WorldWideScience

Sample records for anaerobiosis

  1. Anaerobiosis induced virulence of Salmonella typhi

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Singh, R D; Sharma, P C

    2002-01-01

    , we examined the effect of anaerobiosis on the virulence of Salmonella Typhi, a Gram negative bacteria which invades through the gut mucosa and is responsible for typhoid fever. METHODS: Salmonella Typhi (ty2) was cultured in aerobic and anaerobic conditions to compare its virulence by rabbit ileal...

  2. Use of an Innovative Simple Method for Anaerobiosis in the ...

    African Journals Online (AJOL)

    infection by Peptostreptococcus anaerobius was successfully controlled by sensitive drug vancomycin. These two eye‑opener cases insisted us for large scale application of the technique. Keywords: Anaerobiosis, Candle‑jar technique, Osteomyelitis, Porphyromonas spp, V‑P shunt infection. Access this article online.

  3. Root metabolic responses to short term anaerobiosis in the temperate sea grass Zostera marina L

    International Nuclear Information System (INIS)

    Smith, R.D.; Pregnall, A.M.; Alberte, R.S.

    1986-01-01

    The submerged angiosperm Z. marina grows in highly reducing marine sediments. The roots experience periods of oxygen deprivation at night when photosynthesis-mediated oxygen transport from the shoot ceases. Despite this apparently inhospitable environment, Z. marina is extremely productive. This study sought to determine root metabolic responses to short term anaerobiosis. Roots were incubated for 4 h in the presence of 14 C-sucrose. Amino acids and Krebs cycle intermediates were then extracted and label was quantified. Ethanol and lactate were the most heavily labeled metabolites following short term anaerobiosis. Despite increased synthesis of ethanol during anaerobiosis, endogenous levels do not increase significantly. Instead over 90% of newly synthesized ethanol is released by roots into the incubation medium. The authors conclude that release of ethanol by roots occurs naturally and prevents excessive accumulation of a potentially toxic product

  4. A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis.

    Science.gov (United States)

    Abbas, Amina Aicha; Planchon, Stella; Jobin, Michel; Schmitt, Philippe

    2014-10-01

    A new chemically defined liquid medium, MODS, was developed for the aerobic growth and anaerobic growth and sporulation of Bacillus cereus strains. The comparison of sporulation capacity of 18 strains of B. cereus has shown effective growth and spore production in anaerobiosis.. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of anaerobiosis on in vivo protein synthesis in the roots of a marine angiosperm zostera marina

    International Nuclear Information System (INIS)

    Smith, R.D.; Alberte, R.S.

    1989-01-01

    The roots of the temperate seagrass Zostera marina undergo daily periods of anaerobiosis at night. These diurnal periods of anoxia alter many metabolic processes in the roots including carbon and nitrogen metabolism, amino acid synthesis, and synthesis and levels of ATP, ADP and AMP. To further characterize the effects of anaerobiosis, we determined in vivo rates of protein synthesis by measuring the relative incorporation of 35 S-MET in TCA precipitated protein samples. Results from these studies show that in vivo protein synthesis decreases continuously during 12 h of anaerobiosis and correlates with changes in ATP levels under similar conditions. Furthermore, polypeptide patterns obtained by SDS-PAGE and 2D-SDSPAGE indicate that anaerobiosis leads to differential protein synthesis in the roots

  6. EFFECT OF AERO-/ANAEROBIOSIS ON DECARBOXYLASE ACTIVITY OF SELECTED LACTIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2010-05-01

    Full Text Available Biogenic amines are undesirable compounds produced in foods mainly through bacterial decarboxylase activity. The aim of this study was to investigate some environmental conditions (particularly aero/anaerobiosis, sodium chloride concentration (0–2% w/w, and amount of lactose (0–1% w/w on the activity of tyrosine decarboxylase enzymes of selected six technological important Lactococcus lactis strains. The levels of parameters tested were chosen according to real situation in fermented dairy products technology (especially cheese-making. Tyramine was determined by the ion-exchange chromatography with post-column ninhydrine derivatization and spectrophotometric detection. Tyrosine decarboxylation occurred during the active growth phase. Under the model conditions used, oxygen availability had influence on tyramine production, anaerobiosis seemed to favour the enzyme activity because all L. lactis strains produced higher tyramine amount. doi:10.5219/43

  7. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2018-02-01

    Lactobacillus brevis is an efficient cell factory for producing bioactive γ-aminobutyric acid (GABA) by its gad operon-encoded glutamic acid decarboxylase (GAD) system. However, little mechanistic insights have been reported on the effects of carbohydrate, oxygen and early acidification on GABA production machinery in Lb. brevis. In the present study, GABA production from Lb. brevis was enhanced by accessible carbohydrates. Fast growth of this organism was stimulated by maltose and xylose. However, its GABA production was highly suppressed by oxygen exposure, but was fully restored by anaerobiosis that up-regulated the expression of gad operon in Lb. brevis cells. Although the level of cytosolic acidity was suitable for the functioning of GadA and GadB, early acidification of the medium (ipH 5 and ipH 4) restored GABA synthesis strictly in aerated cells of Lb. brevis because the expression of gad operon was not up-regulated in them. We conclude that GABA production machinery in Lb. brevis could be restored by accessible carbohydrates, anaerobiosis and early acidification. This will be of interest for controlling fermentation for synthesis of GABA and manufacturing GABA-rich fermented vegetables. Copyright © 2017. Published by Elsevier Ltd.

  8. Changes in the activity of ascorbate peroxidase under anaerobiosis in cocoyam (Colocasia esculenta).

    Science.gov (United States)

    Chibueze, Nwose

    2014-01-01

    This study was conducted to determine the activity of ascorbate peroxidase in the cormels of cocoyam (Colocasia esculenta var. antiquorum) immediately after harvest and in storage under anaerobiosis for one and three weeks, respectively. During stress condition in plants, hydrogen peroxide is released and mechanisms to detoxify it must be maintained. The cocoyam tubers that were neither damaged nor affected by disease were harvested from a local farm in Ugbogui, Ovia North Local Government Area in Edo State, Nigeria. The selected cocoyam tubers were peeled manually, washed with ice cold water and cut into pieces. The root tissues (50 g) were homogenised with 100 mL of ice cold 0.05 M phosphate buffer. The extract obtained was clarified by centrifugation for 15 min at 8000 g at 4 degrees C. Ascorbate-peroxidising activity was assayed using the initial rate of decrease in ascorbate concentration as measured by its absorbance at 290 nm using Milton Roy Spectron 21D. Results showed the weight of the cormels decreased all through during storage. Immediately after harvest the activity of ascorbate peroxidase was 15.49 unit mL(-1) with a significant increase (p < 0.05) after one week to 73.05 U mL(-1). Thereafter there was a significant decrease in activity of the enzyme after three weeks of storage to 33.33 U mL(-1). This increase in activity of ascorbate peroxidase after three weeks of storage may be related to increase in response to various biotic stresses. Therefore, manipulation of the capacity of cocoyam to tolerate anaerobiosis is a function of its ability to modulate the antioxidant enzymes' armory in case of need.

  9. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    International Nuclear Information System (INIS)

    Dybiec, L.D.; Rumpho, M.E.; Kennedy, R.A.

    1989-01-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N 2 , plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N 2 increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N 2 . Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by [ 35 S]-Met labeling of 3 day old seedlings grown in air or N 2 . Significant protein synthesis was measured in tolerant seedlings under N 2 and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance

  10. La anaerobiosis más allá de las bacterias anaerobias: su importancia en la recuperación de microorganismos aerobios a partir de materiales purulentos Anaerobiosis beyond anaerobic bacteria: Its role in the recovery of aerobic microorganisms from purulent samples

    Directory of Open Access Journals (Sweden)

    M.R. Litterio Bürki

    2010-06-01

    Full Text Available El objetivo fundamental de la incubación en anaerobiosis es la recuperación de bacterias anaerobias obligadas, aunque ésta no excluye la recuperación de otros microorganismos. En el año 2003 iniciamos un estudio prospectivo y comparativo de los microorganismos aerobios recuperados a partir de la siembra primaria de muestras clínicas consecutivas en anaerobiosis y de aquellos recuperados a partir de la siembra primaria de las mismas muestras en aerobiosis. Los objetivos fueron evaluar el rendimiento de la metodología empleada en anaerobiosis en la recuperación de microorganismos aerobios no diagnosticados a partir de la siembra primaria en aerobiosis y establecer la relación entre éstos y el origen de la muestra. En el período 2003-2004 se procesaron 2776 muestras. Se recuperaron 1884 microorganismos aerobios; el 69,4% desarrolló tanto en condiciones aerobias como anaerobias, mientras que el 30,6% restante sólo lo hizo en una de las dos atmósferas: el 49,2% sólo en aerobiosis y el 50,8% sólo en anaerobiosis. La metodología empleada para los cultivos primarios en anaerobiosis (incubación anaerobia, medios de cultivo, lupa o microscopio estereoscópico para examinar las placas primarias, etc. permitió la recuperación de microorganismos aerobios, en particular de cocos gram positivos (microaerófilos y facultativos no diagnosticados a partir del cultivo primario en aerobiosis. Este rendimiento extra fue más evidente en materiales con flora polimicrobiana, especialmente gram negativa, e independiente del tipo de muestra estudiada.The main objective of incubation in anaerobiosis is the recovery of obligate anaerobic bacteria, not excluding other microorganisms. In 2003, we conducted a comparative and prospective study from consecutive clinical samples on the recovery of aerobic microorganisms from primary cultures both in anaerobiosis and aerobiosis of the same sample. The aims were to evaluate the methodology used in anaerobiosis

  11. Anaerobiosis induced virulence of Salmonella typhi

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Singh, R D; Sharma, P C

    2002-01-01

    BACKGROUND & OBJECTIVES: Anaerobic conditions are frequently encountered by pathogens invading the gastrointestinal tract due to low/limiting oxygen conditions prevalent in the small intestine. This anaerobic stress has been suggested to enhance the virulence of gut pathogens. In the present stud...... dismutase (SOD) and catalase. INTERPRETATION & CONCLUSION: Our results suggest that exposure of S. Typhi to anaerobic conditions enhances its virulence....

  12. Unsuspected pyocyanin effect in yeast under anaerobiosis.

    Science.gov (United States)

    Barakat, Rana; Goubet, Isabelle; Manon, Stephen; Berges, Thierry; Rosenfeld, Eric

    2014-02-01

    The blue-green phenazine, Pyocyanin (PYO), is a well-known virulence factor produced by Pseudomonas aeruginosa, notably during cystic fibrosis lung infections. It is toxic to both eukaryotic and bacterial cells and several mechanisms, including the induction of oxidative stress, have been postulated. However, the mechanism of PYO toxicity under the physiological conditions of oxygen limitation that are encountered by P. aeruginosa and by target organisms in vivo remains unclear. In this study, wild-type and mutant strains of the yeast Saccharomyces cerevisiae were used as an effective eukaryotic model to determine the toxicity of PYO (100-500 μmol/L) under key growth conditions. Under respiro-fermentative conditions (with glucose as substrate), WT strains and certain H2 O2 -hypersensitive strains showed a low-toxic response to PYO. Under respiratory conditions (with glycerol as substrate) all the strains tested were significantly more sensitive to PYO. Four antioxidants were tested but only N-acetylcysteine was capable of partially counteracting PYO toxicity. PYO did not appear to affect short-term respiratory O2 uptake, but it did seem to interfere with cyanide-poisoned mitochondria through a complex III-dependent mechanism. Therefore, a combination of oxidative stress and respiration disturbance could partly explain aerobic PYO toxicity. Surprisingly, the toxic effects of PYO were more significant under anaerobic conditions. More pronounced effects were observed in several strains including a 'petite' strain lacking mitochondrial DNA, strains with increased or decreased levels of ABC transporters, and strains deficient in DNA damage repair. Therefore, even though PYO is toxic for actively respiring cells, O2 may indirectly protect the cells from the higher anaerobic-linked toxicity of PYO. The increased sensitivity to PYO under anaerobic conditions is not unique to S. cerevisiae and was also observed in another yeast, Candida albicans. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Use of an Innovative Simple Method for Anaerobiosis in the ...

    African Journals Online (AJOL)

    Porphyromonas spp. was isolated and identified. Vancomycin was recommended based on in vitro sensitivity test, but the leg was amputed after receiving a resistant drug gentamycin. While in another child with hydrocephalous, V‑P shunt associated infection by Peptostreptococcus anaerobius was successfully controlled ...

  14. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Directory of Open Access Journals (Sweden)

    Fayyaz Ali Shah

    2014-01-01

    Full Text Available Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  15. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  16. Dynamics of partial anaerobiosis denitrification, and water in soil : experiments and simulation

    NARCIS (Netherlands)

    Leffelaar, P.A.

    1987-01-01

    Dynamic interactions between biological respiration and denitrification, and physical transport processes that modify the abiotic soil environment in which bacteria live, were studied through the development of a new type of experimental respirometer system and an explanatory simulation

  17. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Heiske, Stefan; Jensen, Pernille Erland

    2014-01-01

    resistant bacteria were reduced in the anaerobic samples in the beginning of the study but increased towards the end of it. The opposite pattern was observed in the aerobic samples, with a growth in the beginning followed by a reduction. During the anaerobic digestion tetracycline resistant bacteria showed......The aim of this study was to compare the effect of mesophilic anaerobic digestion with aerobic storage on the survival of selected indigenous microorganisms and microbial groups in blackwater, including the effect of addition of Greenlandic Halibut and shrimp offal. The methane yield...... of the different substrate mixtures was determined in batch experiments to study possible correlation between methanogenic activity in the anaerobic digesters and reduction of indigenous microorganisms in the blackwater. By the end of the experiments a recovery study was conducted to determine possible injury...

  18. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  20. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus.

    Science.gov (United States)

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-02-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.

  1. Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis

    Science.gov (United States)

    Sasidharan, Rashmi; Mustroph, Angelika

    2011-01-01

    Like all aerobic organisms, plants require molecular oxygen for respiratory energy production. In plants, hypoxic conditions can occur during natural events (e.g., flooding), during developmental processes (e.g., seed germination), and in cells of compact tissues with high metabolic rates. Plant acclimation responses to hypoxia involve a modulation of gene expression leading to various biochemical, physiological, and morphological changes that stave off eventual anoxia. In contrast with the animal kingdom, a direct oxygen-sensing mechanism in plants has been elusive so far. However, two recent independent studies show that oxygen sensing in plants operates via posttranslational regulation of key hypoxia response transcription factors by the N-end rule pathway. The N-end rule is an evolutionarily conserved pathway for protein degradation that relates the fate of a protein with the identity of its N-terminal residues. Results from these studies demonstrate that oxygen-dependent modification and targeted proteolysis of members of the ethylene response factor group VII transcription factor family regulate hypoxia-responsive gene expression in Arabidopsis thaliana. The discovery of this plant hypoxia-sensing mechanism sets the stage for further research on plant homeostatic response to oxygen, which could be relevant to understanding plant distributions in flood-prone ecosystems and improving hypoxia tolerance of crops. PMID:22207573

  2. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  3. RELACION DE ALGUNAS PROTEINAS DE LA MEMBRANA EXTERNA DE SALMONELLA TYPHI TY2 INDUCIDAS EN ANAEROBIOSIS CON EL PROCESO DE INVACION CELULAS EPITELIALES HUMANAS IN VITRO.

    OpenAIRE

    MAULEN LAGOS, NANCY PAULA; MAULEN LAGOS, NANCY PAULA

    1999-01-01

    Salmonella typhi es un patógeno exclusivo del ser humano, capaz de atravesar el epitelio intestinal y proliferar dentro del macrófago, situación en que enfrenta drásticos cambios ambientales, a los cuales debe adaptarse para sobrevivir y persistir dentro 170p.

  4. NADH-linked aldose reductase : The key to anaerobic alcoholic fermentation of xylose by yeasts

    NARCIS (Netherlands)

    Bruinenberg, P.M.; De Bot, P.H.M.; Van Dijken, J.P.; Scheffers, W.A.

    1984-01-01

    The kinetics and enzymology of o-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis

  5. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171 ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  6. Antimycin-insensitive mutants of Candida utilis II. The effects of antimycin on Cytochrome b

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Marres, C A; Slater, Conor

    1975-01-01

    1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutnat. A similar reo...

  7. Methanogenic Food Web in Gut Contents of the Methane-Emitting Earthworm Eudrilus eugeniae from Brazil

    NARCIS (Netherlands)

    Schulz, Kristin; Hunger, S.; Brown, G.G.; Tsai, S.M.; Cerri, C.C.; Conrad, R.; Drake, H.

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this

  8. Ail expression in Yersinia enterocolitica is affected by oxygen tension.

    OpenAIRE

    Pederson, K J; Pierson, D E

    1995-01-01

    We investigated several environmental factors for their abilities to regulate ail gene expression and found that ail transcript levels are regulated by oxygen tension. Bacteria growing under anaerobiosis at 37 degrees C repress ail mRNA and Ail expression, resulting in a loss of Ail-mediated serum resistance and cell invasion.

  9. Ail expression in Yersinia enterocolitica is affected by oxygen tension.

    Science.gov (United States)

    Pederson, K J; Pierson, D E

    1995-10-01

    We investigated several environmental factors for their abilities to regulate ail gene expression and found that ail transcript levels are regulated by oxygen tension. Bacteria growing under anaerobiosis at 37 degrees C repress ail mRNA and Ail expression, resulting in a loss of Ail-mediated serum resistance and cell invasion.

  10. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions.

    Science.gov (United States)

    de Sarrau, Benoît; Clavel, Thierry; Zwickel, Nicolas; Despres, Jordane; Dupont, Sébastien; Beney, Laurent; Tourdot-Maréchal, Raphaëlle; Nguyen-The, Christophe

    2013-12-01

    In a chemically defined medium and in Luria broth, cold strongly reduced maximal population density of Bacillus cereus ATCC 14579 in anaerobiosis and caused formation of filaments. In cooked spinach, maximal population density of B. cereus in anaerobiosis was the same at cold and optimal temperatures, with normal cell divisions. The lipid containing fraction of spinach, but not the hydrophilic fraction, restored growth of B. cereus under cold and anaerobiosis when added to the chemically defined medium. This fraction was rich in unsaturated, low melting point fatty acids. Addition of phosphatidylcholine containing unsaturated, low melting point, fatty acids similarly improved B. cereus anaerobic growth at cold temperature. Addition of hydrogenated phosphatidylcholine containing saturated, high melting point, fatty acids did not modify growth. Fatty acids from phospholipids, from spinach and from hydrogenated phosphatidylcholine, although normally very rare in B. cereus, were inserted in the bacterium membrane. Addition of phospholipids rich in unsaturated fatty acids to cold and anaerobic cultures, increased fluidity of B. cereus membrane lipids, to the same level as those from B. cereus normally cold adapted, i.e. grown aerobically at 15 °C. B. cereus is therefore able to use external fatty acids from foods or from the growth medium to adapt its membrane to cold temperature under anaerobiosis, and to recover the maximal population density achieved at optimal temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Processing ruminal ingesta to release bacteria attached to feed ...

    African Journals Online (AJOL)

    particles were higher with the Minimal treatment than with the other two methods. In contrast, counts of the ciliate protozoa showed a marked difference owing to processing. Results from the later experiments done in the anaerobic cabinet showed that poor anaerobiosis was responsible for at least some of the lethal action ...

  12. Aquatic Plant Control Research Program. Moneoecious hydrilla in the Potomac River.

    Science.gov (United States)

    1985-08-01

    117. Drew, M. C., and J. M. Lynch. 1980. Soil anaerobiosis, microorganisms, and root function. Annual Review of Phytopathology 18:37-66. Dresler, P. V... review of literature on the ecology of submersed aquatic vegetation with emphasis on Hydrilla. (Continued) JANDO ,jA 1473 EITIOn OFI MOV 6S IS OBSOLETE...ABSTRACT (Continued). c. A review of the chemical, biological, and mechanical/physical technologies available to control FHydrilla. d. Conclusions and

  13. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  14. Photostimulation of H2 production in the green alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system

    International Nuclear Information System (INIS)

    Greenwood, J.; Markov, S.A.

    2003-01-01

    A brief exposure (15-30 min) of green alga Chlamydomonas reinhardtii cells to high intensity light (100 W·m -2 ) was accompanied by rapid suppression of photosynthetic O 2 evolution. The decline in the rate of O 2 evolution was accompanied by stimulation of H 2 production. The effect was dependent on cell suspension density, culture age, and light intensity. It appears that photoinhibition of photosynthetic O 2 evolution led to anaerobiosis that is favorable for H 2 production. (author)

  15. The Mitochondrion of Euglena gracilis.

    Science.gov (United States)

    Zimorski, Verena; Rauch, Cessa; van Hellemond, Jaap J; Tielens, Aloysius G M; Martin, William F

    2017-01-01

    In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H 2 -producing anaerobic mitochondria of protists.

  16. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions.

    OpenAIRE

    Højberg, O; Binnerup, S J; Sørensen, J

    1997-01-01

    A technique was developed to study microcolony formation by silicone-immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a...

  17. Water Quality Conditions at Tributary Projects in the Omaha District

    Science.gov (United States)

    2012-02-01

    aerobic, or oxic (i.e., oxygen-containing), environment. Oxygen is produced by aquatic plants (phytoplankton and macrophytes) and is consumed by...Phosphorus : Phosphorus is used by both plants and animals to form enzymes and vitamins and to store energy in organic matter. Phosphorus has...During this period of anaerobiosis, microorganisms also are decomposing organic 15 matter into lower molecular weight acids and alcohols such

  18. Exploring Neurofibromin Function in a Yeast Model of NF1

    Science.gov (United States)

    2011-11-01

    to define NF1 disease mechanisms. Budding yeast, Saccharomyces cerevisiae , have two NF1-like genes, called IRA1 and IRA2. In year one of the project...mammalian cells and in Drosophila. References Hohfeld, J., Veenhuis, M., and Kunau, W.H. (1991). PAS3, a Saccharomyces cerevisiae gene...anaerobiosis yes yes PEX 11 Peroxisomal membrane protein required for peroxisome proliferation and medium -chain fatty acid oxidation, most abundant

  19. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation

    Directory of Open Access Journals (Sweden)

    Jean-Paul eMadeira

    2015-04-01

    Full Text Available At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress–related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  20. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways.

    Science.gov (United States)

    Al Dahouk, Sascha; Loisel-Meyer, Séverine; Scholz, Holger C; Tomaso, Herbert; Kersten, Michael; Harder, Alois; Neubauer, Heinrich; Köhler, Stephan; Jubier-Maurin, Véronique

    2009-06-01

    Low oxygen tension was proposed to be one of the environmental parameters characteristic of the patho-physiological conditions of natural infections by Brucella suis. We previously showed that various respiratory pathways may be used by B. suis in response to microaerobiosis and anaerobiosis. Here, we compare the whole proteome of B. suis exposed to such low-oxygenated conditions to that obtained from bacteria grown under ambient air using 2-D DIGE. Data showed that the reduction of basal metabolism was in line with low or absence of growth of B. suis. Under both microaerobiosis and anaerobiosis, glycolysis and denitrification were favored. In addition, fatty acid oxidation and possibly citrate fermentation could also contribute to energy production sufficient for survival under anaerobiosis. When oxygen availability changed and became limiting, basic metabolic processes were still functional and variability of respiratory pathways was observed to a degree unexpected for a strictly aerobic microorganism. This highly flexible respiration probably constitutes an advantage for the survival of Brucella under the restricted oxygenation conditions encountered within host tissue.

  2. Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Li, C; Sun, J W; Zhang, G F; Liu, L B

    2016-01-01

    The catabolite control protein A (CcpA) is a kind of multi-effect regulatory protein. In the study, the effect of the inactivation of CcpA and aerobic conditions on the growth, metabolic production, and stress tolerance to heat, oxidative, and cold stresses in Lactobacillus delbrueckii ssp. bulgaricus was investigated. Results showed that inactivation of CcpA distinctly hindered growth. Total lactic acid concentration was significantly lower in aerobiosis for both strains and was lower for the mutant strain than L. bulgaricus. Acetic acid production from the mutant strain was higher than L. bulgaricus in aerobiosis compared with anaerobiosis. Enzyme activities, lactate dehydrogenase (LDH), phosphate fructose kinase (PFK), pyruvate kinase (PK), and pyruvic dehydrogenase (PDH), were significantly lower in the mutant strain than L. bulgaricus. The diameters of inhibition zone were 13.59 ± 0.02 mm and 9.76 ± 0.02 mm for L. bulgaricus in anaerobiosis and aerobiosis, respectively; and 8.12 ± 0.02 mm and 7.38 ± 0.02 mm for the mutant in anaerobiosis and aerobiosis, respectively. For both strains, cells grown under aerobic environment possess more stress tolerance. This is the first study in which the CcpA-negative mutant of L. bulgaricus is constructed and the effect of aerobic growth on stress tolerance of L. bulgaricus is evaluated. Although aerobic cultivation does not significantly improve growth, it does improve stress tolerance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Ferrous iron transport in Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S.L.; Arcenaeux, J.E.L.; Byers, B.R.; Martin, M.E.; Aranha, H.

    1986-12-01

    Radioiron uptake from /sup 59/FeCl/sub 3/ by Streptococcus mutans OMZ176 was increased by anaerobiosis, sodium ascorbate, and phenazine methosulfate (PMS), although there was a 10-min lag before PMS stimulation was evident. The reductant ascorbate may have provided ferrous iron. The PMS was reduced by the cells, and the reduced PMS then may have generated ferrous iron for transport; reduced PMS also may have depleted dissolved oxygen. It was concluded that S. mutans transports only ferrous iron, utilizing reductants furnished by glucose metabolism to reduce iron prior to its uptake.

  4. Efectos de la luz azul y del acetileno sobre la actividad nitrato reductasa de hojas de espinaca (Spinacia oleracea L.)

    OpenAIRE

    Vargas Muñoz, María de los Ángeles

    1983-01-01

    La nitrato reductasa purificada de hojas de espinaca en presencia de un reductor adecuado se inactiva de forma específica por acetileno. Dicha inactivación afecta solo a su actividad terminal. El sitio de acción del acetileno en la enzima parece estar estrechamente relacionado con el sitio activo para el nitrato. La nitrato reductasa inactivada por acetileno se reactiva específicamente por la luz azul tanto en aerobiosis como en anaerobiosis. El propio FAD de la enzima actúa como fotosensi...

  5. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water

    International Nuclear Information System (INIS)

    Zinjarde, Smita S.; Pant, Aditi; Deshpande, Mukund V.

    1998-01-01

    Fungal cultures from oil-polluted sea water near Mumbai, India have been studies for their capability to degrade crude oil. A yeast isolate identified as Yarrowia lipolytica was further investigated with respect to its dimorphic behaviour and alkane degradation. Y. lipolytica NCIM 3589 in the yeast form degraded the aliphatic fraction of crude oil and also pure alkanes (20-60% within 48h) under aerobic conditions. Unlike most Y. lipolytica strains, our isolate required partial anaerobiosis for mycelium formation. Studies with two isolates suggested that mycelium to yeast transition may be the prerequisite for effective alkane degradation. (author)

  6. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we de......, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering....

  7. EFECTO DEL SUSTRATO, SOBRE LA ACTIVIDAD ACETOGÉNICA IN VITRO DE Ruminococcus schinkii EN INTERACCIÓN CON HONGOS DEL RUMEN

    OpenAIRE

    Miramontes Carrillo JM; Ramírez RM

    2011-01-01

    La acetogénesis es una alternativa para inhibir el metano del rumen. Se evalúo el efecto del sustrato, sobre la actividad acetogénica de Ruminococcus schinkii con hongos. Se cultivaron bajo anaerobiosis forrajes molidos en medios más hongos y acetogénicas. Se formaron siete grupos de 24 botellas con medio, sustrato y 2-ABS. Seis grupos tuvieron esporas de hongos y acetogénicas. Tres grupos con forraje, sin microorganismos, fueron blancos. El diseño fue factorial 3x2x6; A=3 forrajes; B= hongos...

  8. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum

    Directory of Open Access Journals (Sweden)

    Amy Herndon Lewis

    2015-01-01

    Full Text Available Representative strains of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum (MAIS grew at equal rates in laboratory medium at 21% (air and 12% oxygen. Growth in 6% oxygen proceeded at a 1.4–1.8-fold lower rate. Colony formation was the same at 21% (air and 6% oxygen. The MAIS strains survived rapid shifts from aerobic to anaerobic conditions as measured by two experimental approaches (Falkinham (1996 [1]. MAIS cells grown aerobically to log phase in broth were diluted, spread on agar medium, and incubated anaerobically for up to 20 days at 37 °C. Although no colonies formed anaerobically, upon transfer to aerobic conditions, greater than 25% of the colony forming units (CFU survived after 20 days of anaerobic incubation (Prince et al. (1989 [2]. MAIS cells grown in broth aerobically to log phase were sealed and vigorous agitation led to oxygen depletion (Wayne model. After 12 days anaerobic incubation, M. avium and M. scrofulaceum survival were high (>50%, while M. intracellulare survival was lower (22%. M. avium cells shifted to anaerobiosis in broth had increased levels of glycine dehydrogenase and isocitrate lyase. Growth of MAIS strains at low oxygen levels and their survival following a rapid shift to anaerobiosis is consistent with their presence in environments with fluctuating oxygen levels.

  9. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum.

    Science.gov (United States)

    Lewis, Amy Herndon; Falkinham, Joseph O

    2015-03-01

    Representative strains of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum (MAIS) grew at equal rates in laboratory medium at 21% (air) and 12% oxygen. Growth in 6% oxygen proceeded at a 1.4-1.8-fold lower rate. Colony formation was the same at 21% (air) and 6% oxygen. The MAIS strains survived rapid shifts from aerobic to anaerobic conditions as measured by two experimental approaches (Falkinham (1996) [1]). MAIS cells grown aerobically to log phase in broth were diluted, spread on agar medium, and incubated anaerobically for up to 20 days at 37°C. Although no colonies formed anaerobically, upon transfer to aerobic conditions, greater than 25% of the colony forming units (CFU) survived after 20 days of anaerobic incubation (Prince et al. (1989) [2]). MAIS cells grown in broth aerobically to log phase were sealed and vigorous agitation led to oxygen depletion (Wayne model). After 12 days anaerobic incubation, M. avium and M. scrofulaceum survival were high (>50%), while M. intracellulare survival was lower (22%). M. avium cells shifted to anaerobiosis in broth had increased levels of glycine dehydrogenase and isocitrate lyase. Growth of MAIS strains at low oxygen levels and their survival following a rapid shift to anaerobiosis is consistent with their presence in environments with fluctuating oxygen levels. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  10. Enumeration of bifidobacteria using Petrifilm™ AC in pure cultures and in a fermented milk manufactured with a commercial culture of Streptococcus thermophilus.

    Science.gov (United States)

    Miranda, Rodrigo Otávio; Neto, Gabriel Gama; de Freitas, Rosangela; de Carvalho, Antônio Fernandes; Nero, Luís Augusto

    2011-12-01

    Bifidobacteria are probiotic microorganisms that are widely used in the food industry. With the aim of using of Petrifilm™ Aerobic Count (AC) plates associated with selective culture media, aliquots of sterile skim milk were inoculated separately with four commercial cultures of bifidobacteria. These cultures were plated by both the conventional method and Petrifilm™AC, using the culture media NNLP and ABC. The cultures were incubated under anaerobiosis at 37 °C for 24, 48 and 72 h. No significant differences (p > 0.05) were observed between the obtained counts at 48 and 72 h. Bifidobacteria counts in ABC were usually higher than in NNLP, independent of the plating method. Subsequently, fermented milk was prepared with a Streptococcus thermophilus strain, and aliquots were inoculated with the same bifidobacteria. Then, the fermented milks were submitted to microbiological analysis for bifidobacteria enumeration using the same culture media and methodologies previously described, incubated under anaerobiosis at 37 °C for 48 h. Again, bifidobacteria counts in ABC were higher than in NNLP, with significant differences for some cultures (p viability of Petrifilm™AC as an alternative method for bifidobacteria enumeration when associated to specific culture media, specially the ABC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Antimicrobial capacity of Aloe vera and propolis dentifrice against Streptococcus mutans strains in toothbrushes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Roesler Bertolini

    2012-02-01

    Full Text Available OBJECTIVES: This study evaluated in vitro the efficiency of Aloe vera and propolis dentifrice on reducing the contamination of toothbrush bristles by a standard strain of Streptococcus mutans (ATCC 25175; SM, after toothbrushing. MATERIAL AND METHODS: Fifteen sterile toothbrushes were randomly divided into 5 toothbrushing groups: I (negative control: without dentifrice; II: with fluoridated dentifrice; III: with triclosan and gantrez dentifrice; IV (positive control: without dentifrice and irrigation with 10 mL of 0.12% chlorhexidine gluconate; V: with Aloe vera and propolis dentifrice. In each group, 1 sterile bovine tooth was brushed for 1 min, where the toothbrush bristles were contaminated with 25 µL of SM. After toothbrushing, the bristles were stored in individual test tubes with 3 mL of BHI under anaerobiosis of 37°C for 48 h. Then, they were seeded with sterile swab in triplicate in the Mitis salivarius - Bacitracin culture medium. The samples were kept under anaerobiosis of 37°C for 48 h. Scores were used to count the number of colony forming units (cfu. The results were submitted to the Mann-Whitney statistical test at 5% significance level. RESULTS: There was statistically significant difference (p<0.05 for the reduction of bristle contamination comparing groups II, III, IV and V to group I. CONCLUSIONS: It may be stated that after toothbrushing, the Aloe vera and propolis dentifrice reduced the contamination of toothbrush bristles by SM, without differentiation from the other chemical agents used.

  12. O2-Dependent Efficacy of Novel Piperidine- and Piperazine-Based Chalcones against the Human Parasite Giardia intestinalis

    Science.gov (United States)

    Bahadur, Vijay; Mastronicola, Daniela; Tiwari, Hemandra Kumar; Kumar, Yogesh; Falabella, Micol; Pucillo, Leopoldo Paolo; Sarti, Paolo

    2014-01-01

    Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, 1H and 13C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations. PMID:24217695

  13. Rice in deep water: "How to take heed against a sea of troubles"

    Science.gov (United States)

    Sauter, Margret

    Plants are aerobic organisms for which oxygen shortage poses a severe problem. Waterlogging and flooding are the main causes of anaerobiosis and can lead to damage or even death of the plant. Rice is well adapted to semi-aquatic conditions. It is the only cereal that can be grown in flooded areas such as the great river deltas of Asia. In rice, two major strategies have evolved to cope with conditions of flooding. One is to escape submergence and thereby avoid anaerobiosis as much as possible. This is achieved through elongation growth and through extensive aeration of submerged plant parts by way of internal and external air spaces. The second adaptation is a metabolic one which includes the efficient use of carbohydrate resources and maintenance of energy charge when the cells do become anaerobic. The mainly ethanolic fermentation pathway found in anaerobic rice avoids acidification of the cytoplasm and thereby contributes to the maintenance of cell integrity. Genetic analysis indicates that the submergence tolerance trait, which is based on metabolic changes, is encoded by only one or a few as yet unidentified gene(s). Identifying these genes is a major goal in anaerobic stress research.

  14. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  15. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  16. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria....... The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a sudden lack of oxygen. In contrast, nitrate-respiring, fermenting bacteria, e.g., Bacillus and Escherichia...... spp, formed microcolonies under anaerobic conditions with or without the presence of nitrate and irrespective of aerobic or anaerobic preculture conditions....

  17. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  18. Evaluation of Emdogain® antimicrobial effectiveness against biofilms containing the keystone pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Lasserre, Jérôme; Toma, Selena; Dos Santos-Gonçalvez, Ana-Maria; Leprince, Julian; Leloup, Gaëtane; Brecx, Michel

    2018-01-01

    This study aimed to evaluate the antimicrobial activity of Emdogain® (EMD) against biofilms containing the periopathogen Porphyromonas gingivalis. A brain-Heart infusion broth inoculated with S. gordonii and P. gingivalis was perfused (7-d, anaerobiosis) through a closed circuit containing two Robbins devices as to form biofilms. The latter were then treated for 2 min with various antimicrobials (Chlorhexidine (CHX) 0.2%, Povidone iodine (PVI) 5%, PVI 10%, essential oils (EO), EO ZeroTM or EMD) (n=8) and cell densities were calculated and compared. In the present in vitro model, Emdogain® was not statistically effective (p>0.05) in killing biofilm bacteria unlike the other tested molecules.

  19. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Knecht, Wolfgang; Warneboldt, J.

    2004-01-01

    The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic...... activity catalysed by dihydroorotate dehydrogenase (DHODase), on the enzymes of the respiratory chain in several yeast species. While the majority of yeasts possess a mitochondrial DHODase, Saccharomyces cerevisiae has a cytoplasmatic enzyme, whose activity is independent of the presence of oxygen. From....... We show that these two S. kluyveri enzymes, and their coding genes, differ in their dependence on the presence of oxygen. Only the cytoplasmic DHODase promotes growth in the absence of oxygen. Apparently a Saccharomyces yeast progenitor which had a eukaryotic-like mitochondrial DHODase acquired...

  20. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium.

    Science.gov (United States)

    Wu, Huifeng; Xu, Lanlan; Yu, Deliang; Ji, Chenglong

    2017-01-01

    Cadmium (Cd) is one of the most important metal contaminants in the Bohai Sea. In this work, NMR-based metabolomics was used to investigate the toxicological effects of Cd at an environmentally relevant concentration (50 µg L -1 ) in three different life stages (D-shape larval, juvenile and adult) of mussels Mytilus galloprovincialis. Results indicated that the D-shape larval mussel was the most sensitive life stage to Cd. The significantly different metabolic profiles meant that Cd induced differential toxicological effects in three life stages of mussels. Basically, Cd caused osmotic stress in all the three life stages via different metabolic pathways. Cd exposure reduced the anaerobiosis in D-shape larval mussels and disturbed lipid metabolism in juvenile mussels, respectively. Compared with the D-shape larval and juvenile mussels, the adult mussels reduced energy consumption to deal with Cd stress.

  1. Effects of cadmium exposure on critical temperatures of aerobic metabolism in eastern oysters Crassostrea virginica (Gmelin, 1791)

    Energy Technology Data Exchange (ETDEWEB)

    Bagwe, Rita [Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC (United States); Great Basin College, Pahrump Valley Center, Elko, NV (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC (United States)

    2015-10-15

    Highlights: • Effects of Cd exposure on thermal tolerance of oysters were studied. • Temperature rise (20–36 °C) led to transition to partial anaerobiosis at critical temperature T{sub c}II. • Exposure to Cd reduced thermal tolerance indicated by a downward shift of T{sub c}II. • Cellular energy status was maintained but oxidative stress occurred at extreme temperatures. • Onset of anaerobiosis is a sensitive biomarker of temperature- and Cd-induced energetic stress. - Abstract: Cadmium (Cd) and elevated temperatures are common stressors in estuarine and coastal environments. Elevated temperature can sensitize estuarine organisms to the toxicity of metals such as Cd and vice versa, but the physiological mechanisms of temperature–Cd interactions are not well understood. We tested a hypothesis that interactive effects of elevated temperature and Cd stress involve Cd-induced reduction of the aerobic scope of an organism thereby narrowing the thermal tolerance window of oysters. We determined the effects of prolonged Cd exposure (50 μg Cd l{sup −1} for 30 days) on the upper critical temperature of aerobic metabolism (assessed by accumulation of anaerobic end products L-alanine, succinate and acetate), cellular energy status (assessed by the tissue levels of adenylates, phosphagen/aphosphagen and glycogen and lipid reserves) and oxidative damage during acute temperature rise (20–36 °C) in the eastern oysters Crassostrea virginica. The upper critical temperature (T{sub c}II) was shifted to lower values (from 28 to 24 °C) in Cd-exposed oysters in spring and was lower in both control and Cd-exposed groups in winter (24 and <20 °C, respectively). This indicates a reduction of thermal tolerance of Cd-exposed oysters associated with a decrease of the aerobic scope of the organism and early transition to partial anaerobiosis. Acute warming had no negative effects on tissue energy reserves or parameters of cellular energy status of oysters (except a

  2. Isolation of cyanobacterial mutants exhibiting growth defects under microoxic conditions by transposon tagging mutagenesis of Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Terauchi, Kazuki; Sobue, Riho; Furutani, Yuho; Aoki, Rina; Fujita, Yuichi

    2017-05-12

    Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis by extracting electrons from water, with the generation of oxygen as a byproduct. Cyanobacteria use oxygen not only for respiration to produce energy in the dark but also for biosynthesis of various metabolites, such as heme and chlorophyll. Oxygen levels dynamically fluctuate in the field environments, from hyperoxic at daytime to almost anaerobic at night. Thus, adaptation to anaerobiosis should be important for cyanobacteria to survive in low-oxygen and anaerobic environments. However, little is known about the molecular mechanisms of cyanobacterial anaerobiosis because cyanobacteria have been regarded as aerobic organisms. As a first step to elucidate cyanobacterial adaptation mechanisms to low-oxygen environments, we isolated five mutants, T-1-T-5, exhibiting growth defects under microoxic conditions. The mutants were obtained from a transposon-tagged mutant library of the cyanobacterium Synechocystis sp. PCC 6803, which was produced by in vitro transposon tagging of cyanobacterial genomic DNA. Southern blot analysis indicated that a kanamycin resistance gene was inserted in the genome as a single copy. We identified the chromosomal transposon-tagged locus in T-5. Two open reading frames (sll0577 and sll0578) were partially deleted by the insertion of the kanamycin resistance gene in T-5. A reverse transcription polymerase chain reaction suggested that these co-transcribed genes are constitutively expressed under both aerobic and microoxic conditions. Then, we isolated two mutants in which one of the two genes was individually disrupted. Only the mutants partially lacking an intact sll0578 gene showed growth defects under microoxic conditions, whereas it grew normally under aerobic conditions. sll0578 is annotated as purK encoding N 5 -carboxy-aminoimidazole ribonucleotide synthetase involved in purine metabolism. This result implies the unexpected physiological importance of Pur

  3. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Clark Virginia L

    2011-01-01

    Full Text Available Abstract Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.

  4. Differences in Cold Adaptation of Bacillus subtilis under Anaerobic and Aerobic Conditions▿

    Science.gov (United States)

    Beranová, Jana; Mansilla, María C.; de Mendoza, Diego; Elhottová, Dana; Konopásek, Ivo

    2010-01-01

    Bacillus subtilis, which grows under aerobic conditions, employs fatty acid desaturase (Des) to fluidize its membrane when subjected to temperature downshift. Des requires molecular oxygen for its activity, and its expression is regulated by DesK-DesR, a two-component system. Transcription of des is induced by the temperature downshift and is decreased when membrane fluidity is restored. B. subtilis is also capable of anaerobic growth by nitrate or nitrite respiration. We studied the mechanism of cold adaptation in B. subtilis under anaerobic conditions that were predicted to inhibit Des activity. We found that in anaerobiosis, in contrast to aerobic growth, the induction of des expression after temperature downshift (from 37°C to 25°C) was not downregulated. However, the transfer from anaerobic to aerobic conditions rapidly restored the downregulation. Under both aerobic and anaerobic conditions, the induction of des expression was substantially reduced by the addition of external fluidizing oleic acid and was fully dependent on the DesK-DesR two-component regulatory system. Fatty acid analysis proved that there was no desaturation after des induction under anaerobic conditions despite the presence of high levels of the des protein product, which was shown by immunoblot analysis. The cold adaptation of B. subtilis in anaerobiosis is therefore mediated exclusively by the increased anteiso/iso ratio of branched-chain fatty acids and not by the temporarily increased level of unsaturated fatty acids that is typical under aerobic conditions. The degrees of membrane fluidization, as measured by diphenylhexatriene fluorescence anisotropy, were found to be similar under both aerobic and anaerobic conditions. PMID:20581210

  5. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli.

    Science.gov (United States)

    Cánovas, M; Sevilla, A; Bernal, V; Leal, R; Iborra, J L

    2006-11-01

    The aim of this work was to understand the steps controlling the biotransformation of trimethylammonium compounds into L(-)-carnitine by Escherichia coli. The high-cell density reactor steady-state levels of carbon source (glycerol), biotransformation substrate (crotonobetaine), acetate (anaerobiosis product) and fumarate (as an electron acceptor) were pulsed by increasing them fivefold. Following the pulse, the evolution of the enzyme activities involved in the biotransformation process of crotonobetaine into L(-)-carnitine (crotonobetaine hydration), in the synthesis of acetyl-CoA (ACS: acetyl-CoA synthetase and PTA: ATP: acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid (ICDH: isocitrate dehydrogenase) and glyoxylate (ICL: isocitrate lyase) cycles was monitored. In addition, the levels of carnitine, the cell ATP content and the NADH/NAD(+) ratio were measured in order to assess the importance and participation of these energetic coenzymes in the catabolic system. The results provided an experimental demonstration of the important role of the glyoxylate shunt during biotransformation and the need for high levels of ATP to maintain metabolite transport and biotransformation. Moreover, the results obtained for the NADH/NAD(+) pool indicated that it is correlated with the biotransformation process at the NAD(+) regeneration and ATP production level in anaerobiosis. More importantly, a linear correlation between the NADH/NAD(+) ratio and the levels of the ICDH and ICL (carbon and electron flows) and the PTA and ACS (acetate and ATP production and acetyl-CoA synthesis) activity levels was assessed. The main metabolic pathway operating during cell metabolic perturbation with a pulse of glycerol and acetate in the high-cell density membrane reactor was that related to ICDH and ICL, both regulating the carbon metabolism, together with PTA and ACS enzymes (regulating ATP production).

  6. Evaluation of a Probiotic and a Competitive Exclusion Product Inoculated In Ovo on Broiler Chickens Challenged with Salmonella Heidelberg

    Directory of Open Access Journals (Sweden)

    IGO Silva

    Full Text Available ABSTRACT The present study evaluated a probiotic and a competitive exclusion product injected in ovo on day 18 of incubation together with Marek's disease vaccine in eggs of 56-week-old broiler breeders. Three experiments were carried out. The first trial evaluated the effect of treatments on hatchability, cecal colonization of Salmonella Heidelberg (SH, and intestinal mucosa immunity (immunoglobulin A levels in the intestinal fluid. The second trial evaluated the viability of the microorganisms in the products inoculated in a solution containing diluent and Marek's disease vaccine. The third trial evaluated the colonization of the cecal microbiota in non-challenged chickens during first four days of life by culturing cecal samples under aerobic and anaerobic conditions. Hatchability was not affected by the treatments. SH cecal counts were reduced in three-day-old broilers inoculated in ovo with the competitive exclusion product. Liver and spleen pool SH counts were not different among treatments. Broilers inoculated in ovo presented higher intestinal IgA titers 24 hours after SH challenge compared with the controls. When birds were not challenged, lower cecal microbial counts in aerobic culture were determined in the control group than in the probiotic group on day 3, and in the competitive exclusion group on day 2 when cultured in anaerobiosis. The products inoculated and diluted in the vaccine solution were viable at all analyzed periods when cultured in anaerobiosis. The results of this study suggest in-ovo inoculation is an effective route for the administration of the evaluated products, which effectively enhanced the broilers' immune response to a SH challenge, as shown by the increase in IgA titers, and the reduction in cecal Salmonella Heidelberg colonization with the in-ovo inoculation with the competitive exclusion product.

  7. Carbon Mineralization Can Be Sustained or Even Stimulated under Fluctuating Redox Conditions in Tropical and Temperate Soils

    Science.gov (United States)

    Huang, W.; Hall, S. J.

    2017-12-01

    Soil carbon (C) mineralization is widely thought to be affected by O2 availability, and anaerobiosis represents a significant global mechanism of C stabilization. However, mineral-associated organic C (e.g. Fe-bound organic C) may be vulnerable to redox fluctuations due to release following Fe reduction, which could counteract protective effects of anaerobiosis. Many soils, including temperate Mollisols and tropical Oxisols, experience fluctuating redox conditions following moisture variations that could impact C cycling and stabilization. Here we incubated two soils with C4 leaf litter at different duration and frequencies of anaerobic periods for 128 days to investigate how redox fluctuations affect soil C mineralization. The treatments included static aerobic (control), and 2-, 4-, 8- and 12- day anaerobic followed by 4-day aerobic. We measured CO2, CH4, and their C isotope ratios. Longer durations of anaerobic conditions promoted greater Fe reduction and more DOC released. Notably, in both soils despite their large differences in composition, the production of CO2 and CH4 was stimulated under aerobic conditions following anaerobic conditions (relative to the control), which compensated for the decrease under anaerobic conditions. After 128 days, cumulative C mineralization in the control was similar between the Mollisol (9.7 mg C g-1) and the Oxisol (10.1 mg C g-1). The value in the Mollisol was significantly higher in the 12-day anaerobic treatment (11.2 mg C g-1) than the aerobic control and the 2-day anaerobic treatment (9.7 mg C g-1). In the Oxisol, cumulative C mineralization was not significantly affected by any of the fluctuating redox treatments relative to the control. Our findings challenge theory by showing that redox fluctuations can counteract the suppressive effects of O2 limitation on decomposition.

  8. Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation

    Directory of Open Access Journals (Sweden)

    Storey KB

    2011-03-01

    Full Text Available Kenneth B Storey, Janet M StoreyDepartments of Biology and Chemistry, Carleton University, Ottawa, ON, CanadaAbstract: To survive under harsh environmental conditions many organisms retreat into hypometabolic states where metabolic rate may be reduced by 80% or more and energy use is reprioritized to emphasize key functions that sustain viability and provide cytoprotection. ATP-expensive activities, such as gene expression, protein turnover (synthesis and degradation, and the cell cycle, are largely shut down. As a consequence, mechanisms that stabilize the existing cellular proteome can become critical for long-term survival. Heat shock proteins (HSPs are well-known for their actions as chaperones that act to fold new proteins or refold proteins that are damaged. Indeed, they are part of the “minimal stress proteome” that appears to be a ubiquitous response by all cells as they attempt, successfully or unsuccessfully, to deal with stress. The present review summarizes evidence that HSPs are also a conserved feature of natural animal hypometabolism including the phenomena of estivation, hibernation, diapause, cold-hardiness, anaerobiosis, and anhydrobiosis. That is, organisms that retreat into dormant or torpid states in anticipation that environmental conditions may become too difficult for normal life also integrate the use of HSPs to protect their proteome while hypometabolic. Multiple studies show a common upregulation of expression of hsp genes and/or HSP proteins prior to or during hypometabolism in organisms as diverse as ground squirrels, turtles, land snails, insects, and brine shrimp and in situations of both preprogrammed dormancies (eg, seasonal or life stage specific and opportunistic hypometabolism (eg, triggered by desiccation or lack of oxygen. Hence, HSPs are not just a “shock” response that attempts to rescue cells from damaging stress but are a key protective strategy that is an integral component of natural states of

  9. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  10. Heat stress in the heart and muscle of the Antarctic fishes Notothenia rossii and Notothenia coriiceps: Carbohydrate metabolism and antioxidant defence.

    Science.gov (United States)

    Souza, Maria Rosa Dmengeon Pedreiro de; Herrerias, Tatiana; Zaleski, Tania; Forgati, Mariana; Kandalski, Priscila Krebsbach; Machado, Cintia; Silva, Dilza Trevisan; Piechnik, Cláudio Adriano; Moura, Maurício Osvaldo; Donatti, Lucélia

    2018-03-01

    Carbohydrate metabolism and the antioxidant defence system of heart and muscle of the Antarctic notothenioids Notothenia rossii and Notothenia coriiceps were evaluated in response to heat stress (8 °C) over 144 h. N. rossii heart exhibited decreased glycolysis and aerobic metabolism after up to 12 h of exposure to 8 °C, and anaerobiosis was inhibited within 24 h. However, these pathways were stimulated after 72 h at 8 °C. The consumption of glucose-6-phosphate, derived from hexokinase (HK), by glucose-6-phosphate dehydrogenase (G6PDH) decreased in N. rossii heart within 6 h at 8 °C, with a subsequent increase at 72 h. In N. rossii muscle at 8 °C, glycolysis was stimulated within 2 h by an increase in pyruvate kinase (PK), and aerobic metabolism was stimulated at 144 h, together with anaerobiosis. In N. coriiceps heart at 8 °C, glucose break down by HK decreased within 2 h and subsequently increased at 12 and 24 h. Increased glucose-6-phosphate consumption by G6PDH occurred within 6 h at 8 °C. In N. coriiceps muscle at 8 °C, glycolysis was stimulated at 2 and 6 h, with subsequent inhibition within 24 h, as indicated by HK activity. Aerobic metabolism was inhibited at 72 and 144 h at 8 °C through the inhibition of citrate synthase (CS). Heat stress caused responses were only occasional and transient in antioxidant defence system of both species in the heart and muscle, leading to increased glutathione (GSH) and decreased levels of lipoperoxidation in the heart of both species. The results obtained in this study in the heart and muscles indicate that under heat stress at 8 °C, N. rossii is more responsive than N. coriiceps with respect to carbohydrate metabolism. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Infectious necrotic hepatitis caused by Clostridium novyi type B in a horse: case report and review of the literature.

    Science.gov (United States)

    Nyaoke, Akinyi C; Navarro, Mauricio A; Beingesser, Juliann; Uzal, Francisco A

    2018-03-01

    A 14-y-old bay Quarter Horse gelding was presented with progressive neurologic signs, elevated rectal temperature, and icterus for 3 d prior to death. Postmortem examination revealed icterus, large amounts of serosanguineous fluid in the abdominal cavity, widespread petechiae and ecchymoses in several organs, and a large, pale, and well-demarcated focus of necrosis in the liver. Histologically, there was coagulative necrosis surrounded by a rim of inflammatory cells and large numbers of gram-positive rods, which were identified as Clostridium novyi by immunohistochemistry. Liver samples tested by PCR were positive for C. novyi type B flagellin and alpha toxin genes, but negative for Clostridium haemolyticum and other clostridia. Based on postmortem findings and ancillary tests, a definitive diagnosis of infectious necrotic hepatitis (INH) was made. Mostly a disease of ruminants, also known as black disease, INH has rarely been reported in horses, and a definitive etiologic diagnosis has not been achieved previously; the etiology of all cases reported to date was identified as C. novyi but the type was not determined. Animals are predisposed to clostridial hepatitis when hepatic anaerobiosis is established. Such conditions allow germination and proliferation of bacterial spores, resulting in production and release of toxins. INH, caused by C. novyi type B, and bacillary hemoglobinuria, caused by C. haemolyticum, are mechanistically and pathologically almost indistinguishable. Because these 2 microorganisms are closely related, differentiation requires molecular tools.

  12. Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile.

    Science.gov (United States)

    Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia

    2012-05-01

    Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.

  13. Processes of malate catabolism during the anaerobic metabolism of grape berries

    International Nuclear Information System (INIS)

    Flanzy, C.; Andre, P.; Buret, M.; Chambroy, Y.; Garcia, P.

    1976-01-01

    In order to precise malate fate during the anaerobic metabolism of grape, malate- 3 - 14 C was injected into Carignan berries kept in darkness at 35 0 C under carbon dioxide atmosphere. The injection of labelled malate was effected in presence or not of non-labelled oxalate which inhibits malic enzyme (EC I.I.I.40). The analyses of the samples fixed after 3 and 7 days anaerobiosis concerned the titration of various substrates, organic acids, amino-acids and glycolysis products, and the measuring of the NADP + -malic enzyme (EC I.I.I.40) and malate dehydrogenase (EC I.I.I.40). Radioactivity is mainly observed in ethanol, amino-butyrate the non-separated group glycerate-shikimate and succinate. Malic enzyme acts in the first sequence of a process leading from malate to ethanol. Alanin synthesis seems to be stimulated in presence of oxalate. The results obtained and some hypotheses presented in the literature induce to suggest a utilization scheme for malate in the anaerobic metabolism of grape [fr

  14. Salar de Surire un ecosistema altoandino en peligro, frente a escenario del cambio climático

    Directory of Open Access Journals (Sweden)

    Ingrid Garcés

    2011-12-01

    Full Text Available Este trabajo realiza un análisis al salar de Surire desde el punto de vista de la biodiversidad y sus implicancias producto del cambio climático. Como resultado se predice que los próximos años serán secos y la temperatura podría ir en aumento, lo cual afectará notablemente a la flora y fauna del altiplano. El salar de Surire es un cuerpo salino ubicado en el altiplano andino chileno, en un entorno geológico de características volcánicas. La climatología actual de aridez no permite una acumulación de agua superficial de gran extensión, y por lo tanto es posible diferenciar tres tipos principales de aguas: los aportes de drenaje, las acumulaciones de agua en la aureola pantanosa externa o “bofedales”, y las aguas del interior del cuerpo salino (surgencias termales y salmueras. Estas condiciones hidrológicas afectan factores abióticos, como anaerobiosis de suelos, disposición de nutrientes y salinidad, factores determinantes del desarrollo de la flora y fauna. Palabras claves: Salar de Surire; Biodiversidad andina; Cambio climático; Ecosistema andino

  15. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  16. Screening for exopolysaccharide-producing bacteria from sub-tropical polluted groundwater

    Directory of Open Access Journals (Sweden)

    R. FUSCONI

    Full Text Available A selection of exopolysaccharide (EPS -- producing bacterial strains was conducted in groundwater adjacent to an old controlled landfill in the City of São Carlos (São Paulo, Brazil. The strains were isolated in P and E media under aerobic and microaerophilic conditions at 25ºC. A total of 26 strains were isolated and based on the mucoid mode of the colonies, 6 were selected and their morphological, physiological and biochemical aspects were characterized. All strains presented pigmentation, ranging from yellow to orange and from pink to salmon, with a shiny glistening aspect in all tested media. Strains Lb, Lc and Lg, which excelled the others with regard to the mucoid mode of the colonies, were selected to be cultured in E medium with alternate sucrose and glucose as carbon sources in anaerobiosis at 25ºC to analyze the production of EPS. Strains Lc and Lg were classified as being of order Actinomycelates, suborder Corynebacterineae. Lg strain was identified as Gordonia polyisoprenivorans and Lc strain did not correspond to a known description and therefore a more detailed study is under preparation. Considering all ecological aspects and the metabolic potential associated with the microorganisms of the environment studied, as well as the capacity to produce pigment and EPS, and the presence of G. polyisoprenivorans, a rubber degrader bacterium, the potential of the groundwater analyzed is evident as a source of microorganisms to be utilized in studies related to environmental remediation.

  17. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa.

    Science.gov (United States)

    Depkat-Jakob, Peter S; Brown, George G; Tsai, Siu M; Horn, Marcus A; Drake, Harold L

    2013-02-01

    The anoxic earthworm gut augments the activity of ingested microorganisms capable of anaerobiosis. Small earthworms (Lumbricidae) emit denitrification-derived N(2)O, whereas the large Octochaetus multiporus (Megascolecidae) does not. To examine this paradox, differently sized species of the families Glossoscolecidae (Rhinodrilus, Glossoscolex, Pontoscolex), Megascolecidae (Amynthas, Perionyx), Acanthodrilidae (Dichogaster), and Eudrilidae (Eudrilus) from Brazil were analyzed. Small species and the large Rhinodrilus alatus emitted N(2)O, whereas the large Glossoscolex paulistus did not, even though its gut could denitrify. N(2) and N(2)O were emitted concomitantly, and R. alatus emitted the highest amount of N(2). Denitrifiers and dissimilatory nitrate reducers were analyzed by barcoded amplicon pyrosequencing of narG, nirK, and nosZ. Gene sequences in gut and soil of the large G. paulistus were similar, whereas sequences in gut and soil of the small Amynthas gracilis were different and were also different compared with those of the gut and soil of G. paulistus. However, the denitrifying gut microbiota for both earthworms appeared to be soil-derived and dominated by Rhizobiales. The results demonstrated that (1) the emission of denitrification-derived N(2)O is widespread in different earthworm families, (2) large earthworms can also emit nitrogenous gases, and (3) ingested members of Rhizobiales are associated with this emission. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Fluorescence kinetic parameters and cyclic electron transport in guard cell chloroplasts of chlorophyll-deficient leaf tissues from variegated weeping fig (Ficus benjamina L.).

    Science.gov (United States)

    Lysenko, Vladimir

    2012-05-01

    Residual chlorophyll in chlorophyll-deficient (albino) areas of variegated leaves of Ficus benjamina originates from guard cell chloroplasts. Photosynthetic features of green and albino sectors of F. benjamina were studied by imaging the distribution of the fluorescence decrease ratio Rfd within a leaf calculated from maximum (Fm) and steady-state leaf chlorophyll fluorescence (Fs) at 690 and 740 nm. Local areas of albino sectors demonstrated an abnormally high Rfd(740)/Rfd(690) ratio. Fluorescence transients excited in albino sectors at red (640 and 690 nm) wavelengths showed an abrupt decrease of the Rfd values (0.4 and 0.1, correspondingly) as compared with those excited at blue wavelengths (1.7-2.4). This "Red Drop" was not observed for green sectors. Normal and chlorophyll-deficient leaf sectors of F. benjamina were also tested for linear and cyclic electron transport in thylakoids. The tests have been performed studying fluorescence at a steady-state phase with CO(2)-excess impulse feeding, photoacoustic signal generated by pulse light source at wavelengths selectively exciting PSI, fluorescence kinetics under anaerobiosis and fluorescence changes observed by dual-wavelength excitation method. The data obtained for albino sectors strongly suggest the possibility of a cyclic electron transport simultaneously occurring in guard cell thylakoids around photosystems I and II under blue light, whereas linear electron transport is absent or insufficient.

  19. Spontaneous mutability and light-induced mutagenesis in Salmonella typhimurium: effects of an R-plasmid

    International Nuclear Information System (INIS)

    Valdivia, L.

    1979-01-01

    The UV-protecting plasmid R46 was transferred by conjugation to a genetically marked mouse-virulent Salmonella typhimurium strain, not derived from LT2; in this host the plasmid conferred UV protection and enhanced UV mutagenesis just as it does in LT2 lines. Tra - derivatives of R46 encountered during transduction retained UV-protecting and mutagenesis-enhancing ability. Stored strains carrying the R46-derived plasmids with strong mutator effect but not UV-protecting had lost most of their original streptomycin resistance but were slightly resistant to spectinomycin; attempts to transfer such plasmids failed. R46 enhanced the weak mutagenic effect of visible light on several his and trp mutants of strain LT2, including some whose frequency of spontaneous reversion was not increased by the plasmid. A mutagenic effect was produced by visible-light irradiation of hisG46(R46), either growing cells or nonmultiplying (histidine-deprived cells at 10 0 C). Presence of catalase or cyanide during irradiation did not prevent mutagenesis, which excludes some hypothetical mechanisms. Visible-light irradiation of hisG46 or hisG46(R46) under strict anaerobiosis had little or no mutagenic effect (controls showed that revertants if produced would have been detected). This is as expected if visible-light irradiation in air causes photodynamic damage to DNA and mutations are produced during error-prone, plasmid-enhanced repair

  20. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87.

    Directory of Open Access Journals (Sweden)

    Rocco G Ianniello

    Full Text Available Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB. Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase, antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation batch cultivations with different dissolved oxygen (DO concentrations. The expression of pox (pyruvate oxidase and cydABCD operon (cytochrome bd oxidase complex was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO. Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei.

  1. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87.

    Science.gov (United States)

    Ianniello, Rocco G; Zotta, Teresa; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei.

  2. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  3. Physiological effects of the form of nitrogen on corn root tips: a 31P nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Andrade, F.H.; Anderson, I.C.

    1986-01-01

    Physiological effects of different N forms (NO − 3 , NH + 4 , or a combination of both) on corn (Zea mays L.) root tips and leaves were studied by following 31 P signals with a nuclear magnetic resonance spectrometer. With root tips, both cytoplasmic and vacuolar pH could be measured, whereas with leaves, only vacuolar pH could be determined. The N treatments did not affect the cytoplasmic pH of corn root tips in contrast to proposals of previous workers. Leaf vacuolar pH was higher and root tip vacuolar pH lower with NO − 3 than with NH + 4 . Under anaerobic conditions, cytoplasmic pH was reduced because of lactic acid fermentation. Nitrate, an electron acceptor, delayed the acidification of the cytoplasm compartment because it represents an alternative way to reoxidize NADH. In conclusion, for the conditions of these experiments, the pH of the cytoplasm of corn root tips was not modified by the form of N absorbed; however, the pH of this compartment was affected by the form of N presented during development anaerobiosi. (author)

  4. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  5. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  6. Sulfide as a soil phytotoxin - A review

    Directory of Open Access Journals (Sweden)

    Leon P M Lamers

    2013-07-01

    Full Text Available In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.

  7. Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Chochois, Vincent; Constans, Laure; Beyly, Audrey; Soliveres, Melanie; Peltier, Gilles; Cournac, Laurent [CEA, DSV, IBEB, Laboratoire de Bioenergetique et Biotechnologie des Bacteries and Microalgues, Saint Paul Lez Durance, F-13108 (France); CNRS, UMR Biologie Vegetale and Microbiologie Environnementales, Saint Paul lez Durance, F-13108 (France); Aix-Marseille Universite, Saint Paul lez Durance, F-13108 (France); Dauvillee, David; Ball, Steven [Univ Lille Nord de France, F-59000 Lille (France); USTL, UGSF, F-59650 Villeneuve d' Ascq (France); CNRS, UMR 8576, F-59650 Villeneuve d' Ascq (France)

    2010-10-15

    Sulfur deprivation, which is considered as an efficient way to trigger long-term hydrogen photoproduction in unicellular green algae has two major effects: a decrease in PSII which allows anaerobiosis to be reached and carbohydrate (starch) storage. Starch metabolism has been proposed as one of the major factors of hydrogen production, particularly during the PSII-independent (or indirect) pathway. While starch biosynthesis has been characterized in the green alga Chlamydomonas reinhardtii, little remains known concerning starch degradation. In order to gain a better understanding of starch catabolism pathways and identify those steps likely to limit the starch-dependent hydrogen production, we have designed a genetic screening procedure aimed at isolating mutants of the green alga C. reinhardtii affected in starch mobilization. Using two different screening protocols, the first one based on aerobic starch degradation in the dark and the second one on anaerobic starch degradation in the light, eighteen mutants were isolated among a library of 15,000 insertion mutants, eight (std1-8) with the first screen and ten (sda1-10) with the second. Most of the mutant strains isolated in this study showed a reduction or a delay in the PSII-independent hydrogen production. Further characterization of these mutants should allow the identification of molecular determinants of starch-dependent hydrogen production and supply targets for future biotechnological improvements. (author)

  8. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  9. Isolation, identification and physiological study of Lactobacillus fermentum LPB for use as probiotic in chickens

    Directory of Open Access Journals (Sweden)

    Reque Elizete de F.

    2000-01-01

    Full Text Available Studies were carried out to isolate and identify microorganisms for probiotic use for chickens. Selection of strains included various criteria such as agreement with bio-safety aspects, viability during storage, tolerance to low pH/ gastric juice, bile, and antimicrobial activity. The strains were isolated from the crop, proventriculus, gizzard, ileum and caeca of chicken. Decimal dilution of the contents of these segments were mixed with MRS medium and incubated for 48 h at 37°C under anaerobiosis. The identity of the culture was based on characteristics of lactobacilli as presented in the Bergey?s Manual of Determinative Bacteriology, carrying out bacterioscopy (morphology, Gram stain, growth at 15 and 45°C, and fermentation of different carbon sources. Based on these criteria, Lactobacillus fermentum LPB was identified and tested for probiotic use for chickens. The isolate was evaluated for poultry feeds supplement. The results showed that in comparison to the presence and effects of antibiotics, L. fermentum LPB implantation resulted in a similar effect as that of antibiotics manifested by feed efficiency in growth of chicks.

  10. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87

    Science.gov (United States)

    Ianniello, Rocco G.; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei. PMID:27812097

  11. Assimilation (in vitro) of cholesterol by yogurt bacteria.

    Science.gov (United States)

    Dilmi-Bouras, Abdelkader

    2006-01-01

    A considerable variation is noticed between the different species studied and even between the strains of the same species, in the assimilation of cholesterol in synthetic media, in presence of different concentrations of bile salts and under anaerobiosis conditions. The obtained results show that certain strains of Streptococcus thermophilus and Lactobacillus bulgaricus resist bile salts and assimilate appreciable cholesterol quantities in their presence. The study of associations shows that only strains assimilating cholesterol in a pure state remain active when they are put in associations, but there is no additional effect. However, the symbiotic effect between Streptococcus thermophilus and Lactobacillus bulgaricus of yogurt, with regard to bile salts, is confirmed. The lactic fermenters of yogurt (Y2) reduce the levels of total cholesterol, HDL-cholesterol and LDL-cholesterol, in a well-balanced way. In all cases, the assimilated quantity of HDL-cholesterol is lower than that of LDL-cholesterol. Moreover, yogurt Y2 keeps a significant number of bacteria, superior to 10(8) cells ml(-1), and has a good taste 10 days after its production.

  12. Ex vivo model for studying polymicrobial biofilm formation in root canals

    Directory of Open Access Journals (Sweden)

    Hugo Díez Ortega

    2016-12-01

    Full Text Available Endodontic disease has mainly a microbial origin. It is caused by biofilms capable of attaching and surviving in the root canal. Therefore, it is important to study the conditions in which those biofilms grow, develop and colonize the root canal system. However, few studies have used natural teeth as models, which would take into account the root canal anatomical complexity and simulate the clinical reality. In this study, we used human premolar root canals to standardize in vitro biofilm optimal formation conditions for microorganisms such as Enterococcus faecalis, Staphylococcus aureus and Candida albicans. 128 lower premolars underwent canal preparation using K-type files, and were treated with 5.25% sodium hypochlorite and EDTA. Samples were inoculated with microorganisms and incubated for 15, 30, 45, and 60 days under anaerobiosis (CO2 atmosphere and aerobiosis. Microorganism presence was confirmed by Gram staining, cell culture, and electron microscopy. Exopolysaccharide matrix and microorganism aggregation were observed following 15 days of incubation. Bacterial growth towards the apical third of the root canal and biofilm maturation was detected after 30 days. CO2 atmosphere favored microbial growth the most. In vitro biofilm maturation was confirmed after 30 days of incubation under a CO2 atmosphere for both bacteria and yeast.

  13. The induction of proteinases in corn and soybean by anoxia

    International Nuclear Information System (INIS)

    VanToai, T.; Hwang, Shihying

    1989-01-01

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with 3 H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia

  14. Biotechnological approaches to creation of hypoxia and anoxia tolerant plants.

    Science.gov (United States)

    Vartapetian, B B; Dolgikh, Y I; Polyakova, L I; Chichkova, N V; Vartapetian, A B

    2014-04-01

    The present work provides results of a number of biotechnological studies aimed at creating cell lines and entire plants resistant to anaerobic stress. Developed biotechnological approaches were based on earlier fundamental researches into anaerobic stress in plants, so "Introduction" briefly covers the importance of the problem and focuses on works considering two main strategies of plants adaptation to anaerobic stress. Those are adaptation at molecular level where key factor is anaerobic metabolism of energy (true tolerance) and adaptation of the entire plant via formation of aerenchyma and facilitated transportation of oxygen (apparent tolerance). Thus, sugarcane and wheat cells resistant to anaerobic stress were obtained through consecutive in vitro selection under conditions of anoxia and absence of exogenous carbohydrates. Tolerant wheat cells were used to regenerate entire plants of higher resistance to root anaerobiosis. It has been demonstrated that cells tolerance to anoxia is significantly supported by their ability to utilize exogenous nitrate. Cells tolerance established itself at the genetic level and was inherited by further generations. Apart from that, other successful attempts to increase tolerance of plants to anaerobic stress by means of stimulation of glycolysis and overexpression of genes responsible for cytokinin synthesis and programmed cell death are also discussed. The presented data proved the notion of two main strategies of plants adaptation to anaerobic stress proposed earlier on the base of fundamental studies.

  15. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation.

    Science.gov (United States)

    Seth, Divya; Hess, Douglas T; Hausladen, Alfred; Wang, Liwen; Wang, Ya-Juan; Stamler, Jonathan S

    2018-02-01

    S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E.

    Science.gov (United States)

    Mascher, Gerald; Mertaoja, Anna; Korkeala, Hannu; Lindström, Miia

    2017-10-01

    Clostridium botulinum produces the most potent natural toxin, the botulinum neurotoxin (BoNT), probably to create anaerobiosis and nutrients by killing the host, and forms endospores that facilitate survival in harsh conditions and transmission. Peak BoNT production coincides with initiation of sporulation in C. botulinum cultures, which suggests common regulation. Here, we show that Spo0A, the master regulator of sporulation, positively regulates BoNT production. Insertional inactivation of spo0A in C. botulinum type E strain Beluga resulted in significantly reduced BoNT production and in abolished or highly reduced sporulation in relation to wild-type controls. Complementation with spo0A restored BoNT production and sporulation. Recombinant DNA-binding domain of Spo0A directly bound to a putative Spo0A-binding box (CTTCGAA) within the BoNT/E operon promoter, demonstrating direct regulation. Spo0A is the first neurotoxin regulator reported in C. botulinum type E. Unlike other C. botulinum strains that are terrestrial and employ the alternative sigma factor BotR in directing BoNT expression, C. botulinum type E strains are adapted to aquatic ecosystems, possess distinct epidemiology and lack BotR. Our results provide fundamental new knowledge on the genetic control of BoNT production and demonstrate common regulation of BoNT production and sporulation, providing a key intervention point for control. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. In silico discovery of the dormancy regulons in a number of Actinobacteria genomes

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimova, Anna; Dubchak, Inna; Arkin, Adam; Gelfand, Mikhail

    2010-11-16

    Mycobacterium tuberculosis is a dangerous Actinobacteria infecting nearly one third of the human population. It becomes dormant and phenotypically drug resistant in response to stresses. An important feature of the M. tuberculosis pathogenesis is the prevalence of latent infection without disease, making understanding of the mechanisms used by the bacteria to exist in this state and to switch to metabolically active infectious form a vital problem to consider. M. tuberculosis dormancy is regulated by the three-component regulatory system of two kinases (DosT and DevS) and transcriprional regulator (DevR). DevR activates transcription of a set of genes, which allow the bacteria to survive long periods of anaerobiosis, and may be important for long-term survival within the host during latent infection. The DevR-regulon is studied experimentally in M. tuberculosis and few other phylogenetically close Mycobacteria spp. As many other two-component systems, the devRS operon is autoregulated. However, the mechanism of the dormancy is not completely clear even for these bacteria and there is no data describing the dormancy regulons in other species.

  18. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    Science.gov (United States)

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (Penterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens

    Directory of Open Access Journals (Sweden)

    Jacqueline Boldrin de Paiva

    2011-12-01

    Full Text Available Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12 only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ΔcobSΔcbiA. We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ΔcobSΔcbiA, Salmonella Gallinarum ΔcobSΔcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12 in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested.

  20. Fate of carbofuran in rice soils

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Sethunathan, N.

    1980-01-01

    More rapid degradation of carbofuran occurred in soils under flooded conditions than under nonflooded conditions. Carbofuran degraded rapidly between 20 and 40 days after flooding in most soils including an acid sulphate saline soil, pokkali capable of attaining near neutral pH upon flooding; but the insecticide persisted in another acid sulphate saline soil, kari perhaps due to its exceedingly low pH of 4.2 even after several weeks of flooding. Heat treatment of the soils prior to incubation increased the persistence of carbofuran under flooded conditions. Moreover, a bacterium isolated from flooded soil by enrichment culture technique, decomposed carbofuran in a mineral salts medium. In an isotope study, degradation of carbofuran in flooded soils was more rapid under undisturbed conditions than under aerobic conditions provided by shaking. Under continued anaerobiosis of undisturbed flooded soils, the hydrolysis products, 7-phenol in particular, accumulated; but when the undisturbed soil was returned to aerobic conditions, the hydrolysis products were mineralized rapidly. (author)

  1. Microbiota associated with chronic osteomyelitis of the jaws

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2010-12-01

    Full Text Available Chronic osteomyelitis of maxilla and mandible is rare in industrialized countries and its occurrence in developing countries is associated with trauma and surgery, and its microbial etiology has not been studied thoroughly. The aim of this investigation was to evaluate the microbiota associated with osteomyelitis of mandible or maxilla from some Brazilian patients. After clinical and radiographic evaluation, samples of bone sequestra, purulent secretion, and biopsies of granulomatous tissues from twenty-two patients with chronic osteomyelitis of mandible and maxilla were cultivated and submitted for pathogen detection by using a PCR method. Each patient harbored a single lesion. Bacterial isolation was performed on fastidious anaerobe agar supplemented with hemin, menadione and horse blood for anaerobes; and on tryptic soy agar supplemented with yeast extract and horse blood for facultative bacteria and aerobes. Plates were incubated in anaerobiosis and aerobiosis, at 37ºC for 14 and 3 days, respectively. Bacteria were cultivated from twelve patient samples; and genera Actinomyces, Fusobacterium, Parvimonas, and Staphylococcus were the most frequent. By PCR, bacterial DNA was detected from sixteen patient samples. The results suggest that cases of chronic osteomyelitis of the jaws are usually mixed anaerobic infections, reinforcing the concept that osteomyelitis of the jaws are mainly related to microorganisms from the oral environment, and periapical and periodontal infections may act as predisposing factors.

  2. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli.

    Science.gov (United States)

    Leonard, Simon; Hommais, Florence; Nasser, William; Reverchon, Sylvie

    2017-05-01

    Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have to deal with stressful conditions, such as acidic, oxidative and osmotic stresses; anaerobiosis; plant defenses; and contact with antimicrobial compounds. These adverse conditions can reduce bacterial survival and compromise disease initiation and propagation. Successful bacterial plant pathogens must detect potential hosts and also coordinate their possibly conflicting programs for survival and virulence. Consequently, these bacteria have a strong and finely tuned capacity for sensing and responding to environmental and plant stimuli. This review summarizes our current knowledge of the signals and genetic circuits that affect survival and virulence factor expression in three important and well-studied plant pathogenic bacteria with wide host ranges and the capacity for long-term environmental survival. These are: Ralstonia solanacerarum, a vascular pathogen that causes wilt disease; Agrobacterium tumefaciens, a biotrophic tumorigenic pathogen responsible for crown gall disease and Dickeya, a brute force apoplastic pathogen responsible for soft-rot disease. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  4. Screening for exopolysaccharide-producing bacteria from sub-tropical polluted groundwater

    Directory of Open Access Journals (Sweden)

    FUSCONI R.

    2002-01-01

    Full Text Available A selection of exopolysaccharide (EPS -- producing bacterial strains was conducted in groundwater adjacent to an old controlled landfill in the City of São Carlos (São Paulo, Brazil. The strains were isolated in P and E media under aerobic and microaerophilic conditions at 25ºC. A total of 26 strains were isolated and based on the mucoid mode of the colonies, 6 were selected and their morphological, physiological and biochemical aspects were characterized. All strains presented pigmentation, ranging from yellow to orange and from pink to salmon, with a shiny glistening aspect in all tested media. Strains Lb, Lc and Lg, which excelled the others with regard to the mucoid mode of the colonies, were selected to be cultured in E medium with alternate sucrose and glucose as carbon sources in anaerobiosis at 25ºC to analyze the production of EPS. Strains Lc and Lg were classified as being of order Actinomycelates, suborder Corynebacterineae. Lg strain was identified as Gordonia polyisoprenivorans and Lc strain did not correspond to a known description and therefore a more detailed study is under preparation. Considering all ecological aspects and the metabolic potential associated with the microorganisms of the environment studied, as well as the capacity to produce pigment and EPS, and the presence of G. polyisoprenivorans, a rubber degrader bacterium, the potential of the groundwater analyzed is evident as a source of microorganisms to be utilized in studies related to environmental remediation.

  5. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Cabello, Purificación; Sáez, Lara P; Olaya-Abril, Alfonso; Moreno-Vivián, Conrado; Roldán, María Dolores

    2018-02-01

    Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds, like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds. This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential application in bioremediation of industrial cyanide-containing wastes.

  6. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Srikhanta, Yogitha N. [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Atack, John M.; Beacham, Ifor R. [Institute for Glycomics, Griffith University, Gold Coast, QLD 4222 (Australia); Jennings, Michael P., E-mail: m.jennings@griffith.edu.au [Institute for Glycomics, Griffith University, Gold Coast, QLD 4222 (Australia)

    2013-07-05

    Highlights: •Escherichia coli contains two L-asparaginase isozymes with distinct localization, kinetics and regulation. •Mutant strains were used to examine the roles of these enzymes in L-asparagine utilization. •We report that L-asparaginase II permits growth on asparagine and glycerol under anaerobic conditions. •We propose that this enzyme is the first step in a co-regulated pathway leading to fumarate. •The pathway is regulated by anaerobiosis and cAMP and provides a terminal elector acceptor. -- Abstract: Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen.

  7. Elucidating the roles of ethanol fermentation metabolism in causing off-flavors in mandarins.

    Science.gov (United States)

    Tietel, Zipora; Lewinsohn, Efraim; Fallik, Elazar; Porat, Ron

    2011-11-09

    To elucidate the roles of ethanol fermentation metabolism in causing off-flavors, 'Mor' mandarins were exposed to anaerobic atmospheres for 0, 2, 4, 7, and 10 days to gradually increase juice ethanol and acetaldehyde levels through enhanced fermentation. Exposure to anaerobic atmosphere caused progressive decline in fruit sensory quality, from nearly "good" to "very bad", because of decreased typical mandarin flavor and increased sensation of 'musty' and 'ethanol' off-flavors. GC-MS analysis revealed significant (p ≤ 0.05) increases in the contents of 12 aroma volatiles, including the ethanol fermentation metabolites ethanol and acetaldehyde, and several fatty acid and amino acid catabolism derivates, 7 of which were ethyl esters, which suggests that they were esterification products of ethanol and acyl-CoA's derived from fatty acid and amino acid catabolism. These de novo synthesized anaerobiosis-regulated ethyl esters impart 'pungent', 'ethereal', 'waxy', 'musty', and 'fruity' notes. Overall, these results suggest that besides the direct effects of ethanol and acetaldehyde, downstream ethanol esterification products may also be involved in causing off-flavor sensation in mandarins.

  8. Implementation of a biotechnological process for vat dyeing with woad.

    Science.gov (United States)

    Osimani, Andrea; Aquilanti, Lucia; Baldini, Gessica; Silvestri, Gloria; Butta, Alessandro; Clementi, Francesca

    2012-09-01

    The traditional process for vat dyeing with woad (Isatis tinctoria L.) basically relies on microbial reduction of indigo to its soluble form, leucoindigo, through a complex fermentative process. In the 19th century, cultivation of woad went into decline and use of synthetic indigo dye and chemical reduction agents was established, with a consequent negative impact on the environment due to the release of polluting wastewaters by the synthetic dyeing industry. Recently, the ever-growing demand for environmentally friendly dyeing technologies has led to renewed interest in ecological textile traditions. In this context, this study aims at developing an environmentally friendly biotechnological process for vat dyeing with woad to replace use of polluting chemical reduction agents. Two simple broth media, containing yeast extract or corn steep liquor (CSL), were comparatively evaluated for their capacity to sustain the growth and reducing activity of the strain Clostridium isatidis DSM 15098(T). Subsequently, the dyeing capacity of the CSL medium added with 140 g L⁻¹ of woad powder, providing 2.4 g L⁻¹ of indigo dye, was evaluated after fermentation in laboratory bioreactors under anaerobic or microaerophilic conditions. In all fermentations, a sufficiently negative oxidation/reduction potential for reduction of indigo was reached as early as 24 h and maintained up to the end of the monitoring period. However, clearly faster indigo dye reduction was seen in the broth cultures fermented under strict anaerobiosis, thus suggesting the suitability of the N₂ flushing strategy for enhancement of bacterial-driven indigo reduction.

  9. On the catabolism of amino acids in the yeast Dekkera bruxellensis and the implications for industrial fermentation processes.

    Science.gov (United States)

    Parente, Denise Castro; Cajueiro, Danielli Batista Bezerra; Moreno, Irina Charlot Peña; Leite, Fernanda Cristina Bezerra; De Barros Pita, Will; De Morais, Marcos Antonio

    2018-03-01

    In the last years several reports have reported the capacity of the yeast Dekkera (Brettanomyces) bruxellensis to survive and adapt to the industrial process of alcoholic fermentation. Much of this feature seems to relate to the ability to assimilate limiting sources of nutrients, or somehow some that are inaccessible to Saccharomyces cerevisiae, in particular the sources of nitrogen. Among them, amino acids (AA) are relevant in terms of beverage musts, and could also be important for bioethanol. In view of the limited knowledge on the control of AA, the present work combines physiological and genetic studies to understand how it operates in D. bruxellensis in response to oxygen availibility. The results allowed separation of the AA in three groups of preferentiality and showed that glutamine is the preferred AA irrespective of the presence of oxygen. Glutamate and aspartate were also preferred AA in anaerobiosis, as indicated by the physiological data. Gene expression experiments showed that, apart from the conventional nitrogen catabolic repression mechanism that is operating in aerobiosis, there seems to be an oxygen-independent mechanism acting to overexpress key genes like GAP1, GDH1, GDH2 and GLT1 to ensure adequate anaerobic growth even in the presence of non-preferential nitrogen source. This could be of major importance for the industrial fitness of this yeast species. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Pereira, Luciana Filgueira; Bassi, Ana Paula Guarnieri; Avansini, Simoni Helena; Neto, Adauto Gomes Barbosa; Brasileiro, Bereneuza Tavares Ramos Valente; Ceccato-Antonini, Sandra Regina; de Morais, Marcos Antonio

    2012-03-01

    The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.

  11. Characterization of Monoclonal Antibodies Specific for Erwinia carotovora subsp. atroseptica and Comparison of Serological Methods for Its Sensitive Detection on Potato Tubers

    Science.gov (United States)

    Gorris, María Teresa; Alarcon, Benito; Lopez, María M.; Cambra, Mariano

    1994-01-01

    Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant pathogenic bacteria or 162 saprophytic bacteria from potato tubers. Only one strain of E. chrysanthemi from potato cross-reacted. A comparison of several serological techniques to detect E. carotovora subsp. atroseptica on potato tubers was performed with MAb 4G4 or polyclonal antibodies. The organism was extracted directly from potato peels of artificially inoculated tubers by soaking or selective enrichment under anaerobiosis in a medium with polypectate. MAb 4G4 was able to detect specifically 240 E. carotovora subsp. atroseptica cells per ml by indirect immunofluorescence and immunofluorescence colony staining and after soaking by ELISA-DAS (double-antibody sandwich enzyme-linked immunosorbent assay) after enrichment. The same amount of cells was detected by using immunolectrotransfer with polyclonal antibodies, and E. carotovora subsp. atroseptica and subsp. carotovora were distinguished by the latter technique. ELISA-DAS using MAb 4G4 with an enrichment step also efficiently detected E. carotovora subsp. atroseptica in naturally infected tubers and plants. PMID:16349293

  12. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Hemschemeier, A.; Happe, T. [Botanisches Institut der Universitat Bonn (Germany); Gotor, C. [CSIC y Universidad de Sevilla (Spain). Instituto de Bioquimica Vegetal y Fotosintesis; Melis, A. [University of California, Berkeley, CA (United States). Department of Plant and Microbial Biology

    2002-12-01

    Recent studies indicate that [Fe]-hydrogenases and H{sub 2} metabolism are widely distributed among green algae. The enzymes are simple structured and catalyze H{sub 2} evolution with similar rates than the more complex [Fe]-hydrogenases from bacteria. Different green algal species developed diverse strategies to survive under sulfur deprivation. Chlamydomonas reinhardtii evolves large quantities of hydrogen gas in the absence of sulfur. In a sealed culture of C. reinhardtii, the photosynthetic O{sub 2} evolution rate drops below the rate of respiratory O{sub 2} consumption due to a reversible inhibition of photosystem II, thus leading to an intracellular anaerobiosis. The algal cells survive under these anaerobic conditions by switching their metabolism to a kind of photo-fermentation. Although possessing a functional [Fe]-hydrogenase gene, the cells of Scenedesmus obliquus produce no significant amounts of H{sub 2} under S-depleted conditions. Biochemical analyses indicate that S. obliquus decreases almost the complete metabolic activities while maintaining a low level of respiratory activity. (author)

  13. Transcription of genes involved in sulfolipid and polyacyltrehalose biosynthesis of Mycobacterium tuberculosis in experimental latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Jimmy E Rodríguez

    Full Text Available The Influence of trehalose-based glycolipids in the virulence of Mycobacterium tuberculosis (Mtb is recognised; however, the actual role of these cell-wall glycolipids in latent infection is unknown. As an initial approach, we determined by two-dimensional thin-layer chromatography the sulfolipid (SL and diacyltrehalose/polyacyltrehalose (DAT/PAT profile of the cell wall of hypoxic Mtb. Then, qRT-PCR was extensively conducted to determine the transcription profile of genes involved in the biosynthesis of these glycolipids in non-replicating persistent 1 (NRP1 and anaerobiosis (NRP2 models of hypoxia (Wayne model, and murine models of chronic and progressive pulmonary tuberculosis. A diminished content of SL and increased amounts of glycolipids with chromatographic profile similar to DAT were detected in Mtb grown in the NRP2 stage. A striking decrease in the transcription of mmpL8 and mmpL10 transporter genes and increased transcription of the pks (polyketidesynthase genes involved in SL and DAT biosynthesis were detected in both the NRP2 stage and the murine model of chronic infection. All genes were found to be up-regulated in the progressive disease. These results suggest that SL production is diminished during latent infection and the DAT/PAT precursors can be accumulated inside tubercle bacilli and are possibly used in reactivation processes.

  14. In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method

    Directory of Open Access Journals (Sweden)

    ROSA Odila Pereira da Silva

    2002-01-01

    Full Text Available The determination of bacterial susceptibility to intracanal medicaments is a necessity. Nevertheless, few studies utilize the proper methodology to carry out that evaluation with anaerobes. In this study, the steps of a broth dilution method, carried out in microplates (microdilution and tubes (macrodilution, to test the effect of traditional intracanal medicaments on anaerobic bacteria are described. The results are presented as values of minimal inhibitory and bactericidal concentrations (MIC and MBC. Standardized inocula of the anaerobic bacteria Prevotella nigrescens (ATCC 33563, Fusobacterium nucleatum (ATCC 25586 and Clostridium perfringens (ATCC 13124, in reinforced Clostridium medium (RCM and supplemented Brucella broth, were submitted to different concentrations of calcium hydroxide, chlorhexidine digluconate, camphorated paramonochlorophenol and formocresol solutions. The drugs were diluted in the same culture broths, in microplates and tubes, and were then incubated in anaerobiosis jars at 37ºC for 48 or 96 hours. The determination of MICs was carried out through visual and spectrophotometric readings, and the determination of MBCs, through the plating of aliquots on RCM-blood agar. For that kind of study, the macromethod with spectrophotometric reading should be the natural choice. MICs and MBCs obtained with the macromethod were compatible with the known clinical performance of the studied medications, and the values varied according to the bacteria and culture media employed. RCM was the most effective medium and C. perfringens, the most resistant microorganism.

  15. Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate.

    Science.gov (United States)

    Hickert, Lilian Raquel; da Cunha-Pereira, Fernanda; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia

    2013-03-01

    The ability of Candida shehatae, Saccharomyces cerevisiae, or the combination of these two yeasts in converting the mixed sugar composition of rice hull hydrolysate (RHH) as substrate for ethanol production is presented. In shake flask experiments, co-cultures showed ethanol yields (YP/S) of 0.42 and 0.51 in synthetic medium simulating the sugar composition of RHH and in RHH, respectively, with both glucose and xylose being completely depleted, while pure cultures of C. shehatae produced slightly lower ethanol yields (0.40). Experiments were scaled-up to bioreactors, in which anaerobiosis and oxygen limitation conditions were tested. Bioreactor co-cultures produced similar ethanol yields in both conditions (0.50-0.51) in synthetic medium, while in RHH, yields of 0.48 and 0.44 were obtained, respectively. The results showed near-theoretical yields of ethanol. Results suggest the feasibility of co-cultures of C. shehatae, a newly isolated strain, and S. cerevisiae in RHH as substrate for second-generation ethanol production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays.

    Science.gov (United States)

    Bhatter, Purva D; Gupta, Pooja D; Birdi, Tannaz J

    2016-01-01

    Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome), Ocimum sanctum L. (leaf), Piper nigrum L. (seed), and Pueraria tuberosa DC. (tuber) were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549) infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone) was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous) showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous) and A. calamus (aqueous and ethanol) extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.

  17. Forever Young: Mechanisms of Natural Anoxia Tolerance and Potential Links to Longevity

    Directory of Open Access Journals (Sweden)

    Anastasia Krivoruchko

    2010-01-01

    Full Text Available While mammals cannot survive oxygen deprivation for more than a few minutes without sustaining severe organ damage, some animals have mastered anaerobic life. Freshwater turtles belonging to the Trachemys and Chrysemys genera are the champion facultative anaerobes of the vertebrate world, often surviving without oxygen for many weeks at a time. The physiological and biochemical mechanisms that underlie anoxia tolerance in turtles include profound metabolic rate depression, post-translational modification of proteins, strong antioxidant defenses, activation of specific stress-responsive transcription factors, and enhanced expression of cyto-protective proteins. Turtles are also known for their incredible longevity and display characteristics of “negligible senescence.” We propose that the robust stress-tolerance mechanisms that permit long term anaerobiosis by turtles may also support the longevity of these animals. Many of the mechanisms involved in natural anoxia tolerance, such as hypometabolism or the induction of various protective proteins/pathways, have been shown to play important roles in mammalian oxygen-related diseases and improved understanding of how cells survive without oxygen could aid in the understanding and treatment of various pathological conditions that involve hypoxia or oxidative stress. In the present review we discuss the recent advances made in understanding the molecular nature of anoxia tolerance in turtles and the potential links between this tolerance and longevity.

  18. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat.

    Science.gov (United States)

    da Silva Sabo, Sabrina; Pérez-Rodríguez, Noelia; Domínguez, José Manuel; de Souza Oliveira, Ricardo Pinheiro

    2017-09-01

    Cheese whey, the main byproduct of the dairy industry, is one of the most worrisome types of industrial waste, not only because of its abundant annual global production but also because it is a notable source of environmental pollution. However, cheese whey can serve as a raw material for the production of biocomposites. In this context, in this study, we assayed the production of a bacteriocin-like inhibitory substance (BLIS) and lactate by culturing Lactobacillus plantarum ST16Pa in hydrolyzed fresh cheese whey. The process was improved by studying the enzymatic hydrolysis of cheese whey as well as its supplementation with soybean flour under microaerophilic or anaerobic conditions. Thus, the highest values of BLIS (7367.23 arbitrary units [AU]/mL) and lactate yield (Y lactate/lactose =1.39g/g) were achieved after addition of 10g/L soybean flour in microaerophilia. These conditions were successfully scaled up in a bioreactor because during complete anaerobiosis at 150rpm, L. plantarum ST16Pa attained considerable cell growth (3.14g/L), lactate concentration (14.33g/L), and BLIS activity (8082.56AU/mL). In addition, the cell-free supernatant resulting from this bioprocess showed high biopreservative efficiency in chicken breast fillets artificially contaminated with Enterococcus faecium 711 during 7days of refrigerated storage, thus indicating the potential use of this BLIS as a biopreservative in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Some physical properties of wetland soils with reference to the tropics

    International Nuclear Information System (INIS)

    Obi, M.E.

    1989-10-01

    Some physical properties of wetland soils are reviewed with reference to the tropical regions. The soils have a common feature periodic flooding during the year. They exhibit wide variability in mechanical composition in accordance with their genesis and location. Bulk densities range from 1.0 to 1.9 Mg m -3 for mineral soils with moderate organic matter content and from about 0.02 to 0.2 Mg m -3 for organic soils. Total porosities are generally high with dominance of micropores in organic and clayey wetland soils. Shrink-swell potential is also generally high in many of these wetland types with consequent problems of crack formation. Anaerobiosis condition is a common feature in wetland soils. Also carbon dioxide levels may be excessive for normal crop development. Water-retentivity has been found to be high to very high to in a number of tropical wetland soils of medium to fine texture. In some organic soils values of over 100% (mass basis) are not uncommon. In particular, a value of up to 3000% has been reported. Water infiltration and percolation are highly variable. The heat capacities are generally high with resultant reduced temperatures. Land use and management strategies are proferred in the light of the properties. (author). 44 refs, 9 tabs

  20. Use of photocatalytic reduction to hasten preparation of culture media for saccharolytic Clostridium species Uso de redução fotocatalítica para acelerar preparo de meio de cultura para espécies sacarolíticas de Clostridium

    Directory of Open Access Journals (Sweden)

    Romualdo S. Fukushima

    2003-04-01

    Full Text Available Cysteine is the preferred reducing agent used in the preparation of culture media for the growth of many strictly anaerobic microorganisms; however, redox potential reduction of cysteine is very slow, making it inconvenient if the medium is needed immediately or in large quantity. The time required to reduce culture medium containing resazurin (an indicator of reducing conditions was dramatically shortened when the medium, after being injected with the reducing agent cysteine, was irradiated with incandescent light from a halogen lamp. Light intensity had an effect upon reduction time: tubes kept in the dark took more than 12 h to achieve the desired degree of anaerobiosis (measured spectrophotometrically by the bleaching of the indicator, resazurin while tubes subjected to ordinary laboratory illumination were reduced in about 2 h. When exposed to maximum light intensity (equivalent to a regular 100 watt bulb lamp tubes could be made anaerobic in less than 20 min. Cysteine was essential for the bleaching of resazurin. Evidence that adequate anaerobiosis was achieved by light irradiation was provided by the fact that four Clostridium strains and one Thermoanaerobacter strain displayed similar growth (measured by lag time, growth rate, and extent of growth in media reduced under high intensity light or under normal laboratory illumination.A cisteína é o agente redutor preferido para o preparo de meios de cultura para muitos microrganismos estritamente anaeróbicos; no entanto, a ação redutora do potencial redox da cisteína é muito lenta, tornando-a inconveniente, para o uso imediato do meio ou em grande quantidade. O tempo requerido para reduzir o meio de cultura contendo resazurina (um indicador redox foi bastante encurtado quando o meio, após ter sido injetado com o agente redutor cisteína, foi irradiado com luz incandescente proveniente de duas lâmpadas de halogênio. A intensidade da iluminação afetou o tempo gasto na redu

  1. Oxygen consumption and mode of energy production in the intertidal worm Sipunculus nudus L.: definition and characterization of the critical PO2 for an oxyconformer.

    Science.gov (United States)

    Pörtner, H O; Heisler, N; Grieshaber, M K

    1985-03-01

    Oxygen consumption, anaerobic metabolism, and oxygen supply of inner tissues were analysed in Sipunculus nudus at different oxygen tensions. Oxygen consumption, energy expenditure, and the PO2 in the coelomic fluid decreased linearly with declining ambient PO2. Below a certain range of PO2, which was a function of the size of the animals, the rate of oxygen consumption deviated progressively from the linear PO2/MO2 function. In the same range of ambient PO2 the coelomic PO2 levelled off. Anaerobic glycolysis, phosphagen degradation, and the succinate-propionate pathway became apparent with concentration changes of anaerobic metabolites first occurring in inner tissues. In extension of the conventional definition (Prosser, 1973; Dejours, 1981) the term critical PO2 (Pc) is applied to the oxyconforming Sipunculus nudus. The Pc is redefined as the steady-state PO2 below which environmental oxygen availability becomes insufficient for complete aerobic metabolism (as indicated by the onset of anaerobic energy production). It is discussed to be closely linked to the oxygen supply of inner tissues. This redefined critical PO2 is shifted to higher partial pressures with increasing size of the animals because of the diffusion distance related decrease in coelomic PO2. Accordingly, with decline of ambient PO2, oxygen starts to be released from haemerythrin at higher ambient PO2 values in larger animals. The pigment, which is likely to function as an oxygen store, defers anaerobiosis and, thereby, supports compensation of a higher Pc in large individuals by means of an increased haematocrit. The Pc is discussed as crucial factor for survival of individual animals in intertidal oxygen-depleted environments.

  2. Molecular cloning of the crustacean hyperglycemic hormone (CHH) precursor from the X-organ and the identification of the neuropeptide from sinus gland of the Alaskan Tanner crab, Chionoecetes bairdi.

    Science.gov (United States)

    Chung, J Sook; Bembe, Sarah; Tamone, Sherry; Andrews, Ebony; Thomas, Heidy

    2009-06-01

    Crustacean hyperglycemic hormone (CHH) secreted from sinus glands primarily elicits hyperglycaemia in crustaceans. CHH is particularly important for energy metabolism during environmental and physiological stress as animals switch to anaerobiosis. CHH has been purified from multiple brachyuran crab species to date, but not from the cold water Tanner crab, Chionoecetes bairdi, a species found in Alaskan coastal waters. The purpose of molecular cloning the C. bairdi CHH precursor and identification of its neuropeptide form in sinus glands is to establish tools to further study cold water crab metabolic physiology. Cold water crabs such as those in the genus Chionoecetes are a good model for understanding the role that climate change and associated water temperature changes might have on metabolic physiology. CHHs in sinus glands of C. bairdi were purified using reverse-phase HPLC and were identified as CHH with an enzyme-linked immunosorbent assay (ELISA) using cross-reacting Callinectes sapidus and Carcinus maenas CHH antisera. The bioactivity of CHH was further assessed using a homologous assay by injecting CHH into eyestalk ablated C. bairdi and measuring subsequent rise in circulating glucose. The full length cDNA (1944bp) of C. bairdi CHH was determined by PCR using degenerate primers cloning and 5', 3' rapid amplification of cDNA ends (RACE). A phylogenetic analysis of deduced amino acid sequences from six brachyuran crab species showed C. bairdi CHH most closely related to the majid crab, Libinia emarginata (P55688). Future studies will enable us to compare metabolic physiology and requirements of cold water C. bairdi with the warm water crab C. sapidus.

  3. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  4. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils

    Science.gov (United States)

    Miyajima, Toshihiro; Wada, Eitaro; Hanba, Yuko T.; Vijarnsorn, Pisoot

    1997-09-01

    Tropical wetlands are one of the largest natural sources in the global methane budget due to high biological activities and the anaerobiosis in soil. We studied mineralization and gas production during the early stage of anaerobic decomposition of indigenous organic matters in soils of Narathiwat, southern Thailand, to clarify the significance of the substrate quality in controlling decomposition and methanogenesis in some different tropical wetland soils. The optimal temperature of decomposition was around 35°C, while methanogenesis did not proceed at 45°C. During the first 50 days of anaerobic incubation, 5 ˜ 63% (carbon basis) of indigenous plant leaves were mineralized. The mineralization rate was strongly and negatively correlated with the lignin and/or fiber contents, but not theC/N ratio, of the substrate plant materials. Difference in δ 13C between the substrate and the produced CH 4 was generally greater (more negative in CH 4) for more recalcitrant substrates, indicating that H 2 as opposed to acetate becomes a more important metabolic intermediate in the anaerobic food web when the decomposition rate is limited by substrate recalcitrance. Thus, the CH 4 isotope signature may be used to evaluate the importance of new vs. old organic matter as CH 4 source in natural soils. The mineralization rate was higher, and the isotopic difference between the substrate and CH 4 was smaller when plant materials were incubated with sulfate-contaminated soils than with native peat soils. The isotopic difference between the substrate and CH 4 was significantly different between native peat soils. Results of a tracer experiment using 13C-labeled substrates indicated that these differences could be ascribed to difference in the mode of acetate metabolism between soils.

  5. PURIFICACIÓN DE LIPOPOLISACÁRIDO DE Porphyromonas gingivalis LIBRE DE POLISACÁRIDOS UTILIZANDO CROMATOGRAFÍA DE ALTA RESOLUCIÓN SEPHACRYL S-200

    Directory of Open Access Journals (Sweden)

    Diego Gualtero

    2008-09-01

    Full Text Available El objetivo de este trabajo fue mejorar un método estándar para la purificación de lipopolisacárido (LPS de Porphyromonas gingivalis libre de polisacáridos usando una estrategia de extracción, digestión enzimática y cromatografía de alta resolución. La bacteria P. gingivalis se cultivó en condiciones de anaerobiosis y se hizo extracción de las membranas con el método de fenol-agua. Luego de una digestión enzimática (DNAsa, RNAsa y proteasa se separó el extracto por filtración por gel con Sephacryl S-200. La muestra purificada se caracterizó por electroforesis en gel de acrilamida con tinción de plata y por el método Purpald se detecto el ácido 2-ceto-3-desoxioctulosónico (KDO. Se obtuvo una preparación libre de ácidos nucleicos, proteínas y polisacáridos. La separación por cromatografía fue de alta resolución al permitir la obtención de dos picos con diferentes componentes. El protocolo de purificación nos permitió obtener LPS de P. gingivalis con alto grado de pureza, el cual podría ser usado en próximos ensayos para evaluar su función en ensayos in vitro e in vivo; así como iniciar la obtención de LPS de otras bacterias períodontopáticas, con el fin de investigar la asociación de enfermedad períodontal con enfermedades cardiovasculares.

  6. Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen, 1804

    Directory of Open Access Journals (Sweden)

    Valentina Grazioli

    2016-02-01

    Full Text Available The metabolic effects of low oxygen content on alcohol-dehydrogenase (ADH activity and hemoglobin (Hb concentration were investigated in IV-instar larvae of Chironomus riparius (Diptera: Chironomidae from an Italian stream. Two series of short-term (48 h experiments were carried out: exposure to (1 progressive hypoxia (95 to 5% of oxygen saturation and (2 anoxia (at <5% of oxygen saturation. In (1, Hb amount increased with increasing oxygen depletion up to a critical value of oxygenation (about 70% of oxygen saturation. Below this percentage, the Hb amount declined to values comparable with those present in the control. The respiration rate (R remained almost constant at oxygen saturation >50% and decreased significantly only after 48 h of treatment (= <5% of oxygen saturation reaching values <100 mmolO2 gAFDW-1 h-1. ADH activity showed two phases of growth, within the first 14 h and over 18 h of exposure. Overall, we inferred that i Hb might function as short-term oxygen storage, enabling animals to delay the on-set of anaerobiosis; and ii alcoholic fermentation co-occurs for a short time with aerobic respiration, becoming the prevalent metabolic pathway below 5% of oxygen saturation (<1 mg L-1. These considerations were supported also by results from anoxia exposure (2. In such condition, larvae were visibly stressed, becoming immobile after few minutes of incubation, and ADH reached higher values than in the hypoxia treatment (2.03±0.15 UADH mg prot-1. Overall, this study showed a shift from aerobic to anaerobic activity in C. riparius larvae exposed to poorly oxygenated water with an associated alteration of ADH activity and the Hb amount. Such metabolites might be valid candidate biomarkers for the environmental monitoring of running waters.

  7. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    Science.gov (United States)

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  8. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  9. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?

    Science.gov (United States)

    Bertin, Yolande; Laurier, Marie; Durand, Alexandra; Duchez, David; Segura, Audrey; Thévenot-Sergentet, Delphine; Baruzzi, Federico; Chaucheyras-Durand, Frédérique; Forano, Evelyne

    2017-01-01

    The bovine gastrointestinal tract (GIT) is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA), an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6) were evaluated in bovine rumen fluid (RF) under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80). The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM) by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants. PMID:29091926

  10. Alteration of soil microbial communities and water quality in restored wetlands

    Science.gov (United States)

    Bossio, D.A.; Fleck, J.A.; Scow, K.M.; Fujii, R.

    2006-01-01

    Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage. ?? 2005 Elsevier Ltd. All

  11. Adaptation and Antibiotic Tolerance of Anaerobic Burkholderia pseudomallei ▿ †

    Science.gov (United States)

    Hamad, Mohamad A.; Austin, Chad R.; Stewart, Amanda L.; Higgins, Mike; Vázquez-Torres, Andrés; Voskuil, Martin I.

    2011-01-01

    The Gram-negative bacterium Burkholderia pseudomallei is the etiological agent of melioidosis and is remarkably resistant to most classes of antibacterials. Even after months of treatment with antibacterials that are relatively effective in vitro, there is a high rate of treatment failure, indicating that this pathogen alters its patterns of antibacterial susceptibility in response to cues encountered in the host. The pathology of melioidosis indicates that B. pseudomallei encounters host microenvironments that limit aerobic respiration, including the lack of oxygen found in abscesses and in the presence of nitric oxide produced by macrophages. We investigated whether B. pseudomallei could survive in a nonreplicating, oxygen-deprived state and determined if this physiological state was tolerant of conventional antibacterials. B. pseudomallei survived initial anaerobiosis, especially under moderately acidic conditions similar to those found in abscesses. Microarray expression profiling indicated a major shift in the physiological state of hypoxic B. pseudomallei, including induction of a variety of typical anaerobic-environment-responsive genes and genes that appear specific to anaerobic B. pseudomallei. Interestingly, anaerobic B. pseudomallei was unaffected by antibacterials typically used in therapy. However, it was exquisitely sensitive to drugs used against anaerobic pathogens. After several weeks of anaerobic culture, a significant loss of viability was observed. However, a stable subpopulation that maintained complete viability for at least 1 year was established. Thus, during the course of human infection, if a minor subpopulation of bacteria inhabited an oxygen-restricted environment, it might be indifferent to traditional therapy but susceptible to antibiotics frequently used to treat anaerobic infections. PMID:21537012

  12. Cooperative Actions of CRP-cAMP and FNR Increase the Fosfomycin Susceptibility of Enterohaemorrhagic Escherichia coli (EHEC) by Elevating the Expression of glpT and uhpT under Anaerobic Conditions.

    Science.gov (United States)

    Kurabayashi, Kumiko; Tanimoto, Koichi; Tomita, Haruyoshi; Hirakawa, Hidetada

    2017-01-01

    Bacterial infections to anaerobic site are often hard to be treated because the activity of most of antimicrobials decreases under anaerobic conditions. However, fosfomycin rather provides a greater activity under anaerobic conditions than aerobic conditions. Previously, we found that expression of glpT and uhpT , fosfomycin symporters in enterohaemorrhagic Escherichia coli (EHEC) was upregulated by FNR, a global regulator during the anaerobiosis of the bacterium, which led to increased uptake and susceptibility to this drug. In this study, we showed that expression of glpT and uhpT is induced by CRP-cAMP, the regulator complex under both aerobic and anaerobic conditions. The activity of CRP-cAMP in EHEC was elevated under anaerobic conditions because levels of both CRP and cAMP were higher in the cells when grown anaerobically than those when grown aerobically. Results of expression study using mutants indicated that CRP-cAMP is indispensable for expression of glpT but not uhpT -whereas that of uhpT requires UhpA that is the response regulator composing of two-component system with the sensor kinase, UhpB. The CRP-cAMP protein bound to a region that overlaps RNA polymerase binding site for glpT and region upstream of UhpA binding site for uhpT . FNR bound to a region further upstream of CRP-cAMP binding site on region upstream of the glpT gene. These combined results suggested that increased antibacterial activity of fosfomycin to EHEC under anaerobic conditions is due to activation of FNR and increment of CRP-cAMP activity. Then, FNR enhances the expression of glpT activated by CRP-cAMP while CRP-cAMP and FNR cooperatively aids the action of UhpA to express uhpT to maximum level.

  13. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  14. Bacterial Physiological Adaptations to Contrasting Edaphic Conditions Identified Using Landscape Scale Metagenomics

    Directory of Open Access Journals (Sweden)

    Ashish A. Malik

    2017-07-01

    Full Text Available Environmental factors relating to soil pH are important regulators of bacterial taxonomic biodiversity, yet it remains unclear if such drivers affect community functional potential. To address this, we applied whole-genome metagenomics to eight geographically distributed soils at opposing ends of a landscape soil pH gradient (where “low-pH” is ~pH 4.3 and “high-pH” is ~pH 8.3 and evaluated functional differences with respect to functionally annotated genes. First, differences in taxonomic and functional diversity between the two pH categories were assessed with respect to alpha diversity (mean sample richness and gamma diversity (total richness pooled for each pH category. Low-pH soils, also exhibiting higher organic matter and moisture, consistently had lower taxonomic alpha and gamma diversity, but this was not apparent in assessments of functional alpha and gamma diversity. However, coherent changes in the relative abundances of annotated genes between low- and high-pH soils were identified; with strong multivariate clustering of samples according to pH independent of geography. Assessment of indicator genes revealed that the acidic organic-rich soils possessed a greater abundance of cation efflux pumps, C and N direct fixation systems, and fermentation pathways, indicating adaptations to both acidity and anaerobiosis. Conversely, high-pH soils possessed more direct transporter-mediated mechanisms for organic C and N substrate acquisition. These findings highlight the distinctive physiological adaptations required for bacteria to survive in soils of various nutrient availability and edaphic conditions and more generally indicate that bacterial functional versatility with respect to functional gene annotations may not be constrained by taxonomy.

  15. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.

    Science.gov (United States)

    Ogawa, Takahisa; Tamoi, Masahiro; Kimura, Ayako; Mine, Ayaka; Sakuyama, Harumi; Yoshida, Eriko; Maruta, Takanori; Suzuki, Kengo; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-01-01

    Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. When grown aerobically and then transferred into anaerobic conditions, E. gracilis cells degrade paramylon to actively synthesize and accumulate wax esters. Thus, the enhanced accumulation of paramylon through the genetic engineering of photosynthesis should increase the capacity for wax ester production. We herein generated transgenic Euglena (EpFS) cells expressing the cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), which is involved in the Calvin cycle, to enhance its photosynthetic activity. FBP/SBPase was successfully expressed within Euglena chloroplasts. The cell volume of the EpFS4 cell line was significantly larger than that of wild-type cells under normal growth conditions. The photosynthetic activity of EpFS4 cells was significantly higher than that of wild type under high light and high CO2, resulting in enhanced biomass production, and the accumulation of paramylon was increased in transgenic cell lines than in wild-type cells. Furthermore, when EpFS cell lines grown under high light and high CO2 were placed on anaerobiosis, the productivity of wax esters was approximately 13- to 100-fold higher in EpFS cell lines than in wild-type cells. Our results obtained here indicate that the efficiency of biomass production in E. gracilis can be improved by genetically modulating photosynthetic capacity, resulting in the enhanced production of wax esters. This is the first step toward the utilization of E. gracilis as a sustainable source for biofuel production under

  16. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?

    Directory of Open Access Journals (Sweden)

    Yolande Bertin

    Full Text Available The bovine gastrointestinal tract (GIT is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA, an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6 were evaluated in bovine rumen fluid (RF under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80. The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants.

  17. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety?

    Science.gov (United States)

    Bertin, Yolande; Habouzit, Chloé; Dunière, Lysiane; Laurier, Marie; Durand, Alexandra; Duchez, David; Segura, Audrey; Thévenot-Sergentet, Delphine; Baruzzi, Federico; Chaucheyras-Durand, Frédérique; Forano, Evelyne

    2017-01-01

    The bovine gastrointestinal tract (GIT) is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Therefore, it is crucial to develop strategies, such as EHEC suppression by antagonistic microorganisms, to reduce EHEC survival in the GIT of cattle and to limit shedding and food contamination. Most human-derived Lactobacillus reuteri strains produce hydroxypropionaldehyde (HPA), an antimicrobial compound, during anaerobic reduction of glycerol. The capacity of L. reuteri LB1-7, a strain isolated from raw bovine milk, to produce HPA and its antimicrobial activity against an O157:H7 EHEC strain (FCH6) were evaluated in bovine rumen fluid (RF) under strict anaerobiosis. EHEC was totally suppressed when incubated in RF inoculated with L. reuteri LB1-7 and supplemented with 80 mM glycerol (RF-Glyc80). The addition of LB1-7 or glycerol alone did not modify EHEC survival in RF. Glycerol was converted to HPA (up to 14 mM) by LB1-7 during incubation in RF-Glyc80, and HPA production appeared to be responsible for EHEC suppression. The bactericidal activity of L. reuteri LB1-7, the concentration of glycerol required and the level of HPA produced depended on physiological and ecological environments. In vitro experiments also showed that EHEC inoculated in rumen fluid and exposed to L. reuteri and glycerol had a very limited growth in rectal contents. However, L. reuteri exerted an antimicrobial activity against the rumen endogenous microbiota and perturbed feedstuff degradation in the presence of glycerol. The potential administration of L. reuteri and glycerol in view of application to finishing beef cattle at the time of slaughter is discussed. Further in vivo studies will be important to confirm the efficiency of L. reuteri and glycerol supplementation against EHEC shedding in ruminants.

  18. Archaeal surface appendages: their function and the critical role of N-linked glycosylation in their assembly

    Science.gov (United States)

    Jarrell, Ken F.; Nair, Divya B.; Jones, Gareth M.; Aizawa, S.-I.; Chong, James J. P.; Stark, Meg; Logan, Susan M.; Vinogradov, Evgeny; Kelly, John F.

    2011-10-01

    Many cultivated archaea are extremophiles and, as such, various archaea inhabit some of the most inhospitable niches on the planet in terms of temperature, pH, salinity and anaerobiosis. Different archaeal species have been shown to produce a number of unusual and sometimes unique surface structures. The best studied of these are flagella which are fundamentally different from bacterial flagella and instead bear numerous similarities to bacterial type IV pili in their structure and likely assembly. The major structural proteins, flagellins, are made as preproteins with type IV pilin-like signal peptides processed by a specific signal peptidase. In addition, the flagellins are glycoproteins with attached N-linked glycans. Both of these posttranslational modifications have been studied in the anaerobic archaeon, Methanococcus maripaludis, an organism which also possesses other surface appendages, an unusual version of type IV pili, whose major constituents are also glycoproteins. Analysis of mutants unable to make either or both of flagella and pili demonstrated that both are essential for attachment to surfaces. A number of mutants defective in the assembly and biosynthesis of the tetrasaccharide N-linked to the flagellins have been isolated. Investigations of these mutants by electron microscopy, mass spectrometry and motility assays have demonstrated that flagellins possessing no attached glycan or a glycan truncated to a single sugar cannot assemble flagella on their surface. Mutants which can attach a glycan of 2 or 3 sugars to flagellins assemble flagella but they are impaired in their swimming compared with wildtype cells which attach the tetrasaccharide to their flagellins.

  19. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging.

    Directory of Open Access Journals (Sweden)

    Richard S Cottrell

    Full Text Available Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables.Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1% concentrations of organic matter experienced a significantly higher mortality rate (p<0.01 than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C exhibited significantly increased mortality (p<0.01 compared to those in the ambient treatment group (15°C. Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1 with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species' resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis.Lack of consideration for the role of organic matter and

  20. Antigiardial activity of novel triazolyl quinolone-based chalcone derivatives: when oxygen makes the difference

    Directory of Open Access Journals (Sweden)

    Vijay eBahadur

    2015-04-01

    Full Text Available Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia (G. intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ. New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an ‘anaerobic pathogen’, G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study (Bahadur, Mastronicola et al. (2014 Antimicrob. Agents Chemother. 58, 543. Here, forty-five novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified and characterized by high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to 3-4 fold; the same compounds proved to be up to > 100 fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.

  1. Occurrence of Aggregatibacter actinomycetemcomitans in Brazilian Indians from Umutina Reservation, Mato Grosso, Brazil.

    Science.gov (United States)

    Vieira, Evanice Menezes Marçal; Raslan, Suzane A; Wahasugui, Thais Cristina; Avila-Campos, Mario Julio; Marvulle, Valdecir; Gaetti-Jardim Júnior, Elerson

    2009-01-01

    Aggregatibacter actinomycetemcomitans is associated with periodontal disease, especially localized aggressive periodontitis, produces a potent leukotoxin and its distribution is influenced by ethnic characteristics of the population. Using culture and polymerase chain reaction (PCR) techniques, this study evaluated the occurrence of this microorganism and the distribution of leukotoxic strains isolated from Indians belonging to the Umutima Reservation, Mato Grosso, Brazil. Forty-eight native Brazilians with gingivitis and 38 with chronic periodontitis, belonging to Umutina, Paresi, Bororo, Bakairi, Kayabi, Irantxe, Nambikwara and Terena ethnicities, were studied. Subgingival, supragingival and saliva samples of each patient were collected and transferred to VMGA III medium and to ultra pure Milli Q water. Bacteria were grown on TSBV agar and incubated in anaerobiosis (90% N2 + 10% CO2) at 37 degrees C for 72 h. The presence of the ltx promoter was determined by PCR, and a 530 bp deletion in the promoter was evaluated by using specific primers. A. actinomycetemcomitans was isolated from 8.33% of saliva, supragingival and subgingival samples from patients with gingivitis and from 18.42% of saliva and supragingival biofilm, and 26.32% subgingival biofilm from patients with chronic periodontitis. By PCR, the bacterial DNA was detected in 8.33% of saliva, supragingival and subgingival biofilms from patients with gingivitis and from 23.68% of saliva, 28.95% supragingival biofilm and 34.21% subgingival biofilm from patients with periodontitis. All strains were grouped as non-JP2 clones based on the absence of deletion in the leukotoxin promoter. Differences among the microbial and clinical parameters in patients were analyzed by using the Mann-Whitney, Chi-square or Fisher's exact tests. The present results suggest that A. actinomycetemcomitans can be related to the attachment loss in this population, but the presence of minimally leukotoxic strains, as well as its role

  2. Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content.

    Science.gov (United States)

    Wüst, Pia K; Horn, Marcus A; Drake, Harold L

    2011-01-01

    The earthworm gut provides ideal in situ conditions for ingested heterotrophic soil bacteria capable of anaerobiosis. High amounts of mucus- and plant-derived saccharides such as glucose are abundant in the earthworm alimentary canal, and high concentrations of molecular hydrogen (H(2)) and organic acids in the alimentary canal are indicative of ongoing fermentations. Thus, the central objective of this study was to resolve potential links between fermentations and active fermenters in gut content of the anecic earthworm Lumbricus terrestris by 16S ribosomal RNA (rRNA)-based stable isotope probing, with [(13)C]glucose as a model substrate. Glucose consumption in anoxic gut content microcosms was rapid and yielded soluble organic compounds (acetate, butyrate, formate, lactate, propionate, succinate and ethanol) and gases (carbon dioxide and H(2)), products indicative of diverse fermentations in the alimentary canal. Clostridiaceae and Enterobacteriaceae were users of glucose-derived carbon. On the basis of the detection of 16S rRNA, active phyla in gut contents included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia, taxa common to soils. On the basis of a 16S rRNA gene similarity cutoff of 87.5%, 82 families were detected, 17 of which were novel family-level groups. These findings (a) show the large diversity of soil taxa that might be active during gut passage, (b) show that Clostridiaceae and Enterobacteriaceae (fermentative subsets of these taxa) are selectively stimulated by glucose and might therefore be capable of consuming mucus- and plant-derived saccharides during gut passage and (c) indicate that ingested obligate anaerobes and facultative aerobes from soil can concomitantly metabolize the same source of carbon.

  3. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.

    Science.gov (United States)

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-08-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [(13)C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and (13)C-labeling of CH4 verified that supplemental [(13)C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae.

  4. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Science.gov (United States)

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  5. Gene responses to oxygen availability in Kluyveromyces lactis: an insight on the evolution of the oxygen-responding system in yeast.

    Directory of Open Access Journals (Sweden)

    Zi-An Fang

    Full Text Available The whole-genome duplication (WGD may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae-its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the 'non-WGD' Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the 'post-WGD' genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.

  6. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Trey K Sato

    2016-10-01

    Full Text Available The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3, a component of MAP Kinase (MAPK signaling (HOG1, a regulator of Protein Kinase A (PKA signaling (IRA2, and a scaffolding protein for mitochondrial iron-sulfur (Fe-S cluster biogenesis (ISU1. Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  7. Dinámica microbial del suelo asociada a diferentes estrategias de manejo de Phytophthora cinnamomi Rands en aguacate

    Directory of Open Access Journals (Sweden)

    Joaquín Guillermo Ramírez Gil

    2013-12-01

    Full Text Available La marchitez del aguacate es la enfermedad más limitante de este cultivo, cuyo agente causal más relevante es el oomycete Phytophthora cinnamomi Rands. Es por esto que se han desarrollado diferentes estrategias para su manejo integrado, pero aún prevalece el uso de productos químicos, como única medida de manejo, generando impactos negativos en el ambiente y la salud. Uno de los efectos perjudiciales que se ocasiona es la alteración de las poblaciones microbianas en el suelo. Este trabajo estuvo encaminado a conocer la dinámica microbiana del suelo, bajo diferentes estrategias de manejo de esta enfermedad, para lo cual se midió su dinamismo mediante unidades formadoras de colonias (UFC, para hongos, bacterias y actinomicetos, a partir de muestras de suelo y rizósfera de la raíz, bajo incubación en condiciones de anaerobiosis y aerobiosis, además se midió la actividad microbiana total, en condiciones de laboratorio, como complemento se cuantificaron microorganismos como: Trichiderma spp, bacterias formadoras de endosporas (BAFE, celulolíticos, proteolíticos, amilolíticos, solubilizadores de fosfato, fijadores asimbióticos de nitrógeno y promotores del crecimiento, como Pseudomonas spp., fluorescentes. Los resultados encontrados en esta investigación, sugieren que el uso individual y combinado de mantillo orgánico, material compostado de estiércol bovino, enmienda mineral y cascarilla de arroz y la propuesta de integración; incrementan significativamente la población y actividad microbiana aerobia, en la cual se identificaron microorganismos antagonistas como, Trichiderma spp., celulolíticos, Pseudomonas spp. fluorescentes y BAFE.

  8. A novel strictly anaerobic recovery and enrichment system incorporating lithium for detection of heat-injured Listeria monocytogenes in pasteurized milk containing background microflora.

    Science.gov (United States)

    Mendonca, A F; Knabel, S J

    1994-11-01

    Heat-injured cells of Listeria monocytogenes were recovered from heated raw milk containing noninjured Enterococcus faecium by combining a simple method for obtaining strict anaerobiosis with a novel enrichment broth, Penn State University broth (PSU broth). Strictly anaerobic conditions were rapidly achieved by adding 0.5 g of filter-sterilized cysteine per liter to PSU broth and then purging the preparation with N2 gas. Little resuscitation or growth occurred in strictly anaerobic PSU broth without lithium chloride because of overgrowth by E. faecium. The growth of E. faecium decreased dramatically with increasing LiCl concentration; LiCl concentrations of 8 and 10 g/liter were completely bacteriostatic. The mechanism of inhibition by LiCl appeared to involve competition with the divalent cations Ca2+ and Mg2+. Heat-injured L. monocytogenes consistently recovered and grew rapidly in strictly anaerobic PSU broth containing 4, 6, or 7 g of LiCl per liter. The use of strictly anaerobic PSU broth containing 7 g of LiCl per liter permitted detection of severely heat-injured L. monocytogenes in one simple recovery-enrichment step by eliminating oxygen toxicity and inhibiting the growth of background microflora, without preventing the resuscitation and subsequent growth of heat-injured L. monocytogenes. L. monocytogenes heated in raw milk at 62.8 degrees C for 10, 15, and 20 min could be consistently recovered from strictly anaerobic PSU broth enrichment cultures at 30 degrees C after 48, 96, and 144 h, respectively, and hence, use of PSU broth may result in better recovery of both injured and noninjured cells from foods than currently used U.S. Department of Agriculture and Food and Drug Administration preenrichment procedures.

  9. RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium.

    Science.gov (United States)

    Tata, Muralidhar; Wolfinger, Michael T; Amman, Fabian; Roschanski, Nicole; Dötsch, Andreas; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo

    2016-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa can thrive under microaerophilic to anaerobic conditions in the lungs of cystic fibrosis patients. RNASeq based comparative RNA profiling of the clinical isolate PA14 cultured in synthetic cystic fibrosis medium was performed after planktonic growth (OD600 = 2.0; P), 30 min after shift to anaerobiosis (A-30) and after anaerobic biofilm growth for 96h (B-96) with the aim to reveal differentially regulated functions impacting on sustained anoxic biofilm formation as well as on tolerance towards different antibiotics. Most notably, functions involved in sulfur metabolism were found to be up-regulated in B-96 cells when compared to A-30 cells. Based on the transcriptome studies a set of transposon mutants were screened, which revealed novel functions involved in anoxic biofilm growth.In addition, these studies revealed a decreased and an increased abundance of the oprD and the mexCD-oprJ operon transcripts, respectively, in B-96 cells, which may explain their increased tolerance towards meropenem and to antibiotics that are expelled by the MexCD-OprD efflux pump. The OprI protein has been implicated as a target for cationic antimicrobial peptides, such as SMAP-29. The transcriptome and subsequent Northern-blot analyses showed that the abundance of the oprI transcript encoding the OprI protein is strongly decreased in B-96 cells. However, follow up studies revealed that the susceptibility of a constructed PA14ΔoprI mutant towards SMAP-29 was indistinguishable from the parental wild-type strain, which questions OprI as a target for this antimicrobial peptide in strain PA14.

  10. Spatial and temporal variability of Eh and pH over a rice field as related to lime addition

    Directory of Open Access Journals (Sweden)

    Luis Alberto Morales

    2010-01-01

    Full Text Available The aim of this study was to describe the effect of lime additions on the spatial variability of pH and Eh in a typic Plintacualf cultivated with rice, in Corrientes, Argentina. The 5.1 ha field was divided in three sub plots at which dolomitic lime additions were made at the rates zero, 625 kg ha-1 and 1250 kg ha-1. The soil was sampled at three stages: before sowing thus in aerobic conditions, and then two more times in anaerobiosis. Ninety-six samples per sub plot were taken on each of the three sampling stages on a grid of 11.9 x 20 m. Soil pH and Eh were measured by routine methods. The pH values increased, whereas Eh values decreased, following flooding. The coefficients of variation for pH was rather low during all the three studied periods. Conversely, the CV values for Eh were initially low but with a sharp increased in the second sampling date. The spatial variability of the studied soil properties was assessed using semivariogram analysis and examination of the maps constructed with values interpolated with kriging. Soil pH exhibited a rather strong spatial dependence, whereas soil Eh had a strong to moderate spatial dependence all over the three studied periods and for the three lime rates. Spherical models reaching a stable sill with low to moderate nugget effect were fitted to the experimental semivariograms for the 18 data sets (3 subplots, 3 liming rates and 2 properties studied. Spatial variability of pH and Eh on rice fields was far from negligible both on aerobic and on anaerobic conditions. In general pH exhibited a stronger spatial dependence than Eh and also showed a tendency to present smaller ranges of spatial dependence. Contour maps clearly showed the presence of small scale variability for pH and Eh within each liming treatment and during each of the three sampling dates. Neither pH or Eh had temporal stability of the pattern of spatial distribution on field studied.

  11. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in UropathogenicEscherichia coli.

    Science.gov (United States)

    Cai, Wentong; Cai, Xuwang; Yang, Yongwu; Yan, Shigan; Zhang, Haibin

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032 - c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo . Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli , while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the -35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo

  12. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J; Mahtani, Harry K; Li, Qian; Vanderwielen, Bradley D; Makris, Thomas M; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D; Irvin, Randall T; Schurr, Michael J; Lancaster, Jack R; Kovall, Rhett A; Hassett, Daniel J

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  13. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species.

    Science.gov (United States)

    Lu, Zheng; Imlay, James A

    2017-01-03

    The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS) likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd) is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS. Whether in sediments or pathogenic biofilms, the structures of microbial communities are configured around the sensitivities of their members to oxygen. Oxygen triggers the intracellular formation of reactive oxygen species (ROS), and the sensitivity of a microbe to oxygen likely depends upon the rates at which ROS are formed

  14. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  15. Patterns of variation in glycogen, free glucose and lactate in organs of supercooled hatchling painted turtles (Chrysemys picta).

    Science.gov (United States)

    Packard, Mary J; Packard, Gary C

    2005-08-01

    Hatchling painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest), where they may be exposed for extended periods to ice and cold. The key to their survival seems to be to avoid freezing and to sustain a state of supercooling. As temperature declines below 0 degrees C, however, the heart of an unfrozen turtle beats progressively slower, the diminished perfusion of peripheral tissues with blood induces a functional hypoxia, and anaerobic glycolysis assumes ever greater importance as a source of ATP. We hypothesized that diminished circulatory function in supercooled turtles also reduces the delivery of metabolic substrates to peripheral tissues from central stores in the liver, so that the tissues depend increasingly on endogenous stores to fuel their metabolism. We discovered in the current investigation that part of the glycogen reserve in hearts and brains of hatchlings is mobilized during the first 10 days of exposure to -6 degrees C but that glucose from hepatic glycogen supports metabolism of the organs thereafter. Hatchlings that were held at -6 degrees C for 10 days and then at +3 degrees C for another 10 days were able to reconstitute some of the reserve of glycogen in heart and liver but not the glycogen reserve in brain. Patterns of accumulation of lactate in individual organs were very similar to those reported for whole animals in a companion study, and point to a high degree of reliance on anaerobic metabolism at -6 degrees C and to a lesser degree of reliance on anaerobiosis at higher subzero temperatures. Lactate had returned to baseline levels in organs of animals that were held for 10 days at -6 degrees C and for another 10 days at +3 degrees C, but free glucose remained elevated. Indeed, carbohydrate metabolism probably does not return to the pre-exposure state in any of the major organs until well after the exposure to subzero temperatures has ended, circulatory

  16. Catalase (KatA) Plays a Role in Protection against Anaerobic Nitric Oxide in Pseudomonas aeruginosa

    Science.gov (United States)

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J.; Mahtani, Harry K.; Li, Qian; VanderWielen, Bradley D.; Makris, Thomas M.; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D.; Irvin, Randall T.; Schurr, Michael J.; Lancaster, Jack R.; Kovall, Rhett A.; Hassett, Daniel J.

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (K d ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  17. Sources and sinks of methane and nitrous oxide in the tropical Andes

    Science.gov (United States)

    Teh, Y. A.; Diem, T.; Jones, S.; Oliver, V.; Baggs, E.; Smith, P.; Richards, M.; Meir, P.

    2012-04-01

    Inverse models and remote sensing studies indicate that tropical ecosystems are stronger sources of methane and nitrous oxide than previously predicted by bottom-up emissions inventories. This indicates that prior inventories have either underestimated the strength of existing sources or "missed" key habitats. One of the key areas neglected by previous studies are montane tropical ecosystems. Tropical montane ecosystems are characterized by cooler temperatures (relative to the lowlands), high rainfall, large organic matter pools, and frequent anaerobiosis. These kinds of conditions can promote methane and nitrous oxide production, suggesting that these montane ecosystems may be important contributors to atmospheric budgets of methane and nitrous oxide. In addition, the release of these non-carbon dioxide greenhouse gases have the potential to offset the "cooling" effects of plant carbon uptake. However, less is known about these diverse habitats than lowland ecosystems, largely because of their remoteness and inaccessibility. Here we report data on methane and nitrous oxide fluxes from a long elevation gradient in the Peruvian Andes (from 0 to 3500 m.a.s.l.), incorporating a broad range of habitats, from lowland forest to cloud forest. Trace gas fluxes were collected on a monthly basis from 4 elevation bands and over 10 different ecosystem types, including managed and unmanaged habitats. We also conducted high frequency measurement campaigns exploring short-term, weather-driven changes in hydrology on trace gas exchange. Overall these Andean ecosystems were strong sources of nitrous oxide, with emissions equal to or greater than fluxes from the lowland tropics (the single largest source region worldwide). Methane fluxes were much less consistent in direction and magnitude, with some ecosystems acting as net sources while others were weak atmospheric sinks. Nitrous oxide was the dominant global warming agent, offsetting the effects of plant assimilation. The

  18. Bacterial Physiological Adaptations to Contrasting Edaphic Conditions Identified Using Landscape Scale Metagenomics.

    Science.gov (United States)

    Malik, Ashish A; Thomson, Bruce C; Whiteley, Andrew S; Bailey, Mark; Griffiths, Robert I

    2017-07-05

    Environmental factors relating to soil pH are important regulators of bacterial taxonomic biodiversity, yet it remains unclear if such drivers affect community functional potential. To address this, we applied whole-genome metagenomics to eight geographically distributed soils at opposing ends of a landscape soil pH gradient (where "low-pH" is ~pH 4.3 and "high-pH" is ~pH 8.3) and evaluated functional differences with respect to functionally annotated genes. First, differences in taxonomic and functional diversity between the two pH categories were assessed with respect to alpha diversity (mean sample richness) and gamma diversity (total richness pooled for each pH category). Low-pH soils, also exhibiting higher organic matter and moisture, consistently had lower taxonomic alpha and gamma diversity, but this was not apparent in assessments of functional alpha and gamma diversity. However, coherent changes in the relative abundances of annotated genes between low- and high-pH soils were identified; with strong multivariate clustering of samples according to pH independent of geography. Assessment of indicator genes revealed that the acidic organic-rich soils possessed a greater abundance of cation efflux pumps, C and N direct fixation systems, and fermentation pathways, indicating adaptations to both acidity and anaerobiosis. Conversely, high-pH soils possessed more direct transporter-mediated mechanisms for organic C and N substrate acquisition. These findings highlight the distinctive physiological adaptations required for bacteria to survive in soils of various nutrient availability and edaphic conditions and more generally indicate that bacterial functional versatility with respect to functional gene annotations may not be constrained by taxonomy. IMPORTANCE Over a set of soil samples spanning Britain, the widely reported reductions in bacterial taxonomic richness at low pH were found not to be accompanied by significant reductions in the richness of

  19. Catalase (KatA plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shengchang Su

    Full Text Available Pseudomonas aeruginosa (PA is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2, a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC, indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM. Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic

  20. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates.

    Science.gov (United States)

    Sokolova, Inna M; Frederich, Markus; Bagwe, Rita; Lannig, Gisela; Sukhotin, Alexey A

    2012-08-01

    Energy balance is a fundamental requirement of stress adaptation and tolerance. We explore the links between metabolism, energy balance and stress tolerance using aquatic invertebrates as an example and demonstrate that using key parameters of energy balance (aerobic scope for growth, reproduction and activity; tissue energy status; metabolic rate depression; and compensatory onset of anaerobiosis) can assist in integrating the effects of multiple stressors and their interactions and in predicting the whole-organism and population-level consequences of environmental stress. We argue that limitations of both the amount of available energy and the rates of its acquisition and metabolic conversions result in trade-offs between basal maintenance of a stressed organism and energy costs of fitness-related functions such as reproduction, development and growth and can set limit to the tolerance of a broad range of environmental stressors. The degree of stress-induced disturbance of energy balance delineates transition from moderate stress compatible with population persistence (pejus range) to extreme stress where only time-limited existence is possible (pessimum range). It also determines the predominant adaptive strategy of metabolic responses (energy compensation vs. conservation) that allows an organism to survive the disturbance. We propose that energy-related biomarkers can be used to determine the conditions when these metabolic transitions occur and thus predict ecological consequences of stress exposures. Bioenergetic considerations can also provide common denominator for integrating stress responses and predicting tolerance limits under the environmentally realistic scenarios when multiple and often variable stressors act simultaneously on an organism. Determination of bioenergetic sustainability at the organism's level (or lack thereof) has practical implications. It can help identify the habitats and/or conditions where a population can survive (even if at the

  1. EVALUACIÓN DE LA CONCENTRACIÓN DE LOS ÁCIDOS ACÉTICO, BUTÍRICO Y PROPIÓNICO EN EL CO-CULTIVO: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS. EVALUATION OF THE CONCENTRATION OF THE ACETIC, BUTYRIC AND PROPIONIC ACIDS IN THE CO-CULTURE: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS

    Directory of Open Access Journals (Sweden)

    C. LARA MANTILLA

    2008-12-01

    Full Text Available Se realizó un estudio en co-cultivo entre el hongo Aspergillus oryzae y la bacteria ruminal celulolítica Butyrivibrio fibrisolvens, cuyo objetivo fue determinar "in vitro" el efecto del hongo sobre la producción de los ácidos acético, propiónico y butírico por parte de la bacteria. El medio de cultivo se preparó utilizando líquido ruminal filtrado, centrifugado, autoclavado y diluído al 40% con agua, y 0,05 p/v de pastos Angleton (Dichamthium aristatum (Córdoba, Colombia. Las condiciones de cultivo fueron en anaerobiosis, y el tiempo de incubación de 24 horas. A partir del sobrenadante fueron determinadas las concentraciones de los ácidos grasos volátiles por cromatografía de gases. Se estudiaron dos relaciones bacteria-hongo: 1:1 y 1:3. Como resultado se observó un efecto negativo de Aspergillus oryzae sobre Butyrivibrio fibrisolvens, que se reflejó en la disminución en la producción de ácidos grasos volátiles.A study in co-culture between Aspergillus oryzae with the cellulolytic ruminal bacteria Butyrivibrio fibrisolvens was carried out aiming the "in vitro" determination of the effect of the fungi on the production of acetic, propionic and butyric acids by the bacteria. The culture medium was prepared using filtered, centrifuged, autoclaved and ruminal liquid diluted to 40% with water, and 0,05 % p/v of Angleton grass [;Dichamthium aristatum]; [;Córdoba, Colombia];. Culture was performed in anaerobic conditions for 24 hours. The concentrations of volatile fatty acids in the supernatant were determined by gas chromatography. Two bacteria-fungi relations were studied: 1:1 and 1:3. The results showed a negative effect of Aspergillus oryzae on Butyrivibrio fibrisolvens which was reflected in a decrease in the production of volatile fatty acids.

  2. EFECTO DEL SUSTRATO, SOBRE LA ACTIVIDAD ACETOGÉNICA IN VITRO DE Ruminococcus schinkii EN INTERACCIÓN CON HONGOS DEL RUMEN

    Directory of Open Access Journals (Sweden)

    Miramontes Carrillo JM

    2011-01-01

    Full Text Available La acetogénesis es una alternativa para inhibir el metano del rumen. Se evalúo el efecto del sustrato, sobre la actividad acetogénica de Ruminococcus schinkii con hongos. Se cultivaron bajo anaerobiosis forrajes molidos en medios más hongos y acetogénicas. Se formaron siete grupos de 24 botellas con medio, sustrato y 2-ABS. Seis grupos tuvieron esporas de hongos y acetogénicas. Tres grupos con forraje, sin microorganismos, fueron blancos. El diseño fue factorial 3x2x6; A=3 forrajes; B= hongos y hongo más acetogénica y C=6 tiempos de incubación. Cada tratamiento se realizó con cuatro repeticiones en tres periodos. El sustrato afectó DMS, la producción de azúcares reductores y pH (p<0.0001 por la actividad acetogénica y hongos. DMS del maíz y sorgo fue mayor que la alfalfa. La alfalfa produjo más azúcares reductores. El acetato no fue afec- tada por los sustratos (p=0.3417, pero el pH presenta diferencias. Factor microorganismos presenta efectos por los sustratos. La actividad acetogénica mayor en cocultivo con hongos y bacterias (p<0.0001. El tiempo de incubación afectó todas las variables. DMS para el maíz fue mayor a las 96 h, el sorgo 144 y alfalfa 124 (p<0.0001. El acetato fue mayor para todos los sustratos a las 120 h (p<0.0001, producción de azúcares fue mayor para todos los sustratos a las 144 h (p<0.0001 y pH a las 0 h para todos los sustratos (p<0.0001. La capacidad de los hongos para degradar las vegetales se potencializa en interacción con acetogénicas, permi- te una mayor DMS, una mayor producción de acetato y una inhibición de la metanogénesis.

  3. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  4. Viability of autogenous bone grafts obtained by using bone collectors: histological and microbiological study Viabilidade dos enxertos autógenos obtidos com a utilização de coletores para osso: estudo histológico e microbiológico

    Directory of Open Access Journals (Sweden)

    Alberto Blay

    2003-09-01

    Full Text Available The use of autogenous bone grafts is considered to be the best choice for reconstructive surgery. In the periodontal literature, the utilization of osseous coagulum was suggested by the end of the sixties. The purpose of this study is to consider the use of bone collectors (bone traps as an alternative method for obtaining material to fill small bone imperfections, such as fenestrations and dehiscences. Thirty samples were obtained from bone drilling during fixture installation in patients (13 men and 17 women, with an average age of 54 years requiring treatment at the Department of Periodontology and Implant Dentistry, University of Santo Amaro. These samples were fixed in 10% neutral formaldehyde for 24 hours and subjected to histological preparation, in order to evaluate the presence of viable osteoblasts. In addition, the material was placed in a fluid thioglycolate medium and incubated for 24 hours at 36 ± 1°C in aerobiosis and anaerobiosis. Bacterial growth evaluation was made by using six different culture media (MacConkey agar, blood agar base, mannitol salt agar, Anaerokit LTD medium, Anaerokit LTD - bile medium, Anaerinsol. The results show that, if proper care is taken to prevent saliva contamination during the surgical procedure, this method of collecting autogenous bone may be useful in situations where small amounts of bone are required.A utilização de enxertos autógenos é considerada a melhor opção nos tratamentos cirúrgicos de reconstrução óssea. Na literatura periodontal, a utilização de coágulo ósseo foi sugerida no final da década de 60. O objetivo deste estudo é considerar a utilização de coletores para osso como um método alternativo de se obter osso autógeno para preenchimento de defeitos ósseos como fenestrações e deiscências. Trinta amostras foram obtidas no processo de perfuração do tecido ósseo, durante a instalação de implantes em pacientes (13 homens e 17 mulheres, com média etária de

  5. Effect of mineral fertilizers on microbiological and biochemical characteristics of agrochernozem.

    Science.gov (United States)

    Tkhakakhova, Azida; Vasilenko, Elena; Kutovaya, Olga

    2013-04-01

    The problem of reproduction of soil fertility of chernozems are solved with integrated action, the ecological condition of the soil can be assessed by the activity of physiological groups of microorganisms. Microorganisms are the most important in the transformation of compounds of biogenic elements and therefore it is very interesting to study the nature of the relationship of some biochemical parameters with the development of microflora and micromycetes eco-trophic groups. Agrochemical researches have been conducted at agroecological station "Stone Steppe" in central Russia. Experiment variants: 1 - Control (without fertilizer); 2 - N10,5 P10,5 K10,5; 3 - N56,5 P56,5 K56,5; 4 - deposit soil. Mobile forms of humic substances (mobile carbon and carbon water extract) have changed during the cultivation of the chernozem soil. Amount of mobile humus has doubled in the variants with the use of mineral fertilizers. It's just mobile humus which determines the soil response to any impact, especially ecological. Water extract carbon - organic matter contained in the soil solution and the subject of assimilation of plants and microorganisms. It increased in agricultural soils. The total nitrogen and nitrate nitrogen amount in the variants of agricultural use is higher than in the deposit soil. This is probably because of the soil aeration, the release of nitrogen from the labile humus due to biological activity and nitrification. Amount of ammonia nitrogen has increased in the variant with the use of high doses of fertilizers. Deposit soil (40 years without agricultural use) has a lower, but more stable microbial activity. Process of anoxic decomposition of plant remains develops more active than others, due to the natural structure of the soil anaerobiosis in the spring time. Processes of nitrogen cycle (nitrogen accumulation - fixation of atmospheric nitrogen, nitrogen losses - denitrification) are progressing very intensively in agricultural soil with fertilizer

  6. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    Science.gov (United States)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    by the availability of nutrients (glucose) and the degree of agricultural anthropogenic stress. Various combinations of factors such as stressful conditions (anaerobiosis, acidity and temperature) influenced on bacterial size. The decrease of these stress factors resulted in return to the original bacterial cell size in soil. Furthermore the modification of gram-negative bacteria quantification was performed and combined with FISH method and DNA extraction. We established the methodological comparison of gram-negative bacteria groups in aerobic and anaerobic conditions. Due to absence of significant difference between the most frequent soil gram-negative bacteria groups we concluded the important ecological role of gram-negative bacteria as common group of microorganisms in natural polymer degradation. Depending on nutrient (glucose, cellulose, chitin) gram-negative bacteria competed with actinomyces for available nutrients at the different time, what explained by the ecological flexibility of this soil bacteria group. The experiments showed expressed faster chitinolytic activity of soil gram-negative bacteria compare to actinomyces. Thus our approaches to use the combination both traditional and cutting-edge methods, forms the unique basement for various research and mostly open the wide doors to design new scientific experiments in ecology of terrestrial ecosystems and especially in soil microbial ecology.

  7. Chemical and microbiological changes and aerobic stability of marandu grass silages after silo opening Alterações químicas e microbiológicas de silagens de capim-marandu após a abertura dos silos

    Directory of Open Access Journals (Sweden)

    Thiago Fernandes Bernardes

    2009-01-01

    Full Text Available This trial had the objective of characterizing the microbial population and evaluating the aerobic stability of Marandu grass silages with pelleted citrus pulp (PCP. The collected forage was submitted to the following treatments: Silage of Marandu grass; silage of Marandu grass + 50 g/kg PCP and silage of Marandu grass + 100 g/kg PCP on natural matter basis. Metal cylindrical containers with 80 cm of height and 50 cm of diameter were used as silos during assays of microbiological dynamics and chemical changes of silages in anaerobiosis. Evaluations were performed on days 0, 2, 4 and 6 after silos were opened. The aerobic stability was evaluated by change in temperature, using approximately three kilograms of silage inside styrofoam boxes that were placed inside a climatic chamber. A completely randomized experimental design and split plot arrangement were used in the two assays, with five replications. Treatments were the plots and time was the subplots. Bacillus and enterobacteria were present on the Marandu grass silages with 0 g/kg PCP, which also showed pH increase throughout the feedout phase. Yeast was detected on the silages that were added with PCP. A trend of increasing temperature with extension of the aeration time was observed mainly in the silages containing 100 g/kg PCP. Isolated yeast strains showed lactate assimilation. Silages were found to be unstable due to the silo opening, both by bacterial or yeast development, which reduced the nutritional value.Esta pesquisa foi realizada com os objetivos de caracterizar a microbiologia e avaliar a estabilidade aeróbia de silagens de capim-marandu contendo polpa cítrica peletizada (PCP. A forragem colhida foi submetida aos seguintes tratamentos: silagem de capim-marandu; silagem de capim-marandu + 5% PCP e silagem do capim-marandu + 10% de PCP com base na matéria natural. As alterações químicas e microbiológicas foram feitas aos 0, 2, 4 e 6 dias após a abertura dos silos (tambores

  8. Swine manure post-treatment technologies for pathogenic organism inactivation Tecnologias de pós-tratamento de dejetos suínos para inativar organismos patogênicos

    Directory of Open Access Journals (Sweden)

    Patrícia Bilotta

    2013-04-01

    Full Text Available Swine manure agricultural use is a common practice in Brazil. Their physic-chemical characteristics favor its use as biofertilizer, but the presence of pathogens may become a risk to human health. This research presents a qualitative study of the main alternatives of pig manure disinfection, analyzing efficiency, advantages and limitations of each procedure. The disinfection studies reported in literature are based on the following treatments: alkaline, thermal, biological, chemical, and physical. The greater efficiencies are in thermal treatment (> 4 log: 60 °C, chemical treatment (3 to 4 log: 30mg Cl- L-1; 3 to 4 log: 40 mg O3 L-1 and physical treatment (3 a 4 log: 220 mJ UV radiation cm-2. The biological treatment (anaerobiosis also promotes the pathogen reduction of swine manure, however with lower efficiency (1 to 2 log. The selection of the treatment should consider: implementation and operation cost, necessity of preliminary treatment, efficiency obtained and destination of the treated manure (agricultural use, water reuse. Brazilian regulation does not have specific guidelines for the microbiological quality of animal production effluents that is very important to be considered due to confined animal feeding operation transformation in the last years in the country.O uso agrícola de dejetos suínos é uma prática comum no Brasil. Suas características físico-químicas favorecem seu aproveitamento como biofertilizante, porém a presença de patógenos pode representar um risco à saúde humana. Este trabalho apresenta um estudo qualitativo das principais alternativas de desinfecção de dejetos suínos, analisando eficiência, vantagens e limitações de cada procedimento. Os estudos de desinfecção reportados na literatura são baseados nos seguintes tratamentos: alcalino, térmico, biológico, químico e físico. As maiores eficiências de redução de patógenos estão no tratamento térmico (>4 log: 60 °C, tratamento químico (3

  9. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements Retenção de microrganismos bucais em cimentos de ionômero de vidro convencionais e modificados por resina

    Directory of Open Access Journals (Sweden)

    Denise PEDRINI

    2001-09-01

    Full Text Available Secondary caries are a worldwide public and socioeconomic problem. The placement of restorations can lead to the development of environmental conditions favorable to microbial colonization, especially on the tooth/restoration interface, which is a predisposing factor for secondary caries. The aim of this study was to evaluate microbial retention on conventional (Chelon-Fil and Vidrion R and resin-modified (Vitremer and Fuji II LC glass-ionomer cements, in situ, using a hybrid composite resin (Z100 as a control. Twelve volunteers wore Hawley appliances with specimens made of all tested filling materials for 7 days. The specimens were then removed from the appliances and transferred to tubes containing 2.0 ml of Ringer-PRAS. Microorganisms from the samples were inoculated onto blood agar and Mitis Salivarius Bacitracin agar and incubated under anaerobiosis (90% N2, 10% CO2, at 37°C, for 10 and 2 days, respectively. The resin-modified glass-ionomer cements and the composite resin retained the same levels of microorganisms on their surfaces. The resin-modified glass-ionomers retained less mutans streptococci than the composite resin and conventional glass-ionomer cements. The conventional glass-ionomer cements retained less mutans streptococci than the composite resin, but that difference was not statistically significant.A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R e modificados por resina (Vitremer e Fuji II LC e de resina composta híbrida (Z100, utilizada como controle. Nos testes de reten

  10. Aislamiento y caracterización de cepas nativas de Lactobacillus spp. para su uso como probióticos en la industria láctea

    Directory of Open Access Journals (Sweden)

    Sylvia Vázquez

    2011-05-01

    Full Text Available La utilización de fermentos en la elaboración de productos lácteos es una práctica diaria a nivel industrial. En nuestro país los mismos son comprados a multinacionales extranjeras que se dedican a producir y comercializar fermentos; muchos de los cuales incorporan bacterias probióticas. Los probióticos pueden definirse como microorganismos que luego de ser consumidos en cantidades adecuadas, confieren algún efecto benéfico en el huésped. En el presente trabajo se realizó el aislamiento de una cepa de Lactobacillus de origen humano. Se identificó por tinción gram, prueba catalasa, crecimiento en anaerobiosis y aerobiosis y un test API 50 CH. Con el objetivo de probar propiedades probióticas de la cepa se llevaron a cabo estudios de resistencia al pH, tolerancia a sales biliares y se realizó un Modelo Gástrico in vitro. Los resultados permiten afirmar que estamos en presencia de una cepa nativa de Lactobacillus acidophilus caracterizada fenotípicamente con un 97% de confianza. Presentaría la habilidad de sobrevivir al pasaje a través del tubo digestivo ya que resistió la exposición a un pH similar al estomacal, pudo crecer en un medio con sales biliares y sobrevivió a la acción conjunta de la pepsina y una simulación de jugo gástrico; características que permiten clasificarla como posible cepa probiótica.Abstract  The use of starters to elaborate dairy products is a current practice in the industry. In our Country we import these starters from foreign companies dedicated to make and sale it, and most of them include probiotic bacterias. Probiotics can be defined as microorganisms that after be consumed in adequate amount, can give some advantageous effect to the host. In this study a strain of Lactobacillus was isolated from a human. The identification was done through gram stain, catalase test, aerobic and anaerobic growth, and an API 50 CH test. In order to prove the probiotic properties of the strain, studies of p

  11. [Not Available.

    Science.gov (United States)

    Hofmann, Eberhard

    . Because of a severe chronic renal disease, which burdened himself from childhood, he became exempted from military service. In the years after 1917 he published several papers on fermentation, glycolysis, and respiration of animal cells and yeast and started after 1918 an extensive experimental project on "Muscle Metabolism and Mechanical Work". In this study he brought together different aspects of muscle metabolism and muscle activity: aerobiosis and anaerobiosis, muscular work, muscular exhaustion, and muscular recovery with glycogen degradation, glycogen synthesis as well as lactic acid formation and lactic acid utilization with muscular oxygen uptake. With this comprehensive experimental approach MEYERHOF in only few years built up a grandiose work about the correlations between muscle metabolism and muscular work. For this brilliant research Otto MEYERHOF and his British colleague Sir Archibald Vivian HILL received the Nobel Prize 1922 for Physiology or Medicine. The two investigators received the honor for their discoveries in the coordination of muscular performance with chemical, physical and thermodynamic processes, MEYERHOF "for his discovery of the fixed relationship between oxygen consumption and lactic acid metabolism in muscle" and HILL "for his research into the quantitative relations between heat production and muscular work". As explicated in the two preceding papers of the author Otto MEYERHOF and his first and longest collaborator Karl LOHMANN from 1925 till 1938 clarified chemically most of the intermediates and enzymatic reactions of the glycolytic pathway, also named Embden-Meyerhof-Pamas-pathway. Because of the antijewish pogrome in Germany MEYERHOF escaped 1938 from Heidelberg and accepted a French offer to continue his research in Paris. But after the German troops occupied France MEYERHOF again had to flee. He, his wife and their youngest son Walter breached through France, Spain to Portugal. From Lisbon he arrived by ship USA.

  12. Aggregatibacter actinomycetemcomitansarcB influences hydrophobic properties, biofilm formation and adhesion to hydroxyapatite ArcB em Aggregatibacter actinomycetmcomitans influencia propriedades hidrofóbicas, formação de biofilme e aderência a hidroxiapatita

    Directory of Open Access Journals (Sweden)

    PL Longo

    2009-09-01

    Full Text Available The regulation of gene expression in the oral pathogen Aggregatibacter actinomycetemcomitans is still not fully elucidated. ArcAB is a two-component system which allows facultative anaerobic bacteria to sense various respiratory growth conditions and adapt their gene expression accordingly. This study investigated in A. actinomycetemcomitans the role of arcB on the regulation of biofilm formation, adhesion to saliva coated hydroxyapatite (SHA and the hydrophobic properties of the cell. These phenotypic traits were determined for an A. actinomycetemcomitansarcB deficient type and a wild type strain. Differences in hydrophobic properties were shown at early and late exponential growth phases under microaerobic incubation and at late exponential phase under anaerobiosis. The arcB mutant formed less biofilm than the wild type strain when grown under anaerobic incubation, but displayed higher biofilm formation activity under microaerobic conditions. The adherence to SHA was significantly lower in the mutant when compared with the wild type strain. These results suggest that the transmembrane sensor kinase arcB, in A. actinomycetemcomitans, senses redox growth conditions and regulates the expression of surface components of the bacterial cell related to biofilm formation and adhesion to saliva coated surfaces.A regulação da expressão gênica do patógeno oral Aggregatibacter actinomycetemcomitans não está completamente descrita. O sistema de dois componentes ArcAB permite que bactérias anaeróbias facultativas percebam diferenças nas condições respiratórias durante sua multiplicação e adaptem a expressão de genes à estas condições. Este estudo investigou em A. actinomycetemcomitans o papel de arcB na regulação da formação de biofilme, aderência à hidroxiapatita recoberta por saliva (SHA e nas propriedades hidrofóbicas celulares. Estas características fenotípicas foram determinadas para uma linhagem de A. actinomycetemcomitans

  13. Editorial

    Directory of Open Access Journals (Sweden)

    Javier Hernández-Fernández

    2017-09-01

    Full Text Available Hace por lo menos dos billones de años que las formas primitivas de vida incorporaron el uso del oxígeno como aceptor final de electrones en la cadena respiratoria. El fenómeno de óxido-reducción permitió pasar de producir 2 ATP a partir de una mol de glucosa a entregarles a las células 36 ATP, proceso que cambió para siempre la habilidad para obtener la energía en la mayoría de los organismos vivos. Hoy en día, los órganos de la mayoría de mamíferos son altamente sensibles a las limitaciones de oxígeno; sin embargo, algunos vertebrados ectotérmicos están extraordinariamente adaptados a la tolerancia a este estrés. Tortugas de agua de los géneros Trachemys y Chrysemys utilizan la anaerobiosis como estrategia para vivir varios meses en condiciones de anoxia durante el invierno (Ultsch, 1989. Estas tortugas han sido juiciosamente estudiadas por la adaptación que les permite a sus órganos sobrevivir sin oxígeno (Krivoruchko y Storey, 2010. Sin embargo, los mecanismos moleculares relacionados con tolerancia a la anoxia en tortugas marinas no han sido caracterizados. Las tortugas dulceacuícolas Trachemys y Chrysemys han sido mundialmente utilizadas como modelos para identificar y entender los mecanismos moleculares de tolerancia a la anoxia y las bases moleculares de las lesiones producidas por la hipoxia/isquemia que ocurren en organismos sensibles al oxígeno, así como los problemas médicos, como el ataque cardíaco y accidente cerebrovascular, y la posible forma de evitarlos, así como enfermedades producidas por el estrés oxidativo, tales como parkinson o alzheimer (Buck, 2004. Además, podría conducir a la obtención de técnicas mejoradas para manipular y ayudar a preservar la viabilidad de órganos durante la cirugía, e incluso a mejorar la tecnología para su uso en hipotermia o crioconservación de tejidos y órganos, previo a trasplantación. Lutz, Prentice y Milton (2003 propusieron que las tortugas pueden ser

  14. Antimicrobial activity of Lactobacillus and Bifidobacterium strains against pathogenic microorganisms “in vitro”Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”

    Directory of Open Access Journals (Sweden)

    Giselle Nobre Costa

    2012-10-01

    Full Text Available Lactobacilli and bifidobacteria have a long history of safe use in foods. These bacteria have biotechnological characteristics of interest such as the inhibition of pathogens. In this work, two lactobacilli strain and a bifidobacterium strain isolated from human gut were evaluated concerning to their ability to inhibit pathogenic microorganisms in foods by diffusion agar tests. Moreover, we assessed the metabolites produced in culture broth under static and shaking growth to simulate anaerobiosis and aerobiosis conditions, respectively. L. acidophilus LA5, L. plantarum DCTA 8420 and B. lactis DCTA 8724 showed ability to inhibit S. aureus FRI 196, strains producer toxins A and D, as well as B. cereus ATCC 25923, E. coli ATCC 25922 and S. Enteritidis, whose inhibition halos reached, on average, 24 mm in diameter. In the agar diffusion method with concentrated culture medium, it was possible to observe the effect of oxygen on the production of toxic substances. This result showed that cultivation of Lactobacillus under aerobic conditions seems to exert greater inhibitory effect, whereas for Bifidobacterium strain the effect was the opposite.Lactobacilos e bifidobactérias apresentam um longo histórico de uso seguro em alimentos, além de apresentarem características de interesse biotecnológico como a inibição de patógenos. Neste trabalho duas linhagens de lactobacilos e uma de bifidobactéria, isoladas do intestino humano, foram avaliadas em testes de difusão em ágar, quanto à capacidade de inibição de microrganismos patogênicos de ocorrência comuns em toxinfecções alimentares. Adicionalmente, foram avaliados os metabólitos produzidos em caldo de cultivo estático e em agitação para simular condições de anaerobiose a aerobiose, respectivamente. As três bactérias, L. acidophilus LA5, L. plantarum DCTA 8420 e B. lactis DCTA 8724 apresentaram capacidade de inibição para S. aureus FRI 196 linhagem produtora de toxinas A e D

  15. CO2 production in anthropogenic Chinampas soils in Mexico City La producción de CO2 en suelos antropogénicos de Chinampas en la Ciudad de México A produção de CO2 em solos antropogénicos de Chinampas na cidade do México

    Directory of Open Access Journals (Sweden)

    Elena Ikkonen

    2012-07-01

    Full Text Available

    We studied microbial-associated C?2 production in anthropogenic chinampas soils. The soils were constructed by the accumulation of materials such as organic matter and loamy lacustrine sediments in Pre-Hispanic cultures in Mexico. To study the temperature sensitivity of C?2 production related to soil depth, moisture and oxygen availability, soil samples were collected at depths of 0-7, 7-18, 18-30, 30-40 and 40-50 cm. The soil samples were incubated under aerobic and anaerobic conditions at controlled temperatures (-5, 0, 5, 10, 20, 30 °C and soil moistures of 10, 30, 60 and 90% water-filled pore space. For all the soil depths, incubation temperatures and soil moistures, the mean rate of aerobic CO2 production was 58.0 mg CO2 kg-1 d-1 and that of anaerobic CO2 production 31.2 mg CO2 kg-1 d-1, with the highest rate found in the soil samples collected at a depth of 0-7 cm. A decrease in soil organic carbon content inhibited CO2 production more under anaerobic than aerobic conditions. The dependence of aerobic ??2 production on soil moisture increased at what constituted both unusually high and low temperatures for the study area. Since the response of ??2 production to temperature was lower under anaerobic than aerobic conditions, the increase in soil moisture content led to a decrease in the temperature sensitivity of ??2 production. The response of microbial activity to other factors may be modified under what constitutes the limiting conditions for any of the factors considered, as follows: (i when anaerobiosis increases in the soil, the limiting effect of substrate availability on microbial activity increases; (ii the CO2 production rate becomes more dependent on soil moisture under temperature stress; (iii the sensitivity of CO2

  16. HYDROGEN PEROXIDE PRODUCTION ACTIVITY AND ADHESIVE PROPERTIES OF AEROCOCCI, ISOLATED IN WOMEN

    Directory of Open Access Journals (Sweden)

    Stepanskyi D.O.

    2017-06-01

    Full Text Available Introduction. Antagonistic activity of probiotic microorganisms against other species of bacteria is an important mechanism of their ecology and it is widely used in practice. This activity is inherent in many heme-deficient bacteria, which include aerococci, and can be composed of several components: the production of organic acids, antibiotics, lysozyme, hydrogen peroxide and others. Ability to produce hydrogen peroxide under aerobic conditions and in a state of relative anaerobiosis was established in aerococci. They were divided into strong and weak producers, depending on the amount of peroxides. Lack of data about peroxide-productive ability of aerococci, isolated from the lower genital tract of women, as well as a proven mechanism of hydrogen peroxide excretion in the oxidation of lactic acid, led to need in studying the aerococci hydrogen peroxide production level, to create autobacterial drugs, based on aerococci symbiont strains for sanitation of birth canal. Colonization resistance of the vaginal mucous and normal microflora value depends largely on the degree of adhesion of microbial cells to the mucosal surface. Along with numerous studies of lactobacilli adhesive properties to the vaginal epithelium, there are no data on the adsorption capacity of aerococci to the vaginal epithelial cells. Material and methods. 18 aerococci resident strains and 1 museum strain were explored in total. Presence and quantity of autosymbiont aerococci content in different parts of the birth tract (cervical canal, vagina, external genitalia skin (EGS and perineum was studied in 44 healthy women. Isolation and identification of aerococci from the women body was conducted by the method, taking into account growth on selective indicator medium, growth and biochemical activity in environments with selenium and tellurium salts, lactate oxidase and superoxide dismutase activity. Hydrogen peroxide was determined by iodometric method. Hydrogen peroxide