WorldWideScience

Sample records for anaerobiosis

  1. Anaerobiosis induced virulence of Salmonella typhi

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Singh, R D; Sharma, P C

    2002-01-01

    , we examined the effect of anaerobiosis on the virulence of Salmonella Typhi, a Gram negative bacteria which invades through the gut mucosa and is responsible for typhoid fever. METHODS: Salmonella Typhi (ty2) was cultured in aerobic and anaerobic conditions to compare its virulence by rabbit ileal...

  2. Changes in the activity of ascorbate peroxidase under anaerobiosis in cocoyam (Colocasia esculenta).

    Science.gov (United States)

    Chibueze, Nwose

    2014-01-01

    This study was conducted to determine the activity of ascorbate peroxidase in the cormels of cocoyam (Colocasia esculenta var. antiquorum) immediately after harvest and in storage under anaerobiosis for one and three weeks, respectively. During stress condition in plants, hydrogen peroxide is released and mechanisms to detoxify it must be maintained. The cocoyam tubers that were neither damaged nor affected by disease were harvested from a local farm in Ugbogui, Ovia North Local Government Area in Edo State, Nigeria. The selected cocoyam tubers were peeled manually, washed with ice cold water and cut into pieces. The root tissues (50 g) were homogenised with 100 mL of ice cold 0.05 M phosphate buffer. The extract obtained was clarified by centrifugation for 15 min at 8000 g at 4 degrees C. Ascorbate-peroxidising activity was assayed using the initial rate of decrease in ascorbate concentration as measured by its absorbance at 290 nm using Milton Roy Spectron 21D. Results showed the weight of the cormels decreased all through during storage. Immediately after harvest the activity of ascorbate peroxidase was 15.49 unit mL(-1) with a significant increase (p < 0.05) after one week to 73.05 U mL(-1). Thereafter there was a significant decrease in activity of the enzyme after three weeks of storage to 33.33 U mL(-1). This increase in activity of ascorbate peroxidase after three weeks of storage may be related to increase in response to various biotic stresses. Therefore, manipulation of the capacity of cocoyam to tolerate anaerobiosis is a function of its ability to modulate the antioxidant enzymes' armory in case of need.

  3. Inhibition, in anaerobiosis, of the reaction of stomatal closure of Pelargonium in the presence of SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, J.; De Cormis, L.; Louguet, P.

    1977-01-01

    The temporary stomatal closing movement of Pelargonium x hortorum induced by exposure to an atmospheric concentration of sulfur dioxide (2 x 10/sup -6/ v/v) is completely inhibited in anaerobiosis, in light as in darkness. These results suggest that SO/sub 2/ has a direct action on the stomatal cells. The significance of these experiments on the theory of the mechanism of stomatal movement is emphasized.

  4. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.

    Science.gov (United States)

    Hassan, Sedky H A; Morsy, Fatthy Mohamed

    2015-12-01

    Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.

  5. Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms.

    Science.gov (United States)

    Morsy, Fatthy Mohamed

    2011-01-01

    This work was devoted to separate acetate role in creating anaerobiosis from that of sulfur deprivation. Chlamydomonas reinhardtii grown in TAP (Tris-acetate-phosphate) medium was resuspended in sulfur-replete or -deprived medium in sealed or nonsealed cultures. Sulfur deprivation was substantial for starch accumulation and hydrogen evolution; however, acetate induced anaerobiosis in the presence or absence of sulfur in only sealed cultures. In nonsealed cultures, Chlamydomonas did not lose its photosynthetic activity; however, it was arrested in anoxia with no photosynthetic activity as long as the culture was sealed. The sealed cultures resumed photosynthesis upon unsealing overnight unless the cells died by anoxia at late stage of the experiment. These results indicate that the enhanced oxygen consumption for the enormous acetate respiration and inhibition of the external oxygen supply in sealed cultures of Chlamydomonas are the main reasons for the steady anaerobic conditions. Although acetate was substantial for creating anaerobiosis in Chlamydomonas, sulfur deprivation alone could create anaerobiosis in Spirulina platensis grown autotrophically. Hydrogen evolution and glycogen accumulation were induced under such conditions. Severely reduced phycocyanin, chlorophyll and photosynthesis, while respiration had increased, induced anaerobiosis in Spirulina. This study reports for the first time anaerobiosis under autotrophic conditions in a cyanobacterium.

  6. Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis during Experimental Infection of Human Volunteers.

    Science.gov (United States)

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Gao, Hongyu; Holley, Concerta L; Munson, Robert S; Liu, Yunlong; Spinola, Stanley M

    2016-05-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.

  7. Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis during Experimental Infection of Human Volunteers

    Science.gov (United States)

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R.; Gao, Hongyu; Holley, Concerta L.; Munson, Robert S.; Liu, Yunlong

    2016-01-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans. PMID:26930707

  8. Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses.

    Science.gov (United States)

    Zahar, M; Benkerroum, N; Guerouali, A; Laraki, Y; El Yakoubi, K

    2002-04-01

    Conditions for a natural fermentation during ensilage of sardines or their waste in sugarcane molasses (60:40 w/w) were evaluated regarding the effect of temperature (15, 25 and 35 degrees C), anaerobiosis (closed vs. open jars), daily stirring of the mixture, and salt addition to the initial mix at 5% (w/w) level. Successful natural fermentation took place in sardine silages incubated at 25 or 35 degrees C in open jars to reach a pH of 4.4 in about 2 and 1 weeks, respectively. For samples kept at 15 degrees C, the pH decline was very slow and pH did not decrease below 5.5 after one month of incubation. At 25 degrees C, the most favorable conditions for silage of sardine waste in cane molasses, as evidenced by the fastest decline in pH to a stable value of about 4.4, were achieved in closed jars and with daily stirring of the mix. The pH 4.4 was reached in one week with an advance of at least 3 days compared to the other conditions (open jars and closed jars without daily stirring). Addition of salt at 5% (w/w) in the mix before incubation inhibited the fermentation process.

  9. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction.

    Directory of Open Access Journals (Sweden)

    Jacques Oberto

    Full Text Available BACKGROUND: The Escherichia coli heterodimeric HU protein is a small DNA-bending protein associated with the bacterial nucleoid. It can introduce negative supercoils into closed circular DNA in the presence of topoisomerase I. Cells lacking HU grow very poorly and display many phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the transcription profile of every Escherichia coli gene in the absence of one or both HU subunits. This genome-wide in silico transcriptomic approach, performed in parallel with in vivo genetic experimentation, defined the HU regulon. This large regulon, which comprises 8% of the genome, is composed of four biologically relevant gene classes whose regulation responds to anaerobiosis, acid stress, high osmolarity, and SOS induction. CONCLUSIONS/SIGNIFICANCE: The regulation a large number of genes encoding enzymes involved in energy metabolism and catabolism pathways by HU explains the highly pleiotropic phenotype of HU-deficient cells. The uniform chromosomal distribution of the many operons regulated by HU strongly suggests that the transcriptional and nucleoid architectural functions of HU constitute two aspects of a unique protein-DNA interaction mechanism.

  10. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sreedhar Nellaepalli

    Full Text Available BACKGROUND: Non photochemical reduction of PQ pool and mobilization of LHCII between PSII and PSI are found to be linked under abiotic stress conditions. The interaction of non photochemical reduction of PQ pool and state transitions associated physiological changes are critically important under anaerobic condition in higher plants. METHODOLOGY/FINDINGS: The present study focused on the effect of anaerobiosis on non-photochemical reduction of PQ pool which trigger state II transition in Arabidopsis thaliana. Upon exposure to dark-anaerobic condition the shape of the OJIP transient rise is completely altered where as in aerobic treated leaves the rise is unaltered. Rise in F(o and F(J was due to the loss of oxidized PQ pool as the PQ pool becomes more reduced. The increase in F(o' was due to the non photochemical reduction of PQ pool which activated STN7 kinase and induced LHCII phosphorylation under anaerobic condition. Further, it was observed that the phosphorylated LHCII is migrated and associated with PSI supercomplex increasing its absorption cross-section. Furthermore, evidences from crr2-2 (NDH mutant and pgr5 mutants (deficient in non NDH pathway of cyclic electron transport have indicated that NDH is responsible for non photochemical reduction of the PQ pool. We propose that dark anaerobic condition accelerates production of reducing equivalents (such as NADPH by various metabolic pathways which reduce PQ pool and is mediated by NDH leading to state II transition. CONCLUSIONS/SIGNIFICANCE: Anaerobic condition triggers non photochemical reduction of PQ pool mediated by NDH complex. The reduced PQ pool activates STN7 kinase leading to state II transition in A. thaliana.

  11. Corrosion protection by anaerobiosis.

    Science.gov (United States)

    Volkland, H P; Harms, H; Wanner; Zehnder, A J

    2001-01-01

    Biofilm-forming bacteria can protect mild (unalloyed) steel from corrosion. Mild steel coupons incubated with Rhodoccocus sp. strain C125 and Pseudomonas putida mt2 in an aerobic phosphate-buffered medium containing benzoate as carbon and energy source, underwent a surface reaction leading to the formation of a corrosion-inhibiting vivianite layer [Fe3(PO4)2]. Electrochemical potential (E) measurements allowed us to follow the buildup of the vivianite cover. The presence of sufficient metabolically active bacteria at the steel surface resulted in an E decrease to -510 mV, the potential of free iron, and a continuous release of ferrous iron. Part of the dissolved iron precipitated as vivianite in a compact layer of two to three microns in thickness. This layer prevented corrosion of mild steel for over two weeks, even in a highly corrosive medium. A concentration of 20 mM phosphate in the medium was found to be a prerequisite for the formation of the vivianite layer.

  12. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  13. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Directory of Open Access Journals (Sweden)

    Fayyaz Ali Shah

    2014-01-01

    Full Text Available Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  14. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus.

    Science.gov (United States)

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-02-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.

  15. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Heiske, Stefan; Jensen, Pernille Erland;

    2014-01-01

    of the microorganisms. In both anaerobic and aerobic samples, survival of Escherichia coli was better in the presence of Greenlandic Halibut offal when compared to samples containing blackwater only and blackwater and shrimp offal, possibly due to more available carbon in the samples containing Greenlandic Halibut....... Addition of fish offal had no effect on survival of coliphages. The results of the recovery study indicated that a fraction of the E. coli in the aerobic blackwater sample and of the faecal streptococci in both the anaerobic and aerobic samples containing blackwater and Greenlandic Halibut were injured...

  16. Bacterial resistance to ultraviolet irradiation under anaerobiosis: implications for pre-phanerozoic evolution.

    Science.gov (United States)

    Rambler, M B; Margulis, L

    1980-11-07

    The concept that low concentrations of atmospheric oxygen and consequent unattenuated ultraviolet irradiation limited the emergence of Phanerozoic life, the Berkner-Marshall hypothesis, is no longer tenable. Anaerobic bacteria, which probably evolved far earlier than Metazoa, were irradiated in a special chamber under strictly anaerobic conditions. Both intrinsic resistance and photoreactivation by visible light were discovered in obligately and facultatively anaeroboc microbes. Atmospheric scientists have shown that small amounts of oxygen would have limied pre-Phanerozoic surface ultraviolet irradiation to fluxes well below those used in the anaerobic experiments described. Since adequate ultraviolet protection mechanisms evolved early, the late Proterozoic appearance of Metazoa probably was not related to high fluxes of solar ultraviolet radiation.

  17. The utilization of glycogen and accumulation of some intermediates during anaerobiosis in Mytilus edulis L.

    NARCIS (Netherlands)

    Zwaan, A.; Zandee, D.I.

    1972-01-01

    1. 1. Glycogen degradation in the mussel under anaerobic conditions was measured at two temperatures. Glycogen decrease at 6·6°C was about 3 mg and at 20°C about 6 mg/24 hr per mussel. A Pasteur effect was observed. 2. 2. The decrease of glycogen was almost entirely restricted to muscles, including

  18. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  19. Respuesta al estrés por calor y oxidativo en fase estacionaria y anaerobiosis y papel de Aconitasa B en la protección de proteínas contra el daño por oxidación en Escherichia coli K12 /

    OpenAIRE

    2009-01-01

     tesis que para obtener el grado de Doctor en Ciencias Biomédicas, presenta Alondra Elizabeth Díaz Acosta ; asesor Jorge Membrillo Hernández, Carmen Gómez Eichelmann, Sergio Encarnación Guevara. 73 páginas : ilustraciones. Doctorado en Ciencias Biomédicas UNAM, Instituto de Investigaciones Biomédicas, 2009

  20. Sequence Classification: 891640 [

    Lifescience Database Archive (English)

    Full Text Available lated by anaerobiosis, negatively regulated by oxygen, repressed by heme; Pau2p || http://www.ncbi.nlm.nih.gov/protein/6320786 ... ...pauperin multigene family encoded mainly in subtelomeric regions, active during alcoholic fermentation, regu

  1. Sequence Classification: 891535 [

    Lifescience Database Archive (English)

    Full Text Available perin multigene family encoded mainly in subtelomeric regions, active during alcoholic fermentation, regulated by anaerobiosis, negat...ively regulated by oxygen, repressed by heme; Pau5p || http://www.ncbi.nlm.nih.gov/protein/14318499 ...

  2. Sequence Classification: 889201 [

    Lifescience Database Archive (English)

    Full Text Available lated by anaerobiosis, negatively regulated by oxygen, repressed by heme; Pau3p || http://www.ncbi.nlm.nih.gov/protein/6319948 ... ...pauperin multigene family encoded mainly in subtelomeric regions, active during alcoholic fermentation, regu

  3. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts

    NARCIS (Netherlands)

    Bruinenberg, P.M.; De Bot, P.H.M.; Van Dijken, J.P.; Scheffers, W.A.

    1984-01-01

    The kinetics and enzymology of o-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis c

  4. Genes de Vibrio cholerae involucrados en la tolerancia al cobre

    Directory of Open Access Journals (Sweden)

    Karen Marrero

    2010-01-01

    sensibilidad a cobre en aerobiosis y anaerobiosis. El principal sistema de resistencia a cobre en V. cholerae está constituido por la ATPasa transportadora de cationes CopA, codificada por VC2215, que funciona en aerobiosis y anaerobiosis. La proteína hipotética conservada codificada por VC2216 no es significativa en la resistencia a cobre en aerobiosis, pero en anaerobiosis es importante si CopA es funcional. La proteína codificada por los genes VCA0261-0260, anotados previamente como independientes, es importante en aerobiosis y a una alta concentración de cobre, pero en anaerobiosis su participación en la resistencia a cobre es solo evidente si CopA no es funcional. De esta manera, los sistemas de tolerancia a cobre en V. cholerae incluyen el producto de los genes VC2215, VC2216 y VCA0261-0260, que desempeñan diferentes funciones en diversas condiciones de cultivo.

  5. Methanogenic Food Web in Gut Contents of the Methane-Emitting Earthworm Eudrilus eugeniae from Brazil

    NARCIS (Netherlands)

    Schulz, Kristin; Hunger, S.; Brown, G.G.; Tsai, S.M.; Cerri, C.C.; Conrad, R.; Drake, H.

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this

  6. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Knecht, Wolfgang; Warneboldt, J.;

    2004-01-01

    The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic...... a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen....

  7. Accumulation and degradation of polyphosphate in Acinetobacter sp.

    NARCIS (Netherlands)

    Groenestijn, van J.W.

    1988-01-01

    Biological phosphate removal from waste water is a biotechnological alternative to chemical phosphorus precipitation. This process is obtained by recycling the sludge through anaerobic and aerobic zones. In the anaerobic parts phosphate is released by the sludge and during anaerobiosis phosphate is

  8. Antimycin-insensitive mutants of Candida utilis II. The effects of antimycin on Cytochrome b

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Marres, C A; Slater, Conor

    1975-01-01

    1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reo...

  9. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses.

    Science.gov (United States)

    Broman, K; Lauwers, N; Stalon, V; Wiame, J M

    1978-09-01

    Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.

  10. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  11. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation

    Directory of Open Access Journals (Sweden)

    Jean-Paul eMadeira

    2015-04-01

    Full Text Available At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress–related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  12. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Li, C; Sun, J W; Zhang, G F; Liu, L B

    2016-01-01

    The catabolite control protein A (CcpA) is a kind of multi-effect regulatory protein. In the study, the effect of the inactivation of CcpA and aerobic conditions on the growth, metabolic production, and stress tolerance to heat, oxidative, and cold stresses in Lactobacillus delbrueckii ssp. bulgaricus was investigated. Results showed that inactivation of CcpA distinctly hindered growth. Total lactic acid concentration was significantly lower in aerobiosis for both strains and was lower for the mutant strain than L. bulgaricus. Acetic acid production from the mutant strain was higher than L. bulgaricus in aerobiosis compared with anaerobiosis. Enzyme activities, lactate dehydrogenase (LDH), phosphate fructose kinase (PFK), pyruvate kinase (PK), and pyruvic dehydrogenase (PDH), were significantly lower in the mutant strain than L. bulgaricus. The diameters of inhibition zone were 13.59 ± 0.02 mm and 9.76 ± 0.02 mm for L. bulgaricus in anaerobiosis and aerobiosis, respectively; and 8.12 ± 0.02 mm and 7.38 ± 0.02 mm for the mutant in anaerobiosis and aerobiosis, respectively. For both strains, cells grown under aerobic environment possess more stress tolerance. This is the first study in which the CcpA-negative mutant of L. bulgaricus is constructed and the effect of aerobic growth on stress tolerance of L. bulgaricus is evaluated. Although aerobic cultivation does not significantly improve growth, it does improve stress tolerance.

  13. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation.

    Science.gov (United States)

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2015-01-01

    At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  14. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.

  15. Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems.

    Science.gov (United States)

    Lagunas, R; Dominguez, C; Busturia, A; Sáez, M J

    1982-10-01

    Saccharomyces cerevisiae does not show a noticeable Pasteur effect (activation of sugar catabolism by anaerobiosis) when growing with an excess of sugar and nitrogen source, but it does do so after exhaustion of the nitrogen source in the medium (resting state). We have found that this different behavior of growing and resting S. cerevisiae seems due to differences in the contribution of respiration to catabolism under both states. Growing S. cerevisiae respired only 3 to 20% of the catabolized sugar, depending on the sugar present; the remainder was fermented. In contrast, resting S. cerevisiae respired as much as 25 to 100% of the catabolized sugar. These results suggest that a shift to anaerobiosis would have much greater energetic consequences in resting than in growing S. cerevisiae. In resting S. cerevisiae anaerobiosis would strongly decrease the formation of ATP; as a consequence, various regulatory mechanisms would switch on, producing the observed increase of the rate of glycolysis. The greater significance that respiration reached in resting cells was not due to an increase of the respiratory capacity itself, but to a loss of fermentation which turned respiration into the main catabolic pathway. The main mechanism involved in the loss of fermentation observed during nitrogen starvation was a progressive inactivation of the sugar transport systems that reduced the rate of fermentation to less than 10% of the value observed in growing cells. Inactivation of the sugar transports seems a consequence of the turnover of the sugar carriers whose apparent half-lives were 2 to 7 h.

  16. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase.

    OpenAIRE

    Eraso, J M; Kaplan, S

    1995-01-01

    Two new loci, prrB and prrC, involved in the positive regulation of photosynthesis gene expression in response to anaerobiosis, have been identified in Rhodobacter sphaeroides. prrB encodes a sensor histidine kinase that is responsive to the removal of oxygen and functions through the response regulator PrrA. Inactivation of prrB results in a substantial reduction of photosynthetic spectral complexes as well as in the inability of cells to grow photosynthetically at low to medium light intens...

  17. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria....... The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a sudden lack of oxygen. In contrast, nitrate-respiring, fermenting bacteria, e.g., Bacillus and Escherichia...

  18. Ecological study of bacteriophages of Vibrio natriegens

    Energy Technology Data Exchange (ETDEWEB)

    Zachary, A.

    1978-03-01

    Effects of temperature and anaerobic conditions on the replication of two bacteriophages, nt-1 and nt-6, of the estuarine bacterium Vibrio natriegens were studied. Reduction in temperature resulted in longer latent periods and reduced burst sizes for both phages. Replication under anaerobic conditions resulted in longer latent periods; however, phage nt-6 had a reduced burst size, whereas phage nt-1 had an increased burst size, resulting in a rate of phage production nearly equal to that observed under aerobic conditions. Therefore the distribution of the phages in marsh areas could be influenced by temperature and anaerobiosis.

  19. Ferrous iron transport in Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S.L.; Arcenaeux, J.E.L.; Byers, B.R.; Martin, M.E.; Aranha, H.

    1986-12-01

    Radioiron uptake from /sup 59/FeCl/sub 3/ by Streptococcus mutans OMZ176 was increased by anaerobiosis, sodium ascorbate, and phenazine methosulfate (PMS), although there was a 10-min lag before PMS stimulation was evident. The reductant ascorbate may have provided ferrous iron. The PMS was reduced by the cells, and the reduced PMS then may have generated ferrous iron for transport; reduced PMS also may have depleted dissolved oxygen. It was concluded that S. mutans transports only ferrous iron, utilizing reductants furnished by glucose metabolism to reduce iron prior to its uptake.

  20. Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lagunas, R; Gancedo, C

    1983-12-15

    The occurrence of the Pasteur effect in Saccharomyces cerevisiae in several conditions has been examined. In these conditions measurements of a series of metabolites potentially involved in the regulation of the effect were performed. These included, among others, adenine nucleotides, citrate, fructose 2,6-bisphosphate and phosphate. Only phosphate changed in a consistent way, increasing in anaerobiosis when the Pasteur effect occurred. It is concluded that, with the available data, only phosphate may be considered as a regulator of the Pasteur effect in this microorganism.

  1. Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations.

    Science.gov (United States)

    Luparia, V; Soubeyrand, V; Berges, T; Julien, A; Salmon, J-M

    2004-07-01

    Although yeasts are known to be able to incorporate a wide variety of exogenous sterols under strict anaerobiosis, no data are available on the assimilation of grapevine phytosterols under enological conditions and the eventual impact on fermentation kinetics. We used therefore a mixture of pure phytosterols, in a proportion representative of the different grape skins phytosterols, to supplement a synthetic fermentation medium simulating a grape must. Under anaerobiosis, normal biomass formation was achieved with 5 mg phytosterols l(-1). Similar results were obtained in comparison with the observed maximal fermentation rates. These results clearly indicated that grape phytosterols may efficiently act as a substitute for ergosterol in the yeast membrane for promoting yeast growth and initial fermentative activity. Analysis of total yeast sterols indicated that phytosterols are accumulated without further modification, mainly in their esterified form. However, all the fermentations performed with synthetic media supplemented with phytosterols led to stuck fermentations, linked to a correlative strong decrease in cell viability during the stationary phase. Therefore, grape phytosterols are easily incorporated by yeast cells under enological conditions for promoting initial growth and fermentative activity, but rapidly perturb the yeast membrane properties by being the predominant sterols.

  2. Regulation of Raoultella terrigena comb.nov. phytase expression.

    Science.gov (United States)

    Zamudio, Marcela; González, Aracely; Bastarrachea, Fernando

    2002-01-01

    Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.

  3. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds.

  4. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis.

    Science.gov (United States)

    Buňková, Leona; Buňka, František; Pollaková, Eva; Podešvová, Tereza; Dráb, Vladimír

    2011-05-27

    The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1°C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.

  5. CELLULOSE DECOMPOSTION IN TROPICAL PEAT SWAMPS

    Institute of Scientific and Technical Information of China (English)

    Hjh Dulima Jali

    2003-01-01

    Given that organic soil is a complex substrate and there are many environmental factors which directly or indirectly control its decomposition processes, the use of standard substrate simplify the system in that the effect of substrate quality could be eliminated and influence of certain environmental conditions such as edaphic factors, acidity and moisture could be focused on. In addition to the forest floor, decomposition potential down the peat profile can also be examined. Cotton strip assay was used to estimate decomposition potentials in tropical peat swamp occupied by different Shorea Albida peat swamp forest communities, The' Alan Batu' , the ' Alan Bunga' , the' Alan Padang' and the 'mixed Alan'forest communities. Greatest decay rates on the peat surface took place during the wet period. The moist condition of the wet months appeared to favour the growth and stimulate activities of decomposer population and soil invertebrates.Generally, 50% of cotton tensile loss is achieved after four weeks of exposure. The results suggest that cellulose decomposition is influenced by the environmental variables of hydrological regime, water-table fluctuation, aeration, moisture availability,waterlogging and the resultant anaerobiosis, peat depths, and micro-sites characteristics. Decomposition of cellulose is inhibited by waterlogging and the resultant anaerobiosis in thelower segment of the cotton strip during wet periods and under dry conditions in the surface segment of the cotton strip during periods of less rain.

  6. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

    Science.gov (United States)

    Sun, Na; Pan, Cuiping; Nickell, Stephan; Mann, Matthias; Baumeister, Wolfgang; Nagy, István

    2010-09-03

    A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.

  7. Detection, identification, and typing of Listeria species from baled silages fed to dairy cows.

    Science.gov (United States)

    Nucera, D M; Grassi, M A; Morra, P; Piano, S; Tabacco, E; Borreani, G

    2016-08-01

    Anaerobiosis, critical for successful ensilage, constitutes a challenge in baled silages. The loss of complete anaerobiosis causes aerobic deterioration and silages undergo dry matter and nutrient losses, pathogen growth, and mycotoxin production. Silage may represent an ideal substrate for Listeria monocytogenes, a pathogen of primary concern in several cheeses. The aim of this research was to investigate the occurrence of Listeria in baled silage fed to cows producing milk for a protected designation of origin cheese, and to characterize isolates by repetitive sequence-based PCR. Listeria spp. were detected in 21 silages and L. monocytogenes in 6 out of 80 of the analyzed silages; 67% of positives were found in molded zones. Results of the PCR typing showed genotypic homogeneity: 72.9 and 78.8% similarity between strains of Listeria spp. (n=56) and L. monocytogenes (n=24), respectively. Identical profiles were recovered in molded and nonmolded areas, indicating that contamination may have occurred during production. The application of PCR allowed the unambiguous identification of Listeria isolated from baled silages, and repetitive sequence-based PCR allowed a rapid and effective typing of isolates. Results disclose the potential of the systematic typing of Listeria in primary production, which is needed for the understanding of its transmission pathways.

  8. Antimicrobial capacity of Aloe vera and propolis dentifrice against Streptococcus mutans strains in toothbrushes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Roesler Bertolini

    2012-02-01

    Full Text Available OBJECTIVES: This study evaluated in vitro the efficiency of Aloe vera and propolis dentifrice on reducing the contamination of toothbrush bristles by a standard strain of Streptococcus mutans (ATCC 25175; SM, after toothbrushing. MATERIAL AND METHODS: Fifteen sterile toothbrushes were randomly divided into 5 toothbrushing groups: I (negative control: without dentifrice; II: with fluoridated dentifrice; III: with triclosan and gantrez dentifrice; IV (positive control: without dentifrice and irrigation with 10 mL of 0.12% chlorhexidine gluconate; V: with Aloe vera and propolis dentifrice. In each group, 1 sterile bovine tooth was brushed for 1 min, where the toothbrush bristles were contaminated with 25 µL of SM. After toothbrushing, the bristles were stored in individual test tubes with 3 mL of BHI under anaerobiosis of 37°C for 48 h. Then, they were seeded with sterile swab in triplicate in the Mitis salivarius - Bacitracin culture medium. The samples were kept under anaerobiosis of 37°C for 48 h. Scores were used to count the number of colony forming units (cfu. The results were submitted to the Mann-Whitney statistical test at 5% significance level. RESULTS: There was statistically significant difference (p<0.05 for the reduction of bristle contamination comparing groups II, III, IV and V to group I. CONCLUSIONS: It may be stated that after toothbrushing, the Aloe vera and propolis dentifrice reduced the contamination of toothbrush bristles by SM, without differentiation from the other chemical agents used.

  9. Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses.

    Science.gov (United States)

    Lara, Alvaro R; Taymaz-Nikerel, Hilal; Mashego, Mlawule R; van Gulik, Walter M; Heijnen, Joseph J; Ramírez, Octavio T; van Winden, Wouter A

    2009-12-15

    The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large-scale, fed-batch bioreactors. The STR represented the zones of a large-scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen-poor and glucose-rich regions can occur in large-scale bioreactors. The response of E. coli to these large-scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h(-1)) into the mini-PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose-rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O(2) gradients. This approach (STR-mini-PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large-scale bioreactors and for the design of modified strains with an improved behavior under large-scale conditions.

  10. Doxycycline induced photodamage to human neutrophils and tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, S.; Glette, J.; Hopen, G.; Solberg, C.O. (Haukeland Sykehus, Bergen (Norway))

    1984-01-01

    Neutrophil function were studied following irradiation (340-380 nm) of the cells in the presence of 22 ..mu..M doxycycline. At increasing light fluence the locomotion, chemiluminescence and glucose oxidation (by the hexose monophosphate shunt) of the neutrophils steadily decreased. The photodamage increased with increasing preincubation temperature and time and was enhanced in D/sub 2/O, reduced in azide and abolished in anaerobiosis. Superoxide dismutase, catalase or mannitol did not influence the photodamage. Photooxidation of tryptophan in the presence of doxycycline was increased 9-10-fold in D/sub 2/O and nearly abolished in the presence of 0.25 mM NaN/sub 3/, indicating that singlet oxygen is the most important reactive oxygen species in the doxycycline-induced photodamage. The results may explain some of the features of tetracycline-induced photosensitivity and why other authors have obtained diverging results when studying the influence of tetracyclines on neutrophil functions.

  11. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  12. First data on the distribution and ecology of Vibrio spp. of the Straits of Magellan (South America).

    Science.gov (United States)

    Monticelli, L S; Crisafi, E

    1995-07-01

    During the austral summer of 1991 a study was carried out on the presence and distribution of the genus Vibrio in the Straits of Magellan. Vibrios strains were isolated using membrane filters and Marine Agar 2216 in anaerobiosis. Variations of the populations of total heterotrophic bacteria and vibrios were observed both on the surface and along the column of water. All vibrios are psychrotrophic and were grouped in 4 cluster among which cluster 1, identified as presumed V. anguillarum, seems the most important including 73% of strains. A certain habitat segregation of clusters was noted. Cluster 4 was found only in a deep and permanently colder water mass. The relations between 20 environmental parameters and the bacterial population were also studied. Significant positive correlations were observed between the vibrios population and various fractions of suspended particulate matter.

  13. Purificación de lipopolisacárido de porphyromonas gingivalis libre de polisacáridos utilizando cromatografía de alta resolución sephacryl s-200

    OpenAIRE

    DIEGO GUALTERO; Jaime E Castellanos; GERARDO PÉREZ; GLORIA I LAFAURIE

    2010-01-01

    El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS) de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa) se separó el extracto por filtración por gel con Se...

  14. Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response.

    Science.gov (United States)

    Vizoso-Vázquez, Angel; Lamas-Maceiras, Mónica; Becerra, Manuel; González-Siso, M Isabel; Rodríguez-Belmonte, Esther; Cerdán, M Esperanza

    2012-04-01

    In Saccharomyces cerevisiae, adaptation to hypoxia/anaerobiosis requires the transcriptional induction or derepression of multiple genes organized in regulons controlled by specific transcriptional regulators. Ixr1p is a transcriptional regulatory factor that causes aerobic repression of several hypoxic genes (COX5B, TIR1, and HEM13) and also the activation of HEM13 during hypoxic growth. Analysis of the transcriptome of the wild-type strain BY4741 and its isogenic derivative Δixr1, grown in aerobic and hypoxic conditions, reveals differential regulation of genes related not only to the hypoxic and oxidative stress responses but also to the re-adaptation of catabolic and anabolic fluxes in response to oxygen limitation. The function of Ixr1p in the transcriptional regulation of genes from the sulfate assimilation pathway and other pathways producing α-keto acids is of biotechnological importance for industries based on yeast-derived fermentation products.

  15. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens;

    2004-01-01

    Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae...... was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  16. Alteraciones en las Mitosis de Raicillas de Allium Cepa Sometidas en un Ambiente Carente de Oxígeno

    Directory of Open Access Journals (Sweden)

    de Greiff Sonia

    1974-08-01

    Full Text Available Se hizo un estudio de los efectos causados por un ambiente carente de oxígeno en células meristemáticas de raicillas de Allium cepa, llegándose a comprobar la presencia de alteraciones en el desarrollo de la mitosis y una disminución de la frecuencia mitótica relacionadas con el tiempo de exposición a dicho ambiente. Aunque las causas precisas de estas alteraciones son difíciles de señalar por su complejidad, parece ser que en su desarrollo están implicadas las disfunciones metabólicas resultantes de la anaerobiosis, que afectan la producción de ATP de origen citoplasmático y nuclear, necesarios para la realización de la mitosis y otras funciones celulares.

  17. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    Science.gov (United States)

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (Pbiofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.

  18. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    OpenAIRE

    2008-01-01

    El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS) de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa) se separó el extracto por filtración por gel con Se...

  19. Study on biological phosphorus removal process by Acinetobacter lwoffi: possibility to by-pass the anaerobic phase

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Institute of Chemical and Process Engineering ``G.B. Bonino``, University of Genoa (Italy)

    1998-03-01

    An Acinetobacter lwoffi culture has been submitted to anaerobic/aerobic conditions in a Sequencing Batch Reactor (SBR) in order to study the ability of this strain in biological phosphorus removal process. Even by feeding a pure sodium acetate substrate, no phosphorus release has been detected during anaerobiosis, while phosphorus uptake beyond metabolic needs has been recorded during the aerobic phase; the anaerobic phase seems to have no influence on the enhanced biological phosphorus removal mechanisms. Hence aerobic batch tests have been carried out in order to verify the ability of Acinetobacter lwoffi to remove phosphorus by ``luxury uptake`` and ``overplus accumulation`` without anaerobic stress. Obtained results revealed a phosphorus removal efficiency of 75-80%. (orig.) With 5 figs., 3 tabs., 18 refs.

  20. Metabolic responses to metal pollution in shrimp Crangon affinis from the sites along the Laizhou Bay in the Bohai Sea.

    Science.gov (United States)

    Xu, Lanlan; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-12-15

    Marine environment in the Laizhou Bay is potentially contaminated by metals from industrial discharges. In this study, metal concentrations in shrimps Crangon affinis indicated that two typical sites (S6283 and S5283) close to Longkou and Zhaoyuan cities along the Laizhou Bay have been contaminated by metals, including Cd, As, Cu, Ni, Co, and Mn. In particular, Cd and As were the main metal contaminants in S6283. In S5283, however, Cu was the most important metal contaminant. The metabolic responses in the shrimps indicated that the metal pollution in S6283 and S5283 induced disturbances in osmotic regulation and energy metabolism and reduced anaerobiosis, lipid metabolism, and muscle movement. However, alteration in the levels of dimethylglycine, dimethylamine, arginine, betaine, and glutamine indicated that the metal pollution in S5283 induced osmotic stress through different pathways compared to that in S6283. In addition, dimethylamine might be the biomarker of Cu in shrimp C. affinis.

  1. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  2. Fermentation assisted byproduct recovery in the palm oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, W.R.

    1983-05-01

    The production of palm oil from Elaeis guineensis is a leading natural product industry in Malaysia, giving rise to a number of residues, including a rich, fruity liquor from the pulp. The liquor, of which 7-10 million tonnes a year are currently produced, has some 6% organic solids, including 0.7-1.0% or more of oil which physical processing has failed to extract. Present anaerobic digestion processes exploit only the energy and fertiliser value. Methods are described in this paper for thermophilic, microbially assisted digestion for component separation and recovery, exploiting the widely used techniques for fruit juice extraction involving enzymic breakdown of starch, pectin and other cell components. Anaerobiosis and acidogenesis help protect and release residual oil, concomitantly preserving the solids against rancidity and spoilage by ensilage. The separated wet solids are nutritive (17% protein on dry matter), biologically safe and attractive to livestock. Downstream use of the liquor is aided by the thermophilic digestion. (Refs. 33).

  3. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  4. Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation

    Directory of Open Access Journals (Sweden)

    Storey KB

    2011-03-01

    Full Text Available Kenneth B Storey, Janet M StoreyDepartments of Biology and Chemistry, Carleton University, Ottawa, ON, CanadaAbstract: To survive under harsh environmental conditions many organisms retreat into hypometabolic states where metabolic rate may be reduced by 80% or more and energy use is reprioritized to emphasize key functions that sustain viability and provide cytoprotection. ATP-expensive activities, such as gene expression, protein turnover (synthesis and degradation, and the cell cycle, are largely shut down. As a consequence, mechanisms that stabilize the existing cellular proteome can become critical for long-term survival. Heat shock proteins (HSPs are well-known for their actions as chaperones that act to fold new proteins or refold proteins that are damaged. Indeed, they are part of the “minimal stress proteome” that appears to be a ubiquitous response by all cells as they attempt, successfully or unsuccessfully, to deal with stress. The present review summarizes evidence that HSPs are also a conserved feature of natural animal hypometabolism including the phenomena of estivation, hibernation, diapause, cold-hardiness, anaerobiosis, and anhydrobiosis. That is, organisms that retreat into dormant or torpid states in anticipation that environmental conditions may become too difficult for normal life also integrate the use of HSPs to protect their proteome while hypometabolic. Multiple studies show a common upregulation of expression of hsp genes and/or HSP proteins prior to or during hypometabolism in organisms as diverse as ground squirrels, turtles, land snails, insects, and brine shrimp and in situations of both preprogrammed dormancies (eg, seasonal or life stage specific and opportunistic hypometabolism (eg, triggered by desiccation or lack of oxygen. Hence, HSPs are not just a “shock” response that attempts to rescue cells from damaging stress but are a key protective strategy that is an integral component of natural states of

  5. Glucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea.

    Science.gov (United States)

    Lama, Judeh L; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH) gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/hypoxia with the tide cycle and shows multiple metabolic and enzymatic adaptations that support anaerobiosis. This study investigated the kinetic, physical and regulatory properties of G6PDH from hepatopancreas of L. littorea to determine if the enzyme is differentially regulated in response to anoxia, thereby providing altered pentose phosphate pathway functionality under oxygen stress conditions. Several kinetic properties of G6PDH differed significantly between aerobic and 24 h anoxic conditions; compared with the aerobic state, anoxic G6PDH (assayed at pH 8) showed a 38% decrease in K m G6P and enhanced inhibition by urea, whereas in pH 6 assays K m NADP and maximal activity changed significantly between the two states. The mechanism underlying anoxia-responsive changes in enzyme properties proved to be a change in the phosphorylation state of G6PDH. This was documented with immunoblotting using an anti-phosphoserine antibody, in vitro incubations that stimulated endogenous protein kinases versus protein phosphatases and significantly changed K m G6P, and phosphorylation of the enzyme with (32)P-ATP. All these data indicated that the aerobic and anoxic forms of G6PDH were the high and low phosphate forms, respectively, and that phosphorylation state was modulated in response to selected endogenous protein kinases (PKA or PKG) and protein phosphatases (PP1 or PP2C). Anoxia-induced changes in the phosphorylation state of G6PDH may facilitate sustained or increased production of NADPH to enhance antioxidant defense during long term anaerobiosis and/or during the transition

  6. Glucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea

    Directory of Open Access Journals (Sweden)

    Judeh L. Lama

    2013-02-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/hypoxia with the tide cycle and shows multiple metabolic and enzymatic adaptations that support anaerobiosis. This study investigated the kinetic, physical and regulatory properties of G6PDH from hepatopancreas of L. littorea to determine if the enzyme is differentially regulated in response to anoxia, thereby providing altered pentose phosphate pathway functionality under oxygen stress conditions. Several kinetic properties of G6PDH differed significantly between aerobic and 24 h anoxic conditions; compared with the aerobic state, anoxic G6PDH (assayed at pH 8 showed a 38% decrease in Km G6P and enhanced inhibition by urea, whereas in pH 6 assays Km NADP and maximal activity changed significantly between the two states. The mechanism underlying anoxia-responsive changes in enzyme properties proved to be a change in the phosphorylation state of G6PDH. This was documented with immunoblotting using an anti-phosphoserine antibody, in vitro incubations that stimulated endogenous protein kinases versus protein phosphatases and significantly changed Km G6P, and phosphorylation of the enzyme with 32P-ATP. All these data indicated that the aerobic and anoxic forms of G6PDH were the high and low phosphate forms, respectively, and that phosphorylation state was modulated in response to selected endogenous protein kinases (PKA or PKG and protein phosphatases (PP1 or PP2C. Anoxia-induced changes in the phosphorylation state of G6PDH may facilitate sustained or increased production of NADPH to enhance antioxidant defense during long term anaerobiosis and/or during the

  7. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation.

    Science.gov (United States)

    Armstrong, G A; Cook, D N; Ma, D; Alberti, M; Burke, D H; Hearst, J E

    1993-05-01

    The temporal expression of ten clustered genes required for carotenoid (crt) and bacteriochlorophyll (bch) biosynthesis was examined during the transition from aerobic respiration to anaerobiosis requisite for the development of the photosynthetic membrane in the bacterium Rhodobacter capsulatus. Accumulation of crtA, crtC, crtD, crtE, crtF, crtK, bchC and bchD mRNAs increased transiently and coordinately, up to 12-fold following removal of oxygen from the growth medium, paralleling increases in mRNAs encoding pigment-binding polypeptides of the photosynthetic apparatus. The crtB and crtI genes, in contrast, were expressed similarly in the presence or absence of oxygen. The regulation patterns of promoters for the crtA and crtI genes and the bchCXYZ operon were characterized using lacZ transcriptional fusion and qualitatively reflected the corresponding mRNA accumulation patterns. We also report that the bchI gene product, encoded by a DNA sequence previously considered to be a portion of crtA, shares 49% sequence identity with the nuclear-encoded Arabidopsis thaliana Cs chloroplast protein required for normal pigmentation in plants.

  8. COPPER RESPONSE REGULATOR1–Dependent and –Independent Responses of the Chlamydomonas reinhardtii Transcriptome to Dark Anoxia[W

    Science.gov (United States)

    Hemschemeier, Anja; Casero, David; Liu, Bensheng; Benning, Christoph; Pellegrini, Matteo; Happe, Thomas; Merchant, Sabeeha S.

    2013-01-01

    Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 103 genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on COPPER RESPONSE REGULATOR1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ∼40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide–dependent signaling cascades operate in anoxic C. reinhardtii cells. PMID:24014546

  9. The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

    2013-01-01

    Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ∼200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

  10. Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia.

    Science.gov (United States)

    Hemschemeier, Anja; Casero, David; Liu, Bensheng; Benning, Christoph; Pellegrini, Matteo; Happe, Thomas; Merchant, Sabeeha S

    2013-09-01

    Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 10(3) genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on copper response regulator1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ~40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide-dependent signaling cascades operate in anoxic C. reinhardtii cells.

  11. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  12. Heterogeneity of dormancy in apple embryos. [Pyrus malus

    Energy Technology Data Exchange (ETDEWEB)

    Christine, B.; Camille, B.

    1986-04-01

    This study concerns the heterogeneity of embryo dormancy with the aim of investigating a possible relationship between chlorophyllogenesis and dormancy. Dormant embryos of Pyrus malus L. cv. Golden delicious were cultivated on water-agar (agar 6 g/l). They were placed flat with one cotyledon in contact with the medium. After 6 days of culture at 23/sup 0/C under fluorescent light the non-germinated embryos (99% of the total) were classified in three main categories on the basis of the state of greening of their cotyledons. By application of partial dormancy releasing treatments (chilling, anaerobiosis, GA/sub 7/), it was shown that the three categories of embryos were characterized by different depths of dormancy. Germination was most difficult for the embryos which were non pigmented after the initial culture, whereas high germination percentages were rapidly reached by embryos exhibiting high degree of greening. Evaluation of ABA by radioimmunoassay shows that the three categories of embryos also differ in their ABA and ABA-GE levels. A good correlation was thus observed between depth of dormancy and levels of ABA and ABA-GE.

  13. Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Chochois, Vincent; Constans, Laure; Beyly, Audrey; Soliveres, Melanie; Peltier, Gilles; Cournac, Laurent [CEA, DSV, IBEB, Laboratoire de Bioenergetique et Biotechnologie des Bacteries and Microalgues, Saint Paul Lez Durance, F-13108 (France); CNRS, UMR Biologie Vegetale and Microbiologie Environnementales, Saint Paul lez Durance, F-13108 (France); Aix-Marseille Universite, Saint Paul lez Durance, F-13108 (France); Dauvillee, David; Ball, Steven [Univ Lille Nord de France, F-59000 Lille (France); USTL, UGSF, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8576, F-59650 Villeneuve d' Ascq (France)

    2010-10-15

    Sulfur deprivation, which is considered as an efficient way to trigger long-term hydrogen photoproduction in unicellular green algae has two major effects: a decrease in PSII which allows anaerobiosis to be reached and carbohydrate (starch) storage. Starch metabolism has been proposed as one of the major factors of hydrogen production, particularly during the PSII-independent (or indirect) pathway. While starch biosynthesis has been characterized in the green alga Chlamydomonas reinhardtii, little remains known concerning starch degradation. In order to gain a better understanding of starch catabolism pathways and identify those steps likely to limit the starch-dependent hydrogen production, we have designed a genetic screening procedure aimed at isolating mutants of the green alga C. reinhardtii affected in starch mobilization. Using two different screening protocols, the first one based on aerobic starch degradation in the dark and the second one on anaerobic starch degradation in the light, eighteen mutants were isolated among a library of 15,000 insertion mutants, eight (std1-8) with the first screen and ten (sda1-10) with the second. Most of the mutant strains isolated in this study showed a reduction or a delay in the PSII-independent hydrogen production. Further characterization of these mutants should allow the identification of molecular determinants of starch-dependent hydrogen production and supply targets for future biotechnological improvements. (author)

  14. Chemical formation of hybrid di-nitrogen calls fungal codenitrification into question

    Science.gov (United States)

    Phillips, Rebecca L.; Song, Bongkeun; McMillan, Andrew M. S.; Grelet, Gwen; Weir, Bevan S.; Palmada, Thilak; Tobias, Craig

    2016-12-01

    Removal of excess nitrogen (N) can best be achieved through denitrification processes that transform N in water and terrestrial ecosystems to di-nitrogen (N2) gas. The greenhouse gas nitrous oxide (N2O) is considered an intermediate or end-product in denitrification pathways. Both abiotic and biotic denitrification processes use a single N source to form N2O. However, N2 can be formed from two distinct N sources (known as hybrid N2) through biologically mediated processes of anammox and codenitrification. We questioned if hybrid N2 produced during fungal incubation at neutral pH could be attributed to abiotic nitrosation and if N2O was consumed during N2 formation. Experiments with gas chromatography indicated N2 was formed in the presence of live and dead fungi and in the absence of fungi, while N2O steadily increased. We used isotope pairing techniques and confirmed abiotic production of hybrid N2 under both anoxic and 20% O2 atmosphere conditions. Our findings question the assumptions that (1) N2O is an intermediate required for N2 formation, (2) production of N2 and N2O requires anaerobiosis, and (3) hybrid N2 is evidence of codenitrification and/or anammox. The N cycle framework should include abiotic production of N2.

  15. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  16. Gingival Condition in Children Aged From 6 to 12 Years Old: Clinical and Microbiological Aspects

    Directory of Open Access Journals (Sweden)

    Ane Stella Salgado XAVIER

    2007-03-01

    Full Text Available Objective: The aim of this study was to evaluate the gingival condition and the occurrence of periodontopathogens in 93 children aged from 6 to 12 years old in Araçatuba, Brazil. Method: Clinical examination was performed in accordance to Schour and Massler (1947 while the subgingival plaque samples were obtained though sterilized paper point that were placed into health and inflamed gingival crevice of tooth 54 or 14, 61 or 11, 26, 75 or 35, 82 or 42 and 46, where they were kept for 60 seconds and tranferred to tubes containing 5 ml of thioglicolate broth. Microorganisms were isolated on blood agar and CVE an agar after incubation under anaerobiosis, at 37ºC, for 10 days. The identification of the isolates was based on their morphological, cellular and biochemical features. Results: 91.40% shows gingivitis while 70.97% presented mild gingivitis. Only 8.6% didn’t presented gingivitis. It was verified that the most of children presented mild gengivitis and was had some periodontopathogens. Conclusion: The gingivitis deteriored with age and only F. nucleatum was related with the deterioration of gengival status.

  17. Forever Young: Mechanisms of Natural Anoxia Tolerance and Potential Links to Longevity

    Directory of Open Access Journals (Sweden)

    Anastasia Krivoruchko

    2010-01-01

    Full Text Available While mammals cannot survive oxygen deprivation for more than a few minutes without sustaining severe organ damage, some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemys and Chrysemys genera are the champion facultative anaerobes of the vertebrate world, often surviving without oxygen for many weeks at a time. The physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include profound metabolic rate depression, post-translational modification of proteins, strong antioxidant defenses, activation of specific stress-responsive transcription factors, and enhanced expression of cyto-protective proteins. Turtles are also known for their incredible longevity and display characteristics of “negligible senescence.” We propose that the robust stress-tolerance mechanisms that permit long term anaerobiosis by turtles may also support the longevity of these animals. Many of the mechanisms involved in natural anoxia tolerance, such as hypometabolism or the induction of various protective proteins/pathways, have been shown to play important roles in mammalian oxygen-related diseases and improved understanding of how cells survive without oxygen could aid in the understanding and treatment of various pathological conditions that involve hypoxia or oxidative stress. In the present review we discuss the recent advances made in understanding the molecular nature of anoxia tolerance in turtles and the potential links between this tolerance and longevity.

  18. Continuous monitoring of plant water potential.

    Science.gov (United States)

    Schaefer, N L; Trickett, E S; Ceresa, A; Barrs, H D

    1986-05-01

    Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.

  19. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    Directory of Open Access Journals (Sweden)

    Purva D. Bhatter

    2016-01-01

    Full Text Available Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome, Ocimum sanctum L. (leaf, Piper nigrum L. (seed, and Pueraria tuberosa DC. (tuber were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549 infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous and A. calamus (aqueous and ethanol extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.

  20. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  1. Assimilation (in vitro) of cholesterol by yogurt bacteria.

    Science.gov (United States)

    Dilmi-Bouras, Abdelkader

    2006-01-01

    A considerable variation is noticed between the different species studied and even between the strains of the same species, in the assimilation of cholesterol in synthetic media, in presence of different concentrations of bile salts and under anaerobiosis conditions. The obtained results show that certain strains of Streptococcus thermophilus and Lactobacillus bulgaricus resist bile salts and assimilate appreciable cholesterol quantities in their presence. The study of associations shows that only strains assimilating cholesterol in a pure state remain active when they are put in associations, but there is no additional effect. However, the symbiotic effect between Streptococcus thermophilus and Lactobacillus bulgaricus of yogurt, with regard to bile salts, is confirmed. The lactic fermenters of yogurt (Y2) reduce the levels of total cholesterol, HDL-cholesterol and LDL-cholesterol, in a well-balanced way. In all cases, the assimilated quantity of HDL-cholesterol is lower than that of LDL-cholesterol. Moreover, yogurt Y2 keeps a significant number of bacteria, superior to 10(8) cells ml(-1), and has a good taste 10 days after its production.

  2. Enumeration of starter cultures during yogurt production using Petrifilm AC plates associated with acidified MRS and M17 broths.

    Science.gov (United States)

    Gonçalves, Marília M; Freitas, Rosangela; Nero, Luís A; Carvalho, Antônio F

    2009-05-01

    The efficiency of Petrifilm AC (3M Microbiology, St. Paul, MN, USA) associated with the broths M17 and de Mann-Rogosa-Sharpe (MRS) at pH 5.4 was evaluated to enumerate Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus during the yogurt production. Commercial and reference strains of these microorganisms were experimentally inoculated in nonfat milk and incubated at 42 degrees C for 4 h for yogurt production. At the moment of inoculation and after incubation, aliquots were collected, submitted to dilution using the broths M17 and MRS at pH 5.4, and plated for Strep. salivarius and Lb. bulgaricus enumeration according ISO 9232 and at Petrifilm AC plates, respectively. M17 plates were incubated at 42 degrees C, and MRS plates were incubated at 35 degrees C under anaerobiosis. After 48 h, the formed colonies were enumerated and the counts were compared by correlation and analysis of variance (Pyogurt production, with slight interferences due to the acidity of MRS at the moment of inoculation, and due to the acidity of yogurt at the end of fermentation process. It was also observed that the MRS at pH 5.4 was not sufficiently selective for Lb. delbrueckii enumeration, despite it is indicated by the official protocol from ISO 9232.

  3. Adaptation to anaerobic metabolism in two mussel species, Mytilus edulis and Mytilus galloprovincialis, from the tidal zone at Arcachon Bay, France

    Science.gov (United States)

    de Vooys, C. G. N.

    Aspects of anaerobic metabolism were investigated in two sympatric mussel species, viz. Mytilus edulis and Mytilus galloprovincialis, living in the tidal zone in Arcachon Bay, France. Specific activities of pyruvate kinase (PK) and phosphoenolpyruvate kinase (PEP-CK) were remarkably similar in the two sympatric species and generally corresponded more closely to those observed in M. galloprovincialis in the Mediterranean than with M. edulis in the Dutch Wadden Sea. However, the values for the radio PK: PEP-CK for the two species in Arcachon Bay agreed with those of intertidal M. edulis from the Dutch Wadden Sea. Succinate accumulation during the first 24 h of anaerobicsis was about the same as in M. galloprovincialis in the Mediterranean, but decreased during the second 24 h, particularly in M. edulis, obviously due to propionate formation. Decrease in ATP concentrations in the tissues during anaerobiosis corresponded to that of intertidal M. edulis from the Dutch Wadden Sea. With the exception of specific activities of PK and PEP-CK, all properties investigated in both species were as expected in intertidal mussels.

  4. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Pereira, Luciana Filgueira; Bassi, Ana Paula Guarnieri; Avansini, Simoni Helena; Neto, Adauto Gomes Barbosa; Brasileiro, Bereneuza Tavares Ramos Valente; Ceccato-Antonini, Sandra Regina; de Morais, Marcos Antonio

    2012-03-01

    The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.

  5. Isolation of a rice gene homologous to the human putative tumor suppressor gene QM

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    QM gene was originally isolated from human by Dowdy et al during a search for a wilms′ tumor suppressor gene. Researches of QM gene focused mainly on animals and yeasts, little was known about plant QM gene. For better understanding of QM gene in rice, a QM homologous fragment was used as a probe to screen rice (Oryza sativa subsp. indica c.v. Guanglu′ ai 4) genomic DNA library,and two clones were obtained. One of them, OSQM2, encoded a highly basic protein of 184 amino acids, the sequence was about 3.1 kb long with a very special promoter region compared with other known QM genes. Seven potential G boxes could be found between -690 and -230. G box, which contains a ACGT core motif, had been reported in many plants to act as a cis acting DNA element in the regulation of genes in a variety of environmental conditions, such as ABA regulated gene expression, red light, UV light, anaerobiosis, and wounding etc. Two closely linked DRE related motifs (dehydration responsive element) could also be found between -182 and 173, which had a CCGAC conserved sequence and had been identified in many cold and drought responsive genes in Arabidopsis. Six MYC recognition sequences with the conserved motif NCANNTGN were also presented, which might be essential for ABA and drought responsive expression of the plant genes.

  6. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum.

    Science.gov (United States)

    Huesemann, Michael H; Hausmann, Tom S; Carter, Blaine M; Gerschler, Jared J; Benemann, John R

    2010-09-01

    The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 micromol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 micromol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

  7. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport.

    Science.gov (United States)

    Speed, S R; Baldwin, J; Wong, R J; Wells, R M

    2001-03-01

    The metabolic characteristics of five muscle groups in the spiny lobster Jasus edwardsii were examined in order to compare their anaerobic and oxidative capacities. Enzyme activities of phosphorylase, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase were highest in abdominal muscles supporting anaerobic burst activity. Hexokinase, citrate synthase, and HOAD activities in the leg and antennal muscles indicated higher aerobic potential. Arginine kinase activities were high in all muscle groups indicating that muscle phosphagens are an important energy reserve. Arginine phosphate concentrations in 4th periopod and abdominal flexor muscle from lobsters sampled in the field were higher than any values from captive animals, and approximately five times those for ATP. Muscle lactates were high in captive animals. Responses to emersion during simulated live transport appear to exploit the capacity for functional anaerobiosis and further differentiated the muscle groups. Abdominal muscles were especially sensitive and after 24 h showed significant increases in lactate, glucose, ADP, and AMP. ATP levels appeared to be maintained by muscle phosphagens and raised doubts about the efficacy of the adenylate energy charge in evaluating the emersion response. Haemolymph glucose, lactic acid, and ammonia peaked after 24 h emersion and were largely restored following re-immersion. We propose that arginine phosphate concentrations in the 4th periopod are an appropriate index of metabolic stress, and could lead to improved commercial handling protocols.

  8. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jimmy E Rodríguez

    Full Text Available The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL and diacyltrehalose/polyacyltrehalose (DAT/PAT profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1 and anaerobiosis (NRP2 models of hypoxia (Wayne model, and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  9. Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation.

    Science.gov (United States)

    Deytieux, Christelle; Mussard, Ludivine; Biron, Marie-José; Salmon, Jean-Michel

    2005-08-01

    Yeasts can incorporate a wide variety of exogenous sterols under strict anaerobiosis. Yeasts normally require oxygen for growth when exogenous sterols are limiting, as this favours the synthesis of lipids (sterols and unsaturated fatty acids). Although much is known about the oxygen requirements of yeasts during anaerobic growth, little is known about their exact sterol requirements in such conditions. We developed a method to determine the amount of ergosterol required for the growth of several yeast strains. We found that pre-cultured yeast strains all contained similar amounts of stored sterols, but exhibited different ergosterol assimilation efficiencies in enological conditions [as measured by the ergosterol concentration required to sustain half the number of generations attributed to ergosterol assimilation (P(50))]. P(50) was correlated with the intensity of sterol synthesis. Active dry yeasts (ADYs) contained less stored sterols than their pre-cultured counterparts and displayed very different ergosterol assimilation efficiencies. We showed that five different batches of the same industrial Saccharomyces cerevisiae ADY exhibited significantly different ergosterol requirements for growth. These differences were mainly attributed to differences in initial sterol reserves. The method described here can therefore be used to quantify indirectly the sterol synthesis abilities of yeast strains and to estimate the size of sterol reserves.

  10. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens

    Directory of Open Access Journals (Sweden)

    Jacqueline Boldrin de Paiva

    2011-12-01

    Full Text Available Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12 only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ΔcobSΔcbiA. We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ΔcobSΔcbiA, Salmonella Gallinarum ΔcobSΔcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12 in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested.

  11. Energy-dependent intracellular translocation of proparathormone.

    Science.gov (United States)

    Chu, L L; MacGregor, R R; Cohn, D V

    1977-01-01

    We previously suggested that after synthesis, proparathormone is transferred from rough endoplasmic reticulum to the Golgi region where its conversion to parathormone occurs. We have attempted to define more closely this transfer process. In the first type of study, bovine parathyroid slices were incubated with [3H]leucine for 10 min and then radioisotope labeling was restricted by addition of a large excess of nonradioactive leucine. Under these conditions, more than 90% of the initially labeled proparathormone was converted to parathormone in 40 min. Lowered temperature in the chase period markedly inhibited the conversion. Several chemical agents were employed individually in the chase period to examine their effect on the conversion process. Antimycin A, dinitrophenol, oligomycin, and anaerobiosis (N2) inhibited the conversion, whereas sodium flouride and cycloheximide had no effect. In the second type of study, parathyroid slices were incubated with [3H]leucine for the entire incubation period. Lowered temperature and inhibitors of energy metabolism and microtubular function all lengthened the interval (lag) between the initial synthesis of [3H]parathormone. Cycloheximide, Tris, and chloroquine decreased the rates of protein synthesis and conversion, respectively, but none had any effect on the lag. We interpret the lag to represent the time of transit for proparathormone from rough endoplasmic reticulum to the Golgi region. We conclude that this transfer process is independent of the synthesis of the prohormone and its conversion to the hormone. Moreover, this translocation requires metabolic energy and appears to be mediated by microtubules.

  12. Elucidating the roles of ethanol fermentation metabolism in causing off-flavors in mandarins.

    Science.gov (United States)

    Tietel, Zipora; Lewinsohn, Efraim; Fallik, Elazar; Porat, Ron

    2011-11-09

    To elucidate the roles of ethanol fermentation metabolism in causing off-flavors, 'Mor' mandarins were exposed to anaerobic atmospheres for 0, 2, 4, 7, and 10 days to gradually increase juice ethanol and acetaldehyde levels through enhanced fermentation. Exposure to anaerobic atmosphere caused progressive decline in fruit sensory quality, from nearly "good" to "very bad", because of decreased typical mandarin flavor and increased sensation of 'musty' and 'ethanol' off-flavors. GC-MS analysis revealed significant (p ≤ 0.05) increases in the contents of 12 aroma volatiles, including the ethanol fermentation metabolites ethanol and acetaldehyde, and several fatty acid and amino acid catabolism derivates, 7 of which were ethyl esters, which suggests that they were esterification products of ethanol and acyl-CoA's derived from fatty acid and amino acid catabolism. These de novo synthesized anaerobiosis-regulated ethyl esters impart 'pungent', 'ethereal', 'waxy', 'musty', and 'fruity' notes. Overall, these results suggest that besides the direct effects of ethanol and acetaldehyde, downstream ethanol esterification products may also be involved in causing off-flavor sensation in mandarins.

  13. In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation.

    Science.gov (United States)

    Gwinn, M L; Stellwagen, A E; Craig, N L; Tomb, J F; Smith, H O

    1997-12-01

    Haemophilus influenzae Rd is a gram-negative bacterium capable of natural DNA transformation. The competent state occurs naturally in late exponential growth or can be induced by a nutritional downshift or by transient anaerobiosis. The genes cya, crp, topA, and sxy (tfoX) are known to function in the regulation of competence development. The phosphoenolpyruvate:carbohydrate phosphotransferase system functions to maintain levels of cyclic AMP necessary for competence development but is not directly involved in regulation. The exact signal(s) for competence and the genes that mediate the signal(s) are still unknown. In an effort to find additional regulatory genes, H. influenzae Rd was mutated by using an in vitro Tn7 system and screened for mutants with a reduced ability to induce the competence-regulatory gene, comA. Insertions in atpA, a gene coding for the alpha subunit of the F1 cytoplasmic domain of the ATP synthase, reduce transformation frequencies about 20-fold and cause a significant reduction in expression of competence-regulatory genes, while the expression of constitutive competence genes is only minimally affected. In addition, we found that an insertion in atpB, which encodes the a subunit of the F0 membrane-spanning domain, has a similar effect on transformation frequencies.

  14. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea.

    Science.gov (United States)

    Storey, Kenneth B; Lant, Benjamin; Anozie, Obiajulu O; Storey, Janet M

    2013-08-01

    The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response.

  15. Microbiota associated with chronic osteomyelitis of the jaws

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2010-12-01

    Full Text Available Chronic osteomyelitis of maxilla and mandible is rare in industrialized countries and its occurrence in developing countries is associated with trauma and surgery, and its microbial etiology has not been studied thoroughly. The aim of this investigation was to evaluate the microbiota associated with osteomyelitis of mandible or maxilla from some Brazilian patients. After clinical and radiographic evaluation, samples of bone sequestra, purulent secretion, and biopsies of granulomatous tissues from twenty-two patients with chronic osteomyelitis of mandible and maxilla were cultivated and submitted for pathogen detection by using a PCR method. Each patient harbored a single lesion. Bacterial isolation was performed on fastidious anaerobe agar supplemented with hemin, menadione and horse blood for anaerobes; and on tryptic soy agar supplemented with yeast extract and horse blood for facultative bacteria and aerobes. Plates were incubated in anaerobiosis and aerobiosis, at 37ºC for 14 and 3 days, respectively. Bacteria were cultivated from twelve patient samples; and genera Actinomyces, Fusobacterium, Parvimonas, and Staphylococcus were the most frequent. By PCR, bacterial DNA was detected from sixteen patient samples. The results suggest that cases of chronic osteomyelitis of the jaws are usually mixed anaerobic infections, reinforcing the concept that osteomyelitis of the jaws are mainly related to microorganisms from the oral environment, and periapical and periodontal infections may act as predisposing factors.

  16. Anaerobic infections in the head and neck region.

    Science.gov (United States)

    Tabaqchali, S

    1988-01-01

    Anaerobic bacteria form the predominant flora of the oral cavity, outnumbering facultative organisms by 10-1,000: 1. The type of anaerobic bacteria and their concentration depend on the anatomical site and the degree of anaerobiosis in the different sites in the mouth. Three groups of anaerobic bacteria inhabit the oral cavity; the strict anaerobes, the moderate anaerobes, and the microaerophilic group of organisms. The majority of anaerobic bacterial infections occurring in the region of the mouth, head and neck are caused by the commensal flora. These infections include dental and periodontal disease where the predominant organisms are Bacteroides species, Veillonella, Bifidobacteria, Peptococcus, Peptostreptococcus and Propionibacterium species. More recently, Bacteroides endontalis has been isolated from a periapical abscess of endodontal origin and B. gingivalis, B. intermedius, Haemophilus actinomycetemcomitans and Wollinella species in chronic periodontal disease. Treponema species and other strict anaerobes are seen in smears of severe periodontal disease and acute necrotising gingivitis, but have not yet been isolated in pure culture. Until such time, their role in disease remains uncertain. Fusobacterium nucleatum is specially associated with severe orofacial infections which may extend into the mediastinum. Other anaerobic infections include chronic otitis media, chronic sinusitis and mastoiditis, and brain abscess. Treatment of these conditions should include the use of beta-lactamase resistant antimicrobials, such as clindamycin or one of the nitroimidazoles with penicillin.

  17. Influence of preventive dental treatment on mutans streptococci counts in patients undergoing head and neck radiotherapy

    Directory of Open Access Journals (Sweden)

    Lívia Buzati Meca

    2009-01-01

    Full Text Available The aim of this study was to evaluate the influence of chlorhexidine gluconate, sodium fluoride and sodium iodine on mutans streptococci counts in saliva of irradiated patients. MATERIAL AND METHODS: Forty-five patients were separated into three experimental groups and received chlorhexidine (0.12%, sodium fluoride (0.5% or sodium iodine (2%, which were used daily during radiotherapy and for 6 months after the conclusion of the treatment. In addition, a fourth group, composed by 15 additional oncologic patients, who did not receive the mouthwash or initial dental treatment, constituted the control group. Clinical evaluations were performed in the first visit to dental clinic, after initial dental treatment, immediately before radiotherapy, after radiotherapy and 30, 60, 90 days and 6 months after the conclusion of radiotherapy. After clinical examinations, samples of saliva were inoculated on SB20 selective agar and incubated under anaerobiosis, at 37ºC for 48 h. Total mutans streptococci counts were also evaluated by using real-time PCR, through TaqMan system, with specific primers and probes for S. mutans and S. sobrinus. RESULTS: All preventive protocols were able to reduce significantly mutans streptococci counts, but chlorhexidine gluconate was the most effective, and induced a significant amelioration of radiotherapy side effects, such as mucositis and candidosis. CONCLUSION: These results highlights the importance of the initial dental treatment for patients who will be subjected to radiotherapy for head and neck cancer treatment.

  18. Novel Hydrogenosomes in the Microaerophilic Jakobid Stygiella incarcerata

    Science.gov (United States)

    Leger, Michelle M.; Eme, Laura; Hug, Laura A.; Roger, Andrew J.

    2016-01-01

    Mitochondrion-related organelles (MROs) have arisen independently in a wide range of anaerobic protist lineages. Only a few of these organelles and their functions have been investigated in detail, and most of what is known about MROs comes from studies of parasitic organisms such as the parabasalid Trichomonas vaginalis. Here, we describe the MRO of a free-living anaerobic jakobid excavate, Stygiella incarcerata. We report an RNAseq-based reconstruction of S. incarcerata’s MRO proteome, with an associated biochemical map of the pathways predicted to be present in this organelle. The pyruvate metabolism and oxidative stress response pathways are strikingly similar to those found in the MROs of other anaerobic protists, such as Pygsuia and Trichomonas. This elegant example of convergent evolution is suggestive of an anaerobic biochemical ‘module’ of prokaryotic origins that has been laterally transferred among eukaryotes, enabling them to adapt rapidly to anaerobiosis. We also identified genes corresponding to a variety of mitochondrial processes not found in Trichomonas, including intermembrane space components of the mitochondrial protein import apparatus, and enzymes involved in amino acid metabolism and cardiolipin biosynthesis. In this respect, the MROs of S. incarcerata more closely resemble those of the much more distantly related free-living organisms Pygsuia biforma and Cantina marsupialis, likely reflecting these organisms’ shared lifestyle as free-living anaerobes. PMID:27280585

  19. Risk analysis of tyramine concentration in food production

    Science.gov (United States)

    Doudová, L.; Buňka, F.; Michálek, J.; Sedlačík, M.; Buňková, L.

    2013-10-01

    The contribution is focused on risk analysis in food microbiology. This paper evaluates the effect of selected factors on tyramine production in bacterial strains of Lactococcus genus which were assigned as tyramine producers. Tyramine is a biogenic amine sythesized from an amino acid called tyrosine. It can be found in certain foodstuffs (often in cheese), and can cause a pseudo-response in sensitive individuals. The above-mentioned bacteria are commonly used in the biotechnological process of cheese production as starter cultures. The levels of factors were chosen with respect to the conditions which can occur in this technological process. To describe and compare tyramine production in chosen microorganisms, generalized regression models were applied. Tyramine production was modelled by Gompertz curves according to the selected factors (the lactose concentration of 0-1% w/v, NaCl 0-2% w/v and aero/anaerobiosis) for 3 different types of bacterial cultivation. Moreover, estimates of model parameters were calculated and tested; multiple comparisons were discussed as well. The aim of this paper is to find a combination of factors leading to a similar tyramine production level.

  20. An ATP and oxalate generating variant tricarboxylic acid cycle counters aluminum toxicity in Pseudomonas fluorescens.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available Although the tricarboxylic acid (TCA cycle is essential in almost all aerobic organisms, its precise modulation and integration in global cellular metabolism is not fully understood. Here, we report on an alternative TCA cycle uniquely aimed at generating ATP and oxalate, two metabolites critical for the survival of Pseudomonas fluorescens. The upregulation of isocitrate lyase (ICL and acylating glyoxylate dehydrogenase (AGODH led to the enhanced synthesis of oxalate, a dicarboxylic acid involved in the immobilization of aluminum (Al. The increased activity of succinyl-CoA synthetase (SCS and oxalate CoA-transferase (OCT in the Al-stressed cells afforded an effective route to ATP synthesis from oxalyl-CoA via substrate level phosphorylation. This modified TCA cycle with diminished efficacy in NADH production and decreased CO(2-evolving capacity, orchestrates the synthesis of oxalate, NADPH, and ATP, ingredients pivotal to the survival of P. fluorescens in an Al environment. The channeling of succinyl-CoA towards ATP formation may be an important function of the TCA cycle during anaerobiosis, Fe starvation and O(2-limited conditions.

  1. Oxygen-independent killing of Bacteroides fragilis by granule extracts from human polymorphonuclear leukocytes.

    Science.gov (United States)

    Wetherall, B L; Pruul, H; McDonald, P J

    1984-03-01

    Granule proteins from human neutrophils were prepared by extraction with acetate, and their antibacterial activity against Bacteroides fragilis was determined. Activity was highly dependent on pH; greatest killing occurred at the most acid pH tested (pH 5.0). Optimum activity was observed at physiological ionic strength and low bacterial numbers. Killing was inhibited by incubation temperatures of less than 37 degrees C. Eight times more extract was required to kill 50% of stationary-phase bacteria, compared with those growing in logarithmic phase. The antibacterial effect of granule extract was destroyed by boiling, but some activity was retained after heating to 56 degrees C and 80 degrees C. Granule extract activity was tested under conditions in which oxygen-dependent antibacterial systems were inhibited. The rate and extent of killing was not affected by anaerobiosis, sodium azide, or cysteine hydrochloride. These results suggest that the activity of granule extract is independent of oxidative antibacterial systems, and therefore, under conditions that occur in anaerobic infections, potent leukocyte granule-associated mechanisms exist for the destruction of B. fragilis.

  2. Oxygen-independent antimicrobial action in sphingosine-treated neutrophils.

    Science.gov (United States)

    Stinavage, P; Spitznagel, J K

    1989-11-30

    Sphingosine is reported to inhibit the oxidative burst and superoxide anion production of human polymorphonuclear neutrophils (PMN) phagocytosing in atmospheric oxygen (Wilson et al., 1986). We have confirmed its effect on superoxide production and examined the antimicrobial phagocytic capacity of PMN treated with sphingosine, comparing them with PMN, untreated but phagocytosing either under anaerobic conditions or in atmospheric oxygen. Sphingosine just like anaerobiosis partially inhibited, but did not eliminate, the bactericidal activity of PMN when compared to non-treated aerobic cells. In fact, sphingosine-treated PMN mimicked killing of Staphylococcus aureus (S. aureus) and Serratia marcescens (S. marcescens) due to anaerobic PMN. Moreover, our results with Salmonella typhimurium and sphingosine-treated cells duplicated results this laboratory published previously about comparative killing of Salmonella in aerobic versus anaerobic neutrophils. In these studies sphingosine-treated PMN took up bacteria as avidly as untreated PMN and retained their viability, as assessed by trypan blue exclusion. While sphingosine should not be completely substituted for anaerobic studies, it is a convenient screening reagent for the study of non-oxidative killing mechanisms of PMN. Results achieved with anaerobic and with sphingosine-treated cells suggest that O2-independent antimicrobial action is substantially more powerful than has been generally acknowledged.

  3. Differential killing of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. by human neutrophil granule components.

    Science.gov (United States)

    Miyasaki, K T; Bodeau, A L; Flemmig, T F

    1991-10-01

    The purpose of this study was to determine whether granule fractions of human neutrophils differentially kill Actinobacillus actinomycetemcomitans and Capnocytophaga spp. Granule extracts were subjected to gel filtration, and seven fractions (designated A through G) were obtained. Under aerobic conditions at pH 7.0, representative strains of A. actinomycetemcomitans were killed by fraction D and variably by fraction B. In contrast, the Capnocytophaga spp. were killed by fractions C, D, F, and G. Fractions A (containing lactoferrin and myeloperoxidase) and E (containing lysozyme) exerted little bactericidal activity under these conditions. Anaerobiosis had little effect on the bactericidal activity of fractions D and F but inhibited that of fractions B and C. Electrophoresis, zymography, determination of amino acid composition, and N-terminal sequence analysis revealed that fraction C contained elastase, proteinase 3, and azurocidin. Fraction D contained lysozyme, elastase, and cathepsin G. Subfractions of C and D containing elastase (subfraction C4), a mixture of elastase and azurocidin (subfraction C5), and cathepsin G (subfraction D9) were found to be bactericidal. The bactericidal effects of fraction D and subfraction D9 against A. actinomycetemcomitans was not inhibited by heat inactivation, phenylmethylsulfonyl fluoride, or N-benzyloxycarbonylglycylleucylphenylalanylchloromethyl ketone. We conclude that (i) A. actinomycetemcomitans and Capnocytophaga spp. were sensitive to the bactericidal effects of different neutrophil granule components, (ii) both were sensitive to the bactericidal effects of neutral serine proteases, and (iii) the killing of A. actinomycetemcomitans by cathepsin G-containing fractions was independent of oxygen and neutral serine protease activity.

  4. Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes.

    Science.gov (United States)

    Pompeiano, Antonio; Fanucchi, Francesca; Guglielminetti, Lorenzo

    2013-11-01

    Among starchy seeds, rice has the unique capacity to germinate successfully under complete anaerobiosis. In this conditions, starch degradation is supported by a complete set of starch-degrading enzymes that are absent or inactive in cereals except rice. A characterization of carbohydrate metabolism and starch-degrading enzyme activity across twenty-nine genotypes of Oryza sativa L. is presented here. The zymogram of amylolytic activities present in rice embryos and endosperms under anaerobic conditions seven days after sowing (DAS) revealed marked differences among cultivars. Coleoptile elongation was positively correlated with total amylolytic activities and α-amylase activity in embryos, and negatively correlated with α-amylase activity in endosperm. Moreover, carbohydrate content in embryos was found to be positively correlated with total amylolytic activities under anaerobic conditions, while a negative relationship was recorded in the endosperm. Carbohydrate status in rice seedlings has a primary importance in sustaining coleoptile elongation towards the surface. The relationship between carbohydrate level in embryo and anoxic germination, as well as with total amylolytic activities present in rice embryo under anaerobic condition 7 DAS, is consistent with the role of sugar metabolism to support rice germination under oxygen-deprived environment.

  5. Superoxide production in aprotic interior of chloroplast thylakoids.

    Science.gov (United States)

    Takahashi, M; Asada, K

    1988-12-01

    The site of superoxide production in spinach thylakoids was found to be the aprotic interior of the thylakoid membranes near the P700 chlorophyll a protein at the reaction center of photosystem I complexes. This conclusion was drawn from the following findings. (i) Cytochrome c reduction by illuminated thylakoids, which was confirmed to be superoxide dependent by the failure of this reaction to occur in anaerobiosis, was completely inhibited by a dibutyl catechol, but partially inhibited by a hydrophilic disulfonated derivative. (ii) P700 chlorophyll a proteins were preferentially iodinated by lactoperoxidase by the use of hydrogen peroxide that was derived from the disproportionation of superoxides in illuminated thylakoids. (iii) Hydrogen peroxide production and oxygen uptake were induced by ammonium chloride, a proton conductor that can permeate through thylakoid membranes, but whole superoxide in the bulk solution was oxidized back to molecular oxygen by cytochrome c. The effective concentration of ammonium chloride decreased to one-sixtieth of the original, when an ammonium ion ionophore, nonactin, was added. Thus, the weak acid allowed superoxide to yield hydrogen peroxide disproportionately in the thylakoid membrane interior.

  6. Salar de Surire un ecosistema altoandino en peligro, frente a escenario del cambio climático

    Directory of Open Access Journals (Sweden)

    Ingrid Garcés

    2011-12-01

    Full Text Available Este trabajo realiza un análisis al salar de Surire desde el punto de vista de la biodiversidad y sus implicancias producto del cambio climático. Como resultado se predice que los próximos años serán secos y la temperatura podría ir en aumento, lo cual afectará notablemente a la flora y fauna del altiplano. El salar de Surire es un cuerpo salino ubicado en el altiplano andino chileno, en un entorno geológico de características volcánicas. La climatología actual de aridez no permite una acumulación de agua superficial de gran extensión, y por lo tanto es posible diferenciar tres tipos principales de aguas: los aportes de drenaje, las acumulaciones de agua en la aureola pantanosa externa o “bofedales”, y las aguas del interior del cuerpo salino (surgencias termales y salmueras. Estas condiciones hidrológicas afectan factores abióticos, como anaerobiosis de suelos, disposición de nutrientes y salinidad, factores determinantes del desarrollo de la flora y fauna. Palabras claves: Salar de Surire; Biodiversidad andina; Cambio climático; Ecosistema andino

  7. Endo-and exoglucanase activities in bacteria from mangrove sediment

    Directory of Open Access Journals (Sweden)

    Fábio Lino Soares Júnior

    2013-09-01

    Full Text Available The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis, and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil. To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium, both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates than exoglycolytic (19 isolates, and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  8. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  9. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  10. Rhamnolipid-dependent spreading growth of Pseudomonas aeruginosa on a high-agar medium: marked enhancement under CO2-rich anaerobic conditions.

    Science.gov (United States)

    Nozawa, Takashi; Tanikawa, Taichiro; Hasegawa, Hiroyuki; Takahashi, Chihiro; Ando, Yumi; Matsushita, Mitsugu; Nakagawa, Yoji; Matsuyama, Tohey

    2007-01-01

    Anaerobiosis of Pseudomonas aeruginosa in infected organs is now gaining attention as a unique physiological feature. After anaerobic cultivation of P. aeruginosa wild type strain PAO1 T, we noticed an unexpectedly expanding colony on a 1.5% agar medium. The basic factors involved in this spreading growth were investigated by growing the PAO1 T strain and its isogenic mutants on a Davis high-agar minimal synthetic medium under various experimental conditions. The most promotive environment for this spreading growth was an O(2)-depleted 8% CO(2) condition. From mutational analysis of this spreading growth, flagella and type IV pili were shown to be ancillary factors for this bacterial activity. On the other hand, a rhamnolipid-deficient rhlA mutant TR failed to exhibit spreading growth on a high-agar medium. Complementation of the gene defect of the mutant TR with a plasmid carrying the rhlAB operon resulted in the restoration of the spreading growth. In addition, an external supply of rhamnolipid or other surfactants (surfactin from Bacillus subtilis or artificial product Tween 80) also restored the spreading growth of the mutant TR. Such activity of surfactants on bacterial spreading on a hard-agar medium was unique to P. aeruginosa under CO(2)-rich anaerobic conditions.

  11. High-gravity brewing: effects of nutrition on yeast composition, fermentative ability, and alcohol production.

    Science.gov (United States)

    Casey, G P; Magnus, C A; Ingledew, W M

    1984-09-01

    A number of economic and product quality advantages exist in brewing when high-gravity worts of 16 to 18% dissolved solids are fermented. Above this level, production problems such as slow or stuck fermentations and poor yeast viability occur. Ethanol toxicity has been cited as the main cause, as brewers' yeasts are reported to tolerate only 7 to 9% (vol/vol) ethanol. The inhibitory effect of high osmotic pressure has also been implicated. In this report, it is demonstrated that the factor limiting the production of high levels of ethanol by brewing yeasts is actually a nutritional deficiency. When a nitrogen source, ergosterol, and oleic acid are added to worts up to 31% dissolved solids, it is possible to produce beers up to 16.2% (vol/vol) ethanol. Yeast viability remains high, and the yeasts can be repitched at least five times. Supplementation does not increase the fermentative tolerance of the yeasts to ethanol but increases the length and level of new yeast cell mass synthesis over that seen in unsupplemented wort (and therefore the period of more rapid wort attenuation). Glycogen, protein, and sterol levels in yeasts were examined, as was the importance of pitching rate, temperature, and degree of anaerobiosis. The ethanol tolerance of brewers' yeast is suggested to be no different than that of sake or distillers' yeast.

  12. Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis.

    Directory of Open Access Journals (Sweden)

    Kemal Avican

    2015-01-01

    Full Text Available We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.

  13. Endo- and exoglucanase activities in bacteria from mangrove sediment

    Science.gov (United States)

    Júnior, Fábio Lino Soares; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose. PMID:24516466

  14. The influence of oxygen supply on the production of acetaldehyde by Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    M.F. Mastroeni

    2003-06-01

    Full Text Available The influence of oxygen supply rate on the growth and the production of both ethanol and acetaldehyde by the aerotolerant fermentative bacterium Z. mobilis is discussed in this work. The results showed similar values of cell mass yield (0.043 g/g for the five different levels of initial volumetric oxygen transfer coefficient (K La studied. The maximum specific growth rate (µx,m. under anaerobic conditions was higher than those found in aerated runs. Anaerobic cultivation resulted in the best ethanol yield (0.38 g/g. For initial K La values of 62, 94, and 118 h-1, ethanol yields were 0.10, 0.12, and 0.09 g/g, respectively, whereas for K La of 30 h-1, an intermediate value (0.24 g/g was achieved. Under anaerobiosis, no acetaldehyde was produced. With initial K La values of 62, 94, and 118 h-1, acetaldehyde yields were similar (0.12 to 0.17 g/g, and for K La of 30 h-1 only 0.07 gram of acetaldehyde was formed per gram of glucose. Although increasing values for the maximal specific acetaldehyde formation rate were calculated as K La was increased, our results showed that the presence of an excess of dissolved oxygen throughout fermentation is enough to provide appropriate conditions for the production of acetaldehyde by Z. mobilis.

  15. Energy metabolism in Mycobacterium gilvum PYR-GCK: insights from transcript expression analyses following two states of induction.

    Directory of Open Access Journals (Sweden)

    Abimbola Comfort Badejo

    Full Text Available Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M. gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III -V were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase; which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M. gilvum PYR-GCK.

  16. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress

    Science.gov (United States)

    Cleland, R. E.; Fujiwara, T.; Lucas, W. J.

    1994-01-01

    Cell-to-cell transport of small molecules and ions occurs in plants through plasmodesmata. Plant roots are frequently subjected to localized anaerobic stress, with a resultant decrease in ATP. In order to determine the effect of this stress on plasmodesmal transport, fluorescent dyes of increasing molecular weight (0.46 to 1OkDa) were injected into epidermal and cortical cells of 3-day-old wheat roots, and their movement into neighboring cells was determined by fluorescence microscopy. Anaerobiosis was generated by N2 gas or simulated by the presence of sodium azide, both of which reduced the ATP levels in the tissue by over 80%. In the absence of such stress, the upper limit for movement, or size exclusion limit (SEL), of cortical plasmodesmata was roots, indicating that plasmodesmata may be conduits for nucleotide (ATP and ADP) exchange between cells. Upon imposition of stress, the SEL rose to between 5 and 10 kDa. This response of plasmodesmata to a decrease in the level of ATP suggests that they are constricted by an ATP-dependent process so as to maintain a restricted SEL. When roots are subjected to anaerobic stress, an increase in SEL may permit enhanced delivery of sugars to the affected cells of the root where anaerobic respiration could regenerate the needed ATP.

  17. Eficacia de la solución de hidróxido de calcio a 20% en la reducción de microorganismos asociados a la cárie de dentina Efficacy of 20% calcium hydroxide solution for reduction of microorganisms in carious dentin

    Directory of Open Access Journals (Sweden)

    IVA Pinheiro

    2005-06-01

    Full Text Available Objetivo: Evaluar la eficácia da solución de hidróxido de calcio a 20% en la reducción de microorganismos asociados a la carie de dentina. Metodología:Treinta preparos cavitários fueron realizados en molares permanentes de 30 indivíduos entre las edades de 9 a 18 años. Solución salina reductora fue utilizada como líquido de colecta para la recuperación de microorganismos, antes y después del lavado cavitário. Las muestras fueron colocadas en placas de agar sangre de carnero e incubadas en anaerobiosis por 48 horas a 37ºC. Después Del crecimiento bacteriano, se realizo un análisis semi cuantitativo y cualitativo de las bacterias, a través de hibridización DNA-DNA para 23 tipos de bacterias. Resultados: Una reducción significativa de la cantidad de microorganismos en las muestras colectadas después del lavado de la cavidad con solución de hidróxido de calcio fue observada cuando comparado con el momento anterior al lavado. Del total de muestras que presentaron microorganismos en la cavidad recién preparada, 46,15% presentaron eliminación de éstos microorganismos después del lavado con agua de cal y 53,84% presentaron reducción significativa del número de microorganismos. El teste t pareado de Student mostró una diferencia extremamente significativa (p=0,0007 entre el momento anterior y posterior al lavado. Con relación al tipo de bacterias encontradas después Del lavado de la cavidad con solución de hidróxido de calcio, se observó reducción considerable de S. anginosus, S. mitis y S. sobrinus, así como de S. aureus y S. epidermidis, a pesar de no ser significativa (p>0,05. Conclusión: La solución de hidróxido de calcio parece ser un método de limpieza cavitária eficaz en la reducción de la microbiota asociada a la carie de dentina.Objective: This study aimed to test the effectiveness of the cavity cleansing solution (calcium hydroxide 20% in the elimination or reduction of microorganisms associated to

  18. Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200 Purification of Porphyromonas gingivalis polysaccharide free lipopolysaccharide using Sephacryl S-200 high resolution chromatography

    Directory of Open Access Journals (Sweden)

    DIEGO GUALTERO

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctu-losónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias periodontopáticas, con el fin de investigar la asociación de enfermedad periodontal con enfermedades cardiovasculares.The aim of this work was to improve a standard methodology to purify Porphyromonas gingivalis lipopolysaccharide (LPS using a protocol of extraction, enzymatic digestion and high resolution chromatography. P. gingivalis bacteria was cultured in anaerobiosis, their membranes were extracted using the phenol-water method, then subjected to DNAse, RNAse and protease digestion and finally, the extract was separated by chromatography using Sephacryl S-200. The purified extract was characterized by silver staining after polyacrylamide gel electrophoresis and 2-keto-3-deoxioctanoic acid (KDO was detected using the Purpald’s method. A preparation free of nucleic acid-, protein

  19. 雨生红球藻β-胡萝卜素酮化酶(bkt)启动子功能分析%FUNCTIONAL ANALYSIS OF THE PROMOTER OF BKT ENCODING BETA-CAROTENE KETOLASE IN HAEMATOCOCCUS PLUVIALIS

    Institute of Scientific and Technical Information of China (English)

    魏炜; 梁成伟; 秦松

    2006-01-01

    单细胞绿藻--雨生红球藻在逆境条件下积累大量的虾青素.β-胡萝卜素酮化酶(bkt)催化在β-胡萝卜素和玉米黄素的β-紫罗酮环C-4位引入酮基的反应,是虾青素合成过程中的关键酶.我们利用凝胶阻滞的方法研究雨生红球藻中bkt基因309 bp(-617/-309)启动子区域的转录因子结合位点并发现在-396/-338的59 bp探针存在特异的核蛋白结合位点.通过序列分析,发现此59 bp区域并不包含TATA或者CAAT-box,而是存在对光、缺氧、p-香豆酸及激素反应的G-box.%The unicellular green alga Haematococcus pluvialis accumulates a high-valuable astaxanthin under stress conditions. Betacarotene ketolase (BKT), a key enzyme in astaxanthin biosynthesis in H. pluvialis, catalyzes the conversion of β-carotene to canthaxanthin and zeaxanthin to astaxanthin. Electrophoresis mobility shift assay (EMSA) was used in H. pluvialis to identify transcription factor binding sites within a 309 bp promoter region ( - 617/- 309) of beta-carotene ketolase gene and a 59 bp sequence between - 396 and - 338 bp was found to have a specific binding activity to the nuclear protein. Sequence analysis revealed that this important functional region contains neither TATA nor CAAT box but a G-box involved in the responsiveness of light, anaerobiosis, p-coumaric acid and hormone.

  20. Sustainable Hydrogen Photoproduction by Phosphorus-Deprived Marine Green Microalgae Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Khorcheska Batyrova

    2015-01-01

    Full Text Available Previously it has been shown that green microalga Chlamydomonas reinhardtii is capable of prolonged H2 photoproduction when deprived of sulfur. In addition to sulfur deprivation (-S, sustained H2 photoproduction in C. reinhardtii cultures can be achieved under phosphorus-deprived (-P conditions. Similar to sulfur deprivation, phosphorus deprivation limits O2 evolving activity in algal cells and causes other metabolic changes that are favorable for H2 photoproduction. Although significant advances in H2 photoproduction have recently been realized in fresh water microalgae, relatively few studies have focused on H2 production in marine green microalgae. In the present study phosphorus deprivation was applied for hydrogen production in marine green microalgae Chlorella sp., where sulfur deprivation is impossible due to a high concentration of sulfates in the sea water. Since resources of fresh water on earth are limited, the possibility of hydrogen production in seawater is more attractive. In order to achieve H2 photoproduction in P-deprived marine green microalgae Chlorella sp., the dilution approach was applied. Cultures diluted to about 0.5–1.8 mg Chl·L−1 in the beginning of P-deprivation were able to establish anaerobiosis, after the initial growth period, where cells utilize intracellular phosphorus, with subsequent transition to H2 photoproduction stage. It appears that marine microalgae during P-deprivation passed the same stages of adaptation as fresh water microalgae. The presence of inorganic carbon was essential for starch accumulation and subsequent hydrogen production by microalgae. The H2 accumulation was up to 40 mL H2 gas per 1iter of the culture, which is comparable to that obtained in P-deprived C. reinhardtii culture.

  1. Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen, 1804

    Directory of Open Access Journals (Sweden)

    Valentina Grazioli

    2016-02-01

    Full Text Available The metabolic effects of low oxygen content on alcohol-dehydrogenase (ADH activity and hemoglobin (Hb concentration were investigated in IV-instar larvae of Chironomus riparius (Diptera: Chironomidae from an Italian stream. Two series of short-term (48 h experiments were carried out: exposure to (1 progressive hypoxia (95 to 5% of oxygen saturation and (2 anoxia (at <5% of oxygen saturation. In (1, Hb amount increased with increasing oxygen depletion up to a critical value of oxygenation (about 70% of oxygen saturation. Below this percentage, the Hb amount declined to values comparable with those present in the control. The respiration rate (R remained almost constant at oxygen saturation >50% and decreased significantly only after 48 h of treatment (= <5% of oxygen saturation reaching values <100 mmolO2 gAFDW-1 h-1. ADH activity showed two phases of growth, within the first 14 h and over 18 h of exposure. Overall, we inferred that i Hb might function as short-term oxygen storage, enabling animals to delay the on-set of anaerobiosis; and ii alcoholic fermentation co-occurs for a short time with aerobic respiration, becoming the prevalent metabolic pathway below 5% of oxygen saturation (<1 mg L-1. These considerations were supported also by results from anoxia exposure (2. In such condition, larvae were visibly stressed, becoming immobile after few minutes of incubation, and ADH reached higher values than in the hypoxia treatment (2.03±0.15 UADH mg prot-1. Overall, this study showed a shift from aerobic to anaerobic activity in C. riparius larvae exposed to poorly oxygenated water with an associated alteration of ADH activity and the Hb amount. Such metabolites might be valid candidate biomarkers for the environmental monitoring of running waters.

  2. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    Directory of Open Access Journals (Sweden)

    DIEGO GUALTERO

    2008-01-01

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctu-losónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias períodontopáticas, con el fin de investigar la asociación de enfermedad períodontal con enfermedades cardiovasculares.

  3. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes.

    Science.gov (United States)

    Matturro, B; Presta, E; Rossetti, S

    2016-03-01

    Chlorinated compounds pose environmental concerns due to their toxicity and wide distribution in several matrices. Microorganisms specialized in leading anaerobic reductive dechlorination (RD) processes, including Dehalococcoides mccartyi (Dhc), are able to reduce chlorinated compounds to harmless products or to less toxic forms. Here we report the first detailed study dealing with the RD potential of heavy polluted marine sediment by evaluating the biodegradation kinetics together with the composition, dynamics and activity of indigenous microbial population. A microcosm study was conducted under strictly anaerobic conditions on marine sediment collected near the marine coast of Sarno river mouth, one of the most polluted river in Europe. Tetrachloroethene (PCE), used as model pollutant, was completely converted to ethene within 150 days at reductive dechlorination rate equal to 0.016 meq L(-1) d(-1). Consecutive spikes of PCE allowed increasing the degradation kinetics up to 0.1 meq L(-1)d(-1) within 20 days. Strictly anaerobiosis and repeated spikes of PCE stimulated the growth of indigenous Dhc cells (growth yield of ~7.0 E + 07 Dhc cells per μM Cl(-1) released). Dhc strains carrying the reductive dehalogenase genes tceA and vcrA were detected in the original marine sediment and their number increased during the treatment as demonstrated by the high level of tceA expression at the end of the microcosm study (2.41 E + 05 tceA gene transcripts g(-1)). Notably, the structure of the microbial communities was fully described by Catalysed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) as wells as the dynamics of the dechlorinating bacteria during the microcosms operation. Interestingly, a direct role of Dhc cells was ascertained suggesting the existence of strains adapted at salinity conditions. Additionally, non-Dhc Chloroflexi were retrieved in the original sediment and were kept stable over time suggesting their likely flanking role of the RD

  4. Meeting reproductive demands in a dynamic upwelling system: Foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Science.gov (United States)

    Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  5. Dinámica microbial del suelo asociada a diferentes estrategias de manejo de Phytophthora cinnamomi Rands en aguacate

    Directory of Open Access Journals (Sweden)

    Joaquín Guillermo Ramírez Gil

    2013-12-01

    Full Text Available La marchitez del aguacate es la enfermedad más limitante de este cultivo, cuyo agente causal más relevante es el oomycete Phytophthora cinnamomi Rands. Es por esto que se han desarrollado diferentes estrategias para su manejo integrado, pero aún prevalece el uso de productos químicos, como única medida de manejo, generando impactos negativos en el ambiente y la salud. Uno de los efectos perjudiciales que se ocasiona es la alteración de las poblaciones microbianas en el suelo. Este trabajo estuvo encaminado a conocer la dinámica microbiana del suelo, bajo diferentes estrategias de manejo de esta enfermedad, para lo cual se midió su dinamismo mediante unidades formadoras de colonias (UFC, para hongos, bacterias y actinomicetos, a partir de muestras de suelo y rizósfera de la raíz, bajo incubación en condiciones de anaerobiosis y aerobiosis, además se midió la actividad microbiana total, en condiciones de laboratorio, como complemento se cuantificaron microorganismos como: Trichiderma spp, bacterias formadoras de endosporas (BAFE, celulolíticos, proteolíticos, amilolíticos, solubilizadores de fosfato, fijadores asimbióticos de nitrógeno y promotores del crecimiento, como Pseudomonas spp., fluorescentes. Los resultados encontrados en esta investigación, sugieren que el uso individual y combinado de mantillo orgánico, material compostado de estiércol bovino, enmienda mineral y cascarilla de arroz y la propuesta de integración; incrementan significativamente la población y actividad microbiana aerobia, en la cual se identificaron microorganismos antagonistas como, Trichiderma spp., celulolíticos, Pseudomonas spp. fluorescentes y BAFE.

  6. Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae.

    Science.gov (United States)

    Abramova, N E; Cohen, B D; Sertil, O; Kapoor, R; Davies, K J; Lowry, C V

    2001-03-01

    The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.

  7. Influence of hydrological fluxes on bio-geochemical processes in a peatland

    Directory of Open Access Journals (Sweden)

    N. Bougon

    2009-05-01

    Full Text Available Factors influencing the dynamics of nitrate and sulphate concentration observed in a south Normandy peatland were determined experimentally. The effects of high or low nitrate input, and oxic or anoxic conditions on microbial activity were investigated in bioreactors, using peat samples from field sites influenced by different hydrologic regimes. Site S, unlike site G, was characterized by the presence of hydrogeological gradients inducing water fluxes from river to peat during most of the hydrological cycle. Peat samples from both sites were subjected to similar experimental conditions to distinguish between the chemical effects (NO3-, O2 and the physical effects (hydrologic regimes.

    [Cl-], [SO42-] and [NO3-] were monitored for 240 h. Nitrate was significantly reduced in most experiments: (1 Removal of 70% of the initial nitrate content after 51 h under anoxic conditions; (2 Complete nitrate reduction after 240 h in soil from the S site. This reduction was interpreted as heterotrophic denitrification. Sulphate monitoring revealed that 400 mg/L were produced in peat from site S under aerobic conditions. Sulphate changes under anaerobiosis were not significant or, for samples from G, under any conditions. Clear differences in chloride content (deviance analysis, P<0.05, sulphate concentration and nitrate consumption dynamics (deviance analysis, P<0.0001 were observed between the G and S sites. Our results demonstrate that the rates of nitrate removal and sulphate production differ between peat samples from sites subjected to different hydrological regimes, even under similar redox and nitrate conditions. This experimental approach highlights the effect of hydrological fluxes leading to modifications of microbial activity which are likely related to changes in microbial diversity.

  8. Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw

    Science.gov (United States)

    Sass, R. L.; Fisher, F. M.; Harcombe, P. A.; Turner, F. T.

    1991-09-01

    Increased world demand for rice production may lead to an increase in methane emission to the atmosphere and future global warming. One suggested way to reduce methane emission is to discourage the practice of incorporating previous crop residue prior to planting rice, since the residue may enhance methane emission from flooded rice fields. This concept is supported by data from a 2-year study of flooded rice fields on two different soil types in Texas. In 1990, rice stubble from 1989 was incorporated into both soils. Seasonal methane emission from a Lake Charles clay field increased from 15.9 g m-2 in 1989 to 31.0 g m-2 in 1990. In the Beaumont clay field, seasonal methane emission increased from 4.5 to 11.4 g m-2. While methane emission increased between 1989 and 1990, grain yield dropped by 2100 and 840 kg ha-1 in the Lake Charles and Beaumont fields, respectively. Visual inspection at harvest indicated that the 1990 rice yield decrease resulted from grain abortion, presumably caused by the rice cultivar's sensitivity to soil anaerobiosis. The calculated amount of organic carbon not translocated to grain was comparable to the estimated amount of organic carbon required for the increased methane emission. We hypothesize that labile carbon in straighthead susceptible rice cultivars can "leak" from roots damaged by excessively anaerobic soil and be metabolized to its equivalent in methane. These data suggest that minimizing incorporation of crop residue prior to planting can decrease methane emission from flooded rice and reduce the potential for yield loss, particularly with some cultivars and in soils with low rates of seepage and percolation.

  9. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm(3)). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  10. Boron bridging of rhamnogalacturonan-II, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion.

    Science.gov (United States)

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-02-01

    The cell-wall pectic domain rhamnogalacturonan-II (RG-II) is cross-linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross-linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron-bridged) RG-II, we confirmed that Pb(2+) promotes H3 BO3 -dependent dimerisation in vitro. H3 BO3 concentrations as high as 50 mm did not prevent cross-linking. For in-vivo experiments, we successfully cultured 'Paul's Scarlet' rose (Rosa sp.) cells in boron-free medium: their wall-bound pectin contained monomeric RG-II domains but no detectable dimers. Thus pectins containing RG-II domains can be held in the wall other than via boron bridges. Re-addition of H3 BO3 to 3.3 μm triggered a gradual appearance of RG-II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG-II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG-II dimers. We conclude that RG-II normally becomes boron-bridged during synthesis or secretion but not post-secretion. Supporting this conclusion, exogenous [(3) H]RG-II was neither dimerised in the medium nor cross-linked to existing wall-associated RG-II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG-II domains have a brief window of opportunity for boron-bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron-bridging does not readily occur.

  11. Acción antimicrobiana in vitro de dentífricos conteniendo fitoterápicos

    Directory of Open Access Journals (Sweden)

    Liza Barreto V

    Full Text Available Este estudio analizó el potencial antimicrobiano in vitro de 7 dentífricos conteniendo fitoterápicos sobre bacterias orales recuperadas de la saliva y cepas patrón de S. mutans ATCC25175, S. sanguis ATCC 10556 y L. casei ATCC 4646. Fueron obtenidas soluciones concentradas de los dentífricos evaluados y de controles mezclándose 3 gramos de cada uno con 10 mL de agua deionozada estéril, seguido de centrifugación; los sobrenadantes resultantes fueron diluidos en proporciones de 1:2 hasta 1:32. Fue realizado un test de difusión en ágar, colocando cepas patrón y la saliva total estimulada de 10 pacientes saludables. Discos empapados con las suspensiones de los dentífricos fueron dispuestos en las placas, las cuales fueron incubadas en anaerobiosis por 48 horas, siendo los aros de inhibición medidos en milímetros. Los resultados obtenidos fueron analizados mediante ANOVA y llevando en consideración el control positivo se constató que, solamente las soluciones puras de los dentífricos presentaron capacidad antimicrobiana contra cepas patrón, equivalente a la del dentífrico con triclosan, excepto el Gessy Cristal®. Además, los dentífricos diluidos a 1:2 presentaron acción antimicrobiana contra las bacterias orales recuperadas de la saliva, excepto el Parodontax®.

  12. Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence.

    Directory of Open Access Journals (Sweden)

    Michelle M Giffin

    Full Text Available Mycobacterium tuberculosis can maintain a nonreplicating persistent state in the host for decades, but must maintain the ability to efficiently reactivate and produce active disease to survive and spread in a population. Among the enzymes expressed during this dormancy is alanine dehydrogenase, which converts pyruvate to alanine, and glyoxylate to glycine concurrent with the oxidation of NADH to NAD. It is involved in the metabolic remodeling of M. tuberculosis through its possible interactions with both the glyoxylate and methylcitrate cycle. Both mRNA levels and enzymatic activities of isocitrate lyase, the first enzyme of the glyoxylate cycle, and alanine dehydrogenase increased during entry into nonreplicating persistence, while the gene and activity for the second enzyme of the glyoxylate cycle, malate synthase were not. This could suggest a shift in carbon flow away from the glyoxylate cycle and instead through alanine dehydrogenase. Expression of ald was also induced in vitro by other persistence-inducing stresses such as nitric oxide, and was expressed at high levels in vivo during the initial lung infection in mice. Enzyme activity was maintained during extended hypoxia even after transcription levels decreased. An ald knockout mutant of M. tuberculosis showed no reduction in anaerobic survival in vitro, but resulted in a significant lag in the resumption of growth after reoxygenation. During reactivation the ald mutant had an altered NADH/NAD ratio, and alanine dehydrogenase is proposed to maintain the optimal NADH/NAD ratio during anaerobiosis in preparation of eventual regrowth, and during the initial response during reoxygenation.

  13. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    Directory of Open Access Journals (Sweden)

    Lafaurie Gloria

    2008-12-01

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctulosónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias períodontopáticas, con el fin de investigar la asociación de enfermedad períodontal con enfermedades cardiovasculares.

  14. Temperature Affects the Use of Storage Fatty Acids as Energy Source in a Benthic Copepod (Platychelipus littoralis, Harpacticoida).

    Science.gov (United States)

    Werbrouck, Eva; Van Gansbeke, Dirk; Vanreusel, Ann; De Troch, Marleen

    2016-01-01

    The utilization of storage lipids and their associated fatty acids (FA) is an important means for organisms to cope with periods of food shortage, however, little is known about the dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore, lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14 days) of food deprivation, under two temperatures in the range of the normal habitat temperature (4, 15 °C) and under an elevated temperature (24 °C), and studied the changes in FA composition of storage and membrane lipids. Although bulk depletion of storage FA occurred after a few days of food deprivation under 4 °C and 15 °C, copepod survival remained high during the experiment, suggesting the catabolization of other energy sources. Ambient temperature affected both the degree of FA depletion and the FA mobilization. In particular, storage FA were more exhausted and FA mobilization was more selective under 15 °C compared with 4 °C. In contrast, depletion of storage FA was limited under an elevated temperature, potentially due to a switch to partial anaerobiosis. Food deprivation induced selective DHA retention in the copepod's membrane, under all temperatures. However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the membranes, and potentially induced high copepod mortality. Storage lipids clearly played an important role in the short-term response of the copepod P. littoralis to food deprivation. However, under elevated temperature, the use of storage FA as an energy source is compromised.

  15. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    Science.gov (United States)

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  16. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.

    Science.gov (United States)

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

    2012-11-16

    Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.

  17. A brief history of bacterial growth physiology.

    Science.gov (United States)

    Schaechter, Moselio

    2015-01-01

    Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid-19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism. Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the "Copenhagen School." During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell. Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  18. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  19. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    Science.gov (United States)

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  20. Characterization of P1-deficient isogenic mutant of Haemophilus influenzae biogroup aegyptius associated with Brazilian purpuric fever.

    Science.gov (United States)

    Segada, L M; Carlone, G M; Gheesling, L L; Lesse, A J

    2000-03-01

    Haemophilus influenzae biogroup aegyptius (formerly H. aegyptius) is the etiologic agent of Brazilian purpuric fever (BPF). A surface-exposed epitope on the outer membrane protein P1 is present on most strains of H. influenzae biogroup aegyptius associated with BPF but is absent in almost all non-disease associated strains. The role of the outer membrane protein P1 in the pathogenesis of this disease was evaluated by utilizing an isogenic P1-deficient mutant. We compared the ability of the wild type and P1 isogenic mutant to grow under various conditions. The P1-deficient strain grew at a similar rate to the wild type in both complex and chemically defined medium. The P1-deficient mutant also had a similar growth rate to the wild type under anaerobic conditions. Anaerobic growth, however, resulted in up-regulation of the P1 protein in the wild type strain. Three assays were used to examine the pathophysiologic role of the P1 protein in BPF: 1) serum resistance; 2) sustained bacteremia in the infant rat model; and 3) the human microvascular endothelial cell (HMEC) cytotoxicity assay. Both the mutant and wild-type strains were resistant to killing in 95% normal human serum. The P1-deficient strain was also as virulent as the wild type in both the infant rat model of bacteremia and in the HMEC-1 tissue culture model. These results demonstrate that serum resistance, sustained bacteremia in the infant rat, and cytotoxicity of HMEC cells occur in the absence of P1. The P1 protein is not essential for the pathogenic potential identified by these assays. However, these results demonstrate that an anaerobic environment is a potent physiologic regulator of P1 protein expression. The impact of anaerobiosis on protein expression and pathogenesis will require further investigations.

  1. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    Science.gov (United States)

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  2. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  3. Respiratory, acid-base, and metabolic responses of the Christmas Island blue crab, Cardisoma hirtipes (Dana), during simulated environmental conditions.

    Science.gov (United States)

    Dela-Cruz, J; Morris, S

    1997-01-01

    The dependency of the Christmas Island blue crab, Cardisoma hirtipes, on fresh water for respiratory gas exchange and transport was investigated in laboratory simulations. The gas exchange rates of air-breathing C. hirtipes were similar to those of other land crabs but decreased to 20% in submerged crabs. Crabs with access to air maintained arterial and pulmonary O2 content (CO2) and partial pressure (PO2), while in submerged crabs the PO2 and CO2 rapidly decreased (by 50%). There was no anaerobiosis, but haemolymph glucose concentration and cardiac output decreased when crabs were submersed, which suggests a hypometabolic state. Submersion induced a metabolic rather than a respiratory alkalosis, and since respiratory gas exchange was low, CO2 excretion to water was unimportant. Cardisoma hirtipes haemocyanin (Hc) has high O2 affinity but low pH sensitivity, which facilitates O2 uptake from hypoxic environments. The high Hc-O2 affinity supports O2 loading but may prevent access to a venous O2 reserve. Calcium, magnesium, and urate, but not L-lactate, were effectors of Hc-O2 affinity. In submerged crabs increased circulating urate maintained haemolymph O2 content. The CO2 capacitance and nonbicarbonate buffering of the haemolymph were relatively low. A significant Haldane effect seemed important for CO2 excretion but would require CO2 and O2 exchange to occur at the same organ (gills or lungs). Submersion interferes with respiration and is not needed for haemolymph acid-base balance; thus; C. hirtipes is an air-breathing crab.

  4. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae.

    Science.gov (United States)

    Kress-Bennett, Jennifer M; Hiller, N Luisa; Eutsey, Rory A; Powell, Evan; Longwell, Mark J; Hillman, Todd; Blackwell, Tenisha; Byers, Barbara; Mell, Joshua C; Post, J Christopher; Hu, Fen Z; Ehrlich, Garth D; Janto, Benjamin A

    2016-01-01

    Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites.

  5. Inhibitory and lytic effects of phenothiazine derivatives and related tricyclic neuroleptic compounds, on Entamoeba histolytica HK9 and HM1 trophozoites.

    Science.gov (United States)

    Ondarza, R N; Hernández, E; Iturbe, A; Hurtado, G

    2000-08-01

    It has been shown previously that tricyclic neuroleptics like clomipramine and chlorpromazine have lethal effects on Leishmania donovani and L. major, and other studies indicate that the phenothiazine inhibitors of trypanothione reductase are potential anti-trypanosomal and anti-leishmanial drugs. With this in mind and our original observation on the presence of trypanothione in Entamoeba histolytica HK9, we examined the possible inhibitory effects of various phenothiazine and tricyclic derivatives on this human parasite. We found that drugs like clomipramine (KD002), the most potent in vitro inhibitor of trypanothione reductase among 30 tricyclic compounds tested, at 25 microM after 24 h of culture under aerobic conditions, caused a substantial decrease in the number of E. histolytica HK9 trophozoites, from approx. 15 x 10(6) to 5.37 x 10(6) cells, and at 100 microM to 0.8 x 10(6) cells. A substantial inhibitory effect on cell proliferation could also be demonstrated with metronidazol (used clinically against amoebiasis). Under similar experimental conditions other tricyclic and phenothiazine derivatives (OFKs), designed originally to inhibit the trypanothione reductase of trypanosomatides, had an inhibitory effect of 16 to 95%. For comparison, similar results were obtained using clomipramine and a phenothiazine derivative (OFK006) with Trypanosoma cruzi and Crithidia luciliae, except that with the latter the inhibitory effect of clomipramine was less dramatic. Experiments comparing two E. histolytica strains showed that normal cell proliferation under anaerobiosis was higher in strain HK9 than in HM1, which is highly virulent, but that metronidazol and clomipramine were less effective against HM1. Two other drugs tested, diphenydramine (KD005) and a phenothiazine derivative (OFK008), also had significant but lower inhibitory effects on both strains. The inhibitory activity on cell proliferation and the lytic effects on this human parasite by the tricyclic

  6. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    Science.gov (United States)

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  7. Clonado de cepas de Tritrichomonas foetus obtenidas de infecciones naturales en bovinos Cloned strains of Tritrichomonas foetus obtained from natural infections in cattle

    Directory of Open Access Journals (Sweden)

    M.L. Doumecq

    2011-12-01

    Full Text Available El objetivo del presente trabajo es describir una técnica sencilla para clonar cepas de Tritrichomonas foetus en un medio sólido. A partir de diferentes cepas obtenidas de infecciones naturales de bovinos se ensayaron dos técnicas: Homogeneizado en tubo y Homogeneizado en placa. Para cada una de ellas se evaluaron diferentes concentraciones de agar en el medio de cultivo y el tiempo de incubación más apropiado. Los resultados obtenidos demostraron que la técnica más adecuada fue la técnica de Homogeneizado en placa, con una concentración de agar 0,45 g % p/v y un tiempo de incubación de 5 días en anaerobiosis. Esta técnica resulta un procedimiento útil y sencillo para la obtención de clones de T. foetus ya que permite el crecimiento de protozoarios en colonias aisladas sobre un medio sólido. Además la técnica puede ser utilizada para evaluar la producción de colonias hemolíticas por la presencia de glóbulos rojos en el medio de cultivo.The aim of this work is to describe a simple technique to cloned strain of Tritrichomonas foetus in a solid medium. From different strains from natural infections in cattle two techniques: Homogenized in tube and Homogenized in plate were tested. The must appropriate agar concentrations in the culture medium and incubation time were evaluated for each techniques. The results showed that the most appropriate technique was Homogenized in plate with an agar concentration of 0.45 g% w /v and an incubation time of 5 days. This technique is a useful and easy to obtain clones of T. foetus, allows the growth of protozoa in isolated colonies on solid media. Furthermore the technique can be used to evaluate the production of hemolytic colonies for the presence of bovine red blood cells in the culture medium.

  8. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    Science.gov (United States)

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  9. Occurrence of Aggregatibacter actinomycetemcomitans in Brazilian indians from Umutina Reservation, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Evanice Menezes Marçal Vieira

    2009-10-01

    Full Text Available Aggregatibacter actinomycetemcomitans is associated with periodontal disease, especially localized aggressive periodontitis, produces a potent leukotoxin and its distribution is influenced by ethnic characteristics of the population. Objective: Using culture and polymerase chain reaction (PCR techniques, this study evaluated the occurrence of this microorganism and the distribution of leukotoxic strains isolated from Indians belonging to the Umutima Reservation, Mato Grosso, Brazil. MATERIAL AND METHODS: Forty-eight native Brazilians with gingivitis and 38 with chronic periodontitis, belonging to Umutina, Paresi, Bororo, Bakairi, Kayabi, Irantxe, Nambikwara and Terena ethnicities, were studied. Subgingival, supragingival and saliva samples of each patient were collected and transferred to VMGA III medium and to ultra pure Milli Q water. Bacteria were grown on TSBV agar and incubated in anaerobiosis (90% N2 + 10% CO2 at 37ºC for 72 h. The presence of the ltx promoter was determined by PCR, and a 530 bp deletion in the promoter was evaluated by using specific primers. RESULTS: A. actinomycetemcomitans was isolated from 8.33% of saliva, supragingival and subgingival samples from patients with gingivitis and from 18.42% of saliva and supragingival biofilm, and 26.32% subgingival biofilm from patients with chronic periodontitis. By PCR, the bacterial DNA was detected in 8.33% of saliva, supragingival and subgingival biofilms from patients with gingivitis and from 23.68% of saliva, 28.95% supragingival biofilm and 34.21% subgingival biofilm from patients with periodontitis. All strains were grouped as non-JP2 clones based on the absence of deletion in the leukotoxin promoter. Differences among the microbial and clinical parameters in patients were analyzed by using the Mann-Whitney, Chi-square or Fisher's exact tests. CONCLUSIONS: The present results suggest that A. actinomycetemcomitans can be related to the attachment loss in this population, but

  10. Isolation, identification and physiological study of Lactobacillus fermentum LPB for use as probiotic in chickens Isolamento, identificação e estudos fisiológicos de Lactobacillus fermentum LPB para uso como probiótico em frangos de corte

    Directory of Open Access Journals (Sweden)

    Elizete de F. Reque

    2000-10-01

    Full Text Available Studies were carried out to isolate and identify microorganisms for probiotic use for chickens. Selection of strains included various criteria such as agreement with bio-safety aspects, viability during storage, tolerance to low pH/ gastric juice, bile, and antimicrobial activity. The strains were isolated from the crop, proventriculus, gizzard, ileum and caeca of chicken. Decimal dilution of the contents of these segments were mixed with MRS medium and incubated for 48 h at 37°C under anaerobiosis. The identity of the culture was based on characteristics of lactobacilli as presented in the Bergey’s Manual of Determinative Bacteriology, carrying out bacterioscopy (morphology, Gram stain, growth at 15 and 45°C, and fermentation of different carbon sources. Based on these criteria, Lactobacillus fermentum LPB was identified and tested for probiotic use for chickens. The isolate was evaluated for poultry feeds supplement. The results showed that in comparison to the presence and effects of antibiotics, L. fermentum LPB implantation resulted in a similar effect as that of antibiotics manifested by feed efficiency in growth of chicks.O nosso trabalho teve como proposta o isolamento e identificação de microrganismos para uso como probiótico em aves. As espécies foram selecionadas de acordo com aspectos de biosegurança, viabilidade durante a estocagem, tolerância a pH baixo, suco gástrico, bile e atividade antimicrobiana. As espécies foram isoladas do papo, proventrículo, moela, íleo e ceco de frango. Os conteúdos destes segmentos foram diluídos e semeados em meio MRS e incubados por 48 h a 37°C em anaerobiose. A identificação das culturas foi realizada de acordo com as características de Lactobacillus presentes no Manual Bergey’s, como bacterioscopia (morfologia, coloração de Gram, crescimento a 15 e 45°C e fermentação de diferentes fontes de carbono. Baseado nestes critérios Lactobacillus fermentum LPB foi identificado e

  11. Eficacia de la solución de hidróxido de calcio a 20% en la reducción de microorganismos asociados a la cárie de dentina

    Directory of Open Access Journals (Sweden)

    IVA Pinheiro

    Full Text Available Objetivo: Evaluar la eficácia da solución de hidróxido de calcio a 20% en la reducción de microorganismos asociados a la carie de dentina. Metodología:Treinta preparos cavitários fueron realizados en molares permanentes de 30 indivíduos entre las edades de 9 a 18 años. Solución salina reductora fue utilizada como líquido de colecta para la recuperación de microorganismos, antes y después del lavado cavitário. Las muestras fueron colocadas en placas de agar sangre de carnero e incubadas en anaerobiosis por 48 horas a 37ºC. Después Del crecimiento bacteriano, se realizo un análisis semi cuantitativo y cualitativo de las bacterias, a través de hibridización DNA-DNA para 23 tipos de bacterias. Resultados: Una reducción significativa de la cantidad de microorganismos en las muestras colectadas después del lavado de la cavidad con solución de hidróxido de calcio fue observada cuando comparado con el momento anterior al lavado. Del total de muestras que presentaron microorganismos en la cavidad recién preparada, 46,15% presentaron eliminación de éstos microorganismos después del lavado con agua de cal y 53,84% presentaron reducción significativa del número de microorganismos. El teste t pareado de Student mostró una diferencia extremamente significativa (p=0,0007 entre el momento anterior y posterior al lavado. Con relación al tipo de bacterias encontradas después Del lavado de la cavidad con solución de hidróxido de calcio, se observó reducción considerable de S. anginosus, S. mitis y S. sobrinus, así como de S. aureus y S. epidermidis, a pesar de no ser significativa (p>0,05. Conclusión: La solución de hidróxido de calcio parece ser un método de limpieza cavitária eficaz en la reducción de la microbiota asociada a la carie de dentina.

  12. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  13. Occurrence of Actinobacillus actinomycetemcomitans in patients with chronic periodontitis, aggressive periodontitis, healthy subjects and children with gingivitis in two cities of the state of São Paulo, Brazil Ocorrência de Actinobacillus actinomycetemcomitans em pacientes com periodontite crônica, periodontite agressiva, pessoas saudáveis e crianças com gengivite em duas cidades do Estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti Jardim Júnior

    2006-06-01

    Full Text Available The aim of this study was to determine the frequency of isolation of Actinobacillus actinomycetemcomitans (Aa in 100 patients with chronic periodontitis, 14 patients with aggressive periodontitis, 142 pre-school children with gingivitis and 134 periodontally healthy subjects. Samples of subgingival plaque were taken using sterilized paper points introduced into periodontal pockets or gingival crevice for 60 seconds and inoculated on TSBV agar, which was incubated under anaerobiosis at 37ºC, for 4 days. Microbial identification was performed through biochemical methods and morphocellular and morphocolonial analysis. Aa was detected in 40.3% of healthy subjects, 68% of patients with chronic periodontitis, 92.86% of patients with aggressive periodontitis and 40.14% of children with gingivitis. The rate of recovery of Aa in the tested human groups proved to be higher than previously reported and in agreement with participation of this facultative anaerobe as a member of native microbiota of the periodontium and its relation with aggressive and chronic periodontitis in Brazil.Avaliou-se a ocorrência de Actinobacillus actinmycetemcomitans (Aa em pacientes 100 pacientes com periodontite crônica, 14 com doença periodontal agressiva, 142 crianças com gengivite em idade pré-escolar e 134 indivíduos adultos saudáveis. Amostras de placa subgengival foram coletadas usando cones de papel estéreis introduzidos nas bolsas periodontais ou no sulco gengival por 60 segundos e inoculadas em ágar TSBV, que foram incubadas em anaerobiose a 37ºC, por 4 dias. A identificação microbiana foi realizada através de análises bioquímicas, morfocelulares e morfocoloniais. Aa foi detectado em 40,3% de indivíduos saudáveis, 68% de pacientes com periodontite crônica, 92,86% de pacientes com periodontite agressiva e 40,14% das crianças com gengivite. A taxa de ocorrência de Aa nos grupos testados provou ser mais alta do que a previamente descrita na literatura

  14. Acción antimicrobiana in vitro de dentífricos conteniendo fitoterápicos Antimicrobial action in vitro of dentifricies with phytoterapeutics agents

    Directory of Open Access Journals (Sweden)

    Liza Barreto V

    2005-08-01

    Full Text Available Este estudio analizó el potencial antimicrobiano in vitro de 7 dentífricos conteniendo fitoterápicos sobre bacterias orales recuperadas de la saliva y cepas patrón de S. mutans ATCC25175, S. sanguis ATCC 10556 y L. casei ATCC 4646. Fueron obtenidas soluciones concentradas de los dentífricos evaluados y de controles mezclándose 3 gramos de cada uno con 10 mL de agua deionozada estéril, seguido de centrifugación; los sobrenadantes resultantes fueron diluidos en proporciones de 1:2 hasta 1:32. Fue realizado un test de difusión en ágar, colocando cepas patrón y la saliva total estimulada de 10 pacientes saludables. Discos empapados con las suspensiones de los dentífricos fueron dispuestos en las placas, las cuales fueron incubadas en anaerobiosis por 48 horas, siendo los aros de inhibición medidos en milímetros. Los resultados obtenidos fueron analizados mediante ANOVA y llevando en consideración el control positivo se constató que, solamente las soluciones puras de los dentífricos presentaron capacidad antimicrobiana contra cepas patrón, equivalente a la del dentífrico con triclosan, excepto el Gessy Cristal®. Además, los dentífricos diluidos a 1:2 presentaron acción antimicrobiana contra las bacterias orales recuperadas de la saliva, excepto el Parodontax®.The aim of this study was to evaluate and compare in vitro antimicrobial potential of 7 dentifrices containing phytotherapics agents oral bacteria obtained from saliva and standard strains of S. mutans ATCC 25175, S. sanguis ATCC 10556, and L. casei ATCC 4646. For this purpose, concentrated test and control solutions were obtained by mixing 3 grams of each in 10 ml of sterile deionized water which was submitted to centrifugation, the sublimate obtained was further dissolved in a ratio of 1:2 to 1:32. A diffusion test in agar was carried out by sowing the standard strain and stimulated total saliva. Disks soaked in a dentifrices solution and then placed on culture disks

  15. Cuantificación, aislamiento e identificaciónde comunidades anaerobias amilolíticas de un manantial termomineral de Paipa, Boyacá

    Directory of Open Access Journals (Sweden)

    Posada Yully

    2004-12-01

    Full Text Available Se cuantif icaron microorganismos anaerobios termofílicos amilolíticos de un manantial termomineral en la región andina (5° 45' 69’’ N, 73° 6' 61’’ W, 2500 msnm a través del Número Más Probable (NMP. Los recuentos microbianos de las poblaciones presentaron valores entre 1,9*102 células/100 mL y 5.8*102 células/100 mL en presencia de almidón y tiosulfato como aceptor de electrones y 1,4*102células/100 mL y 3,4*102 células/100 mL en presencia solamente de almidón. Se realizaron aislamientos microbianos a partir de las últimas diluciones positivas del NMP y se aislaron 8 cepas bacterianas denominadas P4-6, P4-7, P4-8, P4-9, P4-10, P4-11, P4-12 y P4-13. Estas cepas crecieron a temperaturas óptimas entre 60 y 65 °C, y exhibieron un metabolismo fermentativo. El principal producto de fermentación fue etanol seguido de acetato, CO2 e hidrógeno. El tiosulfato fue utilizado como aceptor externo de electrones, pero el sulfato o el hierro férrico no fue reducido. La diversidad filogenética de estas 8 cepas fue evaluada por medio de geles de electroforesis de gradiente denaturalizante (DGGE. Se analizó la secuencia del gen 16S rRNA de dos de las cepas aisladas (P4-6 y P4-9 y el análisis indicó que éstas pertenecen a la familia Thermoanaerobiaceae del dominio Bacteria. Del análisis fenotípico y genotípico se deduce que estos organismos pertenecen al género Thermoanaerobacter, y con base en el análisis de las secuencias del 16S rDNA se observa una similitud del 98% con Thermoanaerobacter italicus y Thermoanaerobacter mathranii. Palabras clave: termofilia, manantiales termominerales, anaerobiosis, Thermoanaerobacter, DGGE.

  16. Autodepuração de cursos d´água: um programa de modelagem Streeter Phelps com calibração automática e correção de anaerobiose Self-depuration in watercourses: a program for Streeter Phelps modeling with automatic calibration and correction for anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Iury Steiner de Oliveira Bezerra

    2008-06-01

    Full Text Available Foi desenvolvido um programa usando Object Pascal e Matlab, para o modelo de Streeter Phelps de autodepuração. Foram incorporadas condições de contorno, sugeridas por Chapra, que propiciam: a simulação do perfil de OD e DBO5 considerando várias entradas de efluentes ao longo do curso d'água e a correção para condições de anaerobiose, condições estas que contribuem com o surgimento de concentrações negativas de OD e conduzem a previsões errôneas. Foi, também, incorporada uma metodologia de calibração automática, baseada na minimização dos erros quadráticos entre as concentrações calculadas e observadas, para obtenção e escolha dos valores dos coeficientes de desoxigenação e reaeração. Para o teste do programa, foram feitas várias simulações: uma para testar o método de calibração automática e outras duas para testar as condições de contorno. Em todos os casos, os resultados obtidos produziram bons desempenhos. O aplicativo executável servirá como ferramenta auxiliar no meio acadêmico, como recurso didático, em aulas de saneamento ambiental, e como ferramenta de gestão da qualidade das águas.Using Object Pascal and Matlab, a program was developed for Streeter Phelps modeling of self-purification. Boundary conditions suggested by Chapra were incorporated that permit the simulation of DO and BOD5 profiles considering multiple point sources along the flow path and a correction for conditions of anaerobiosis, which lead to negative DO and erroneous previsions in Streeter Phelps modeling. A method of automatic calibration, based on minimizing square deviations between simulated and observed concentrations, for obtaining the coefficients of deoxygenation and reaeration, was incorporated also. Various simulations for testing the program were performed: one for automatic calibration and two for boundary conditions. In all cases a good performance was obtained. The program may serve equally as a teaching

  17. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    recommended E-test technique. In 50% cases of Bacteroides fragilis, resistance to Metronidazole was seen. CONCLUSION The advantage of this innovative technique of anaerobe isolation is, it is cost-effective and can be used in resource constrained settings and anaerobiosis is achieved at the bedside of the patient.

  18. Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation

    Directory of Open Access Journals (Sweden)

    Apicella Michael A

    2011-08-01

    Full Text Available Abstract Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation, but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS. The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions

  19. Locomotion, respiratory physiology, and energetics of amphibious and terrestrial crabs.

    Science.gov (United States)

    Adamczewska, A M; Morris, S

    2000-01-01

    The transition from breathing air to breathing water requires physiological and morphological adaptations. The study of crustaceans in transitional habitats provides important information as to the nature of these adaptations. This article addresses the physiology of air breathing in amphibious and terrestrial crabs and their relative locomotor abilities. Potamonautes warreni is an apparently amphibious freshwater crab from southern Africa, Cardisoma hirtipes is an air-breathing gecarcinid crab with some dependency on freshwater, and Gecarcoidea natalis is an obligate air-breathing gecarcinid endemic to Christmas Island in the Indian Ocean. All three species have well-developed lungs but retain gills and show seasonally different activity patterns that, in the gercarcinids, especially G. natalis, include long-distance breeding migrations. The three species were better at breathing air than water, but P. warreni was the best at breathing water. Cardisoma hirtipes is essentially an obligate air breather and appears to experience facultative hypometabolism during immersion. Cardisoma hirtipes has a haemocyanin with a high affinity for O(2) that facilitates loading from air but makes 30% of the Hc bound O(2) inaccessible. The gecarcinids but not P. warreni show increased diffusion limitation for O(2) over the lung during exercise. Gecarcoidea natalis outperforms C. hirtipes by virtue of a unique haemolymph shunt from the lung into the gills. Paradoxically, it is modifications of the gills for aerial O(2) uptake in G. natalis that allow for relatively greater haemolymph oxygenation. Despite showing decreased arterial-venous DeltaPo(2), P. warreni increased the arterial-venous Delta[O(2)] with no recourse to anaerobiosis during 5 min exercise. In the short term, P. warreni is more adept at walking than C. hirtipes. The breeding migrations of C. hirtipes and G. natalis were completely aerobic, but G. natalis walk farther and probably faster. Seasonal changes in underlying

  20. Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase.

    Science.gov (United States)

    Torres, Joseph J; Grigsby, Michelle D; Clarke, M Elizabeth

    2012-06-01

    Zones of minimum oxygen form at intermediate depth in all the world's oceans as a result of global circulation patterns that keep the water at oceanic mid-depths out of contact with the atmosphere for hundreds of years. In areas where primary production is very high, the microbial oxidation of sinking organic matter results in very low oxygen concentrations at mid-depths. Such is the case with the Arabian Sea, with O(2) concentrations reaching zero at 200 m and remaining very low (fishes (primarily lanternfishes: Mytophidae) inhabiting the Arabian Sea and California borderland perform a daily vertical migration into the low-oxygen layer, spending daylight hours in the oxygen minimum zone and migrating upward into normoxic waters at night. To find out how fishes were able to survive their daily sojourns into the minimum zone, we tested the activity of four enzymes, one (lactate dehydrogenase, LDH) that served as a proxy for anaerobic glycolysis with a conventional lactate endpoint, a second (citrate synthase, CS) that is indicative of aerobic metabolism, a third (malate dehydrogenase) that functions in the Krebs' cycle and as a bridge linking mitochondrion and cytosol, and a fourth (alcohol dehydrogenase, ADH) that catalyzes the final reaction in a pathway where pyruvate is reduced to ethanol. Ethanol is a metabolic product easily excreted by fish, preventing lactate accumulation. The ADH pathway is rarely very active in vertebrate muscle; activity has previously been seen only in goldfish and other cyprinids capable of prolonged anaerobiosis. Activity of the enzyme suite in Arabian Sea and California fishes was compared with that of ecological analogs in the same family and with the same lifestyle but living in systems with much higher oxygen concentrations: the Gulf of Mexico and the Southern Ocean. ADH activities in the Arabian Sea fishes were similar to those of goldfish, far higher than those of confamilials from the less severe minimum in the Gulf of Mexico

  1. Catalase (KatA plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shengchang Su

    Full Text Available Pseudomonas aeruginosa (PA is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2, a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC, indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM. Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic

  2. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  3. Aislamiento y caracterización de cepas nativas de Lactobacillus spp. para su uso como probióticos en la industria láctea

    Directory of Open Access Journals (Sweden)

    Sylvia Vázquez

    2011-05-01

    Full Text Available La utilización de fermentos en la elaboración de productos lácteos es una práctica diaria a nivel industrial. En nuestro país los mismos son comprados a multinacionales extranjeras que se dedican a producir y comercializar fermentos; muchos de los cuales incorporan bacterias probióticas. Los probióticos pueden definirse como microorganismos que luego de ser consumidos en cantidades adecuadas, confieren algún efecto benéfico en el huésped. En el presente trabajo se realizó el aislamiento de una cepa de Lactobacillus de origen humano. Se identificó por tinción gram, prueba catalasa, crecimiento en anaerobiosis y aerobiosis y un test API 50 CH. Con el objetivo de probar propiedades probióticas de la cepa se llevaron a cabo estudios de resistencia al pH, tolerancia a sales biliares y se realizó un Modelo Gástrico in vitro. Los resultados permiten afirmar que estamos en presencia de una cepa nativa de Lactobacillus acidophilus caracterizada fenotípicamente con un 97% de confianza. Presentaría la habilidad de sobrevivir al pasaje a través del tubo digestivo ya que resistió la exposición a un pH similar al estomacal, pudo crecer en un medio con sales biliares y sobrevivió a la acción conjunta de la pepsina y una simulación de jugo gástrico; características que permiten clasificarla como posible cepa probiótica.Abstract  The use of starters to elaborate dairy products is a current practice in the industry. In our Country we import these starters from foreign companies dedicated to make and sale it, and most of them include probiotic bacterias. Probiotics can be defined as microorganisms that after be consumed in adequate amount, can give some advantageous effect to the host. In this study a strain of Lactobacillus was isolated from a human. The identification was done through gram stain, catalase test, aerobic and anaerobic growth, and an API 50 CH test. In order to prove the probiotic properties of the strain, studies of p

  4. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    Science.gov (United States)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    by the availability of nutrients (glucose) and the degree of agricultural anthropogenic stress. Various combinations of factors such as stressful conditions (anaerobiosis, acidity and temperature) influenced on bacterial size. The decrease of these stress factors resulted in return to the original bacterial cell size in soil. Furthermore the modification of gram-negative bacteria quantification was performed and combined with FISH method and DNA extraction. We established the methodological comparison of gram-negative bacteria groups in aerobic and anaerobic conditions. Due to absence of significant difference between the most frequent soil gram-negative bacteria groups we concluded the important ecological role of gram-negative bacteria as common group of microorganisms in natural polymer degradation. Depending on nutrient (glucose, cellulose, chitin) gram-negative bacteria competed with actinomyces for available nutrients at the different time, what explained by the ecological flexibility of this soil bacteria group. The experiments showed expressed faster chitinolytic activity of soil gram-negative bacteria compare to actinomyces. Thus our approaches to use the combination both traditional and cutting-edge methods, forms the unique basement for various research and mostly open the wide doors to design new scientific experiments in ecology of terrestrial ecosystems and especially in soil microbial ecology.

  5. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements Retenção de microrganismos bucais em cimentos de ionômero de vidro convencionais e modificados por resina

    Directory of Open Access Journals (Sweden)

    Denise PEDRINI

    2001-09-01

    Full Text Available Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R and resin-modified (Vitremer and Fuji II LC glass-ionomer cements, in situ, using a hybrid composite resin (Z100 as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2, at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R e modificados por resina (Vitremer e Fuji II LC e de resina composta híbrida (Z100, utilizada como controle. Nos testes de reten

  6. Chemical and microbiological changes and aerobic stability of marandu grass silages after silo opening Alterações químicas e microbiológicas de silagens de capim-marandu após a abertura dos silos

    Directory of Open Access Journals (Sweden)

    Thiago Fernandes Bernardes

    2009-01-01

    Full Text Available This trial had the objective of characterizing the microbial population and evaluating the aerobic stability of Marandu grass silages with pelleted citrus pulp (PCP. The collected forage was submitted to the following treatments: Silage of Marandu grass; silage of Marandu grass + 50 g/kg PCP and silage of Marandu grass + 100 g/kg PCP on natural matter basis. Metal cylindrical containers with 80 cm of height and 50 cm of diameter were used as silos during assays of microbiological dynamics and chemical changes of silages in anaerobiosis. Evaluations were performed on days 0, 2, 4 and 6 after silos were opened. The aerobic stability was evaluated by change in temperature, using approximately three kilograms of silage inside styrofoam boxes that were placed inside a climatic chamber. A completely randomized experimental design and split plot arrangement were used in the two assays, with five replications. Treatments were the plots and time was the subplots. Bacillus and enterobacteria were present on the Marandu grass silages with 0 g/kg PCP, which also showed pH increase throughout the feedout phase. Yeast was detected on the silages that were added with PCP. A trend of increasing temperature with extension of the aeration time was observed mainly in the silages containing 100 g/kg PCP. Isolated yeast strains showed lactate assimilation. Silages were found to be unstable due to the silo opening, both by bacterial or yeast development, which reduced the nutritional value.Esta pesquisa foi realizada com os objetivos de caracterizar a microbiologia e avaliar a estabilidade aeróbia de silagens de capim-marandu contendo polpa cítrica peletizada (PCP. A forragem colhida foi submetida aos seguintes tratamentos: silagem de capim-marandu; silagem de capim-marandu + 5% PCP e silagem do capim-marandu + 10% de PCP com base na matéria natural. As alterações químicas e microbiológicas foram feitas aos 0, 2, 4 e 6 dias após a abertura dos silos (tambores

  7. Antimicrobial activity of Lactobacillus and Bifidobacterium strains against pathogenic microorganisms “in vitro”Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”

    Directory of Open Access Journals (Sweden)

    Giselle Nobre Costa

    2012-10-01

    Full Text Available Lactobacilli and bifidobacteria have a long history of safe use in foods. These bacteria have biotechnological characteristics of interest such as the inhibition of pathogens. In this work, two lactobacilli strain and a bifidobacterium strain isolated from human gut were evaluated concerning to their ability to inhibit pathogenic microorganisms in foods by diffusion agar tests. Moreover, we assessed the metabolites produced in culture broth under static and shaking growth to simulate anaerobiosis and aerobiosis conditions, respectively. L. acidophilus LA5, L. plantarum DCTA 8420 and B. lactis DCTA 8724 showed ability to inhibit S. aureus FRI 196, strains producer toxins A and D, as well as B. cereus ATCC 25923, E. coli ATCC 25922 and S. Enteritidis, whose inhibition halos reached, on average, 24 mm in diameter. In the agar diffusion method with concentrated culture medium, it was possible to observe the effect of oxygen on the production of toxic substances. This result showed that cultivation of Lactobacillus under aerobic conditions seems to exert greater inhibitory effect, whereas for Bifidobacterium strain the effect was the opposite.Lactobacilos e bifidobactérias apresentam um longo histórico de uso seguro em alimentos, além de apresentarem características de interesse biotecnológico como a inibição de patógenos. Neste trabalho duas linhagens de lactobacilos e uma de bifidobactéria, isoladas do intestino humano, foram avaliadas em testes de difusão em ágar, quanto à capacidade de inibição de microrganismos patogênicos de ocorrência comuns em toxinfecções alimentares. Adicionalmente, foram avaliados os metabólitos produzidos em caldo de cultivo estático e em agitação para simular condições de anaerobiose a aerobiose, respectivamente. As três bactérias, L. acidophilus LA5, L. plantarum DCTA 8420 e B. lactis DCTA 8724 apresentaram capacidade de inibição para S. aureus FRI 196 linhagem produtora de toxinas A e D

  8. Aggregatibacter actinomycetemcomitansarcB influences hydrophobic properties, biofilm formation and adhesion to hydroxyapatite ArcB em Aggregatibacter actinomycetmcomitans influencia propriedades hidrofóbicas, formação de biofilme e aderência a hidroxiapatita

    Directory of Open Access Journals (Sweden)

    PL Longo

    2009-09-01

    Full Text Available The regulation of gene expression in the oral pathogen Aggregatibacter actinomycetemcomitans is still not fully elucidated. ArcAB is a two-component system which allows facultative anaerobic bacteria to sense various respiratory growth conditions and adapt their gene expression accordingly. This study investigated in A. actinomycetemcomitans the role of arcB on the regulation of biofilm formation, adhesion to saliva coated hydroxyapatite (SHA and the hydrophobic properties of the cell. These phenotypic traits were determined for an A. actinomycetemcomitansarcB deficient type and a wild type strain. Differences in hydrophobic properties were shown at early and late exponential growth phases under microaerobic incubation and at late exponential phase under anaerobiosis. The arcB mutant formed less biofilm than the wild type strain when grown under anaerobic incubation, but displayed higher biofilm formation activity under microaerobic conditions. The adherence to SHA was significantly lower in the mutant when compared with the wild type strain. These results suggest that the transmembrane sensor kinase arcB, in A. actinomycetemcomitans, senses redox growth conditions and regulates the expression of surface components of the bacterial cell related to biofilm formation and adhesion to saliva coated surfaces.A regulação da expressão gênica do patógeno oral Aggregatibacter actinomycetemcomitans não está completamente descrita. O sistema de dois componentes ArcAB permite que bactérias anaeróbias facultativas percebam diferenças nas condições respiratórias durante sua multiplicação e adaptem a expressão de genes à estas condições. Este estudo investigou em A. actinomycetemcomitans o papel de arcB na regulação da formação de biofilme, aderência à hidroxiapatita recoberta por saliva (SHA e nas propriedades hidrofóbicas celulares. Estas características fenotípicas foram determinadas para uma linhagem de A. actinomycetemcomitans

  9. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    Science.gov (United States)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    The problem of reproduction of soil fertility of chernozems are solved with integrated action, the ecological condition of the soil can be assessed by the activity of physiological groups of microorganisms. Microorganisms are the most important in the transformation of compounds of biogenic elements and therefore it is very interesting to study the nature of the relationship of some biochemical parameters with the development of microflora and micromycetes eco-trophic groups. Agrochemical researches have been conducted at agroecological station "Stone Steppe" in central Russia. Experiment variants: 1 - Control (without fertilizer); 2 - N10,5 P10,5 K10,5; 3 - N56,5 P56,5 K56,5; 4 - deposit soil. Mobile forms of humic substances (mobile carbon and carbon water extract) have changed during the cultivation of the chernozem soil. Amount of mobile humus has doubled in the variants with the use of mineral fertilizers. It's just mobile humus which determines the soil response to any impact, especially ecological. Water extract carbon - organic matter contained in the soil solution and the subject of assimilation of plants and microorganisms. It increased in agricultural soils. The total nitrogen and nitrate nitrogen amount in the variants of agricultural use is higher than in the deposit soil. This is probably because of the soil aeration, the release of nitrogen from the labile humus due to biological activity and nitrification. Amount of ammonia nitrogen has increased in the variant with the use of high doses of fertilizers. Deposit soil (40 years without agricultural use) has a lower, but more stable microbial activity. Process of anoxic decomposition of plant remains develops more active than others, due to the natural structure of the soil anaerobiosis in the spring time. Processes of nitrogen cycle (nitrogen accumulation - fixation of atmospheric nitrogen, nitrogen losses - denitrification) are progressing very intensively in agricultural soil with fertilizer

  10. Efectividad del té verde en el tratamiento de periodontitis crónica Greentea effectiveness in chronic periodontitis treatment

    Directory of Open Access Journals (Sweden)

    ER Funosas

    2005-06-01

    pharmacological effects. In recent years, systematic studies performed mainly by Japanese researchers have evidenced the wide range of very useful antimicrobial properties of tea extracts. The aim of the present study was to quantitatively evaluate the clinical and microbiological efficacy of green tea in the treatment of chronic periodontitis. Fifty male and female patients who attended the Department of Periodontics, Faculty of Dentistry, National University of Rosario, Argentina, and had been diagnosed with chronic periodontitis were included in the study. The selected patients had at least 3 periodontal pockets per quadrant, depth on probing ≥ 5 mm and proximal attachment loss ≥ 2 mm. The clinical endpoints assessed were Gingival Index (Loe y Silness, 1963, Bleeding on Probing (Val del Verden, 1979, Depth on Probing with a Marquis type probe and Level of Vertical Epithelial Attachment. Samples of subgingival plaque were obtained with sterile paper cones from the bottom of the periodontal pockets to evaluate microbiological efficacy. The samples were seeded in Agar Schlaeder medium - blood enriched with 1% hemine and vitamin K in anaerobiosis at 37°C for 5 days. Typification was performed employing the commercial semi-automatic method Api 20 A Biomerieux - France. The use of green tea extract coupled to mechanical periodontal therapy for chronic periodontitis was efficient in controlling these variables. However, when it was used coupled to root scaling and planing it did not significantly improve the control of anaerobic flora as compared to scaling and planing used alone.

  11. Viability of autogenous bone grafts obtained by using bone collectors: histological and microbiological study Viabilidade dos enxertos autógenos obtidos com a utilização de coletores para osso: estudo histológico e microbiológico

    Directory of Open Access Journals (Sweden)

    Alberto Blay

    2003-09-01

    Full Text Available The use of autogenous bone grafts is considered to be the best choice for reconstructive surgery. In the periodontal literature, the utilization of osseous coagulum was suggested by the end of the sixties. The purpose of this study is to consider the use of bone collectors (bone traps as an alternative method for obtaining material to fill small bone imperfections, such as fenestrations and dehiscences. Thirty samples were obtained from bone drilling during fixture installation in patients (13 men and 17 women, with an average age of 54 years requiring treatment at the Department of Periodontology and Implant Dentistry, University of Santo Amaro. These samples were fixed in 10% neutral formaldehyde for 24 hours and subjected to histological preparation, in order to evaluate the presence of viable osteoblasts. In addition, the material was placed in a fluid thioglycolate medium and incubated for 24 hours at 36 ± 1°C in aerobiosis and anaerobiosis. Bacterial growth evaluation was made by using six different culture media (MacConkey agar, blood agar base, mannitol salt agar, Anaerokit LTD medium, Anaerokit LTD - bile medium, Anaerinsol. The results show that, if proper care is taken to prevent saliva contamination during the surgical procedure, this method of collecting autogenous bone may be useful in situations where small amounts of bone are required.A utilização de enxertos autógenos é considerada a melhor opção nos tratamentos cirúrgicos de reconstrução óssea. Na literatura periodontal, a utilização de coágulo ósseo foi sugerida no final da década de 60. O objetivo deste estudo é considerar a utilização de coletores para osso como um método alternativo de se obter osso autógeno para preenchimento de defeitos ósseos como fenestrações e deiscências. Trinta amostras foram obtidas no processo de perfuração do tecido ósseo, durante a instalação de implantes em pacientes (13 homens e 17 mulheres, com média etária de

  12. In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method Efeito in vitro de medicações intracanal sobre anaeróbios estritos pelo método de diluição em caldo

    Directory of Open Access Journals (Sweden)

    Odila Pereira da Silva ROSA

    2002-03-01

    Full Text Available The determination of bacterial susceptibility to intracanal medicaments is a necessity. Nevertheless, few studies utilize the proper methodology to carry out that evaluation with anaerobes. In this study, the steps of a broth dilution method, carried out in microplates (microdilution and tubes (macrodilution, to test the effect of traditional intracanal medicaments on anaerobic bacteria are described. The results are presented as values of minimal inhibitory and bactericidal concentrations (MIC and MBC. Standardized inocula of the anaerobic bacteria Prevotella nigrescens (ATCC 33563, Fusobacterium nucleatum (ATCC 25586 and Clostridium perfringens (ATCC 13124, in reinforced Clostridium medium (RCM and supplemented Brucella broth, were submitted to different concentrations of calcium hydroxide, chlorhexidine digluconate, camphorated paramonochlorophenol and formocresol solutions. The drugs were diluted in the same culture broths, in microplates and tubes, and were then incubated in anaerobiosis jars at 37ºC for 48 or 96 hours. The determination of MICs was carried out through visual and spectrophotometric readings, and the determination of MBCs, through the plating of aliquots on RCM-blood agar. For that kind of study, the macromethod with spectrophotometric reading should be the natural choice. MICs and MBCs obtained with the macromethod were compatible with the known clinical performance of the studied medications, and the values varied according to the bacteria and culture media employed. RCM was the most effective medium and C. perfringens, the most resistant microorganism.A determinação da suscetibilidade bacteriana aos medicamentos intracanal é uma necessidade, mas são poucos os estudos que utilizam metodologia própria para anaeróbios estritos nessa avaliação. Neste estudo, são descritos os passos de um método de diluição em caldo, feito em microplacas (microdiluição e em tubo (macrodiluição, para testar a ação de

  13. ESQUEMA SIMPLIFICADO PARA IDENTIFICAÇÃO DE ESTAFILOCOCOS COAGULASE-POSITIVOS ISOLADOS DE MASTITE BOVINA SIMPLIFIED SCHEME FOR IDENTIFICATION OF COAGULASE-POSITIVE STAPHYLOCOCCI ISOLATED FROM BOVINE MASTITIS

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Vasconcelos Paiva Brito

    2002-02-01

    Full Text Available Os testes de produção de acetoína, determinação da atividade da enzima beta-galactosidase e utilização anaeróbica do manitol em conjunto com a susceptibilidade à acriflavina foram avaliados para diferenciação de amostras de Staphylococcus coagulase-positivas (SCP isoladas de mastite bovina. As amostras foram classificadas no gênero Staphylococcus por meio da sensibilidade a furazolidona, resistência à bacitracina, produção de ácido em aerobiose a partir de glicerol na presença de 0,4mig m-1 de eritromicina e catalase, e foram positivas no teste de coagulase do plasma de coelho em tubos. A susceptibilidade à acriflavina foi testada em placas de ágar Baird Parker e ágar P com 7,0mig m-1 de acriflavina. Como controle dos testes, foram incluídas cinco amostras coagulase-negativas de S. hyicus isoladas de leite bovino e identificadas pelo sistema API Staph e a amostra de S. aureus ATCC 29213. Trinta e oito das 49 amostras de SCP foram identificadas como S. aureus e 11 como S. hyicus, não sendo identificada nenhuma como S. intermedius. O sistema API Staph foi empregado para confirmar a identificação das amostras coagulase-positivas de S. hyicus, sete amostras de S. aureus negativas no teste de produção de acetoína e quatro negativas na fermentação anaeróbica do manitol. Todas as amostras de S. aureus foram resistentes a acriflavina, enquanto as de S. hyicus foram sensíveis. Concluiu-se que a sensibilidade a acriflavina pode ser empregada juntamente com os testes de coagulase e produção de acetoína na diferenciação de SCP isolados de mastite bovina.Production of acetoin, acid production from mannitol under anaerobiosis and beta-galactosidase activity in addition to acriflavin susceptibility were evaluated to differentiate between coagulase-positive strains of Staphylococcus (CPS isolated from bovine mastitis. The strains were classified in the genus Staphylococcus by means of sensitivity to furazolidone, resistance

  14. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

    Science.gov (United States)

    Steenhoudt, O; Vanderleyden, J

    2000-10-01

    nitrogen-status. NifL was found to be a redox-sensitive flavoprotein. The relief of NifL inhibition on NifA activity, in response to N-limitation, is suggested to involve a P(II)-like protein. Moreover, nitrogenase activity is regulated according to the intracellular nitrogen and O(2) level. In A. brasilense and Azospirillum lipoferum posttranslational control of nitrogenase, in response to ammonium and anaerobiosis, involves ADP-ribosylation of the nitrogenase iron protein, mediated by the enzymes DraT and DraG. At least three pathways for indole-3-acetic acid (IAA) biosynthesis in A. brasilense exist: two Trp-dependent (the indole-3-pyruvic acid and presumably the indole-3-acetamide pathway) and one Trp-independent pathway. The occurrence of an IAA biosynthetic pathway not using Trp (tryptophan) as precursor is highly unusual in bacteria. Nevertheless, the indole-3-pyruvate decarboxylase encoding ipdC gene is crucial in the overall IAA biosynthesis in Azospirillum. A number of genes essential for Trp production have been isolated in A. brasilense, including trpE(G) which codes for anthranilate synthase, the key enzyme in Trp biosynthesis. The relevance of each of these four aspects for plant growth promotion by Azospirillum is discussed.

  15. CO2 production in anthropogenic Chinampas soils in Mexico City La producción de CO2 en suelos antropogénicos de Chinampas en la Ciudad de México A produção de CO2 em solos antropogénicos de Chinampas na cidade do México

    Directory of Open Access Journals (Sweden)

    Elena Ikkonen

    2012-07-01

    Full Text Available

    We studied microbial-associated C?2 production in anthropogenic chinampas soils. The soils were constructed by the accumulation of materials such as organic matter and loamy lacustrine sediments in Pre-Hispanic cultures in Mexico. To study the temperature sensitivity of C?2 production related to soil depth, moisture and oxygen availability, soil samples were collected at depths of 0-7, 7-18, 18-30, 30-40 and 40-50 cm. The soil samples were incubated under aerobic and anaerobic conditions at controlled temperatures (-5, 0, 5, 10, 20, 30 °C and soil moistures of 10, 30, 60 and 90% water-filled pore space. For all the soil depths, incubation temperatures and soil moistures, the mean rate of aerobic CO2 production was 58.0 mg CO2 kg-1 d-1 and that of anaerobic CO2 production 31.2 mg CO2 kg-1 d-1, with the highest rate found in the soil samples collected at a depth of 0-7 cm. A decrease in soil organic carbon content inhibited CO2 production more under anaerobic than aerobic conditions. The dependence of aerobic ??2 production on soil moisture increased at what constituted both unusually high and low temperatures for the study area. Since the response of ??2 production to temperature was lower under anaerobic than aerobic conditions, the increase in soil moisture content led to a decrease in the temperature sensitivity of ??2 production. The response of microbial activity to other factors may be modified under what constitutes the limiting conditions for any of the factors considered, as follows: (i when anaerobiosis increases in the soil, the limiting effect of substrate availability on microbial activity increases; (ii the CO2 production rate becomes more dependent on soil moisture under temperature stress; (iii the sensitivity of CO2