度及阻带衰减的情况下,具有更快的运算速度及收敛性能。%The optimum design of passive simulation filters based on Particle Swarm Optimization algorithm has slow convergence velocity and may easily fall into local optimum,more iterative times,large computational complexity,and stability is not good enough.A passive analog filter optimization design method is proposed based on the Fruit Fly Optimization Algorithm(FOA),and it optimizes the circuit's parameters in the whole parameters space effectively and globally by FOA until gain the best parameters.The simulation results on the MATLAB show that our algorithm has global convergence and higher speed of optimization.

  11. Low-voltage coherent electron imaging based on a single-atom electron

    CERN Document Server

    Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh

    2015-01-01

    It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...

  12. Development and Application of Analog Electronics Technique Practice Training%模拟电子技术实践项目的研发与应用

    Institute of Scientific and Technical Information of China (English)

    吕红娟

    2012-01-01

    随着职业教育的不断深化,高等职业学校越来越开始注重培养学生动手能力、实践能力和可持续发展能力.针对职业教育技能应用型人才的培养目标,结合电子类专业人才培养方案,研发出了三个层次、共25个模拟电子技术实训项目,其中功能认知型9个,技术应用型9个,综合应用型7个.实际应用表明,三个层次的实训项目对学习掌握模拟电子技术,循序渐进的提升动手能力和实践能力起到了有效的辅助作用.%Based on the development of vocational education, professional colleges are focusing on improving student's integrated capabilities, such as skills, practice ability and sustained development ability, managing to output the qualified candidates into the society. We developed twenty five training projects which can be divided into three levels. In which there are nine projects for improving functionality identification, the basic level. Nine projects belong to technology application, the middle level. And the rest seven projects are integrated abilities training, the highest level. We drew a conclusion by carrying these projects on educational works: our creations are really helpful for student's qualifications and competitions.

  13. Kinetics and mechanisms of the acid-base reaction between NH$_3$ and HCOOH in interstellar ice analogs

    CERN Document Server

    Bergner, Jennifer B; Rajappan, Mahesh; Fayolle, Edith C

    2016-01-01

    Interstellar complex organic molecules (COMs) are commonly observed during star formation, and are proposed to form through radical chemistry in icy grain mantles. Reactions between ions and neutral molecules in ices may provide an alternative cold channel to complexity, as ion-neutral reactions are thought to have low or even no energy barriers. Here we present a study of a the kinetics and mechanisms of a potential ion-generating acid-base reaction between NH$_{3}$ and HCOOH to form the salt NH$_{4}^{+}$HCOO$^{-}$. We observe salt growth at temperatures as low as 15K, indicating that this reaction is feasible in cold environments. The kinetics of salt growth are best fit by a two-step model involving a slow "pre-reaction" step followed by a fast reaction step. The reaction energy barrier is determined to be 70 $\\pm$ 30K with a pre-exponential factor 1.4 $\\pm$ 0.4 x 10$^{-3}$ s$^{-1}$. The pre-reaction rate varies under different experimental conditions and likely represents a combination of diffusion and or...

  14. Web based electronic log book for Indus-2

    International Nuclear Information System (INIS)

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India has a 20 MeV Microtron injector, a 450/700 MeV Booster Synchrotron, a 450 MeV Storage Ring Indus-1 and another 2.5 GeV Storage Ring Indus-2. Both the machines are national facilities and are run round the clock to provide synchrotron radiation to users as well as carrying out machine related studies. In a multi accelerator complex like this, an effective system for electronically recording experimental data, machine status, events etc is considered essential. Considering the advantages of Internet technologies, a first version of web based Electronic Logbook (Elogbook) has been developed using HTML, JavaScript, java servlets and SQL database. This Elogbook will provide convenient way to review machine performance, help in problem diagnosis and improve communications among working teams. (author)

  15. Single-ZnO-Nanobelt-Based Single-Electron Transistors

    Science.gov (United States)

    Ji, Xiao-Fan; Xu, Zheng; Cao, Shuo; Qiu, Kang-Sheng; Tang, Jing; Zhang, Xi-Tian; Xu, Xiu-Lai

    2014-06-01

    We fabricate single electron transistors based on a single ZnO nanobelt using standard micro-fabrication techniques. The transport properties of the devices are characterized at room temperature and at low temperature (4.2 K). At room temperature, the source-drain current increases linearly as the bias voltage increases, indicating a good ohmic contact in the transistors. At 4.2 K, a Coulomb blockade regime is observed up to a bias voltage of a few millivolts. With scanning the back gate voltage, Coulomb oscillations can be clearly resolved with a period around 1 V. From the oscillations, the charging energy for the single electron transistor is calculated to be about 10 meV, which suggests that confined quantum dots exist with sizes around 35 nm in diameter. The irregular Coulomb diamonds are observed due to the multi-tunneling junctions between dots in the nanobelt.

  16. Design of wireless electronic stethoscope based on zigbee

    CERN Document Server

    Patil, D D Kadam

    2012-01-01

    Heart sound stethoscope is primary stage to access diseases. In this paper design of an electronic stethoscope with the functions of wireless transmission is discussed. This electronic stethoscope based on embedded processor. The data can be transmitted through wireless transmission using Zigbee module. A microphone is used to pick up the sound of the heart beat. Acoustic stethoscope can be changed into a digital stethoscope by inserting an electric capacity microphone into its head. The signal is processed and amplified to play with or without earphone. Heart sounds are processed, sampled and sent wirelessly using Zigbee module so that multiple doctors can do auscultation. PC connectivity is provided through serial port where from audio and video can be made available through LAN and internet for telemedicine consultation. Heart beat signals are sensed, sent, displayed, monitored, stored, reviewed, and analysed with ease.

  17. Graphene gate electrode for MOS structure-based electronic devices.

    Science.gov (United States)

    Park, Jong Kyung; Song, Seung Min; Mun, Jeong Hun; Cho, Byung Jin

    2011-12-14

    We demonstrate that the use of a monolayer graphene as a gate electrode on top of a high-κ gate dielectric eliminates mechanical-stress-induced-gate dielectric degradation, resulting in a quantum leap of gate dielectric reliability. The high work function of hole-doped graphene also helps reduce the quantum mechanical tunneling current from the gate electrode. This concept is applied to nonvolatile Flash memory devices, whose performance is critically affected by the quality of the gate dielectric. Charge-trap flash (CTF) memory with a graphene gate electrode shows superior data retention and program/erase performance that current CTF devices cannot achieve. The findings of this study can lead to new applications of graphene, not only for Flash memory devices but also for other high-performance and mass-producible electronic devices based on MOS structure which is the mainstream of the electronic device industry.

  18. Agent-based services for B2B electronic commerce

    Science.gov (United States)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  19. Playing with a double-edged sword: Analogies in biochemistry

    Science.gov (United States)

    Orgill, Marykay

    Analogy pervades our everyday reasoning. No situation we encounter is exactly like a situation we have encountered previously, and our ability to learn and survive in the world is based on our ability to find similarities between past and present situations and use the knowledge we have gained from past situations to manage current situations. Analogies can be powerful teaching tools because they can make new material intelligible to students by comparing it to material that is already familiar. It is clear, though, that not all analogies are good and that not all good analogies are useful to all students. In this study, I have used textbook analysis, classroom observations, student interviews and instructor interviews to determine the role that analogies play in biochemistry learning. Analogies are an important teaching technique in biochemistry classes, being used more often in both biochemistry classes and textbooks than they are in high school chemistry classes and textbooks. Most biochemistry students like, pay particular attention to, and remember the analogies their instructors provide; and they use these analogies to understand, visualize, and recall information from class. Even though students like and use analogies, they do not understand what analogies are or the mechanism by which they improve learning. For the students, analogies are simply any teaching technique that eases understanding, visualization, or recall. Instructors, on the other hand, have a good understanding of what analogies are and of how they should be presented in class; but they do not use analogies as effectively as they should. They do not plan, explain or identify the limitations of the analogies they use in class. However, regardless of how effectively instructors present analogies in class, this study indicates that, in general, analogies are useful in promoting understanding, visualization, recall, and motivation in biochemistry students at all levels. They would be even more

  20. Electron-ion plasma modification of Al-based alloys

    Science.gov (United States)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  1. Two-dimensional materials based transparent flexible electronics

    Science.gov (United States)

    Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas

    2015-03-01

    Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.

  2. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    Science.gov (United States)

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  3. Analogical Learning and Automated Rule Constructions

    Institute of Scientific and Technical Information of China (English)

    周哈阳

    1991-01-01

    This paper describes some experiments of analogical learning and automated rule construction.The present investigation focuses on knowledge acquisition,learning by analyogy,and knowledge retention.The developed system initially learns from scratch,gradually acquires knowledge from its environment through trial-and-error interaction,incrementally augments its knowledge base,and analogically solves new tasks in a more efficient and direct manner.

  4. A review of EBMT using proportional analogies

    OpenAIRE

    Somers, Harold; Dandapat, Sandipan; Naskar, Sudip Kumar

    2009-01-01

    Some years ago a number of papers reported an experimental implementation of Example Based Machine Translation (EBMT) using Proportional Analogy. This approach, a type of analogical learning, was attractive because of its simplicity; and the papers reported considerable success with the method. This paper reviews what we believe to be the totality of research reported using this method, as an introduction to our own experiments in this framework, reported in a companion paper. We report first...

  5. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2015-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  6. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  7. Novel analog switching circuit for van der Pauw measurements

    OpenAIRE

    David, T.; Molchadsky, I.; Somechi, A.; Rosenbaum, R.

    2005-01-01

    A simple electronic circuit is described using four common and very inexpensive analog multiplexer/demultiplexer chips. These analog switches are used to select eight different wiring configurations to a van der Pauw sample. Several interfacing schemes to a PC are suggested. The van der Pauw resistivity and Hall voltage expressions are also summarized.

  8. Analog modeling of transient moisture flow in unsaturated soil

    NARCIS (Netherlands)

    Wind, G.P.

    1979-01-01

    Hydraulic and electronic analog models are developed for the simulation of moisture flow and accumulation in unsaturated soil. The analog models are compared with numerical models and checked with field observations. Application of soil physical knowledge on a soil technological problem by means of

  9. The effects of analogy-based instruction on concept learning and retention in a non-formal coral reef ecology program

    Science.gov (United States)

    Brylske, Alexander Frederick

    While a number of instructional models focus on the use of analogies, research into their effectiveness in enhancing comprehension and retention of scientific concepts, particularly involving adult learners, has been limited. The purpose of this study was to determine the efficacy of using the common teaching strategy for comparing the function of a coral reef to that of a city by using an analogy-based instructional model termed FAR. The training program entitled "Marine Resource Management for Dive Professionals" (MRMDP) was developed for this study. It was targeted to professionals in the recreational scuba industry to improve their understanding of coal reef ecology, as well as orient them to pertinent marine resource management issues, and promote environmentally-responsible attitudes and diving practices among their clients. A quasi-experimental pre-post-delayed posttest control group design was used to explore five research questions and corresponding hypotheses. A 55-item researcher-developed test of coral reef ecology was administered pre and post instruction. The delayed posttest was self-administered by the subjects three weeks after course completion. Data on seven experiential variables hypothesized as research factors were collected. Ten MRMPD courses were taught in seven nations, involving 194 subjects (85 subjects in four control courses, 109 in six treatment course). The results were analyzed using multiple regression/correlation (MRC) techniques to determine: (1) any significant relationship between pretest performance and experiential variables, (2) treatment versus control group posttest performance, and (3) treatment versus control group delayed posttest performance. Within the treatment group, learning gains and retention were determined by t-test analysis. Results indicated: (1) all research factors except one were significant predictors of pretest scores in the presence of the covariate; (2) no significant difference was found between

  10. DOCCⅡ-based electronically tunable current-mode biquadratic filters

    Institute of Scientific and Technical Information of China (English)

    Wang Weidong

    2005-01-01

    A complete state variable current-mode biquadratic filter built by duo-output CCⅡ (DOCCⅡ) with variable current gain is presented. All the coefficients of the filter can be independently tuned through the variable current gain factors of the DOCCⅡ. Based on the principles upon which the general biquadratic filter was constructed, a universal electronically tunable current-mode filter is proposed which implements the low-pass, high-pass, band-pass, band-suppress and all-pass second order transfer functions simultaneously. The PSPICE simulations of frequency responses of second-order filter of are also given.

  11. Electron transport in gold colloidal nanoparticle-based strain gauges

    International Nuclear Information System (INIS)

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au-CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au-BSPP, Au-TDSP, Au-MPA and Au-MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values. (paper)

  12. Hardware-Algorithms Co-Design and Implementation of an Analog-to-Information Converter for Biosignals Based on Compressed Sensing.

    Science.gov (United States)

    Pareschi, Fabio; Albertini, Pierluigi; Frattini, Giovanni; Mangia, Mauro; Rovatti, Riccardo; Setti, Gianluca

    2016-02-01

    We report the design and implementation of an Analog-to-Information Converter (AIC) based on Compressed Sensing (CS). The system is realized in a CMOS 180 nm technology and targets the acquisition of bio-signals with Nyquist frequency up to 100 kHz. To maximize performance and reduce hardware complexity, we co-design hardware together with acquisition and reconstruction algorithms. The resulting AIC outperforms previously proposed solutions mainly thanks to two key features. First, we adopt a novel method to deal with saturations in the computation of CS measurements. This allows no loss in performance even when 60% of measurements saturate. Second, the system is able to adapt itself to the energy distribution of the input by exploiting the so-called rakeness to maximize the amount of information contained in the measurements. With this approach, the 16 measurement channels integrated into a single device are expected to allow the acquisition and the correct reconstruction of most biomedical signals. As a case study, measurements on real electrocardiograms (ECGs) and electromyograms (EMGs) show signals that these can be reconstructed without any noticeable degradation with a compression rate, respectively, of 8 and 10.

  13. 基于粒子群优化算法的模拟滤波器设计%Design of Analog Filter Based on Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    李鹏; 马红梅; 张旭珍

    2011-01-01

    采用传统的网络综合法设计计波器存在带宽不精确及阻带衰减过小的问题,为此,提出一种基于粒子群优化算法的无源模拟滤波器优化设计方法.在网络综合法设计的滤波器电路基础上,利用粒子群优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值.实例表明,采用该方法设计的滤波器带宽更加准确,且具有更加陡峭的阻带衰减.%As for the problem of the filter's bandwidth imprecision and stop-band attenuation too small, a passive analog filter optimization design method is proposed based on the Particle Swarm Optimization(PSO) algorithm.The filter is designed by the network synthesis design method, and it optimizes the circuit's parameters in the whole parameters space effectively and globally by PSO until gain the best parameters.This method can improve the filter's bandwidth imprecision and the high stop-band suppression.

  14. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    Science.gov (United States)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  15. Research of AC Analog Modulated Based on LVDT/RVDT%基于LVDT/RVDT的交流模拟量解调方法研究

    Institute of Scientific and Technical Information of China (English)

    魏婷; 夏德天

    2013-01-01

    Differential Transformer Type Sensor is an electromagnetic switch unit widely used in the flight control system. Real- time and accurate fault identification and detection of the sensor output is critical. This paper researches a new method of AC analog monitored and modulated based on LVDT/RVDT Sensor, and gives the result of the verification. The method is very effective at demodulating and monitoring the sensor output, which improves the security and reliability of the system dramatically.%差动变压器式传感器是在飞行控制系统中广泛采用的电磁式变换元件,实时准确地对传感器输出进行识别和故障检测非常关键.研究了一种基于LVDT/RVDT传感器的交流模拟量的解调和监控方法,并进行测试验证,方法可有效地对传感器的输出进行解调和监控,提高系统的安全可靠性.

  16. Counting-Based Digital-to-Analog Converter Scheme for Compact Column Driver with Low-Temperature Polycrystalline Silicon Thin-Film Transistors

    Science.gov (United States)

    Choi, Byong-Deok; Kim, Eui-Sik

    2008-03-01

    The concept of a counting-based digital-to-analog converter (CNT-DAC) is proposed to realize a compact column driver circuit for system-on-panel (SoP) applications. The traditional ramp DAC is very promising in the circuit-area respect, because it replaces the area-consuming read only memory (ROM)-type decoder with a counter; however, it is not widely used for display column drivers because it has several problems such as ramp signal distortion, charge sharing between column lines and pixel electrode and ramp signal generation. The CNT-DAC was inspired by the ramp DAC, which uses a counter instead of an area-consuming ROM-type decoder but can avoid the problems mentioned above by using a resistor string at each channel and a global shift register. Instead of designing an 8-bit DAC with the counting-based DAC alone, we combine the 3-bit traditional decoder-based DAC and the 5-bit CNT-DAC, because the 8-bit CNT-DAC needs a clock frequency of about 20 MHz for a portrait qVGA format (H: 240, V: 320), which is a fairy difficult requirement to meet. For a 2-in. diagonal portrait qVGA AMOLED panel, the circuit area of one channel DAC is 73×1,010 µm2 with the design rule of 2 µm and a TFT channel length of 4 µm. The total power consumption of the CNT-DAC is about 3.2 mW; the static power consumption due to the resistor string at each channel is 1.7 mW, the dynamic power consumption for driving the column lines is about 1.0 mW, and the global shift register consumes about 0.5 mW.

  17. Diamond-based heat spreaders for power electronic packaging applications

    Science.gov (United States)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  18. Analog data transmission via fiber optics

    International Nuclear Information System (INIS)

    In the SLAC Linear Collider Detector (SLD), as in most high-energy particle detectors, the electromagnetic noise environment is the limiting factor in electronic readout performance. Front-end electronics are particulary susceptible to electromagnetic interference (EMI), and great care has been taken to minimize its effects. The transfer of preprocessed analog signals from the detector environs, to the remote digital processing electronics, by conventional means (via metal conductors), may ultimately limit the performance of the system. Because it is highly impervious to EMI and ground loops, a fiber-optic medium has been chosen for the transmission of these signals. This paper describes several fiber-optic transmission schemes which satisfy the requirements of the SLD analog data transmission

  19. FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout

    Science.gov (United States)

    Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.

    2016-02-01

    The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.

  20. Towards Evidence-Based Understanding of Electronic Data Sources

    DEFF Research Database (Denmark)

    Chen, Lianping; Ali Babar, Muhammad; Zhang, He

    2010-01-01

    Identifying relevant papers from various Electronic Data Sources (EDS) is one of the key activities of conducting these kinds of studies. Hence, the selection of EDS for searching the potentially relevant papers is an important decision, which can affect a study’s coverage of relevant papers....... Researchers usually select EDS mainly based on personal knowledge, experience, and preferences and/or recommendations by other researchers. We believe that building an evidence-based understanding of EDS can enable researchers to make more informed decisions about the selection of EDS. This paper reports our...... initial effort towards this end. We propose an initial set of metrics for characterizing the EDS from the perspective of the needs of secondary studies. We explain the usage and benefits of the proposed metrics using the data gathered from two secondary studies. We also tried to synthesize the data from...

  1. Manganese oxide microswitch for electronic memory based on neural networks

    Science.gov (United States)

    Ramesham, R.; Daud, T.; Moopenn, A.; Thakoor, A. P.; Khanna, S. K.

    1989-01-01

    A solid-state, resistance tailorable, programmable-once, binary, nonvolatile memory switch based on manganese oxide thin films is reported. MnO(x) exhibits irreversible memory switching from conducting (on) to insulating (off) state, with the off and on resistance ratio of greater than 10,000. The switching mechanism is current-triggered chemical transformation of a conductive MnO(2-Delta) to an insulating Mn2O3 state. The energy required for switching is of the order of 4-20 nJ/sq micron. The low switching energy, stability of the on and off states, and tailorability of the on state resistance make these microswitches well suited as programmable binary synapses in electronic associative memories based on neural network models.

  2. An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities

    Science.gov (United States)

    Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen

    2012-01-01

    This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…

  3. 基于乘法器的模拟电路参数测量系统的设计与实现%Design of measurement system for the analog circuits parameters based on the multiplier

    Institute of Scientific and Technical Information of China (English)

    王永喜; 胡玫; 马胜前

    2012-01-01

    针对现有模拟电路参数测量方法复杂、测量结果精度低的缺点,构建了基于乘法器的模拟电路参数测量系统.系统中由信号源产生2路正交同频正弦模拟信号,取出一路信号通过待测模拟电路与原信号源产生的2路信号做乘法、滤波处理,产生两路直流信号,之后通过DAQ、LABVIEW采集,得到模拟电路相位差和幅度.经测量,幅度和相位的误差均小于3%,表明该系统具有电路简单、易于实现、误差小、运算速度快等优点,为模拟电路参数测量的研究提出一种可行性方案.%For the more complicated principle and the lower accuracy for the existing methods of the measurement of the analog circuits' parameters) a measurement system for the analog circuits' parameters based on the multiplier is put forward. The signal source generates two orthogonal sinusoidal analog signals with same frequency and takes a signal through the analog circuits. Then the multiplication and filtering are completed with the two DC signals. At last the phase and amplitude of the analog circuit are obtained through the DAQ and LABVIEW. The amplitude and phase errors are less than 3%. The results show that the system has many advantages of simple circuit, fast speed and high accuracy. So it is a feasible plan for the measurement system of the analog circuit parameters at present.

  4. Performance analysis of gamma ray spectrometric parameters on digital signal and analog signal processing based MCA systems using NaI(Tl) detector

    Energy Technology Data Exchange (ETDEWEB)

    Kukreti, B.M., E-mail: bharatkuk@gmail.com [Atomic Minerals Directorate for Exploration and Research, Physics Laboratory, Department of Atomic Energy, Nongmynsong, AMD Complex, Shillong, Meghalaya 793019 (India); Sharma, G.K. [Atomic Minerals Directorate for Exploration and Research, Physics Laboratory, Department of Atomic Energy, Nongmynsong, AMD Complex, Shillong, Meghalaya 793019 (India)

    2012-05-15

    Accurate and speedy estimations of ppm range uranium and thorium in the geological and rock samples are most useful towards ongoing uranium investigations and identification of favorable radioactive zones in the exploration field areas. In this study with the existing 5 in. Multiplication-Sign 4 in. NaI(Tl) detector setup, prevailing background and time constraints, an enhanced geometrical setup has been worked out to improve the minimum detection limits for primordial radioelements K{sup 40}, U{sup 238} and Th{sup 232}. This geometrical setup has been integrated with the newly introduced, digital signal processing based MCA system for the routine spectrometric analysis of low concentration rock samples. Stability performance, during the long counting hours, for digital signal processing MCA system and its predecessor NIM bin based MCA system has been monitored, using the concept of statistical process control. Monitored results, over a time span of few months, have been quantified in terms of spectrometer's parameters such as Compton striping constants and Channel sensitivities, used for evaluating primordial radio element concentrations (K{sup 40}, U{sup 238} and Th{sup 232}) in geological samples. Results indicate stable dMCA performance, with a tendency of higher relative variance, about mean, particularly for Compton stripping constants. - Highlights: Black-Right-Pointing-Pointer Geometrical enhancement for ppm range primordial radio elemental determination. Black-Right-Pointing-Pointer Experimental constraints include detector setup, background and counting time. Black-Right-Pointing-Pointer Gamma spectrometric performance monitored on digital and analog MCA systems. Black-Right-Pointing-Pointer Study indicates higher variance of Compton stripping constants on digital MCA system.

  5. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  6. Photon-Electron Interactions in Graphene-Based Heterojunctions

    Science.gov (United States)

    Liu, Fangze

    Graphene, a single layer of carbon atoms arranged in honeycomb lattice, has been one of the most attractive materials for fundamental and applied research in the past decade. Its unique electronic, optical, thermal, chemical and mechanical properties have lead to the discovery of new physics and many promising applications. In particular, research on photon-electron interaction in graphene-based heterojunctions has revealed a new route to design photoactive devices. In this thesis, I present our work on the synthesis of graphene by chemical vapor deposition (CVD) and the study of graphene-based optoelectronic devices. In addition to the conventional synthesis of graphene on copper (Cu) foils, we also present the CVD synthesis of graphene on a new substrate: palladium (Pd). Especially, we performed detailed study of the nucleation, evolution and morphology of graphene growth on Pd substrate. It helps us to understand the growth reaction mechanism and achieve controllable synthesis of graphene from single layer to multiple layers with different morphologies. We then studied the broadband and ultrasensitive photocurrent and photovoltage response of graphene/silicon (Si) Schottky diodes. For the same architecture, we identified a new photoconductive mode with ultra high photoconductive gain, namely "quantum carrier reinvestment (QCR)". A gain exceeding 107 A/W was demonstrated. The underlying physics of photon-electron interactions in these junctions were studied by a combination of optical characterization tools including Raman spectroscopy, UV-Vis spectroscopy and scanning optical microscopy. The results obtained have been discussed in the framework of the unique electronic band structure, density states, and mobility of graphene, along with the manner in witch photoexcited carrier behave under various externally tuned parameters. We also systematically studied the optimization of performance of graphene/Si and thin transparent graphite/Si junction solar cells and

  7. Electron-ion plasma modification of Al-based alloys

    International Nuclear Information System (INIS)

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm2) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa

  8. USW area analogs

    OpenAIRE

    Everett, Keith R.

    2005-01-01

    The purpose of this project is to investigate the feasibility of and methodology for the development of a set of environmental analogs of operational Undersea Warfare (USW) areas within fleet training areas. It is primarily a discussion of the identification of parameters that characterize the tactical USW environment, prioritization of these parameters, identification of existing databases that contain these parameters and an outline of the processes required to extract the desired data fro...

  9. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  10. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism.

    Directory of Open Access Journals (Sweden)

    Louise Egeblad

    Full Text Available To identify interactions a nucleoside analog library (NAL consisting of 45 FDA-approved nucleoside analogs was screened against 23 enzymes of the human nucleotide metabolism using a thermal shift assay. The method was validated with deoxycytidine kinase; eight interactions known from the literature were detected and five additional interactions were revealed after the addition of ATP, the second substrate. The NAL screening gave relatively few significant hits, supporting a low rate of "off target effects." However, unexpected ligands were identified for two catabolic enzymes guanine deaminase (GDA and uridine phosphorylase 1 (UPP1. An acyclic guanosine prodrug analog, valaciclovir, was shown to stabilize GDA to the same degree as the natural substrate, guanine, with a ΔT(agg around 7°C. Aciclovir, penciclovir, ganciclovir, thioguanine and mercaptopurine were also identified as ligands for GDA. The crystal structure of GDA with valaciclovir bound in the active site was determined, revealing the binding of the long unbranched chain of valaciclovir in the active site of the enzyme. Several ligands were identified for UPP1: vidarabine, an antiviral nucleoside analog, as well as trifluridine, idoxuridine, floxuridine, zidovudine, telbivudine, fluorouracil and thioguanine caused concentration-dependent stabilization of UPP1. A kinetic study of UPP1 with vidarabine revealed that vidarabine was a mixed-type competitive inhibitor with the natural substrate uridine. The unexpected ligands identified for UPP1 and GDA imply further metabolic consequences for these nucleoside analogs, which could also serve as a starting point for future drug design.

  11. Analog computing by Brewster effect.

    Science.gov (United States)

    Youssefi, Amir; Zangeneh-Nejad, Farzad; Abdollahramezani, Sajjad; Khavasi, Amin

    2016-08-01

    Optical computing has emerged as a promising candidate for real-time and parallel continuous data processing. Motivated by recent progresses in metamaterial-based analog computing [Science343, 160 (2014)SCIEAS0036-807510.1126/science.1242818], we theoretically investigate the realization of two-dimensional complex mathematical operations using rotated configurations, recently reported in [Opt. Lett.39, 1278 (2014)OPLEDP0146-959210.1364/OL.39.001278]. Breaking the reflection symmetry, such configurations could realize both even and odd Green's functions associated with spatial operators. Based on such an appealing theory and by using the Brewster effect, we demonstrate realization of a first-order differentiator. Such an efficient wave-based computation method not only circumvents the major potential drawbacks of metamaterials, but also offers the most compact possible device compared to conventional bulky lens-based optical signal and data processors.

  12. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  13. Analogies as categorization phenomena: Studies from scientific discourse

    Science.gov (United States)

    Atkins, Leslie Jill

    Studies on the role of analogies in science classrooms have tended to focus on analogies that come from the teacher or curriculum, and not the analogies that students generate. Such studies are derivative of an educational system that values content knowledge over scientific creativity, and derivative of a model of teaching in which the teacher's role is to convey content knowledge. This dissertation begins with the contention that science classrooms should encourage scientific thinking and one role of the teacher is to model that behavior and identify and encourage it in her students. One element of scientific thinking is analogy. This dissertation focuses on student-generated analogies in science, and offers a model for understanding these. I provide evidence that generated analogies are assertions of categorization, and the base of an analogy is the constructed prototype of an ad hoc category. Drawing from research on categorization, I argue that generated analogies are based in schemas and cognitive models. This model allows for a clear distinction between analogy and literal similarity; prior to this research analogy has been considered to exist on a spectrum of similarity, differing from literal similarity to the degree that structural relations hold but features do not. I argue for a definition in which generated analogies are an assertion of an unexpected categorization: that is, they are asserted as contradictions to an expected schema.

  14. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    Science.gov (United States)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  15. TRANSPARENCY IN ELECTRONIC BUSINESS NEGOTIATIONS – EVIDENCE BASED ANALYSIS

    Directory of Open Access Journals (Sweden)

    Radoslav Delina

    2014-12-01

    Full Text Available Purpose: In current economy, where ICT plays a crucial role for being competitive and effective, businesses are facing higher pressures of flexibility and efficiency than ever before. Transparency is often considered as a suitable mechanism for better market prices and more efficient market environment. Electronic business environment provides the possibility to set up more transparent environment and bring higher competitiveness and efficiency on the market. The paper analyse the impact of transparency on prices in e-procurement.Methodology: Reverse auctions are considered as transparent tool simulating in partial level real competition. Together, it allows to examine several levels of transparency set up in auction negotiation process. The impact of transparency on final prices was analysed on real data using relation based analysis were different situations of transparency set up is compared against achieved final price.Findings: Research results based on real data shows, that generally, the transparency in electronic reverse auction can lead to more negative prices agreed by purchasers as current scientific and commercial promotions.Research limitation: Significance of research results is limited due to still low readiness and skills of e-procurers. The validation of results is needed to realized within longer period of time and from environments with different level of e-readiness. Together, it reveal that transparency is more complex issue where the significance of transparency can reveal its sense in some specific situations on the market and negotiation.Value of paper: Evidenced based research reveal some controversy results which support new scientific efforts in microeconomics and socio-economic impact of ICT fields. Together, it affects real practitioners in way how to use and perceive claimed impact of reverse auction solutions.

  16. Studies of Electronic Conduction in Some Small Gallium Arsenic Based.

    Science.gov (United States)

    Whittington, Geoffrey

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes experimental investigations of the physics involved with low temperature electronic conduction in three different semiconductor systems. The research relies upon technological advances in fabrication of such semiconductor samples. The first work deals with the effects of quantum interference of electrons in some submicron size, heavily doped Gallium Arsenide wire samples. The interesting effect of aperiodic fluctuations in the magnetoresistance of these samples is studied, making use of recently formulated theory on the subject, and with experimental data taken over the magnetic field range 0 to 10 tesla. The results verify the connection between the mean amplitude of the fluctuations and the field correlation period, in terms of the correlation function introduced in the theory. The second work is on the impurity-assisted tunnelling conduction in a magnetic field of three thin rm n^{+}/n^{-}/n^ {+} GaAs sandwich layer structures. The conduction of the system is shown to be determined by impurities lying in the centre of the middle layer. This allows the connection to be made between the conductivity of the system in a magnetic field, and the field-dependent shape of the donor electron wavefunction. The relative variation in resistance with angle to an applied magnetic field was measured, and is shown to be in agreement with predictions based on calculations of the shape of a normalised hydrogenic state wavefunction in high magnetic fields. The third work concerns the tunnelling conduction of a symmetrical GaAs/(AlGa)As/GaAs hetero-barrier system. The current-voltage characteristics at low temperature are fully modelled for applied voltages up to 180mV, using conventional theory of tunnelling and a position-dependent effective mass in the barrier. Low current oscillations in the Fowler-Nordheim tunnelling regime, corresponding to quantum reflection at the

  17. A Novel Integrated SET Based Inverter for Nano Power Electronic Applications

    OpenAIRE

    Negin Moezi; Daryoosh Dideban; Abbas Ketabi

    2008-01-01

    In this research an emerging field of power electronics in nanotechnology is survived. This application-based technology today is called Nano Power Electronics. It utilizes nano electronic transistors in switching applications in the range of nano power for signal shaping purposes. In recent years Single Electron Transistors are highly interested in nano electronic applications. They have got inherently fast tunneling rate, which makes them highly suitable for high-speed operation. Based on t...

  18. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  19. Development of analogical problem-solving skill.

    Science.gov (United States)

    Holyoak, K J; Junn, E N; Billman, D O

    1984-12-01

    3 experiments were performed to assess children's ability to solve a problem by analogy to a superficially dissimilar situation. Preschoolers and fifth and sixth graders were asked to solve a problem that allowed multiple solutions. Some subjects were first read a story that included an analogous problem and its solution. When the mapping between the relations involved in the corresponding solutions was relatively simple, and the corresponding instruments were perceptually and functionally similar, even preschoolers were able to use the analogy to derive a solution to the transfer problem (Experiment 1). Furthermore, salient similarity of the instruments was neither sufficient (Experiment 2) nor necessary (Experiment 3) for success by preschool subjects. When the story analog mapped well onto the transfer problem, 4-year-olds were often able to generate a solution that required transformation of an object with little perceptual or semantic similarity to the instrument used in the base analog (Experiment 3). The older children used analogies in a manner qualitatively similar to that observed in comparable studies with adults (Experiment 1), whereas the younger children exhibited different limitations.

  20. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    Science.gov (United States)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  1. Auto-balancing transformer based on power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [Electric Power Security and High Efficiency Lab, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States); Mao, Chengxiong; Lu, Jiming; He, Jinping; Liu, Haibo [Electric Power Security and High Efficiency Lab, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-01-15

    An auto-balancing transformer based on power electronics is designed and proposed to prevent voltage or/and current unbalances arising on the primary side system from infecting the secondary side system, or in reverse. The multilevel converters and interleaving parallel connection technology are adopted in the transformer design to match the demand of power automatically balancing and high-voltage and high-power application. The operating principle is analyzed in detail and an effective control scheme is developed. To verify the new features of the proposed design, a detailed computer simulation model is established using Matlab Simulink and typical simulations are carried out. And the experimental verification is also presented. All show satisfactory results. (author)

  2. Computing environmental life of electronic products based on failure physics

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Zhang; Zongchang Xu; Chunyang Hu

    2016-01-01

    In some situations, the accelerated life test on en-vironmental stress for electronic products is not easily imple-mented due to various restrictions, and thus engineers are lacking of data of the product life test. Concerning this prob-lem, environmental life of the printed circuit board (PCB) board is calculated by way of physics of failure. Influences of thermal cycle and vibration on PCB and its components are studied. Based on the analysis of force and stress between components and the PCB board in thermal cycle events and vibration events, four life computing models of pins and sol-dered dots are established. The miler damage ratio is used to calculate the accumulated damage of a pin or a soldered dot, and then the environment life of the PCB board can be de-termined by the first failed one. Finaly, an example is used to ilustrate the models and their calculations.

  3. LASER-BASED PROFILE MONITOR FOR ELECTRON BEAMS

    International Nuclear Information System (INIS)

    High performance TeV energy electron / positron colliders (LC) are the first machines to require online, non-invasive beam size monitors for micron and sub-micron for beam phase space optimization. Typical beam densities in the LC are well beyond the threshold density for single pulse melting and vaporization of any material, making conventional wire scanners ineffective. Using a finely focused, diffraction limited high power laser, it is possible to devise a sampling profile monitor that, in operation, resembles a wire scanner. Very high resolution laser-based profile monitors have been developed and tested, first at FFTB (SLAC) and later at SLC and ATF. The monitor has broad applicability and we review here the technology, application and status of ongoing research programs

  4. PROTEOTRONICS: The emerging science of protein-based electronic devices

    Science.gov (United States)

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-10-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein.

  5. A Novel Diagnostics of Ultrashort Electron Bunches Based on Detection of Coherent Radiation from Bunched Electron Beam in an Undulator

    CERN Document Server

    Saldin, Evgeny L; Yurkov, Mikhail V

    2004-01-01

    We propose a new method for measurements of the longitudinal profile of 100 femtosecond electron bunches for X-ray Free Electron Lasers (XFELs). The method is based on detection of coherent undulator radiation produced by modulated electron beam. Seed optical quantum laser is used to produce exact optical replica of ultrashort electron bunches. The replica is generated in apparatus which consists of an input undulator (energy modulator), and output undulator (radiator) separated by a dispersion section. The radiation in the output undulator is excited by the electron bunch modulated at the optical wavelength and rapidly reaches a hundred-MW-level power. We then use the now-standard method of ultrashort laser pulse-shape measurement, a tandem combination of autocorrelator and spectrum (FROG -- frequency resolved optical gating) providing real-time single-shot measurements of the electron bunch structure. The big advantage of proposed technique is that it can be used to determine the slice energy spread and emi...

  6. Electrons

    International Nuclear Information System (INIS)

    Fast electrons are used to produce isotopes for studying the cooper metabolism: Cu-64 in a cyclotron and Cu-67 in a linear accelerator. Localized electrons are responsible for the chemical and physiological characteristics of the trace elements. Studied are I, Cu, Co, Zn, Mo, Mn, Fe, Se, Mg. The Cu/Mo and Cu/Zn interactions are investigated. The levels of molybdenum, sulfate and zinc in the food are analysed. The role of the electrons in free radicals is discussed. The protection action of peroxidases and super oxidases against electron dangerous effect on normal physiology is also considered. Calculation of radiation damage and radiation protection is made. (author)

  7. Development of an Electronic Claim System Based on an Integrated Electronic Health Record Platform to Guarantee Interoperability

    OpenAIRE

    Kim, Hwa Sun; Cho, Hune; Lee, In Keun

    2011-01-01

    Objectives We design and develop an electronic claim system based on an integrated electronic health record (EHR) platform. This system is designed to be used for ambulatory care by office-based physicians in the United States. This is achieved by integrating various medical standard technologies for interoperability between heterogeneous information systems. Methods The developed system serves as a simple clinical data repository, it automatically fills out the Centers for Medicare and Medic...

  8. Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras

    Science.gov (United States)

    Snyder, Casey J.; Khan, Shuhab D.; Bhattacharya, Janok P.; Glennie, Craig; Seepersad, Darsel

    2016-08-01

    Ground-based terrestrial laser scanning and hyperspectral sensors were used to image fine-scale heterogeneity in outcrops of prodeltaic heterolithic facies of Parasequence 6 of the Cretaceous Ferron Notom delta in Southern Utah. Previous work shows that Parasequence 6 is an upward coarsening fluvial-dominated, wave-influenced deltaic deposit containing heterolithic thin-bedded facies representing distal delta front and proximal prodelta environments. Primarily, the thin beds have been interpreted as turbidites, storm beds (tempestites), and hyperpycnites. These deposits represent analogs for thin-bedded unconventional pay zones that lie at the margins of conventional deltaic sandstone reservoirs. The terrestrial laser scanner was used to create a centimeter- to decimeter-scale, digital representation of the outcrops in three dimensions. Hyperspectral sensors record electromagnetic radiation reflected off the outcrops in 840 contiguous bands, which were then used to generate a spectral signature for each pixel sampled. The spectral signatures are a function of mineralogy, chemistry, surface alteration, grain-size, and cements, and were used to distinguish thin mudstones from sandstones within an interbedded succession at the base of a deltaic parasequence. Comparison between the spectral signatures recorded from the outcrop and those of reference materials, and with previous facies architecture studies, enables lithofacies to be identified and subsequently accurately mapped. Hyperspectral data are then draped over the terrestrial laser scanner model to generate a spatially-accurate detailed three-dimensional (3D) geologic map of the heterogeneity. Approximately 100 m of outcrop was imaged laterally with the hyperspectral camera and terrestrial laser scanner on the previously mapped distal delta front and prodeltaic facies of Parasequence 6. Bed thickness data, based on measurements made along depositional dip versus strike, show that bed geometries are anisotropic

  9. Thin-bedded reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-based hyperspectral cameras

    Science.gov (United States)

    Snyder, Casey J.; Khan, Shuhab D.; Bhattacharya, Janok P.; Glennie, Craig; Seepersad, Darsel

    2016-08-01

    Ground-based terrestrial laser scanning and hyperspectral sensors were used to image fine-scale heterogeneity in outcrops of prodeltaic heterolithic facies of Parasequence 6 of the Cretaceous Ferron Notom delta in Southern Utah. Previous work shows that Parasequence 6 is an upward coarsening fluvial-dominated, wave-influenced deltaic deposit containing heterolithic thin-bedded facies representing distal delta front and proximal prodelta environments. Primarily, the thin beds have been interpreted as turbidites, storm beds (tempestites), and hyperpycnites. These deposits represent analogs for thin-bedded unconventional pay zones that lie at the margins of conventional deltaic sandstone reservoirs. The terrestrial laser scanner was used to create a centimeter- to decimeter-scale, digital representation of the outcrops in three dimensions. Hyperspectral sensors record electromagnetic radiation reflected off the outcrops in 840 contiguous bands, which were then used to generate a spectral signature for each pixel sampled. The spectral signatures are a function of mineralogy, chemistry, surface alteration, grain-size, and cements, and were used to distinguish thin mudstones from sandstones within an interbedded succession at the base of a deltaic parasequence. Comparison between the spectral signatures recorded from the outcrop and those of reference materials, and with previous facies architecture studies, enables lithofacies to be identified and subsequently accurately mapped. Hyperspectral data are then draped over the terrestrial laser scanner model to generate a spatially-accurate detailed three-dimensional (3D) geologic map of the heterogeneity. Approximately 100 m of outcrop was imaged laterally with the hyperspectral camera and terrestrial laser scanner on the previously mapped distal delta front and prodeltaic facies of Parasequence 6. Bed thickness data, based on measurements made along depositional dip versus strike, show that bed geometries are anisotropic

  10. Sculpturing the Electron Wave Function

    CERN Document Server

    Shiloh, Roy; Lilach, Yigal; Arie, Ady

    2014-01-01

    Coherent electrons such as those in electron microscopes, exhibit wave phenomena and may be described by the paraxial wave equation. In analogy to light-waves, governed by the same equation, these electrons share many of the fundamental traits and dynamics of photons. Today, spatial manipulation of electron beams is achieved mainly using electrostatic and magnetic fields. Other demonstrations include simple phase-plates and holographic masks based on binary diffraction gratings. Altering the spatial profile of the beam may be proven useful in many fields incorporating phase microscopy, electron holography, and electron-matter interactions. These methods, however, are fundamentally limited due to energy distribution to undesired diffraction orders as well as by their binary construction. Here we present a new method in electron-optics for arbitrarily shaping of electron beams, by precisely controlling an engineered pattern of thicknesses on a thin-membrane, thereby molding the spatial phase of the electron wav...

  11. Analogy perception applied to seven tests of word comprehension

    CERN Document Server

    Turney, Peter D

    2011-01-01

    It has been argued that analogy is the core of cognition. In AI research, algorithms for analogy are often limited by the need for hand-coded high-level representations as input. An alternative approach is to use high-level perception, in which high-level representations are automatically generated from raw data. Analogy perception is the process of recognizing analogies using high-level perception. We present PairClass, an algorithm for analogy perception that recognizes lexical proportional analogies using representations that are automatically generated from a large corpus of raw textual data. A proportional analogy is an analogy of the form A:B::C:D, meaning "A is to B as C is to D". A lexical proportional analogy is a proportional analogy with words, such as carpenter:wood::mason:stone. PairClass represents the semantic relations between two words using a high-dimensional feature vector, in which the elements are based on frequencies of patterns in the corpus. PairClass recognizes analogies by applying s...

  12. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2006-03-01

    Full Text Available Abstract Background All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR and variable arrays of the CRISPR-associated (cas genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. Results The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer, the endonuclease cleaving target mRNAs (slicer, and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA, by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale

  13. Highly sensitive hot electron bolometer based on disordered graphene

    OpenAIRE

    Qi Han; Teng Gao; Rui Zhang; Yi Chen; Jianhui Chen; Gerui Liu; Yanfeng Zhang; Zhongfan Liu; Xiaosong Wu; Dapeng Yu

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using ...

  14. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  15. Gullies on Mars: Origin by Snow and Ice Melting and Potential for Life Based on Possible Analogs from Devon Island, High Arctic

    Science.gov (United States)

    Lee, Pascal; Cockell, Charles S.; McKay, Christopher P.

    2004-01-01

    Gullies on Devon Island, High Arctic, which form by melting of transient surface ice and snow covers and offer morphologic and contextual analogs for gullies reported on Mars are reported to display enhancements in biological activity in contrast to surrounding polar desert terrain.

  16. Discrete Calculus by Analogy

    CERN Document Server

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  17. Recent Advancements in Functionalized Paper-Based Electronics.

    Science.gov (United States)

    Lin, Yang; Gritsenko, Dmitry; Liu, Qian; Lu, Xiaonan; Xu, Jie

    2016-08-17

    Building electronic devices on ubiquitous paper substrates has recently drawn extensive attention due to its light weight, low cost, environmental friendliness, and ease of fabrication. Recently, a myriad of advancements have been made to improve the performance of paper electronics for various applications, such as basic electronic components, energy storage devices, generators, antennas, and electronic circuits. This review aims to summarize this progress and discuss different perspectives of paper electronics as well as the remaining challenges yet to be overcome in this field. Other aspects included in this review are the fundamental characteristics of paper, modification of paper with functional materials, and various methods for device fabrication.

  18. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  19. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: xzhao@mail.xjtu.edu.cn [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  20. Power Electronic Transformer based Three-Phase PWM AC Drives

    Science.gov (United States)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  1. Analog optical computing primitives in silicon photonics.

    Science.gov (United States)

    Jiang, Yunshan; DeVore, Peter T S; Jalali, Bahram

    2016-03-15

    Optical computing accelerators help alleviate bandwidth and power consumption bottlenecks in electronics. We show an approach to implementing logarithmic-type analog co-processors in silicon photonics and use it to perform the exponentiation operation and the recovery of a signal in the presence of multiplicative distortion. The function is realized by exploiting nonlinear-absorption-enhanced Raman amplification saturation in a silicon waveguide. PMID:26977687

  2. Approaches to synthetic platelet analogs.

    Science.gov (United States)

    Modery-Pawlowski, Christa L; Tian, Lewis L; Pan, Victor; McCrae, Keith R; Mitragotri, Samir; Sen Gupta, Anirban

    2013-01-01

    Platelet transfusion is routinely used for treating bleeding complications in patients with hematologic or oncologic clotting disorders, chemo/radiotherapy-induced myelosuppression, trauma and surgery. Currently, these transfusions mostly use allogeneic platelet concentrates, while products like lyophilized platelets, cold-stored platelets and infusible platelet membranes are under investigation. These natural platelet-based products pose considerable risks of contamination, resulting in short shelf-life (3-5 days). Recent advances in pathogen reduction technologies have increased shelf-life to ~7 days. Furthermore, natural platelets are short in supply and also cause several biological side effects. Hence, there is significant clinical interest in platelet-mimetic synthetic analogs that can allow long storage-life and minimum side effects. Accordingly, several designs have been studied which decorate synthetic particles with motifs that promote platelet-mimetic adhesion or aggregation. Recent refinement in this design involves combining the adhesion and aggregation functionalities on a single particle platform. Further refinement is being focused on constructing particles that also mimic natural platelet's shape, size and elasticity, to influence margination and wall-interaction. The optimum design of a synthetic platelet analog would require efficient integration of platelet's physico-mechanical properties and biological functionalities. We present a comprehensive review of these approaches and provide our opinion regarding the future directions of this research. PMID:23092864

  3. Analog Module Placement Design Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a novel genetic algorithm for analog module placement based on ageneralization of the two-dimensional bin packing problem. The genetic encoding and operators assure that allproblem constraints are always satisfied. Thus the potential problems of adding penalty terms to the costfunction are eliminated so that the search configuration space is drastically decreased. The dedicated costfunction is based on the special requirements of analog integrated circuits. A fractional factorial experimentwas conducted using an orthogonal array to study the algorithm parameters. A meta GA was applied todetermine the optimal parameter values. The algorithm was tested with several local benchmark circuits. Theexperimental results show that the algorithm has better performance than the simulated annealing approachwith satisfactory results comparable to manual placement. This study demonstrates the effectiveness of thegenetic algorithm in the analog module placement problem. The algorithm has been successfully used in alayout synthesis tool.

  4. Analog forecasting with dynamics-adapted kernels

    Science.gov (United States)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  5. ESPRESSO instrument control electronics: a PLC based distributed layout for a second generation instrument at ESO VLT

    Science.gov (United States)

    Baldini, V.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mannetta, M.; Santin, P.; Mégevand, D.; Zerbi, F.

    2014-07-01

    ESPRESSO is an ultra-stable fiber-fed spectrograph designed to combine incoherently the light coming from up to 4 Unit Telescopes of the ESO VLT. From the Nasmyth focus of each telescope the light, through an optical path, is fed by the Coudé Train subsystems to the Front End Unit placed in the Combined Coudé Laboratory. The Front End is composed by one arm for each telescope and its task is to convey the incoming light, after a calibration process, into the spectrograph fibers. To perform these operations a large number of functions are foreseen, like motorized stages, lamps, digital and analog sensors that, coupled with dedicated Technical CCDs (two per arms), allow to stabilize the incoming beam up to the level needed to exploit the ESPRESSO scientific requirements. The Instrument Control Electronics goal is to properly control all the functions in the Combined Coudé Laboratory and the spectrograph itself. It is fully based on a distributed PLC architecture, abandoning in this way the VME-based technology previously adopted for the ESO VLT instruments. In this paper we will describe the ESPRESSO Instrument Control Electronics architecture, focusing on the distributed layout and its interfaces with the other ESPRESSO subsystems.

  6. Sustained First Remission in an Adolescent With Hepatosplenic T-Cell Lymphoma Treated With T-Cell Leukemia Induction, Nucleoside Analog-Based Consolidation, and Early Hematopoietic Stem Cell Transplant

    OpenAIRE

    Schafer, Eric; Chen, Allen; Arceci, Robert J.

    2009-01-01

    Hepatosplenic T-cell lymphoma (HTCL) is a rare malignancy. Prognosis is poor with only a few case reports of long-term survivors. While HTCL universally involves the bone marrow, the condition has been most often treated with multimodal lymphoma specific chemotherapy. We report a durable, sustained first remission in an adolescent treated for HTCL who received induction therapy according to a high risk T-cell leukemia regimen, a nucleoside analog-based consolidation, and allogeneic transplant...

  7. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  8. 23rd workshop on Advances in Analog Circuit Design

    CERN Document Server

    Baschirotto, Andrea; Makinwa, Kofi

    2015-01-01

    This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    • Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing; • Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; • Presents material in a tutorial-based format.

  9. Controlled Phase Gate Based on an Electron Floating on Helium

    Institute of Scientific and Technical Information of China (English)

    SHI Yan-Li; MEI Feng; YU Ya-Fei; ZHANG Zhi-Ming

    2011-01-01

    We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium. The electron is also driven by a classical laser beam and by an oscillating magnetic field. In the process, the vibration of the electron is used as the qubus to couple the energy level qubit (1D Stark-shifted hydrogen) and spin qubit Ultimately. the controlled phase gate can be generated.%@@ We propose a scheme to generate the controlled phase gate by using an electron floating on liquid helium.The electron is also driven by a classical laser beam and by an oscillating magnetic field.In the process,the vibration of the electron is used as the qubus to couple the energy level qubit(1D Stark-shifted hydrogen) and spin qubit.Ultimately,the controlled phase gate can be generated.

  10. Obstacles of XML-based electronic accounting reference

    OpenAIRE

    Juhava, Antti

    2012-01-01

    Research objectives The use of electronic accounting reference in its newest form, constructed from the viewpoint of unified practices, seems to have fallen short. Because no proper research has been conducted to depict the reasons that effect on the adoption of electronic accounting reference, this thesis aims to find answers through the following research question: What reasons hinder the adoption of electronic accounting reference for incoming invoices in Finnish companies? Researc...

  11. Analog circuit design a tutorial guide to applications and solutions

    CERN Document Server

    Williams, Jim

    2011-01-01

    * Covers the fundamentals of linear/analog circuit and system design to guide engineers with their design challenges. * Based on the Application Notes of Linear Technology, the foremost designer of high performance analog products, readers will gain practical insights into design techniques and practice. * Broad range of topics, including power management tutorials, switching regulator design, linear regulator design, data conversion, signal conditioning, and high frequency/RF design. * Contributors include the leading lights in analog design, Robert Dobkin, Jim Willia

  12. Electronic structure of Fe- vs. Ru-based dye molecules

    DEFF Research Database (Denmark)

    Johnson, Phillip S.; Cook, Peter L.; Zegkinoglou, Ioannis;

    2013-01-01

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold......, octahedral N cage, such as tris(bipyridines) and tris(phenanthrolines), exhibit a systematic downward shift of the N 1s-to-π* transition when Ru is replaced by Fe. This shift is explained by an extra transfer of negative charge from the metal to the N ligands in the case of Fe, which reduces the binding...... energy of the N 1s core level. The C 1s-to-π* transitions show the opposite trend, with an increase in the transition energy when replacing Ru by Fe. Molecules with the metal in a fourfold, planar N cage (porphyrins) exhibit a more complex behavior due to a subtle competition between the crystal field...

  13. Digital waterway construction based on inland electronic navigation chart

    Science.gov (United States)

    Wang, Xue; Pan, Junfeng; Zhu, Weiwei

    2015-12-01

    With advantages of large capacity, long distance, low energy consumption, low cost, less land occupation and light pollution, inland waterway transportation becomes one of the most important constituents of the comprehensive transportation system and comprehensive water resources utilization in China. As one of "three elements" of navigation, waterway is the important basis for the development of water transportation and plays a key supporting role in shipping economic. The paper discuss how to realize the informatization and digitization of waterway management based on constructing an integrated system of standard inland electronic navigation chart production, waterway maintenance, navigation mark remote sensing and control, ship dynamic management, and water level remote sensing and report, which can also be the foundation of the intelligent waterway construction. Digital waterway construction is an information project and also has a practical meaning for waterway. It can not only meet the growing high assurance and security requirements for waterway, but also play a significant advantage in improving transport efficiency, reducing costs, promoting energy conservation and so on. This study lays a solid foundation on realizing intelligent waterway and building a smooth, efficient, safe, green modern inland waterway system, and must be considered as an unavoidable problem for the coordinated development between "low carbon" transportation and social economic.

  14. Inter-base Electronic Coupling for transport through DNA

    CERN Document Server

    Anantram, H M M P

    2005-01-01

    We develop a new approach to derive single state tight binding (SSTB) model for electron transport in the vicinity of valence-conduction bands of poly(G)-poly(C) and poly(A)-poly(T) DNA. The SSTB parameters are derived from {\\it first principles} and are used to model charge transport through finite length DNA. We investigate the rigor of reducing the full DNA Hamiltonian to SSTB model to represent charge transport in the vicinity of valence-conduction band. While the transmission coefficient spectrum is preserved, its position shifts in energy. Thymine is poorly represented and its peak height is substantially reduced. This is attributed to the abstraction of the HOMO-LUMO coupling to other eigen-states in the nearest neighbor DNA bases, and can be corrected within $2^{nd}$ order time independent perturbation theory. Inter-strand charge transport has also been analyzed and it is found that hopping to the nearest neighbor in the complementary strand is the most important process except in the valence band of ...

  15. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  16. Electronic nanobiosensors based on two-dimensional materials

    Science.gov (United States)

    Ping, Jinglei

    Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.

  17. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  18. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose–Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  19. Magnetic activity of seismic solar analogs

    CERN Document Server

    Salabert, D

    2016-01-01

    We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution Hermes spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity (Salabert et al., 2016b). It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD30495. In...

  20. An Analysis of Electronic Products’ Advertisements Based onthe Cooperative Principles

    Institute of Scientific and Technical Information of China (English)

    周亚林

    2015-01-01

    In moderntimes,more and more electronic products appear.Advertisements as an important way to promotethe products are applied by more and more businessmen.Many advertisements violate the Cooperative Principles which is proposed by the philosopher Paul Grice.This paper attempts to analyze the violations of cooperative principles in English electronic products’ advertisements.

  1. Analog and digital signal processing

    Science.gov (United States)

    Baher, H.

    The techniques of signal processing in both the analog and digital domains are addressed in a fashion suitable for undergraduate courses in modern electrical engineering. The topics considered include: spectral analysis of continuous and discrete signals, analysis of continuous and discrete systems and networks using transform methods, design of analog and digital filters, digitization of analog signals, power spectrum estimation of stochastic signals, FFT algorithms, finite word-length effects in digital signal processes, linear estimation, and adaptive filtering.

  2. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  3. Generating Analog IC Layouts with LAYGEN II

    CERN Document Server

    Martins, Ricardo M F; Horta, Nuno C G

    2013-01-01

    This book presents an innovative methodology for the automatic generation of analog integrated circuits (ICs) layout, based on template descriptions and on evolutionary computational techniques. A design automation tool, LAYGEN II, was implemented to validate the proposed approach giving special emphasis to reusability of expert design knowledge and to efficiency on retargeting operations.

  4. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws. (UK)

  5. ANUSANSKAR: a 16 channel frontend electronics (FEE) ASIC targeted for silicon pixel array detector based prototype Alice FOCAL

    International Nuclear Information System (INIS)

    ANUSANSKAR is a 16 channel pulse processing ASIC with analog multiplexed output designed in 0.7 um standard CMOS technology with each channel consisting of CSA, Semi Gaussian pulse shaper, DC cancellation and pedestal control, track and hold, output buffer blocks. The ASIC's analog multiplexed output can be read serially in daisy-chain topology. Testing, characterization and validation of ANUSANSKAR ASIC as readout for prototype ALICE forward calorimeter (FOCAL) has been carried out in PS beam line at CERN with up to 6 GeV of pion and electron beam. This paper describes the ANUSANSKAR ASIC along with the experimental results. (author)

  6. Practical approach to programmable analog circuits with memristors

    CERN Document Server

    Pershin, Yuriy V

    2009-01-01

    We suggest an approach to use memristors (resistors with memory) in programmable analog circuits. Our idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor's states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built several programmable analog circuits demonstrating memristor-based programming of threshold, gain and frequency.

  7. FET comparator detects analog signal levels without loading analog device

    Science.gov (United States)

    Wallace, H. L.

    1966-01-01

    FET comparator circuit detects discrete analog computer output levels without excessively loading the output amplifier of the computer. An FET common source amplifier is coupled by a differential amplifier to a bistable transistor flip-flop. This circuit provides a digital output for analog voltages above or below a predetermined level.

  8. [Analogies and analogy research in technical biology and bionics].

    Science.gov (United States)

    Nachtigall, Werner

    2010-01-01

    The procedural approaches of Technical Biology and Bionics are characterized, and analogy research is identified as their common basis. The actual creative aspect in bionical research lies in recognizing and exploiting technically oriented analogies underlying a specific biological prototype to indicate a specific technical application.

  9. HPS Electronic Ballast Based on CIC-CPPFC Technique

    Institute of Scientific and Technical Information of China (English)

    王卫; 苏勤; 高国安

    2002-01-01

    Investigates the application of CIC-CPPFC techniques to high-pressure sodium(HPS) lamp electronic ballast. In order to ensure a unity power factor, different power electronic ballasts are studied by PSpice simulation. A dynamic model of HPS lamp with simple and accurate features is proposed for further study of characteristics. Experimental results verify the feasibility of HPS lamp operating at high frequency. It is shown that the presented electronic ballast has 0.99 power factor and 9% total harmonic distortion(THD).

  10. Electronic structure of nitride-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Winkelnkemper, Momme

    2008-11-07

    In the present work the electronic and optical properties of In{sub x}Ga{sub 1-x}N/GaN and GaN/AlN QDs are studied by means of eight-band k.p theory. Experimental results are interpreted in detail using the theoretical results. The k.p model for the QD electronicstructure calculations accounts for strain, piezo- and pyroelectric effects, spin-orbit and crystal-field splitting, and is implemented for arbitrarily shaped QDs on a finite differences grid. Few-particle corrections are included using the self-consistent Hartree method. Band parameters for the wurtzite and zinc-blende phases of GaN, AlN, and InN are derived from first-principle G{sub 0}W{sub 0} band-structure calculations. Reliable values are also provided for parameters that have not been determined experimentally yet. The electronic properties of nitride QDs are dominated by the large built-in piezo- and pyroelectric fields, which lead to a pronounced red-shift of excitonic transition energies and extremely long radiative lifetimes in large GaN/AlN QDs. In In{sub x}Ga{sub 1-x}N/GaN QDs these fields induce a pronounced dependence of the radiative excitonic lifetimes on the exact QD shape and composition. It is demonstrated that the resulting variations of the radiative lifetimes in an inhomogeneous QD ensemble are the origin of the multi-exponential luminescence decay frequently observed in time-resolved ensemble measurements on In{sub x}Ga{sub 1-x}N/GaN QDs. A polarization mechanism in nitride QDs based on strain-induced valence-band mixing effects is discovered. Due to the valence-band structure of wurtzite group-III nitrides and the specific strain situation in c-plane QDs, the confined hole states are formed predominantly by the two highest valence bands. In particular, the hole ground state (h{sub 0} {identical_to} h{sub A}) is formed by the A band, and the first excited hole state (h{sub 1} {identical_to} h{sub B}) by the B band. It is shown that the interband transitions involving h{sub A} or h

  11. ID-Based Fair Off-Line Electronic Cash System with Multiple Banks

    Institute of Scientific and Technical Information of China (English)

    Chang-Ji Wang; Yong Tang; Qing Li

    2007-01-01

    ID-based public key cryptography (ID-PKC) has many advantages over certificate-based public key cryptog-raphy (CA-PKC), and has drawn researchers’ extensive attention in recent years. However, the existing electronic cash schemes are constructed under CA-PKC, and there seems no electronic cash scheme under ID-PKC up to now to the best of our knowledge. It is important to study how to construct electronic cash schemes based on ID-PKC from views on both practical perspective and pure research issue. In this paper, we present a simpler and provably secure ID-based restrictive partially blind signature (RPBS), and then propose an ID-based fair off-line electronic cash (ID-FOLC) scheme with multiple banks based on the proposed ID-based RPBS. The proposed ID-FOLC scheme with multiple banks is more efficient than existing electronic cash schemes with multiple banks based on group blind signature.

  12. Tuning the Electron Acceptor in Phthalocyanine-Based Electron Donor-Acceptor Conjugates.

    Science.gov (United States)

    Sekita, Michael; Jiménez, Ángel J; Marcos, M Luisa; Caballero, Esmeralda; Rodríguez-Morgade, M Salomé; Guldi, Dirk M; Torres, Tomás

    2015-12-21

    Zinc phthalocyanines (ZnPc) have been attached to the peri-position of a perylenemonoimide (PMI) and a perylenemonoanhydride (PMA), affording electron donor-acceptor conjugates 1 and 2, respectively. In addition, a perylene-monoimide-monoanhydride (PMIMA) has been connected to a ZnPc through its imido position to yield the ZnPc-PMIMA conjugate 10. The three conjugates have been studied for photoinduced electron transfer. For ZnPc-PMIMA 10, electron transfer occurs upon both ZnPc and PMIMA excitation, giving rise to a long-lived (340 ps) charge-separated state. For ZnPc-PMI 1 and ZnPc-PMA 2, stabilization of the radical ion pair states by using polar media is necessary. In THF, photoexcitation of either ZnPc or PMI/PMA produces charge-separated states with lifetimes of 375 and 163 ps, respectively. PMID:26593778

  13. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  14. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  15. Sturmian bases for two-electron systems in hyperspherical coordinates

    CERN Document Server

    Abdouraman, A; Hamido, A; Mota-Furtado, F; O'Mahony, P F; Mitnik, D; Gasaneo, G; Piraux, B

    2016-01-01

    We give a detailed account of an $\\it{ab}$ $\\it{initio}$ spectral approach for the calculation of energy spectra of two active electron atoms in a system of hyperspherical coordinates. In this system of coordinates, the Hamiltonian has the same structure as the one of atomic hydrogen with the Coulomb potential expressed in terms of a hyperradius and the nuclear charge replaced by an angle dependent effective charge. The simplest spectral approach consists in expanding the hyperangular wave function in a basis of hyperspherical harmonics. This expansion however, is known to be very slowly converging. Instead, we introduce new hyperangular sturmian functions. These functions do not have an analytical expression but they treat the first term of the multipole expansion of the electron-electron interaction potential, namely the radial electron correlation, exactly. The properties of these new functions are discussed in detail. For the basis functions of the hyperradius, several choices are possible. In the present...

  16. Designing Electronic Markets for Defeasible-based Contractual Agents

    OpenAIRE

    Groza, Adrian

    2013-01-01

    The design of punishment policies applied to specific domains linking agents actions to material penalties is an open research issue. The proposed framework applies principles of contract law to set penalties: expectation damages, opportunity cost, reliance damages, and party design remedies. In order to decide which remedy provides maximum welfare within an electronic market, a simulation environment called DEMCA (Designing Electronic Markets for Contractual Agents) was developed. Knowledge ...

  17. Electronic counterfeit detection based on the measurement of electromagnetic fingerprint

    OpenAIRE

    Huang, He; H. Huang; Boyer, Alexandre; Boyer, A; Ben Dhia, Sonia

    2015-01-01

    International audience Counterfeit integrated circuits become a big challenge for the whole electronic industry. The use of electronic counterfeits can cause reduced performance of circuits, or failure of the whole system. New efficient approaches of counterfeit device detection are always required. Since the electromagnetic emission level of integrated devices depends on various circuit parameters like technology, manufacturing and aging, the electromagnetic emission measurement could be ...

  18. Production of excited electrons at TESLA and CLIC based $e\\gamma$ colliders

    CERN Document Server

    Aydin, Z Z; Kirca, Z

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron-photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions e gamma --> e gamma, e gamma --> eZ and e gamma --> nu W. Excited electrons can be discovered with the masses up to about 90% of the available collider energy.

  19. 基于跨导运算放大器的可重构模拟电路及应用设计%Reconfigurable Analog Circuit and Application Design Based on Operational Transconductance Amplifier

    Institute of Scientific and Technical Information of China (English)

    马伟伟; 王友仁; 石玉; 崔江

    2009-01-01

    常规的粗粒度可重构模拟电路灵活性不高,而且可重构模拟单元(CAB)结构较为复杂.针对此类问题,该文改进并设计了一种新的基于OTA的可重构模拟电路.该电路设计方案降低了CAB的复杂度,提高了CAB的使用效率.该文方法的有效性通过3个模拟设计实例(二阶低通滤波器、高通滤波器和三阶巴特沃思低通滤波器)的设计加以验证.实验结果表明,所提出的方法正确有效,可以较好地兼顾CAB资源与所要求功能的平衡.%The conventional coarse-grained reconfigurable analog circuits have bad flexibility, and the reConfigurable Analog Block (CAB) structure is complicated. In order to solve such problems, a new OTA-based reconfigurable analog circuit is presented in this paper. In this circuit scheme, the complexity of CAB is reduced and the CAB utilization rate is increased. To verify the effectiveness, three examples of analog circuit design (a second-order low pass filter, a second-order high pass filter and a low-pass third-order Butterworth filter) are presented. The experimental results indicate that the proposed circuits is effective and feasible, which make a better balance between circuit resources and functions.

  20. Chapter 9: Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus; Shwartz, Boris A.

    2006-12-19

    Sophisticated front-end electronics are a key part of practically all modern radiation detector systems. This chapter introduces the basic principles and their implementation. Topics include signal acquisition, electronic noise, pulse shaping (analog and digital), and data readout techniques.