WorldWideScience

Sample records for anaerobic wastewater treatment

  1. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  2. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  3. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  4. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  5. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  6. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  7. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    OpenAIRE

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solutio...

  8. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  9. Thermophilic anaerobic digestion for waste and wastewater treatment.

    NARCIS (Netherlands)

    Wiegant, W.M.

    1986-01-01

    This thesis deals with thermophilic anaerobic waste and wastewater treatment. A literature survey is presented, in which the thermophilic treatment processes are evaluated with respect to the loading rates and treatment efficiencies, and some relevant theoretical considerations concerning thermophil

  10. APPLICATION OF ANAEROBIC BIOTECHNOLOGY FOR PHARMACEUTICAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Shreeshivadasan Chelliapan and Paul J. Sallis

    2011-01-01

    Full Text Available The wastewater generated from pharmaceutical industry generally contain high organic load and the treatment is primarily carried out using two major types of biological methods; aerobic and anaerobic. However, due to high strength, it is infeasible to treat some pharmaceutical wastewater using aerobic biological processes. As an alternative, an anaerobic process is preferred to remove high strength organic matter. Anaerobic wastewater treatment is considered as the most cost effective solution for organically polluted industrial waste streams. In particular the development of high rate systems, in which hydraulic retention times (HRT are uncoupled from solids retention times (SRT, has led to a worldwide acceptance of anaerobic wastewater treatment. In this paper, literature on anaerobic digestion, anaerobic reactor technology and existing anaerobic treatment of pharmaceutical wastewater are presented. In addition, fate of pharmaceuticals in the environment was also discussed in brief. A case study of a laboratory investigation into the treatment of pharmaceutical wastewater containing the antibiotic Tylosin in an anaerobic reactor was also given. Specifically, it was determined whether the anaerobic reactor could be used as a pre-treatment system at an existing pharmaceutical production plant. The performance of the reactor treating real pharmaceutical wastewater at various organic loading rate (OLR was investigated and showed efficient substrate removal at low OLRs (0.43 – 1.86 kg COD.m-3.d-1 by promoting efficient chemical oxygen demand (COD reduction (70 – 75%. Under these conditions, an average of 95% Tylosin reduction was achieved in the UASR. However, increasing the OLRs to 3.73 kg COD.m-3.d-1 by reducing the hydraulic retention time (HRT (4 – 2 d reduced the COD removal efficiency (45%. Changes in the organic loading affected the treatment performance of the anaerobic reactor, and at high OLRs, it was not able to withstand the short

  11. HIGH-RATE ANAEROBIC TREATMENT OF ALCOHOLIC WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Florencio L.

    1997-01-01

    Full Text Available Modern high-rate anaerobic wastewater treatment processes are rapidly becoming popular for industrial wastewater treatment. However, until recently stable process conditions could not be guaranteed for alcoholic wastewaters containing higher concentrations of methanol. Although methanol can be directly converted into methane by methanogens, under specific conditions it can also be converted into acetate and butyrate by acetogens. The accumulation of volatile fatty acids can lead to reactor instability in a weakly buffered reactor. Since this process was insufficiently understood, the application of high-rate anaerobic reactors was highly questionable. This research investigated the environmental factors that are of importance in the predominance of methylotrophic methanogens over acetogens in a natural mixed culture during anaerobic wastewater treatment in upflow anaerobic sludge bed reactors. Technological and microbiological aspects were investigated. Additionally, the route by which methanol is converted into methane is also presented

  12. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  13. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S

    2009-07-01

    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  14. Anaerobic treatment of municipal wastewater using the UASB-technology.

    Science.gov (United States)

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates. PMID:18048975

  15. Sequential anaerobic-adsorption treatment of chemical industry wastewater.

    Science.gov (United States)

    Daga, Kailash; Pallavi, V; Patel, Dharmendra

    2011-10-01

    Treatment technologies needed to reduce the pollutant load of chemical industry effluent have been found to involve exorbitantly high costs. The present investigation aimed to treat the wastewater from chemical industry by cost effective sequential anaerobic-adsorption treatment. Wastewaters from chemical industry that are rich in biodegradable organics are tested for anaerobic treatability. The efficiency of anaerobic reactor is relatively lower 79.3%, and therefore post treatment of effluent was done by adsorption using Poly vinyl alcohol coated Datura stramonium (PVAC-DS) as an adsorbent. An overall COD removal of 93.8 % was achieved after sequential Anaerobic-Adsorption treatment, which lead to a better final effluent and a more economical treatment system.

  16. Anaerobic ponds for domestic wastewater treatment in temperate climates

    OpenAIRE

    Cruddas, Peter

    2014-01-01

    Energy demand, greenhouse gas emissions, and operational costs are continuing to rise year on year in the wastewater treatment sector, with traditional treatment options unable to provide sustainable solutions to increasing volumes and tightening quality standards. Current processes produce inherent fugitive greenhouse gas (GHG) emissions, whilst also generating large quantities of sludge for disposal. Anaerobic ponds (APs) are natural wastewater treatment processes that have t...

  17. Anaerobic treatment of glycol contaminated wastewater for methane production

    OpenAIRE

    Agbalakwe, Ekene

    2011-01-01

    Glycols are usually used in the offshore gas industry as hydrate inhibitor in gas pipelines laid deep under the sea. Glycols, in its use, are contaminated by dissolved salts from formation water together with scaling and corrosion products from the pipeline. This results to generation of wastewater containing glycols. Anaerobic treatment may represent an alternative to the aerobic treatment of glycol wastewater. Laboratory-scale studies were carried out to investigate the treatability of glyc...

  18. Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor

    OpenAIRE

    A.O. Ibeje

    2013-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...

  19. Biochemical reaction engineering and process development in anaerobic wastewater treatment.

    Science.gov (United States)

    Aivasidis, Alexander; Diamantis, Vasileios

    2005-01-01

    Developments in production technology have frequently resulted in the concentrated local accumulation of highly organic-laden wastewaters. Anaerobic wastewater treatment, in industrial applications, constitutes an advanced method of synthesis by which inexpensive substrates are converted into valuable disproportionate products. A critical discussion of certain fundamental principles of biochemical reaction engineering relevant to the anaerobic mode of operation is made here, with special emphasis on the roles of thermodynamics, kinetics, mass and heat transfer, reactor design, biomass retention and recycling. The applications of the anaerobic processes are discussed, introducing the principles of an upflow anaerobic sludge bed reactor and a fixed-bed loop reactor. The merits of staging reactor systems are presented using selected examples based on two decades of research in the field of anaerobic fermentation and wastewater treatment at the Forschungszentrum Julich (Julich Research Center, Germany). Wastewater treatment is an industrial process associated with one of the largest levels of mass throughput known, and for this reason it provides a major impetus to further developments in bioprocess technology in general.

  20. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  1. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    OpenAIRE

    Meiqing Lu; Xiaojun Niu; Wei Liu; Jun Zhang; Jie Wang; Jia Yang; Wenqi Wang; Zhiquan Yang

    2016-01-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment...

  2. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  3. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  4. Treatment of Distillery Wastewater by Anaerobic Methods

    OpenAIRE

    Vandana Patyal

    2015-01-01

    One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmf...

  5. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    OpenAIRE

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading rates. Membrane filtration represents an alternative way to achieve biomass retention. In membrane bioreactors, complete biomass retention can be achieved, irrespective of cells capacity to form bi...

  6. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L-1 day-1). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  7. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  8. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    Science.gov (United States)

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process. PMID:15747599

  9. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    OpenAIRE

    Xu, Yan-Bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment ...

  10. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  11. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    Science.gov (United States)

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  12. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  13. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    Science.gov (United States)

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa. PMID:26038930

  14. Characteristics and performance of anaerobic wastewater treatment (a review)

    International Nuclear Information System (INIS)

    Summary: Pakistan's current population of 180 million is expected to grow to about 221 million by the year 2025. In developing countries such as Pakistan water pollution is a major threat to the livelihood of people. Pakistan is also currently experiencing profound demographic, economic changes and energy crisis that have major implications for water management. The contamination of aquatic and terrestrial ecosystems with heavy metals is a major environmental problem. Each pollution problem calls for specific optimal and cost effective solution so if one technology proves less or ineffective other takes its place. Every day the vast amounts of the municipal, industrial and agricultural wastes are released in to the environment and create serious problems. Anaerobic digestion is very attractive and cost-effective option and technology for the highly loaded waste water treatment and energy conversion. The anaerobic process is in many ways ideal for waste treatment. It has several significant advantages over other available methods. In this process organic matter is utilized as source of electron donor to reduce carbon dioxide to produce methane gas. It involves three bacterial groups namely: hydrolytic, acetogenic and methanogenic bacteria that work optimally at pH and temperature ranges of 6.8 to 7.5 and 30-35 degree C, respectively. The residence time in a digester varies with the amount and type of feed material, the configuration of the digestion system, and whether it be one-stage or two-stage. It is ideal for all kinds of wastewaters. Currently anaerobic technology is being operated at full scale in many industrialized nations. (author)

  15. The anaerobic treatment of low strength soluble wastewaters.

    NARCIS (Netherlands)

    Kato, M.T.

    1994-01-01

    Low strength soluble wastewaters with chemical oxygen demand (COD) of less than 2000 mg/I are mostly from food processing industries. They commonly contain simple substrates such as short- chain fatty acids, alcohols and carbohydrates. The application of anaerobic technology has been mostly directed

  16. Anaerobic/aerobic treatment of selected azo dyes in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, S.; Bishop, P.L. (Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering); Agha, A.M. (Univ. of Aleppo (Syrian Arab Republic). Faculty of Civil Engineering)

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass through the system virtually untreated. The initial step in the degradation of these dyes is the cleavage of the Azo bond. This cleavage is often impossible under aerobic conditions, but has been readily demonstrated under anaerobic conditions. The focus of the study was to determine the feasibility of using an anaerobic fluidized-bed reactor to accomplish this cleavage. The effects of typical process variables such as hydraulic retention time (HRT), influent dye concentration levels, and degree of bed fluidization on removal efficiencies were also studied. The four dyes selected for this study were Acid-Orange 7, Acid-Orange 8, Acid-Orange 10, and Acid-Red 14. The effectiveness of using a bench-scale-activated sludge reactor as a sequenced second stage was also examined. Results indicate that nearly complete cleavage of the Azo bond is easily accomplished for each of the four dyes under hydraulic retention times of either 12 or 24 h. Initial results indicate, though, that aromatic amine by-products remain. The sequenced second stage was able to remove the remaining Chemical Oxygen Demand (COD) load to acceptable levels. Work is presently underway to determine the face of the anaerobic by-products in the aerobic second stage.

  17. A contribution to resource recovery from wastewater. Anaerobic processes for organic matter and nitrogen treatment

    OpenAIRE

    Basset Olivé, Núria

    2015-01-01

    Organic matter and nutrients present in urban and industrial wastewater should be removed or valorised to reduce its impact on the environment. Conventional wastewater treatments are focused on the removal of these pollution sources at the minimum cost. The idea of resource recovery from wastewater is changing the concept of the conventional wastewater treatment plants that tend to incorporate little by little processes as anaerobic digestion, MBR, biofilm, granulation, etc. However, their ap...

  18. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic activi

  19. Treatment of melanoidin wastewater by anaerobic digestion and coagulation.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Götz, Gesine; Geißen, Sven-Uwe

    2015-01-01

    Melanoidins are dark-coloured recalcitrant pollutants found in many industrial wastewaters including coffee-manufacturing effluent, molasses distillery wastewater (MDWW) and other wastewater with molasses as the raw material. The wastewaters are mostly treated with anaerobic digestion after some dilution to minimize the inhibition effect. However, the dark colour and recalcitrant dissolved organic carbon (DOC) mainly caused by melanoidin are not effectively removed. The aim of this study was to investigate the removal of colour and remnant DOC by different coagulants from anaerobically digested MDWW. From the six coagulants tested, ferric chloride had the highest melanoidin (48%), colour (92.7%) and DOC (63.3%) removal at pH 5 and a dosage of 1.6 g/l. Both polymer and inorganic salt coagulants tested had optimal colour, melanoidin and DOC removal at acidic pH. The molecular size distribution of synthetic melanoidins by liquid chromatography-organic carbon detection indicated a preferential removal of high-molecular-weight melanoidins over low weight melanoidins by the coagulation. Further studies should focus on how to improve biodegradability of the treated effluent for it to be reused as dilution water for anaerobic digestion. PMID:25799161

  20. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  1. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  2. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  3. Anaerobic treatment of wastewater with high concentrations of lipids or sulfate.

    NARCIS (Netherlands)

    Rinzema, A.

    1988-01-01

    This thesis describes research on the application of granular sludge bed upflow reactors for anaerobic treatment of wastewaters contaminated with lipids and sulfate, two contaminants that have so far seriously hampered the application of anaerobic treatment in several branches of industry. The Upflo

  4. Modeling, Simulation and Control of Biotechnological Processes in Decentralized Anaerobic Treatment of Domestic Wastewater

    OpenAIRE

    Vega De Lille, Marisela Ix-chel

    2015-01-01

    The general objective of the present thesis is the development of less empirical methods for assessment and control of a decentralized anaerobic plant for the treatment of domestic wastewater to obtain service water quality. The reuse of treated domestic wastewater as service water (e.g. toilet flushing, irrigation, etc.) can significantly help to decrease potable water consumption. Since anaerobic treatment plants are subject to a high sensitivity to disturbances and process complexity,...

  5. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  6. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  7. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the redu

  8. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    OpenAIRE

    Ozgun, H.

    2013-01-01

    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the reduction of the environment contamination and hence the health risks and saving of the huge freshwater amounts.

  9. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS) Reactor for Wastewater Treatment

    OpenAIRE

    ZAIAT M.; L.G.T. Vieira; A.K.A. Cabral; I.R. de Nardi; F.J. Vela; E. Foresti

    1997-01-01

    The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS) reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process w...

  10. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review

    NARCIS (Netherlands)

    Leitao, R.; Haandel, van A.C.; Zeeman, G.; Lettinga, G.

    2006-01-01

    With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in ex

  11. Sequenced anaerobic-aerobic treatment of hemp pulping wastewaters.

    NARCIS (Netherlands)

    Kortekaas, S.

    1998-01-01

    Biological treatment is an indispensable instrument for water management of non-wood pulp mills, either as internal measure to enable progressive closure of water cycles, or as end of pipe treatment. In this thesis, the sequenced anaerobic-aerobic treatment of hemp ( Cannabis sativa L. ) pulping was

  12. Anaerobic treatment of sulfate-containing wastewater from distilleries

    International Nuclear Information System (INIS)

    Bioprocess evaluation of a staged arrangement of a Pulse Driven Loop Reaktor (PDLR) and a Pulsed Anaerobic Filter (PAF) using highly polluted cherry slops as industrial wastewater shows a COD removal efficiency of 80-90% at loading rates of 8-4 kg COD/(M3.d). Contamination of cherry slops by sulfate (2 g/l) and copper (150-200 mg/l) reduces COD degradation to 40-50 percent. A pulsed anaerobic baffled reactor was envisaged as a corrective tool to improve mineralisation in the presence of sulfate-rich substrates by confining sulfate reducing bacteria to the first 4 chambers of the reactor. Phasing slightly improves COD degradation yield, but is not sufficient for stable process performance. Consequently, the use of lactic acid in stead of sulfuric acid in cherry-fermentation was suggested as a preventive method to avoid sulphide-induced digester failure. (orig.)

  13. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion.

    Science.gov (United States)

    Smith, Adam L; Stadler, Lauren B; Cao, Ling; Love, Nancy G; Raskin, Lutgarde; Skerlos, Steven J

    2014-05-20

    The objective of this study was to evaluate emerging anaerobic membrane bioreactor (AnMBR) technology in comparison with conventional wastewater energy recovery technologies. Wastewater treatment process modeling and systems analyses were combined to evaluate the conditions under which AnMBR may produce more net energy and have lower life cycle environmental emissions than high rate activated sludge with anaerobic digestion (HRAS+AD), conventional activated sludge with anaerobic digestion (CAS+AD), and an aerobic membrane bioreactor with anaerobic digestion (AeMBR+AD). For medium strength domestic wastewater treatment under baseline assumptions at 15 °C, AnMBR recovered 49% more energy as biogas than HRAS+AD, the most energy positive conventional technology considered, but had significantly higher energy demands and environmental emissions. Global warming impacts associated with AnMBR were largely due to emissions of effluent dissolved methane. For high strength domestic wastewater treatment, AnMBR recovered 15% more net energy than HRAS+AD, and the environmental emissions gap between the two systems was reduced. Future developments of AnMBR technology in low energy fouling control, increased flux, and management of effluent methane emissions would make AnMBR competitive with HRAS+AD. Rapid advancements in AnMBR technology must continue to achieve its full economic and environmental potential as an energy recovery strategy for domestic wastewater. PMID:24742289

  14. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  15. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  16. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  17. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    International Nuclear Information System (INIS)

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration

  18. Anaerobic treatment of domestic wastewater in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.

    2004-01-01

    In this thesis, the application of upflow anaerobic sludge bed (UASB) reactors for the treatment of low-strength domestic sewage was studied for the city ofSalta

  19. State Detection and Feedback Control of the Anaerobic Wastewater Treatment Using Fuzzy Logic

    OpenAIRE

    Murnleitner, Ernst

    2005-01-01

    Anaerobic treatment of wastewater offers the advantage of the elimination of the main part of pollutants, which saves disposal charges. Compared to the aerobic technology, less sludge is formed, and energy is produced in the form of biogas. However, anaerobic treatment has also several drawbacks. These are the more difficult handling and the extreme long characteristical times, whereby particularly an overload can lead to a complete break-down of the plant. A restart takes weeks to months, wh...

  20. High-rate anaerobic wastewater treatment: diversifying from end-of the pipe treatment to resource oriented conversation techniques

    NARCIS (Netherlands)

    Lier, van J.B.

    2008-01-01

    Decades of developments and implementations in the field of high-rate anaerobic wastewater treatment have put the technology at a competitive level. With respect to sustainability and cost-effectiveness, anaerobic treatment has a much better score than many alternatives. Particularly, the energy con

  1. Parameter Identification of Anaerobic Wastewater Treatment Bioprocesses Using Particle Swarm Optimization

    OpenAIRE

    Dorin Sendrescu

    2013-01-01

    This paper deals with the offline parameters identification for a class of wastewater treatment bioprocesses using particle swarm optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of an anaerobic wastewater treatment process that is a complex biotechnological system. The identification sc...

  2. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater

    OpenAIRE

    García-Diéguez, Carlos; Bernard, Olivier; ROCA, ENRIQUE

    2013-01-01

    International audience The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that t...

  3. A novel application of an anaerobic membrane process in wastewater treatment.

    Science.gov (United States)

    You, H S; Tseng, C C; Peng, M J; Chang, S H; Chen, Y C; Peng, S H

    2005-01-01

    The applications of membrane processes in anaerobic biological wastewater treatment still have some limitations due to severe membrane scaling and fouling, although they have been proven to achieve superior COD removal and biomass retention. An innovative anaerobic membrane process for wastewater treatment was conducted to control the membrane scaling problems. The process comprises an anaerobic reactor, an aerobic reactor, and a membrane separation tank. Anaerobic sludge from a full-scale UASB reactor treating food wastewater was inoculated to anaerobic and aerobic reactor to purify synthetic wastewater consisting of glucose and sodium acetate. The anaerobic reactor was operated in a sludge bed type without three-phase separator. The aerobic reactor can eliminate residual organics from the anaerobic reactor effluent using facultative microorganisms. To provide solid-liquid separation, hollow fiber ultrafiltration module was submerged in the separation tank. The results clearly show that the anaerobic membrane process combined methanogenic and aerobic COD reduction is a stable system. No fatal scaling was found after two months of operation even without chemical cleaning for the membrane. It was also found that inorganic precipitates formed in the aerobic reactor were reduced due to CO2 stripping in aerobic reactor. Another important finding was that the inorganic precipitates were entrapped into facultative aerobes floc. The ash/SS ratio of aerobes floc increased from 0.17 to 0.55 after 50 days of operation, which confirms this phenomenon. Based on our investigation, the new process can control scaling effectively to extend the membrane application in anaerobic treatment. PMID:16003960

  4. The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.C. [Embrapa Agroindustria Tropical (Brazilian Agricultural Research Corporation, Inst. of Tropical Agroindustry), Fortaleza (Brazil); Haandel, A.C. van [Federal University of Campina Grande (Brazil); Zeeman, G.; Lettinga, G. [Wageningen Univ. (Netherlands)

    2006-06-15

    With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes. (author)

  5. Anaerobic treatment of domestic wastewater in subtropical regions

    OpenAIRE

    Seghezzo, L.

    2004-01-01

    In this thesis, the application of upflow anaerobic sludge bed (UASB) reactors for the treatment of low-strength domestic sewage was studied for the city ofSalta, in northwesternArgentina. The climate in this region can be defined as subtropical with a dry season. Mean ambient temperature in the city is 16.5ºC. Mean sewage temperature during the experiments was 23.0°C (monthly minimum: 17.2°C; daily minimum: 12.6°C). A literature review on the use of upflow reactors for sewage treatment was p...

  6. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2013-03-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet microfiltration membranes was operated at psychrophilic temperature (15 °C) treating simulated and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) of the total methane generated by the system due to methane solubility at psychrophilic temperatures and oversaturation relative to Henry's law. During actual DWW operation, COD removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD(5)) averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA's standard for secondary effluent (30 mg/L BOD(5)). Membrane fouling was managed using biogas sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. Comparative fouling experiments suggested that the combination of the two fouling control measures was more effective than either fouling prevention method alone. A UniFrac based comparison of bacterial and archaeal microbial communities in the AnMBR and three different inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic AnMBR with mesophilic inocula, indicating future potential for the technology in practice, particularly in cold and temperate climates where DWW temperatures are low during part of the year. PMID:23295067

  7. Hospital Wastewater Treatment Using an Integrated Anaerobic Aerobic Fixed Film Bioreactor

    Directory of Open Access Journals (Sweden)

    A. Rezaee

    2005-01-01

    Full Text Available The design and operation of wastewater treatment systems for hospital is a challenge for wastewater engineers. In this study, a pilot-scale system integrated anaerobic-aerobic fixed film reactor for hospital wastewater treatment was constructed and its performance was evaluated. The aim of the study was the elimination of organic compounds and a significant reduction of bacteria. The system had been operated for 90 days. The results show that the system efficiently removed 95.1% of the chemical oxygen demand (COD from a hospital wastewater with the influent COD of 700 mg L-1, leaving 34 mg L-1 COD in the effluent. The significant removal of pathogenic bacterial has been do after operating of the system. The advantages of the treatment system studied for small wastewater flows include: (I simple operation and maintenance; (II efficient removal of COD and bacteria; and (III low-energy consumption.

  8. High-Rate Anaerobic Treatment of Wastewater at Low Temperatures

    OpenAIRE

    Lettinga, Gatze; Rebac, Salih; Parshina, Sofia; Nozhevnikova, Alla; van Lier, Jules B.; Stams, Alfons J. M.

    1999-01-01

    Anaerobic treatment of a volatile fatty acid (VFA) mixture was investigated under psychrophilic (3 to 8°C) conditions in two laboratory-scale expanded granular sludge bed reactor stages in series. The reactor system was seeded with mesophilic methanogenic granular sludge and fed with a mixture of VFAs. Good removal of fatty acids was achieved in the two-stage system. Relative high levels of propionate were present in the effluent of the first stage, but propionate was efficiently removed in t...

  9. A test study on treatment of high-strength polyester wastewater with anaerobic reactor

    Institute of Scientific and Technical Information of China (English)

    韩洪军; 陈秀荣; 徐春艳

    2002-01-01

    The treatment of polyester wastewater using Up-flow activated sludge bed anaerobic filer ( UASB-AF), demonstrated that UASB-AF reactors has a high efficiency, its volume loading is 10 ~ 12 kgCOD/( m3 @d) ,HRT is 22 ~24 h, and the removal of COD is about 80%. The reactor has advantage of fast starting andenduring pulse loading.

  10. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H2O2 dose, Fe+2, COD:H2O2 ratio and Fe+2:H2O2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l-1 for ρ-hydroxy-benzaldhyde to 3.273 mg l-1 for cinnamic acid

  11. Anaerobic ammonium oxidation for advanced municipal wastewater treatment: is it feasible?

    Institute of Scientific and Technical Information of China (English)

    LI Jie; XIONG Bi-yong; ZHANG Shu-de; YANG Hong; ZHANG Jie

    2005-01-01

    Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation(ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2- -N:NH4 + -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.

  12. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  13. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  14. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    International Nuclear Information System (INIS)

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature

  15. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater.

    Science.gov (United States)

    Ansari, Ashley J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Price, William E; Nghiem, Long D

    2015-09-01

    Forward osmosis (FO) can be used to extract clean water and pre-concentrate municipal wastewater to make it amenable to anaerobic treatment. A protocol was developed to assess the suitability of FO draw solutes for pre-concentrating wastewater for potential integration with anaerobic treatment to facilitate resource recovery from wastewater. Draw solutes were evaluated in terms of their ability to induce osmotic pressure, water flux, and reverse solute flux. The compatibility of each draw solute with subsequent anaerobic treatment was assessed by biomethane potential analysis. The effect of each draw solute (at concentrations corresponding to the reverse solute flux at ten-fold pre-concentration of wastewater) on methane production was also evaluated. The results show that ionic organic draw solutes (e.g., sodium acetate) were most suitable for FO application and subsequent anaerobic treatment. On the other hand, the reverse solute flux of inorganic draw solutions could inhibit methane production from FO pre-concentrated wastewater. PMID:25978854

  16. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    IBTISSAM KANBOUCHI

    2014-04-01

    Full Text Available In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate that the increasing of anaerobic phase (16 hours allows removal of 77 % and 80 % of COD and colour, respectively. The sludge age did not affect markedly dyes biodegradability. However, the biodegradability is strongly influenced by the dyes concentration. Indeed, for the lowest dyes contents, improved biodegradability was observed, while it decreases when the dyes concentration increases.

  17. Parameter Identification of Anaerobic Wastewater Treatment Bioprocesses Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Dorin Sendrescu

    2013-01-01

    Full Text Available This paper deals with the offline parameters identification for a class of wastewater treatment bioprocesses using particle swarm optimization (PSO techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of an anaerobic wastewater treatment process that is a complex biotechnological system. The identification scheme is based on a multimodal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.

  18. Enhancing Anaerobic Treatment of Wastewaters Containing Oleic Acid.

    NARCIS (Netherlands)

    Ching-Shyung, H.

    1997-01-01

    INTRODUCTIONLipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater concern when consider

  19. High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques.

    Science.gov (United States)

    van Lier, Jules B

    2008-01-01

    Decades of developments and implementations in the field of high-rate anaerobic wastewater treatment have put the technology at a competitive level. With respect to sustainability and cost-effectiveness, anaerobic treatment has a much better score than many alternatives. Particularly, the energy conservation aspect, i.e. avoiding the loss of energy for destruction of organic matter, while energy is reclaimed from the organic waste constituents in the form of biogas, was an important driver in the development of such systems. Invoked by the present greenhouse alert, the energy involved is nowadays translated into carbon credits, providing another incentive to further implement anaerobic technology. Anaerobic conversion processes, however, offer much more than cost-effective treatment systems. Selective recovery of metals, effective desulphurization, recovery of nutrients, reductive detoxification, and anaerobic oxidation of specific compounds are examples of the potentials of anaerobic treatment. This paper presents a survey on the state of the art of full-scale anaerobic high-rate treatment of industrial wastewaters and highlights current trends in anaerobic developments. PMID:18469383

  20. Study on anaerobic treatment of wastewater containing hexavalent chromium

    Institute of Scientific and Technical Information of China (English)

    XU Yan-bin; XIAO Hua-hua; SUN Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr ofwastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L,the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  1. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  2. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    OpenAIRE

    Yung-Tse Hung; Michel Torrijos; Cata Saady, Noori M.; Rajinikanth Rajagopal; Joseph V. Thanikal

    2013-01-01

    This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB) reactor, hybrid systems etc.; op...

  3. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    OpenAIRE

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration tw...

  4. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    Science.gov (United States)

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    2016-01-01

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability. PMID:27642828

  5. Mechanism and controlling strategy of the production and accumulation of propionic acid for anaerobic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    任南琪; 赵丹; 陈晓蕾; 李建政

    2002-01-01

    The production and accumulation of propionic acid affect significantly anaerobic wastewater treatment system, but the reasons are not approached until now. Based on the results of continuous-flow tests and the analysis of biochemistry and ecology, two mechanisms of producing propionic acid have been put forward. It is demonstrated that the reasons of propionic acid production and accumulation are not caused by higher hydrogen partial pressure. The combination of specific pH value and ORP is the ecological factor affecting propionic acid production, and the equilibrium regulation of NADH/NAD+ ratio in cells is the physiological factor. Meanwhile, it is put forward that using the two-phase anaerobic treatment process and the ethanol type fermentation in anaerobic reactor to avoid propionic acid accumulation are efficient methods.

  6. Treatment of anaerobically treated domestic wastewater using rotating biological contactor

    NARCIS (Netherlands)

    Tawfik, A.; Klapwijk, A.; El-Gohary, F.; Lettinga, G.

    2002-01-01

    A small-scale pilot plant consisting of a three-stage RBC has been investigated for the removal of E. coli, COD fractions and ammonia from the effluent of an UASB reactor treating domestic wastewater. The results obtained reveal that a three-stage system operated at a HRT of 3.0 h represents an effe

  7. Anaerobic Digestion of Paper Mill Wastewater

    OpenAIRE

    Shreeshivadasan Chelliapan; Siti Baizura Mahat; Md. Fadjil Md. Din; A. Yuzir; Othman, N.

    2012-01-01

    In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether ...

  8. Integrating the Anaerobic Process with Ultrafiltration in Meat Industry Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna

    2014-12-01

    Full Text Available The aim of this paper was to study meat industry wastewater treatment efficiency during fermentation process in ASBR reactor and post-treatment in UF process. The anaerobic process obtained a considerable degree of the removal of organic pollutants from raw wastewater designated as COD (73.3%, BOD (71.4% and TOC (83.2%. The concentrations of COD and BOD were 435 and 443 mg/dm3, respectively. The value of TOC reached a level of 136 mg/dm3. Generated biogas in the methane fermentation process of wastewater from meat industry plants was characterized by high methane content (80.9% vol.. In the final part of the experiment, the UF process was used in order to post-treating effluent from ASBR reactor. During the UF process, COD, BOD and TOC parameters were removed at 67.2%, 68% and 70.4%, respectively.

  9. Anaerobic wastewater treatment in the food processing industry: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.R.; Foresti, E.; Camacho, R.D.P.

    1986-01-01

    This article relates two experiments with wastewater treatment in the food processing industry. One of them refers to the use of an anaerobic filter (meat processing industry) and the other to the use of an upflow anaerobic sludge blanket reactor-UASB (vegetable and fruit processing industry). In the first case, the study describes the performance of an anaerobic filter which has been working for 6 years and provides COD removal efficiency (including primary treatment) equal or better than 80% with an organic loading of 1.4 kg of COD/cubic m/day. The reactor has a bed of broken stones with size of 0.75 m having a medium hydraulic retention time of 13 hours. Discharges of accumulated sludge in a false bottom below the filter are made at intervals of 2 or 3 months. In the second case, the study describes the performance of an upflow anaerobic sludge blanket reactor (88 cubic m) during 255 days of operation including the adaptation phase or startup. This reactor receives wastewater from vegetable and fruit processing including tomato, corn, guava and peach. At the end of each operational phase studied, the COD removal efficiency was about 80%. In the last phase (7.5 hours hydraulic retention time), the organic loading was 1.4 kg of COD/cubic m/day and the hydraulic loading was 3.2 cubic m/cubic m/day. (Refs. 11).

  10. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewa

  11. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  12. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  13. Anaerobic treatment of wastewater. Application for food industry; Depuracion anaerobia del aguas residuales. Se aplicacion en la industria alimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Carceller Rosa, J. M.

    2005-07-01

    Activated sludge aerobic reactors is a wide spread system in waste water treatment plants. Excessive proliferations of filamentous microorganisms give rise to bulking and foaming problems. Wastewater from food and drink industries as well as paper mill and related industries has severe risk of bulking episodes. Incorporation of anaerobic pre-treatment previous to existing aerobic treatment previous to existing aerobic treatment avoids bulking problems. Anaerobic systems are therefore indicated in waste waters with high concentrations of ready biodegradable organic substrates, such us waste waters from breweries, distilleries, soft drinks, paper mill industries, vegetable processing industries, etc. Basic principles of anaerobic wastewater treatment are exposed in this paper, with special reference to the most wide spread anaerobic systems: UASB, EGSB e IC reactors. Operational parameters of anaerobic and aerobic systems are compared, as well as investment and management costs, including biogas recovery. (Author) 7 refs.

  14. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion.

    Science.gov (United States)

    Oliveira, Jaime L da M; Silva, Denise P; Martins, Edir M; Langenbach, Tomaz; Dezotti, Marcia

    2012-01-01

    Organic micropollutants are often found in domestic and industrial effluents. Thus, it is important to learn their fate, the metabolites generated and their sorption during biological treatment processes. This work investigated the biodegradation of 14C-dicofol organochloride during wastewater aerobic treatment and sludge anaerobic biodigestion. The performance of these processes was evaluated by physical-chemical parameters. Radioactivity levels were monitored in both treatments, and residues of dicofol (DCF) and dichlorobenzophenone (DBP) were quantified by HPLC/UV. The efficiency of the aerobic and anaerobic processes was slightly reduced in the presence of DCF and DBP. After aerobic treatment, only 0.1% of DCF was mineralized, and 57% of radioactivity remained sorbed on biological sludge as DBP. After 18 days of anaerobiosis, only 3% of DCF and 5% of DBP were detected in the sludge. However, 70% of radioactivity remained in the sludge, probably as other metabolites. Dicofol was biodegraded in the investigated process, but not mineralized. PMID:22629645

  15. Modified two-phase anaerobic baffled process for low-concentration wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-zi; HAN Xiang-kui; YIN Jun; SHAO Pi-hong; AI Sheng-shu

    2009-01-01

    In this study low-concentration wastewater was investigated in the integral two-phase anaerobic baf-fled reactor by determining the removal of COD at various HRT,reflex ratios,and temperatures.Results indi-cate that the removal efficiency of COD is more than 90%at 25℃and 10-h HRT with no wastewater recycled,and the removal efficiency is up to 88%at 8-h HRT and reflex ratio of 150%.The removal efficiency is de-creased with the decreasing temperature and HRT.The removal efficiency of COD is approximaleIy 60%at10℃,which proves that the temperature does not affect it apparently.This research has significance for reduc-ing the cost ot wastewater and sludge treatment in cold area.

  16. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    Science.gov (United States)

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F

    2005-01-01

    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem. PMID:16180464

  17. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    Science.gov (United States)

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds.

  18. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Apollo, Seth [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Onyango, Maurice S. [Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria, Private Bag X680, Pretoria 0001 (South Africa); Ochieng, Aoyi, E-mail: ochienga@vut.ac.za [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2013-10-15

    Highlights: • Integrated AD and photodegradation is suitable for treatment of distillery effluent. • AD process is effective in COD and BOD reduction but not colour removal. • UV photodegradation is efficient in colour and DON removal. • UV photodegradation as a post treatment technique achieved high efficiencies. • UV pre-treatment inhibited biogas production in the succeeding anaerobic process. -- Abstract: Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds.

  19. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  20. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.

    Science.gov (United States)

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T; Williams, Ceri J; Burgoyne, Andrea; Edyvean, Robert G J

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 degrees C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20L fixed-bed reactor at 37 degrees C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m(-3)day(-1) during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L(biogas)L(reactor)(-1)day(-1), respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  1. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    International Nuclear Information System (INIS)

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m3 d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m3 CH4/kg CODremoved. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  2. Assessing the treatment of acetaminophen-contaminated brewery wastewater by an anaerobic packed-bed reactor.

    Science.gov (United States)

    Abdullah, Norhayati; Fulazzaky, Mohamad Ali; Yong, Ee Ling; Yuzir, Ali; Sallis, Paul

    2016-03-01

    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%. PMID:26760229

  3. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sentuerk, E.; Ince, M. [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey); Onkal Engin, G., E-mail: guleda@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey)

    2010-04-15

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m{sup 3} d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m{sup 3} CH{sub 4}/kg COD{sub removed}. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  4. Optimization of Anaerobic Treatment of Petroleum Refinery Wastewater Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    H.A. Gasim

    2013-07-01

    Full Text Available Treatment of petroleum refinery wastewater using anaerobic treatment has many advantages over other biological method particularly when used to treat complex wastewater. In this study, accumulated data of Up-flow Anaerobic Sludge Blanket (UASB reactor treating petroleum refinery wastewater under six different volumetric organic loads (0.58, 1.21, 0.89, 2.34, 1.47 and 4.14 kg COD/m3.d, respectively were used for developing mathematical model that could simulate the process pattern. The data consist of 160 entries and were gathered over approximately 180 days from two UASB reactors that were continuously operating in parallel. Artificial neural network software was used to model the reactor behavior during different loads applied. Two transfer functions were compared and different number of neurons was tested to find the optimum model that predicts the reactor pattern. The tangent sigmoid transfer function (tansig at hidden layer and a linear transfer function (purelin at output layer with 12 neurons were selected as the optimum best model.

  5. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  6. Combined Industrial Wastewater Treatment in Anaerobic Bioreactor Posttreated in Constructed Wetland

    OpenAIRE

    Bibi Saima Zeb; Qaisar Mahmood; Saima Jadoon; Arshid Pervez; Muhammad Irshad; Muhammad Bilal; Zulfiqar Ahmad Bhatti

    2013-01-01

    Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78–82%, 91.7%, 88–92%, and 100% for original industrial wastewater tre...

  7. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2013-03-01

    Full Text Available This review article compiles the various advances made since 2008 in sustainable high-rate anaerobic technologies with emphasis on their performance enhancement when treating agro-food industrial wastewater. The review explores the generation and characteristics of different agro-food industrial wastewaters; the need for and the performance of high rate anaerobic reactors, such as an upflow anaerobic fixed bed reactor, an upflow anaerobic sludge blanket (UASB reactor, hybrid systems etc.; operational challenges, mass transfer considerations, energy production estimation, toxicity, modeling, technology assessment and recommendations for successful operation

  8. Review:Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Ping ZHENG; Chongojian TANG; Ren-cun JIN

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest.The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists.Meanwhile,the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters.Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed,and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control.Successful full-scale practice in the Netherlands will ac-celerate application of the process in future.This review introduces the microbiology and more focuses on application of the ANAMMOX process.

  9. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants

    International Nuclear Information System (INIS)

    Highlights: • Between 39% and 79% of WWTP energy requirements could be fulfilled by the biogas produced. • Payback period of a biogas CHP engine is <2 years if energy price is ⩾216 € kJ−1. • 34% of the wastewater energy content is recovered into biogas. • Elemental composition is a good tool to estimate energy content of WWTP streams. - Abstract: Nowadays, energy consumption is one of the major concerns of wastewater treatment plants (WWTPs). Time ago, anaerobic digestion was usually implemented for sewage sludge stabilization but energy recovery optimization has recently gained importance. The energy balance of five WWTPs located in Catalonia revealed that depending on the configuration of the plant and its operation, between 39% and 76% of the total electric energy consumed in the WWTP could be supplied by the biogas produced. In the second part of this work, a carbon, nitrogen and sulphur flux analysis was carried out, together with an energy content evaluation for each stream in the WWTP. Results showed that 37% of the carbon found in the raw wastewater was removed during the active sludge process and 24% was transformed into biogas. The remaining carbon was found in the anaerobic dewatered sludge (22%) and in the treated water (19%). As a result, 34% of the initial energy was recovered in the form of biogas

  10. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  11. Enhancement of sludge granulation in anaerobic treatment of concentrated latex wastewater

    Directory of Open Access Journals (Sweden)

    Nugul Intrasungkha

    2008-04-01

    Full Text Available Recently, the upflow anaerobic sludge blanket (UASB reactor has become attractive for wastewater treatment with low energy requirement and biogas production. However, the start-up of an UASB reactor depends on the formation of granules. Therefore, this research aims to study the effect of AlCl3, CaCl2 and temperature on the granule formation process using real concentrated latex wastewater. The result shows that the optimum chemicals concentration of AlCl3 at 300 mg/l enhanced the biomass accumulation and sludge formation process. Approximately 50% of large granular size (0.5 mm 0.8 mm within 35 days, whereas the large granular sizes in reactorwithout AlCl3 supplement (R2 became visible within 63 days. Moreover, this experiment found that R1, R2 and R3 could reach steady state within 40, 55 and 45 days, respectively.

  12. Speciation and bioavailability of cobalt and nickel in anaerobic wastewater treatment

    OpenAIRE

    Jansen, S.

    2004-01-01

    The objective of this thesis was to quantify the dynamic relationships between speciation, biouptake and growth effects in anaerobic wastewater systems, focusing on the role of Co and Ni in the conversion of methanol to methane

  13. Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters

    Directory of Open Access Journals (Sweden)

    Leal M.C.M.R.

    2002-01-01

    Full Text Available An enzymatic extract produced by Penicillium restrictum having a high level of lipase activity (17.2 U.g-1 was obtained by solid-state fermentation using babassu cake as substrate. The enzymatic extract was used in the hydrolysis of a dairy wastewater with high fat contents (180, 450, 900 and 1,200 mg.L-1. Different hydrolysis conditions were tested, and it was determined that it should be carried out at a temperature of 35ºC, without agitation, with 10% v/v enzymatic extract and a hydrolysis time of 12 hours. Both crude and hydrolysed effluents were then submitted to an anaerobic biological treatment. It was observed that for the enzymatically pretreated effluent there was a significant improvement in the efficiency of the anaerobic treatment. For the highest fat content tested (1,200 mg.L-1, removal efficiencies of 19 and 80% were attained for crude and hydrolysed effluents, respectively. In addition, a tenfold increase in the removal rate of COD from the hydrolysed effluent (1.87 kg COD.m-3.d-1 was observed in relation to the crude effluent (0.18 kg COD.m-3.d-1. The results obtained in this study illustrate the viability of using a hybrid treatment (enzymatic-biological for wastewaters having high fat contents.

  14. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review.

    Science.gov (United States)

    Smith, Adam L; Stadler, Lauren B; Love, Nancy G; Skerlos, Steven J; Raskin, Lutgarde

    2012-10-01

    Interest in increasing the sustainability of water management is leading to a reevaluation of domestic wastewater (DWW) treatment practices. A central goal is to reduce energy demands and environmental impacts while recovering resources. Anaerobic membrane bioreactors (AnMBRs) have the ability to produce a similar quality effluent to aerobic treatment, while generating useful energy and producing substantially less residuals. This review focuses on operational considerations that require further research to allow implementation of AnMBR DWW treatment. Specific topics include membrane fouling, the lower limits of hydraulic retention time and temperature allowing for adequate treatment, complications with methane recovery, and nutrient removal options. Based on the current literature, future research efforts should focus on increasing the likelihood of net energy recovery through advancements in fouling control and development of efficient methods for dissolved methane recovery. Furthermore, assessing the sustainability of AnMBR treatment requires establishment of a quantitative environmental and economic evaluation framework. PMID:22608937

  15. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  16. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  17. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings. PMID:26829316

  18. A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.

  19. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.

  20. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    Science.gov (United States)

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved. PMID:27003628

  1. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. Zaiat

    1997-03-01

    Full Text Available The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process were investigated in order to obtain a rational basis for HAIS reactor design. A sequence of experiments was carried out for evaluating the cell wash-out from polyurethane foam matrices, the liquid-phase mass transfer coefficient and the intrinsic kinetic parameters, besides the hydrodynamic flow pattern of the reactor. The knowledge of such fundamental phenomena is useful for improving the reactor’s design and operation. Besides, these fundamental studies are essential to provide parameters for simulation and optimization of processes that make use of immobilized biomass

  2. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters.

    Science.gov (United States)

    Dereli, Recep Kaan; Ersahin, Mustafa Evren; Ozgun, Hale; Ozturk, Izzet; Jeison, David; van der Zee, Frank; van Lier, Jules B

    2012-10-01

    This review presents a comprehensive summary on applications of anaerobic membrane bioreactor (AnMBR) technology for industrial wastewaters in view of different aspects including treatability and filterability. AnMBRs present an attractive option for the treatment of industrial wastewaters at extreme conditions, such as high salinity, high temperature, high suspended solids concentrations, and toxicity that hamper granulation and retention of biomass or reduce the biological activity. So far, most of the research has been conducted at laboratory scale; however, also a number of full-scale AnMBR systems is currently being operated worldwide. Membrane fouling, a multivariable process, is still a research quest that requires further investigation. In fact, membrane fouling and flux decline present the most important reasons that hamper the wide-spread application of full-scale reactors. This paper addresses a detailed assessment and discussion on treatability and filterability of industrial wastewaters in both lab- and full-scale AnMBR applications, the encountered problems and future opportunities. PMID:22749827

  3. Composition and uses of anaerobic digestion derived biogas from wastewater treatment facilities in North America.

    Science.gov (United States)

    Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A

    2015-08-01

    A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation.

  4. Pilot-scale study on anaerobic/aerobic treatment of a textile dye wastewater

    OpenAIRE

    Boe, Randall William

    1993-01-01

    A pilot-scale system was constructed at the Martinsville Publicly Owned Treatment Works (POTW) in Martinsville, Virginia, to evaluate an anaerobic/aerobic treatment scheme for removal of color from textile dye waste waters mixed with municipal sewage. Treatments were evaluated with and without addition of a reducing agent (thiourea dioxide) after anaerobic treatment utilizing 6 and 12 hour anaerobic hydraulic retention times (HRT). Polymer treatment of the aerobic effluents and toxicity of...

  5. Anaerobic Treatment of Agricultural Residues and Wastewater - Application of High-Rate Reactors

    OpenAIRE

    Parawira, Wilson

    2004-01-01

    The production of methane via anaerobic digestion of agricultural residues and industrial wastewater would benefit society by providing a clean fuel from renewable feedstocks. This would reduce the use of fossil-fuel-derived energy and reduce environmental impact, including global warming and pollution. Limitation of carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies on biomass energy is making anaerobic digestion a more attractive and competitive tec...

  6. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.

    Science.gov (United States)

    Zhang, Yaobin; Jing, Yanwen; Quan, Xie; Liu, Yiwen; Onu, Pascal

    2011-01-01

    Waste scrap iron was packed into an upflow anaerobic sludge blanket (UASB) reactor to form a zero valent iron (ZVI) - UASB reactor system for treatment of azo dye wastewater. The ZVI acted as a reductant to decrease ORP in the reactor by more than 40 mv and functioned as an acid buffer to increase the pH in the reactor from 5.44 to 6.29, both of which improved the performance of the anaerobic reactor. As a result, the removal of color and COD in this reactor was 91.7% and 53%, respectively, which was significantly higher than that of a reference UASB reactor without ZVI. The UV-visible spectrum demonstrated that absorption bands of the azo dye from the ZVI-UASB reactor were substantially reduced. The ZVI promoted methanogenesis, which was confirmed by an increase in CH(4) content in the biogas from 47.9% to 64.8%. The ZVI bed was protected well from rusting, which allowed it to function stably. The effluent could be further purified only by pH adjustment because the Fe(2+) released from ZVI served as a flocculent.

  7. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, F.A.; Badawy, M.I. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt); El-Khateeb, M.A. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)], E-mail: elkhateebcairo@yahoo.com; El-Kalliny, A.S. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)

    2009-03-15

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H{sub 2}O{sub 2} dose, Fe{sup +2}, COD:H{sub 2}O{sub 2} ratio and Fe{sup +2}:H{sub 2}O{sub 2} ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l{sup -1} for {rho}-hydroxy-benzaldhyde to 3.273 mg l{sup -1} for cinnamic acid.

  8. Anaerobic wastewater treatment and membrane filtration: a one night stand or a sustainable relationship?

    Science.gov (United States)

    Jeison, D; van Lier, J B

    2008-01-01

    Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor for the attainable fluxes. Under thermophilic conditions, small sludge particle size was observed, resulting in low critical fluxes reaching 6-7 L/m2h for the submerged configuration and acidified substrate. In contrast, under mesophilic conditions critical fluxes of 20 L/m2h were obtained. The acidification level also showed a strong effect. Under thermophilic conditions, the presence of a significant fraction of non-acidified organic matter induced the growth of suspended acidogenic biomass that seriously affected the applicable fluxes, both in submerged and side-stream configurations. Under all conditions tested cake formation showed to be the limiting factor determining the applicable fluxes. Only low levels of irreversible fouling were observed. Due to technical and economical considerations, most interesting perspectives for the application of AnMBR are expected with the treatment of high-strength particulate wastewaters, and with extreme wastewaters characterised by high temperature, salinity, etc. PMID:18359991

  9. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    Science.gov (United States)

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. PMID:27526085

  10. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  11. Combined anaerobic-ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity.

    Science.gov (United States)

    Punzi, Marisa; Nilsson, Filip; Anbalagan, Anbarasan; Svensson, Britt-Marie; Jönsson, Karin; Mattiasson, Bo; Jonstrup, Maria

    2015-07-15

    A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1 g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1 min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy.

  12. Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor

    Directory of Open Access Journals (Sweden)

    D. J. Araujo

    2008-09-01

    Full Text Available The anaerobic treatment of wastewater from the household and personal products industry was studied using a 16.3 L hybrid reactor (UASB and biofilter. The top of the UASB reactor was filled with coconut shells to act as the support material for the biofilter. The wastewater was characterized in terms of pH (1.0 - 12.0, COD (1,000 - 5,000 mg/L, BOD5 (700 - 1,500 mg/L, chloride (55 - 850 mg/L, ammonia nitrogen (0.4 - 0.9 mg/L, total Kjeldahl nitrogen (22.1 - 34.0 mg/L, phosphorus (2.0 - 2.5 mg/L, anionic surfactants (100 - 600 mg/L, turbidity (115 - 300 NTU and total suspended solids (450 - 1,440 mg/L. The bioreactor was operated continuously for 120 days at room temperature (26 ± 5ºC with hydraulic retention times of 50, 40 and 60 h. COD and BOD removals and biogas production were evaluated in order to analyze process efficiency. The average removal efficiencies for COD (77%, 72% and 80% and BOD5 (approximately 90% were obtained with HRTs of 50, 40 and 60 h, respectively. The average specific biogas production was 0.32 L/g COD (at standard temperature and pressure for the three experimental runs. These data indicate good reactor efficiency and suggest the possibility of using this system to treat wastewater generated by the household and personal products industry.

  13. Anaerobic-aerobic small scale on-site wastewater treatment process. Kenkiter dot koki shori hoshiki jokaso

    Energy Technology Data Exchange (ETDEWEB)

    Inamori, Y. (National Institute for Environmental Studies, Tsukuba (Japan))

    1991-01-05

    As a part of the developmental project of advanced domestic wastewater treatment facilities, the following three types of small scale on-site anaerobic-aerobic wastewater treatment processes with removal functions of both BOD and nutritive salts were developed with targets of 10mg/l in BOD, 10mg/l in T-N and 1mg/l or less in T-P: an anaerobic-aerobic bio-filter treatment process with the adjustment function of hydraulic loading (A), an anaerobic-aerobic immobilized microorganisms packed fluidized bed-biofilm process (B) and a circulated anaerobic-aerobic fixed bed process (C). As the results of demonstration tests of each process using real wastewater, each process could achieve nearly the desired end, and the A process was superior in removal functions of organic substances, nitrogen and phosphorus. The C process was superior in stable removal functions of BOD and nitrogen as well as its easy production and low cost. 7 refs., 7 figs., 1 tab.

  14. Preliminary Study: Treatment of Food Industrial Wastewater using Two-Phase Anaerobic Treatments

    Directory of Open Access Journals (Sweden)

    Shahrul Shafendy Ibrahim

    2013-11-01

    Full Text Available Abstract: Food processing industrial wastewater is well known for its high concentration of COD, BOD and suspended solid. The condition of the wastewater formed makes it illegal for the industry to release the wastewater to the open body of water without essential treatment. The study is conducted on food manufacturing company which specializes in chips export business. The quality of the wastewater produced from the manufacturing is not appropriate to be discharged directly. Thus, a two phase treatment system involving UASB and HUASB reactors as primary treatment and followed by AF reactor as secondary treatment is proposed. Basically, this research will focus on the performance of UASB-AF and HUASB-AF treatment systems and the affect of adding palm oil shell into the HUASB and AF respectively as support media. Parameters measured are pH, COD, NH3-N, oil and grease and total phosphorus. The instruments used for collecting data in this research are pH meter and HACH DR5000. In this research, the highest COD removal for the effluents from the U1 and U2 were at the 14th day with 93.6% removal and at the 62th day with 96.6% each. Meanwhile, in the R2 treatment system, the highest COD removal for the effluents from the H1 and H2 were at the 14th day with 98.3% removal and at 110th day with 97.6% removal. It is hoped that this study will generate useful findings that could be applied to alleviate the current problem at the food factory and also at other food industry in the future.

  15. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume. PMID:20390881

  16. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling.

  17. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  18. Treatment of industrial wastewaters by anaerobic membrane bioreactors: implications of substrate characteristics

    OpenAIRE

    Dereli, R.K.

    2015-01-01

    The success of anaerobic digestion relies on the presence of highly active methanogenic biomass, requiring effective retention of slow growing anaerobic microorganisms inside bioreactor by decoupling the hydraulic retention time (HRT) from solids residence time (SRT) or the employment of long SRTs in fully mixed systems. So far, flow through systems, i.e. completely stirred tank reactor (CSTR) digesters, and granular sludge bed reactors have been commonly applied for anaerobic treatment of sl...

  19. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    Science.gov (United States)

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

  20. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain.

    Science.gov (United States)

    Blanco, David; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer.

  1. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    OpenAIRE

    Sun, Weimin; Sun, Xiaoxu; Cupples, Alison M.

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrif...

  2. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  3. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Science.gov (United States)

    Rajendram, William

    2016-01-01

    The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW) with sewage sludge (SS), that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP) increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284 ± 9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS. PMID:27689091

  4. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater.

    Science.gov (United States)

    Yurtsever, Adem; Sahinkaya, Erkan; Aktaş, Özgür; Uçar, Deniz; Çınar, Özer; Wang, Zhiwei

    2015-09-01

    This study aims at comparatively evaluating anaerobic and aerobic MBRs for the treatment of azo-dye containing synthetic wastewater. Also, the filtration performances of AnMBR and AeMBR were compared under similar operating conditions. In both MBRs, high COD removal efficiencies were observed. Although almost complete color removal was observed in AnMBR, only partial (30-50%) color removal was achieved in AeMBR. AnMBR was successfully operated up to 9 L/(m(2)h) (LMH) and no chemical cleaning was required at 4.5 LMH for around 50 days. AeMBR was operated successfully up to 20 LMH. The filtration resistance of AnMBR was generally higher compared to AeMBR although reversible fouling rates were comparable. In both MBRs, offline chemical cleaning with NaOCl and sulfuric acid almost completely removed irreversible fouling and the resistances of chemically cleaned membranes were close to those of new membranes. PMID:26093251

  5. Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment.

    Science.gov (United States)

    Wang, Wei; Yang, Qi; Zheng, Shuangshuang; Wu, Donglei

    2013-12-01

    Bamboo industry wastewater (BIWW) poses severe environmental problems because of its high organic matter content. In this study, anaerobic membrane bioreactor (AnMBR) was applied for BIWW treatment. During the start-up stage, the system presented an effective degradation with a final COD removal of 91%. Compared to the intermittent mode, a higher membrane rejection (45% COD, 60% NH3-N) was obtained when the system was operated continuously. N2 flushing was applied for membrane cleaning, and the cleaning efficiency was significantly influenced by the hydraulic retention time (HRT). While operated under HRT ≥ 5 d, membrane fouling could be effectively controlled. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis indicated the membrane top area suffered the most serious fouling. Gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses revealed most organic matter in BIWW was eliminated by AnMBR. However, benzene and fluoro derivatives were detected in the permeate as the by-products. PMID:24121371

  6. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  7. Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment.

    Science.gov (United States)

    Wang, Wei; Yang, Qi; Zheng, Shuangshuang; Wu, Donglei

    2013-12-01

    Bamboo industry wastewater (BIWW) poses severe environmental problems because of its high organic matter content. In this study, anaerobic membrane bioreactor (AnMBR) was applied for BIWW treatment. During the start-up stage, the system presented an effective degradation with a final COD removal of 91%. Compared to the intermittent mode, a higher membrane rejection (45% COD, 60% NH3-N) was obtained when the system was operated continuously. N2 flushing was applied for membrane cleaning, and the cleaning efficiency was significantly influenced by the hydraulic retention time (HRT). While operated under HRT ≥ 5 d, membrane fouling could be effectively controlled. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis indicated the membrane top area suffered the most serious fouling. Gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses revealed most organic matter in BIWW was eliminated by AnMBR. However, benzene and fluoro derivatives were detected in the permeate as the by-products.

  8. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Saddoud, Ahlem [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia); Sayadi, Sami [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia)], E-mail: sami.sayadi@cbs.rnrt.tn

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m{sup -3} d{sup -1} with gradual increase to an average of 13.27 kg TCOD m{sup -3} d{sup -1}. At stable conditions, the treatment efficiency was high with an average COD and BOD{sub 5} reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m{sup -3} d{sup -1}. The removal efficiencies of SCOD and BOD{sub 5} were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  9. Overview on the application of anaerobic digestion to the treatment of chemical and petrochemical wastewaters

    OpenAIRE

    Macarie, Hervé

    1999-01-01

    Today, with at least 848 reactors constructed in the world, anaerobic digestion is considered to have reached technical maturity. Until now however, it has been used quite exclusively for the treatment of food industry effluents. It is only during the last 10 years that anaerobic digestion has started to be applied massively to the treatment of sewage and effluents from other industrial activities. During the 70's and 80's, the chemical and petrochemical industries were almost refractory to t...

  10. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. PMID:26577579

  11. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    substances on the surface of the solid phase. A substance being adsorbed is  adsorbate, and the phase upon which the adsorption is carried out is called the adsorbent. Biological methods Biological purification processes are based on the activities of a complex microflora, which is in the course of their life cycle adopted by organic and parts of inorganic materials causing wastewater pollution, using them to maintain life activities and to create new cells. During a biological treatment, stabilized sludge is precipitated,and removed from the water in secondary sedimentation tanks. Biological purification processes can be aerobic and anaerobic, with the help of aerobic or anaerobic microorganisms. Aerobic processes with suspended microflora are divided into: the processes with activated sludge in bioaeration tanks, processes in aerated lagoons (biological lagoons and processes in aerobic (shallow lakes (biological artificial lakes. Activated sludge process This is an aerobic process of a biological wastewater treatment, as it occurs due to aerobic microbial population. Microorganisms are found in aeration basins, where, with the help of oxygen in the metabolic process, substrate degradation is provided. Microorganisms oxidize the dissolved substrate into carbon dioxide and water. A part of the organic material is synthesized into new cells or used for the growth of existing ones and the rest consists of waste and excess sludge. A part of sludge is returned into the process (activated sludge where it has a role of an activator of the biological process. The rest of sludge is discharged into the sludge treatment device or disposed of in a proper way. Clear purified water (effluent is discharged into the recipient, or, if necessary, taken to additional processing. Process in aerobic lagoons Lagoons and shallow basins, as an aerobic biological wastewater treatment method, provide a sufficient amount of oxygen through photosynthesis. Process in shallow lakes Aerobic lakes are

  12. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. PMID:24880609

  13. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  14. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater.

  15. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. PMID:27593269

  16. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  17. Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Sachin Paudel

    2015-12-01

    Full Text Available The aim of this study was to evaluate the potential of domestic wastewater for anaerobic hydrogen production. High-strength and ordinary-strength organic loadings of synthetic wastewater, i.e., real-time domestic wastewater with and without a mixture of food waste, were tested. During operation at a high strength loading, the initial pH was maintained at 7 and then gradually decreased, and a pH of 5–5.5 was observed as the best experimental condition. A pH of 5–5.5 was controlled during the operation at an ordinary-strength loading. Maximum hydrogen yields of 1.125 mol H2/mol glucose and 1.01 mol H2/mol glucose were observed during operation at high (48 g COD/L·day and ordinary (3 g COD/L·day strength loadings in terms of chemical oxygen demand (COD, respectively, with hydrogen contents of 42%–53%. The operating environment of the hydrogen production system was found to be very crucial because the metabolic pathway of the microorganism and production of intermediates were found to be dynamic with the controlled environment. Smaller COD removals of 30% and 26% were observed in high-strength and ordinarystrength loadings, respectively. Organic mass balance in terms of COD described the distribution of organics in the system via reactor byproducts. The findings of this study can be applied during the design of onsite domestic wastewater and energy recovery systems.

  18. Energy- and CO2-reduction potentials by anaerobic treatment of wastewater and organic kitchen wastes in consideration of different climatic conditions.

    Science.gov (United States)

    Weichgrebe, D; Urban, I; Friedrich, K

    2008-01-01

    The classical municipal wastewater treatment in Germany consists of an aerobic carbon and nitrogen elimination and mostly an anaerobic sludge treatment. Organic kitchen wastes from separate waste collection as well as yard wastes are converted mostly in composting plants to soil conditioner. With these conventional types of treatment, the energy potential in waste and wastewater is lost due to aerobic material conversion. In this article three scenarios for the treatment of municipal wastewater and waste are compared on the subject of energy efficiency and useable potential: Sc1. the classical wastewater treatment and the composting of the organic waste fraction, Sc2. the anaerobic treatment of wastewater combined with deammonification and the digestion of the organic waste fraction, and Sc3. a mutual anaerobic treatment of wastewater and waste as co-digestion with deammonification. The calculation of energy and CO2-balance considers different climatic conditions. In case of using anaerobic treatment, not only the energy balance will be positive, also the CO2-balance is improved by the substitution of fossil fuels with generated biogas.

  19. Anaerobic bio filter systems to have the best yield of biogas with the treatment of piggery wastewater

    International Nuclear Information System (INIS)

    Animal husbandry is a leading food supplying industry for the mankind. Wastewater generation from animal husbandry is a real environmental threat for many countries. Piggery wastewater with high Chemical Oxygen Demand (COD is between 8000 to 15000 mg/lt) is having a very high potential of biogas production, under anaerobic condition. This research was based upon the fixing of series of Up flow Anaerobic Floating Filters (UAFF) to catch a maximum yield of biogas from piggery wastewater with better cleaning facility. These experiments achieved more than 90% of COD removal of piggery wastewater with better cleaning facility. Other analyzed results of the experiments shows that the removal rate of biological Oxygen Demand (BOD) also is more than 90% with 90% of avarrage removal rates of Suspended Solids (SS) and Total Solids (TS). Average volumetric biogas yield was reched up to 450 lts/Cum.day in the different loading rates held between 2.24 to 5.92 kg. COD/Cum.day. Encouraged by this attractive results of the lab-scale unit, and another medium scale unit installed at a piggery site, a few companies funded for developing full-scale units with low cost construction methodolgy. A few companies funded for developing full-scale units with low cost construction methodology. A few farmers for animalhusbandry. Centrl Environmental Authority of Sri Lanka (CEA) has lready monitored the parameters of the treated wastewater with this treatment system and satisfactory levels were ensured. A few private farmers for animal husbandry in Sri Lanka are now precticing this system satisfactory as a good start for a long journey towards the prospects of biogas energy with a clean farm environment. This UAFF syste can easily practice with other type of wastewaters from the field of animal husbandry. Some of them are cattle farms. poultry farms, Lamb and sheep farms etc. Technical paper with full data analysis is available with a pictorial power point presentation.(Author)

  20. Evaluation Of Communal Wastewater Treatment Plant Operating Anaerobic Baffled Reactor And Biofilter

    OpenAIRE

    Evy Hendriarianti; Nieke Karnaningroem

    2016-01-01

    Construction of communal Waste Water Treatment Plant, WWTP in city of Malang since 1998 but until recently had never done an evaluation the performance. Communal WWTP performance evaluation is needed to see how far the efficiency of processing result. Until now, Environmental Agency Malang City only measure effluent from WWTP Communal  to know the suitability  with domestic wastewater quality standards. Effluent quality data in 2014 showed value above the quality standard of domestic wastewat...

  1. Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jbelther@unex.es; Gonzalez, T.; Garcia, J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-06-15

    The biodegradation of the organic pollutant matter present in green table olive wastewater (GTOW) is studied in batch reactors by an aerobic biodegradation and by an anaerobic digestion. In the aerobic biodegradation, the evolution of the substrate (in terms of chemical and biochemical oxygen demand), biomass, and total polyphenolic compounds present in the wastewater are followed during the process, and a kinetic study is performed using Contois' model, which when applied to the experimental results provides the kinetic parameter of this model, resulting in a modified Contois' equation (q = 3.3S/(0.31S{sub 0}X + X), gCOD/gVSS d{sup -1}). Other kinetic parameters were determined: the cellular yield coefficient (Y{sub X/S} = 5.7 x 10{sup -2} gVSS/gCOD) and the kinetic constant of cellular death phase (k{sub d} = 0.16 d{sup -1}). Similarly, in the anaerobic digestion, the evolution of the substrate digested and the methane produced are followed, and the kinetic study is conducted using a modified Monod model combined with the Levenspiel model, due to the presence of inhibition effects. This model leads to the determination of the kinetic parameters: kinetic constant when no inhibitory substance is present (k{sub M0} = 8.4 x 10{sup -2} h{sup -1}), critical substrate concentration of inhibition (TP* = 0.34 g/L) and inhibitory parameter (n = 2.25)

  2. Anaerobic wastewater treatment in single-and double-stage digesters; Tratamiento anaerobio de aguas residuales en digestores de simple y doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Lopez, M.; Vazquez Garcia, M. J.; Pena Caamano, P.; Soto Castineira, M. [Universidad da Coruna (Spain)

    2000-07-01

    Anaerobic treatment are a major alternative in wastewater treatment due to simplicity and lower power requirements, although greater understanding of this process and its technology is needed to make it possible. The most important concepts and parameters developed to treat medium-and high-load effluents are defined and various technologies are discussed, including: anaerobic filter (AF), upflow anaerobic sludge blanket (UASB) reactors, fluidized bed (FB) reactors, expanded granular sludge beds (EGSB). To determine the efficiency in municipal wastewater treatment, a pilot plant was constructed with a UASB reactor, obtaining elimination efficiency values of 60-65% for total COD and 55% for TSS. Finally a comparative chart of aerobic versus anaerobic treatment is provided, high-lighting the major possibilities offered by the latter. (Author) 28 refs.

  3. Analyzing the biomass filter behavior in an anaerobic wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Carlos-Hernandez, S.

    2009-07-01

    Nowadays, waste emissions in air, water and soil must be reduced in order to reach the more and more strict environmental rules. In the case of wastewater, there exists a big interest to improve treatment plants performances. The paper deals with the analysis, via the phase portraits method, of a biomass filter behavior in a completely stirred tank reactor deals with the analysis. (Author)

  4. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    Science.gov (United States)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  5. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  6. Anaerobic membrane bioreactor treatment of synthetic municipal wastewater at ambient temperature.

    Science.gov (United States)

    Ho, Jaeho; Sung, Shihwu

    2009-01-01

    The performance of a crossflow anaerobic membrane bioreactor (AnMBR) to treat synthetic municipal wastewater was investigated at different hydraulic retention times (HRTs). The AnMBR was operated at chemical oxygen demand (COD) loading rates of 1 to 2 kg COD/m3 x d for 280 days. The permeate COD concentration was always lower than 40 mg/L, and no noticeable volatile fatty acids were detected, regardless of HRT variations, while soluble COD (SCOD) was accumulated in the reactor with decreases in HRT. The particle size reduction was relatively lower than other studies reported, even after a long operation time resulting from the low operation crossflow velocity. Approximately 30% of COD was not available for methane recovery, irrespective of applied HRTs, as a result of the COD loss by dissolved methane, sulfate reduction, and untreated COD in the permeate. The fraction of methane recovered from the synthetic municipal wastewater decreased from 48 to 35%, with the decrease of HRT from 12 to 6 hours, as a result of the increase of mixed-liquor SCOD, which was rejected and accumulated in the AnMBR. Therefore, AnMBR operation with relatively long HRTs and SRTs may be favorable, to enhance methane recovery and reduce or eliminate sludge production. PMID:19860148

  7. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia

    Institute of Scientific and Technical Information of China (English)

    Gefu ZHU; Chaoxiang LIU; Jianzheng LI; Nanqi REN; Lin LIU; Xu HUANG

    2013-01-01

    A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD·m-3·d-1, HRT of 8h, and temperature of 35℃ for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD·m-3·d-1, on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1-4.5, -250-(-290) mV, and 230-260mgCaCO3·L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L'gMLVSS-1· d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

  8. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    OpenAIRE

    Linda Jabari; Hana Gannoun; Eltaief Khelifi; Jean-Luc Cayol; Jean-Jacques Godon; Moktar Hamdi; Marie-Laure Fardeau

    2016-01-01

    Abstract Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%,...

  9. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland

    OpenAIRE

    María L. Merino-Solís; Edgardo Villegas; José de Anda; Alberto López-López

    2015-01-01

    This work assesses the performance of a municipal pilot wastewater treatment system employing an up-flow anaerobic filter (UAF) followed by a horizontal subsurface constructed wetland (HSSCW). This pilot scale demonstration project was implemented in a zone with subtropical climate in order to protect Lake Chapala from wastewater loads that are discharged by small communities in the Lake’s vicinity. The filters were filled with tezontle as the media for biofilm support and the HSSCW was plant...

  10. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; WANG Wen-xiang; DENG Zhi-yi; WU Chao-fei

    2007-01-01

    A new anaerobic reactor,Jet-loop anaerobic fluidized bed(JLAFB),was designed for treating high-sulfate wastewater.The treatment characteristics,including the effect of influent COD/SO42- ratio and alkalinity and sulfide inhibition in reactors,were discussed for a JLAFB and a general anaerobic fluidized bed(AFB)reactor used as sulfate-reducing phase and methane-producing phase,respectively,in two-phase anaerobic digestion process.The formation of granules in the two reactors was also examined.The results indicated that COD and sulfate removal had different demand of influent COD/S042- ratios.When total COD removal Was up to 85%,the ratio was only required up to 1.2,whereas,total sulfate removal up to 95%required it exceeding 3.0.The alkalinity in the two reactors increased linearly with the growth of influent alkalinity.Moreover,the change of influent alkalinity had no significant effect on pH and volatile fatty acids(VFA)in the two reactors.Influent alkalinity kept at 400-500 mg/t,could meet the requirement of the treating process.The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms.When sulfate loading rate was up to 8.1 kg/(m3·d),the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L,respectively.Furthermore,the granules,with offwhite color,ellipse shape and diameters of 1.0-3.0 mm,could be developed in JLAFB reactor.In granules,different groups of bacteria were distributed in different layers,and some inorganic metal compounds such as Fe,Ca,Mg etc.were found.

  11. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    Science.gov (United States)

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  12. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality

    Institute of Scientific and Technical Information of China (English)

    Yaobin Zhang; Yiwen Liu; Yanwen Jing; Zhiqiang Zhao; Xie Quan

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment.Based on this idea,a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality.The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI.The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV.Iron ion dissolution from the ZVI could buffer acidity in the reactor,the amount of which was related to the COD concentration.Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one.Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  13. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  14. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater.

    Science.gov (United States)

    Fernandes, L R; Gomes, A C; Lopes, A; Albuquerque, A; Simões, R M

    2016-01-01

    Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs. PMID:26496487

  15. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    Science.gov (United States)

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    2016-01-01

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion. PMID:27438248

  16. 厌氧-好氧生物工艺对制药废水处理研究%Anaerobic -aerobic biological treatment of pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    谢红

    2013-01-01

    At present , the majority of pharmaceutical wastewater treatment research direction is the treatment of antibiotic pharmaceutical wastewater , and lack of research on wastewater treatment technology of nutritional types of pharmaceutical , through the research on wastewater treatment technology of nutrient drug , can draw the wastewater treatment related parameters .In this paper , anaerobic and aerobic wastewater treatment process as the main process of pharmaceutical wastewater treatment , especially to analyze the nutritional foundation of pharmaceutical wastewater , experimental study is made on the sewage treatment plant production conditions , operating parameters .%目前,大多数制药废水处理研究的方向是处理抗生素制药废水,缺乏对营养类型制药废水处理工艺方面的研究,通过对营养型制药废水处理工艺研究,可以得出废水处理相关的参数。在本文中,厌氧-好氧法废水处理工艺作为制药废水处理的最主要工艺,重点对营养型基础制药废水做出分析,对污水处理厂生产条件、运行参数进行实验研究。

  17. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  18. Application of IC Anaerobic Reactor in Wastewater Treatment%内循环(IC)厌氧反应器在废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    钟启俊

    2014-01-01

    The paper introduces the basic principle of inner circulating (IC) anaerobic reactor, analyzes the technology characteristic of IC anaerobic reactor, namely IC anaerobic reactor is an anaerobic reactor with new type and high efifciency, and explains the application development and prospect of the IC anaerobic reactor in wastewater treatment.%介绍了内循环(IC)厌氧反应器的基本原理,分析了IC厌氧反应器的工艺特点,即IC厌氧反应器是新型高效厌氧生物反应器,扼述了IC厌氧反应器在废水处理中的应用进展及前景。

  19. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    Science.gov (United States)

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. PMID:26241771

  20. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters.

    Science.gov (United States)

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G

    1994-08-01

    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. PMID:18618781

  1. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  2. Evaluation Of Communal Wastewater Treatment Plant Operating Anaerobic Baffled Reactor And Biofilter

    Directory of Open Access Journals (Sweden)

    Evy Hendriarianti

    2016-02-01

    Full Text Available Construction of communal Waste Water Treatment Plant, WWTP in city of Malang since 1998 but until recently had never done an evaluation the performance. Communal WWTP performance evaluation is needed to see how far the efficiency of processing result. Until now, Environmental Agency Malang City only measure effluent from WWTP Communal  to know the suitability  with domestic wastewater quality standards. Effluent quality data in 2014 showed value above the quality standard of domestic wastewater from East Java Governor Regulation No. 72 in 2013 for parameters BOD and COD. WWTP Communal USRI research objects are on a six (6 locations by involving the user community during the planning, construction, operation and maintenance. Technology choice of ABR followed by a biofilter reactor with the stone media proved capable of processing organic matter of BOD and COD with the removal levels respectively by 78% -99% and 71% -99%. As for the parameters of TSS, NO3 and PO4 have the ranges of removal respectively by 56% -100%, (43% - 72%, (2% - 13%. Ratio BOD and COD in influent are low and ranged from 0.22 to 0.41. From the evaluation shows that high organic matter concentrations in influent along with the HRT and operation time high will result in a higher removal level

  3. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment

    OpenAIRE

    Ren, Lijiao; Ahn, Yongtae; Logan, Bruce E.

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 d...

  4. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value. PMID:25145171

  5. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment.

    Science.gov (United States)

    Wei, Chun-Hai; Harb, Moustapha; Amy, Gary; Hong, Pei-Ying; Leiknes, TorOve

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10 gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50 mg/L for general reuse was 6 gCOD/L/d and 0.63 gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6 gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300 ml/gCOD (even approaching the theoretical value of 382 ml/gCOD). A low biomass production of 0.015-0.026 gMLVSS/gCOD and a sustainable flux of 6L/m(2)/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. PMID:24926606

  6. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment

    KAUST Repository

    Wei, Chunhai

    2014-08-01

    The overall performance of a mesophilic anaerobic membrane bioreactor (AnMBR) for synthetic municipal wastewater treatment was investigated under a range of organic loading rate (OLR). A very steady and high chemical oxygen demand (COD) removal (around 98%) was achieved over a broad range of volumetric OLR of 0.8-10gCOD/L/d. The sustainable volumetric and sludge OLR satisfying a permeate COD below 50mg/L for general reuse was 6gCOD/L/d and 0.63gCOD/gMLVSS (mixed liquor volatile suspended solids)/d, respectively. At a high sludge OLR of over 0.6gCOD/gMLVSS/d, the AnMBR achieved high methane production of over 300ml/gCOD (even approaching the theoretical value of 382ml/gCOD). A low biomass production of 0.015-0.026gMLVSS/gCOD and a sustainable flux of 6L/m2/h were observed. The integration of a heat pump and forward osmosis into the mesophilic AnMBR process would be a promising way for net energy recovery from typical municipal wastewater in a temperate area. © 2014 Elsevier Ltd.

  7. Performance of up flow anaerobic sludge fixed film bioreactor for the treatment of high organic load and biogas production of cheese whey wastewater

    Directory of Open Access Journals (Sweden)

    Tehrani Nazila Samimi

    2015-01-01

    Full Text Available Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF; was a combination of up flow anaerobic sludge blanket (UASB and up flow anaerobic fixed film reactor (UAFF, respectively. The effects of operating parameters such as temperature and hydraulic retention time (HRT on chemical oxygen demand (COD removal and biogas production in the hybrid bioreactor were investigated. Treatability of the samples at various HRTs of 12, 24, 36 and 48 hours was evaluated in the fabricated bioreactor. The desired conditions for COD removal such as HRT of 48 hours and operation temperature of 40 °C were obtained. The maximum COD removal and biogas production were 80% and 2.40 (L/d, respectively. Kinetic models of Riccati, Monod and Verhalst were also evaluated for the living microorganisms in the treatment process. Among the above models, Riccati model was the best growth model fitted with the experimental data with R2 of about 0.99.

  8. Treatment of industrial wastewaters by anaerobic membrane bioreactors: implications of substrate characteristics

    NARCIS (Netherlands)

    Dereli, R.K.

    2015-01-01

    The success of anaerobic digestion relies on the presence of highly active methanogenic biomass, requiring effective retention of slow growing anaerobic microorganisms inside bioreactor by decoupling the hydraulic retention time (HRT) from solids residence time (SRT) or the employment of long SRTs i

  9. Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater.

    Science.gov (United States)

    del Agua, Isabel; Usack, Joseph G; Angenent, Largus T

    2015-01-01

    The objective of this work was to compare two different high-rate anaerobic bioreactor configurations--the anaerobic sequencing batch reactor (ASBR) and the upflow anaerobic solid removal (UASR) reactor--for the treatment of a solid-rich organic wastewater with a high strength. The two, 4.5-L reactors were operated in parallel for close to 100 days under mesophilic conditions (37°C) with non-granular biomass by feeding a pumpkin wastewater with ∼4% solids. The organic loading rate of pumpkin wastewater was increased periodically to a maximum of 8 g COD L(-1) d(-1) by shortening the hydraulic retention time to 5.3 days. Compositional analysis of pumpkin wastewater revealed deficiencies in the trace metal cobalt and alkalinity. With supplementation, the ASBR outperformed the UASR reactor with total chemical oxygen demand (COD) removal efficiencies of 64% and 53%, respectively, achieving a methane yield of 0.27 and 0.20 L CH4 g(-1) COD fed to the ASBR and UASR, respectively. The better performance realized with the ASBR and this specific wastewater was attributed to its semi-batch, dynamic operating conditions rather than the continuous operating conditions of the UASR reactor. PMID:25683478

  10. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment

    DEFF Research Database (Denmark)

    Shrestha, Pravin; Malvankar, Nikhil S.; Werner, Jeffrey;

    2014-01-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical...... conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial...... with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes....

  11. Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment.

    Science.gov (United States)

    Jeison, David; Plugge, Caroline M; Pereira, Alcina; van Lier, Jules B

    2009-03-01

    Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5m/s and fed with a gelatine-starch-ethanol mixture. A significant fraction of acidogenic biomass developed during reactor operation, which fully determined the sludge rheology, and influenced the particle size distribution. As a result, flux levels of only 6.5l/m(2)h were achieved, at a liquid superficial velocity of 1.5m/s. Even though the soluble microbial products levels in the AMBR were as high as 14g COD/l, the observed hydraulic flux was not limited by irreversible pore fouling, but by reversible cake layer formation. Propionate oxidation was the limiting step for the applied organic loading rate. The assessed specific methanogenic activity (SMA) with propionate as substrate was, however, similar to the values found by others during thermophilic treatment of non or partially acidified substrates in granular sludge bed reactors, indicating an appropriate level of the propionate oxidation capacity. PMID:19036578

  12. Efficient methane production from lipid-rich wastewater in high-rate anaerobic treatment

    OpenAIRE

    Cavaleiro, A. J.; Salvador, A. F.; Alves, M. M.

    2008-01-01

    In this work, high rate anaerobic mineralization of a synthetic dairy effluent containing 50% COD as oleic acid was accomplished in two reactors operated in parallel. The anaerobic reactors were able to accommodate organic loading rates up to 21 kg COD m-3 day-1, HRT of 9 hours, attaining 99% of soluble COD removal efficiency and methane yield higher than 70%. Long chain fatty acids (LCFA) accumulated inside the reactor only during the last two phases of operation and palmitic acid was ...

  13. Improvement of anaerobic digestion of municipal wastewater treatment plant sludges and lignocellulosic substrates in biogas production

    OpenAIRE

    Kolbl, Sabina

    2014-01-01

    The aim of this doctoral dissertation was to improve the production of methane by mechanical and enzymatic pretreatments of organic substrates. For anaerobic digestion of different substrates and determination of biomethane potential, Automatic Methane Potential Test System (AMPTS II) device was used. AMPTS II is an analytical laboratory scale device used in measurements of ultra low speed production of biomethane produced during the anaerobic digestion of biodegradable substrates. Although b...

  14. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-03-01

    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  15. Anaerobic digestion for soybean milk wastewater treatment; Tratamiento anaerobio a escala indutrial de efluentes de la produccion de leche de soja

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Rojas, A.; Gonzalez Alonso, J. S.

    2006-07-01

    The Cuban process developed to obtain soybean milk generates wastewaters showing values of BOD{sub 5}, COD and total solids higher than those reported for other technologies. A Typical production facility imposes an organic load on the environment equivalent to 10.555 inhabitants. This work presents the design of an up-flow anaerobic filter systems as the most suitable technology for the treatment of these wastes using the anaerobic digestion, based on waste characteristics and particular experiences obtained with pilot scale experiments. (Author) 20 refs.

  16. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... alternative could be to use small and simple biogas plants, followed by dewatering of the degassed biomass, either by utilizing possible surplus of energy from the biogas plant or natural freezing, which might be a more cost-effective way. After dewatering the liquid part can be treated by filtration...

  17. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment.

    Science.gov (United States)

    Chen, Lin; Gu, Yangshuo; Cao, Chuqing; Zhang, Jun; Ng, Jing-Wen; Tang, Chuyang

    2014-03-01

    A submerged anaerobic membrane bioreactor with forward osmosis membrane (FO-AnMBR) was operated at 25 °C for the treatment of synthetic wastewater. As the experiment progressed, the water flux reduced due to the membrane fouling and the increasing salinity in the reactor, and achieved at around 3.5 LMH in one cycle. It was worth noting that the level of salinity in the reactor was not a concern in terms of inhibition or toxic effects on the biological processes. The FO-AnMBR process exhibited greater than 96% removal of organic carbon, nearly 100% of total phosphorus and 62% of ammonia-nitrogen, respectively, suggesting a better removal efficiency than the conventional anaerobic membrane bioreactor. The methane and carbon dioxide compositions achieved concentrations of around 65%-78% and 22%-35%, respectively; and no obvious difference in the biogas composition was observed with the changes of conductivity. With respect to the methane yield, an average value of 0.21 L CH4 g(-1) COD was obtained, exhibiting the feasibility of energy recovery by this FO-AnMBR system. Additionally, an increase in the salinity enhanced the accumulation of soluble microbial products, especially for the proteins with 88.9% increment as the conductivity increased from 1.2 to 17.3 ms cm(-1). In contrast, a relatively stable concentration of extracellular polymer substances (EPS) was observed, indicating that the influence of conductivity on EPS cannot be directly correlated.

  18. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment.

    Science.gov (United States)

    Chen, Lin; Gu, Yangshuo; Cao, Chuqing; Zhang, Jun; Ng, Jing-Wen; Tang, Chuyang

    2014-03-01

    A submerged anaerobic membrane bioreactor with forward osmosis membrane (FO-AnMBR) was operated at 25 °C for the treatment of synthetic wastewater. As the experiment progressed, the water flux reduced due to the membrane fouling and the increasing salinity in the reactor, and achieved at around 3.5 LMH in one cycle. It was worth noting that the level of salinity in the reactor was not a concern in terms of inhibition or toxic effects on the biological processes. The FO-AnMBR process exhibited greater than 96% removal of organic carbon, nearly 100% of total phosphorus and 62% of ammonia-nitrogen, respectively, suggesting a better removal efficiency than the conventional anaerobic membrane bioreactor. The methane and carbon dioxide compositions achieved concentrations of around 65%-78% and 22%-35%, respectively; and no obvious difference in the biogas composition was observed with the changes of conductivity. With respect to the methane yield, an average value of 0.21 L CH4 g(-1) COD was obtained, exhibiting the feasibility of energy recovery by this FO-AnMBR system. Additionally, an increase in the salinity enhanced the accumulation of soluble microbial products, especially for the proteins with 88.9% increment as the conductivity increased from 1.2 to 17.3 ms cm(-1). In contrast, a relatively stable concentration of extracellular polymer substances (EPS) was observed, indicating that the influence of conductivity on EPS cannot be directly correlated. PMID:24374126

  19. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  20. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  1. Biological wastewater treatment in brewhouses

    OpenAIRE

    Voronov Yuriy Viktorovich; Bertsun Svetlana Petrovna

    2014-01-01

    In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste wate...

  2. Feasibility of a Pulsed Sequencing Batch reactor with anaerobic aggregated biomass for the treatment of low strength wastewaters

    OpenAIRE

    Brito, A. G.; Rodrigues, A.C.; Melo, L. F.

    1997-01-01

    This study concerns an assessment of a SBR operation that associates anaerobic aggregated biomass with a pulsed action during the reaction phase, a system named Pulsed Sequencing Batch Reactor (P-SBR). The system uses a diaphragm pump as a pulsator unit to increase the liquid-solid contact, in order to avoid dead zones and possible external mass transfer resistance. A preliminary study of the operation of the reactor was performed with a low strength synthetic wastewater with a COD near 1000 ...

  3. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best perf

  4. Anaerobic wastewater treatment and membrane filtration: a one night stand or a sustainable relationship?

    NARCIS (Netherlands)

    Jeison, D.A.; Lier, van J.B.

    2008-01-01

    Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor

  5. Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.A.; Plugge, C.M.; Pereira, M.A.; Lier, van J.B.

    2009-01-01

    Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5m/s and fed with

  6. Cake layer formation in anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Cake layer formation in anaerobic gas-sparged submerged membrane bioreactors was studied using the critical flux concept, at 30 and 55 °C. The impact of biomass concentration, from 25 to 50 g TSS/L, and superficial gas velocity, up to 70 m/h, of over cake layer formation was studied, using response

  7. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  8. Treatment of wastewater from coffee bean processing in anaerobic fixed bed reactors with different support materials: performance and kinetic modeling.

    Science.gov (United States)

    Fia, Fátima R L; Matos, Antonio T; Borges, Alisson C; Fia, Ronaldo; Cecon, Paulo R

    2012-10-15

    An evaluation was performed of three upflow anaerobic fixed bed reactors for the treatment of wastewater from coffee bean processing (WCP). The supports used were: blast furnace cinders, polyurethane foam and crushed stone with porosities of 53, 95 and 48%, respectively. The testing of these 139.5 L reactors consisted of increasing the COD of the influent (978; 2401 and 4545 mg L(-1)), while maintaining the retention time of 1.3 days. For the maximum COD applied, the reactor filled with foam presented removals of 80% (non-filtered samples) and 83% (filtered samples). The greater performance of the reactor filled with foam is attributed to its porosity, which promoted greater collection of biomass. From the results, it could be concluded that the reactors presented satisfactory performance, especially when using the foam as a support. Furthermore, the modified Stover-Kincannon and second order for multicomponent substrate degradation models were successfully used to develop a model of the experimental data. PMID:22609965

  9. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    Science.gov (United States)

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  10. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    OpenAIRE

    T. R. Chaparro; E. C. Pires

    2011-01-01

    This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand), DOC (dissolved organic carbon), AOX (adsorbable organic halogen), ASL (acid soluble lignin), color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and g...

  11. Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters

    OpenAIRE

    M.C.M.R. Leal; M.C. Cammarota; D.M.G. Freire; G.L. Sant’Anna Jr.

    2002-01-01

    An enzymatic extract produced by Penicillium restrictum having a high level of lipase activity (17.2 U.g-1) was obtained by solid-state fermentation using babassu cake as substrate. The enzymatic extract was used in the hydrolysis of a dairy wastewater with high fat contents (180, 450, 900 and 1,200 mg.L-1). Different hydrolysis conditions were tested, and it was determined that it should be carried out at a temperature of 35ºC, without agitation, with 10% v/v enzymatic extract and a hydrolys...

  12. Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content.

    Science.gov (United States)

    Mockaitis, G; Pantoja, J L R; Rodrigues, J A D; Foresti, E; Zaiat, M

    2014-07-01

    This paper describes a new type of anaerobic bioreactor with a fixed-structure bed (ABFSB) in which the support for the biomass consists of polyurethane foam strips placed along the length of the bioreactor. This configuration prevents the accumulation of biomass or solids in the bed as well as clogging and channeling effects. In this study, complex synthetic wastewater with a chemical oxygen demand of 404.4 mg O(2) L(-1) is treated by the reactor. The ABFSB, which has a working volume of 4.77 L, was inoculated with anaerobic sludge obtained from an upflow anaerobic sludge blanket bioreactor. A removal efficiency of 78 % for organic matter and an effluent pH of 6.97 were achieved. An analysis of the organic volatile acids produced by the ABFSB indicated that it operated under stable conditions during an experimental run of 36 days. The stable and efficient operation of the bioreactor was compared with the configurations of other anaerobic bioreactors used for complex wastewater treatment. The results of the study indicate that the ABFSB is a technological alternative to packed-bed bioreactors.

  13. Anaerobic Baffled Reactor and Modified Sequencing Batch Reactor for Slaughterhouse Wastewater Treatment%ABR/MSBR工艺联用处理屠宰废水

    Institute of Scientific and Technical Information of China (English)

    刘劲松; 张健君; 杨淑芳; 邹高龙

    2013-01-01

    The amount of wastewater discharged from a slaughterhouse is 220 m3/d, and the two-stage treatment process is used. The first stage is an anaerobic baffled reactor (ABR) for anaerobic treatment. The second stage is a modified sequencing batch reactor (MSBR) for aerobic treatment. After the commissioning for two months, the removal rates of COD, BOD5 and NH4+ - N were more than 97% , 98% and 80% respectively. The effluent quality met the second criteria specified in the Integrated Wastewater Discharge Standard ( GB 8978 - 1996). The practice showed that good economic and environmental benefits were achieved using the combined process from slaughterhouse wastewater treatment.%某屠宰厂废水量为220 m3/d,采用两段处理,第一段为ABR厌氧处理,第二段为MSBR好氧处理.经过2个月的工程调试,对COD、BOD5、氨氮的去除率分别达到97%、98%、80%以上,出水水质均达到《污水综合排放标准》(GB 8978-1996)的一级标准.实践证明,采用该组合工艺处理屠宰废水具有良好的经济效益和环境效益.

  14. Development of the Inverted anaerobic sludge blanket reactor: a novel technology for the treatment of industrial wastewater containing fat

    OpenAIRE

    Picavet, M. A.

    2012-01-01

    Tese de doutoramento em Engenharia Química e Biológica Lipids are ubiquitous in industrial wastewater produced in the food industry, yet practically no biological treatment systems are available on the market that are capable of directly treating wastewater containing lipids. In general, lipids are considered a nuisance and are normally removed prior to biological treatment. Lipids are however compounds with a high calorific value and therefore highly interesting for conversion...

  15. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  16. Feasibility of a pulsed sequencing batch reactor with anaerobic aggregated biomass for the treatment of low strenght wastewaters

    OpenAIRE

    Brito, A. G.; Rodrigues, A.C.; Melo, L. F.

    1997-01-01

    This study concerns an assessment of a SBR operation that associates anaerobic aggregated biomass with a pulsed action during the reaction phase, a system named Pulsed Sequencing Batch Reactor (P-SBR). The system uses a diaphragm pump as a pulsator unit to increase the liquid-solid contact, in order to avoid dead zones and possible external mass transfer resistance. A preliminary study of the operation of the reactor was performed with a low strenght synthetic wastewater with a COD near 1000m...

  17. Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants.

    Science.gov (United States)

    Effenberger, Johannes; Jahn, Lydia; Kuehn, Volker

    2016-01-01

    This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH(4)/g VS(in), total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined. PMID:27332856

  18. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    International Nuclear Information System (INIS)

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens

  19. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Cetecioglu, Zeynep, E-mail: cetecioglu@itu.edu.tr [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey); Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Bahar [Bogazici University, Institute of Environmental Sciences, Rumelihisarustu - Bebek, 34342 Istanbul (Turkey); Gros, Meritxell; Rodriguez-Mozaz, Sara; Barceló, Damia [Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Orhan; Orhon, Derin [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2015-12-01

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens.

  20. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  1. Environmental and economic sustainability of submerged anaerobic membrane bioreactors treating urban wastewater

    OpenAIRE

    Pretel Jolis, Ruth

    2015-01-01

    [EN] Anaerobic MBRs (AnMBRs) can provide the desired step towards sustainable wastewater treatment, broadening the range of application of anaerobic biotechnology to low-strength wastewaters (e.g. urban ones) or extreme environmental conditions (e.g. low operating temperatures). This alternative technology gathers the advantages of anaerobic treatment processes (e.g. low energy demand stemming from no aeration and energy recovery through methane production) jointly with the benefits of membra...

  2. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    Science.gov (United States)

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  3. Performance Evaluation of Anaerobic-Aerobic Treatment for the Wastewater of Potato Processing Industry: A Case Study of a Local Chips Factory

    International Nuclear Information System (INIS)

    A study was conducted to assess the performance of anaerobic-aerobic treatment system of a local potato processing industry. The wastewater treatment plant (WWTP) consisted of primary treatment, upflow anaerobic sludge blanket (UASB), activated sludge process (ASP) and secondary clarifier. The study analyzed the physical, chemical and biochemical parameters of the influent (raw sewage) as well as the effluent from each component of the plant. Grab wastewater samples were collected on weekly basis and analyzed for the pH, settleable solids (SS), total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Study revealed that mean influent wastewater concentrations of TSS, TDS, SS, BOD and COD were 840 mg/L, 2,396 mg/L and 18.7 mL/L, 2,186 mg/L and 3,679 mg/L, respectively. The mean percentage removal efficiency in UASB for TSS, BOD and COD was found to be 56%, 61 % and 51%, respectively. The mean percentage removal efficiency in activated sludge system for TSS, BOD and COD was found to be 70%, 57% and 48%, respectively. The mean percentage removal efficiency of combined anaerobic-aerobic system for TSS, BOD and COD was found to be 93%, 90% and 80%, respectively. The mean effluent concentrations of TSS, BOD and COD were 52 mg/L, 197 mg/L and 784 mg/L, respectively. The effluent from WWTP satisfied NEQS for TSS (200 mg/L) while NEQS for BOD (80 mg/L) and COD (150 mg/L) were not satisfied. Some operational problems, responsible for inadequate efficiencies of the plant components, were identified and solutions were suggested for these problems. (author)

  4. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic-Anoxic-Oxic wastewater treatment process.

    Science.gov (United States)

    Xie, Beizhen; Liu, Bojie; Yi, Yue; Yang, Lige; Liang, Dawei; Zhu, Ying; Liu, Hong

    2016-05-01

    Anaerobic-Anoxic-Oxic (AA/O) wastewater treatment process is a widely used wastewater treatment process for simultaneous nitrogen and phosphorus removal. Microbial fuel cell (MFC) can generate electricity and treat the organic wastewater simultaneously. Our previous research showed that embedding MFC in AA/O wastewater treatment process could enhance the pollutants removal efficiency. However, the mechanism was not clear. In this study, a lab-scale corridor-style AA/O reactor with MFC embedded was operated and both the total nitrogen and total phosphorus removal efficiencies were enhanced. DGGE and Illumina Miseq results demonstrated that both the microbial community structures on the surface of the cathode and in the suspensions of cathode chamber have been changed. The percentage of Thauera and Emticicia, identified as denitrifying bacteria, increased significantly in the suspension liquid when the MFC was embedded in the AA/O reactor. Moreover, the genus Rheinheimera were significantly enriched on the cathode surface, which might contribute to both the nitrogen removal enhancement and electricity generation. PMID:26874439

  5. Domestic wastewater anaerobic treatment II : Performance of two-step systems; Tratamiento anaerobio de agua residuales urbanas II : Aplicacion de una tecnologia de doble etapa

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater anaerobic treatment was carried out on two different systems based on a two-stage technology concept. The first technology consisted of an UASB reactor combined with a completely mixed digester for the stabilisation of the UASB sludge (UASB-Digester system). the second technology consisted of a HUSB reactor followed by an UASB reactor. At temperature of 15-18 degree centigree and HRT of 8-10 h, the removal efficiency reached was 80-90% TSS and 53-64% TCOD. Results, indicated a better performance of the HUSB-UASB system on the water line, although excess sludge generation was higher. (Author) 8 refs.

  6. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas product

  7. Investigation of Anaerobic Fluidized Bed Reactor Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR System for Treatment of Currant Wastewater

    Directory of Open Access Journals (Sweden)

    Jalil Jafari

    2013-08-01

    Full Text Available Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR-Aerobic Moving Bed Bio Reactor (MBBR in series arrangement to treat Currant wastewater.Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2-2.3 mm, particle density of 1250 kg/m3.The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3.Results: When system operated at 35 ºC, chemical oxygen demand (COD removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively.Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewate

  8. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience.

    Science.gov (United States)

    Esparza Soto, M; Solís Morelos, C; Hernández Torres, J J

    2011-01-01

    The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater. PMID:22335105

  9. Transformation of Four Silver/Silver Chloride Nanoparticles during Anaerobic Treatment of Wastewater and Post-processing of Sewage Sludge

    Science.gov (United States)

    The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...

  10. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China.

    Science.gov (United States)

    Wang, Dan; Sui, Qian; Lu, Shu-Guang; Zhao, Wen-Tao; Qiu, Zhao-Fu; Miao, Zhou-Wei; Yu, Gang

    2014-03-01

    The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5-38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.

  11. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    OpenAIRE

    Ciara eKeating; Chin, Jason P.; Dermot eHughes; Panagiotis eManesiotis; Denise eCysneiros; Therese eMahony; Smith, Cindy J; John W McGrath; Vincent eO'Flaherty

    2016-01-01

    We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  12. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    OpenAIRE

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; John W McGrath; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis reve...

  13. Closed DHS system to prevent dissolved methane emissions as greenhouse gas in anaerobic wastewater treatment by its recovery and biological oxidation.

    Science.gov (United States)

    Matsuura, N; Hatamoto, M; Sumino, H; Syutsubo, K; Yamaguchi, T; Ohashi, A

    2010-01-01

    Anaerobic wastewater treatment has been focused on its eco-friendly nature in terms of the improved energy conservation and reduction in carbon dioxide emissions. However, the anaerobic process discharges unrecovered methane as dissolved methane. In this study, to prevent the emission of dissolved methane from up-flow anaerobic sludge blanket (UASB) reactors used to treat sewage and to recover it as useful gas, we employed a two-stage down-flow hanging sponge (DHS) reactor as a post-treatment of the UASB reactor. The closed DHS reactor in the first stage was intended for the recovery of dissolved methane from the UASB reactor effluent; the reactor could successfully recover an average of 76.8% of the influent dissolved methane as useful gas (containing methane over 30%) with hydraulic retention time of 2 h. During the experimental period, it was possible to maintain the recovered methane concentrations greater than 30% by adjusting the air supply rate. The remaining dissolved methane after the first stage was treated by the next step. The second closed DHS reactor was operated for oxidation of the residual methane and polishing of the remaining organic carbons. The reactor had a high performance and the influent dissolved methane was mostly eliminated to approximately 0.01 mgCOD L(-1). The dissolved methane from the UASB reactor was completely eliminated--by more than 99%--by the post-treatment after the two-stage closed DHS system. PMID:20418639

  14. 废水厌氧处理反应器功能拓展研究进展%Multifunctional role of anaerobic reactors in wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    徐恒; 汪翠萍; 王凯军

    2014-01-01

    inorganic pollutants could be further enhanced by ex-situ/in-situ methods. Recent studies also showed that calcium removal for water softening and in-situ biogas upgrading could be achieved through anaerobic reactors. Nevertheless, the research work of the above-mentioned field has appeared to be relatively independent and scattered so far. First, in this paper, the state of the art of anaerobic wastewater treatment and the traditional role of anaerobic reactors are summarized. Then, the expanded roles of anaerobic reactors in desulfurization, denitrification, phosphorus removal, softening treatment, and in-situ biogas upgrading were elaborately reviewed in terms of their feasibility and process description. A major problem for the anaerobic treatment of sulfate-contaminated wastewater is the production of hydrogen sulfide (H2S), which greatly inhibits the methanogenesis process. The introduction of the biological sulfide oxidation step could not only reduce sulfide toxicity, but could also recover sulfur in the form of the insoluble elemental sulfur. As for denitrification, the integration of methanogenesis with the traditional denitrification process or even the novel anaerobic ammonium oxidation (ANAMMOX) process has been proven to be able to remove organic pollutants and ammonia simultaneously. Phosphorus removal by physico-chemical and/or biological methods was also demonstrated in the anaerobic reactors; however, the involved mechanism and phosphorus transformation pathway need to be further investigated. High-strength of calcium ions was shown to have adverse impacts on the capacity and stability of both anaerobic reactors and post-treatment facilities. The combination of the stripping or crystallization devices with anaerobic reactors was effective at inducing precipitation of calcium carbonate to alleviate the inhibition of calcium ions. Problems due to the precipitation and accumulation of calcium carbonate in the anaerobic granules (hereafter referred to as the

  15. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    HUA-JUN FENG; LI-FANG HU; DAN SHAN; CHENG-RAN FANG; DONG-SHENG SHEN

    2008-01-01

    To examine the effect of hydraulic residence time (HRT) on the performance and stability,to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR),and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance,catabolic intermediate,and microcosmic alternation.Methods COD,VFAs,and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR.Results The removal efficiencies declined with the decreases of HRTs and temperatures.However,the COD removal load was still higher at short HRT than at long HRT.Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h.HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures,but the reasons differed from each other.Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃ to 28℃.

  16. Technetium-99m as a tracer for the liquid RTD measurement in opaque anaerobic digester: application in a sugar wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Borroto, J.I.; Dominguez, J. [Instituto Superior de Ciencias y Tecnologia Nucleares, La Habana (Cuba); Griffith, J. [Instituto Cubano de Investigaciones Azucareras, La Habana (Cuba); Fick, M.; Leclerc, J.P. [PROGEPI, Laboratoire des Sciences du Genie Chimique de Nancy, CNRS-ENSIC, Nancy (France)

    2003-07-01

    The aim of this paper is to study the possibility to use the pertechnetate ion ({sup 99m}TcO{sub 4}{sup -}) as a radiotracer for the measurement of the residence time distribution (RTD) of the liquid phase in opaque anaerobic digesters. An anaerobic digester in a sugar wastewater treatment plant was selected to carry out this study. Laboratory tests showed that the measured redox potential of the medium was not enough for the chemical reduction of the species TcO{sub 4}{sup -} to TcO(OH){sub 2}. However, sorption rate between 0.045 and 0.083% h{sup -1} were observed, probably associated to the retention of the tracer by the biomass as a result of the metabolisation and catalytic reduction due to microbiological activity. This phenomenon did not affect the estimation of the RTD. The selected tracer has been used to determine the RTD of the industrial digester in a sugar wastewater treatment plant and to model the flow behavior. (author)

  17. Wastewater treatment pilot

    OpenAIRE

    Paraskevopoulos, Christos Alkiviadis

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  18. Impact of ozone pre-treatment on the performance of upflow anaerobic sludge blanket treating pre-treated grain distillery wastewater.

    Science.gov (United States)

    Robertson, L; Britz, T J; Sigge, G O

    2014-01-01

    Two 2 L laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were operated for 277 days. The substrate of the control reactor (Rc) contained grain distillery wastewater (GDWW) that had undergone coagulant pre-treatment, and the substrate of the second UASB reactor consisted of GDWW that had undergone coagulant pre-treatment and ozone pre-treatment (Ro). Both reactors treated pre-treated GDWW successfully at ca. 9 kgCOD m(-3) d(-1). Chemical oxygen demand (COD) reductions of ca. 96% for Rc and 93% for Ro were achieved. Fats, oils and grease (FOG) reductions (%) showed variations throughout the study, and reductions of ca. 88 and 92% were achieved for Rc and Ro, respectively. Rc produced more biogas, and the methane percentage was similar in both reactors. UASB granule washout in Rc suggested possible toxicity of unsaturated fatty acids present in non-ozonated substrate. The feasibility of FOG removal was demonstrated as both reactors successfully treated pre-treated GDWW. Better results were obtained for Ro effluent during post-ozonation. The ozone pre-treatment possibly led to easier degradable wastewater, and better results could potentially be obtained when other post-treatment steps are applied. Ozone pre-treatment did not, however, show an added benefit in the reactor performance results. PMID:25429461

  19. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  20. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced.

  1. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    OpenAIRE

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for CODtotal; 51-73% for CODcolloidal and 20-55% for CODsoluble was found at a total HRT of 5-10 h, respectively. By prolonging the HRT...

  2. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    OpenAIRE

    Bryan J.K. Smith; Boothe, Melissa A; Brice A. Fiddler; Tania M. Lozano; Russel K. Rahi; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccar...

  3. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment. PMID:27003270

  4. Study on technology of anaerobic-SBR process for monosodium glutamate wastewater treatment%厌氧-SBR联用法处理味精模拟废水

    Institute of Scientific and Technical Information of China (English)

    李俊生; 谷芳; 刘志维; 左金龙

    2012-01-01

    In order to investigate anaerobic - SBR removal effect on monosodium glulamate wastewater treatment, the removal effect of wastewater COD, ammonia and orthophosphate was studied. Then the sauce wastewater decolonization was implemented. The results showed that influent COD, ammonia and orthophosphate was at 2 500,136 and 5. 7mg/L, the removal efficiency of COD, ammonia and orthophosphate was at 96. 7% , 96.8% and 92.3% respectively. The effluent concentration reached the national emission standards.%考察了厌氧-好氧联用法对味精废水处理效果,对废水的COD、氨氮、正磷酸盐去除效果进行研究.研究结果表明,进水COD为2500 mg/L左右,氨氮在136 mg/L左右,正磷酸盐在5.7mg/L左右,出水的COD去除效率为96.7%、氨氮的去除率为96.8%、磷的去除效率92.3%,其出水质量浓度都达到了国家排放标准.

  5. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  6. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques. PMID:23033705

  7. Contribution of Liquid/Gas Mass-Transfer Limitations to Dissolved Methane Oversaturation in Anaerobic Treatment of Dilute Wastewater.

    Science.gov (United States)

    Yeo, Hyeongu; An, Junyeong; Reid, Robertson; Rittmann, Bruce E; Lee, Hyung-Sool

    2015-09-01

    The mechanisms controlling the accumulation of dissolved methane in anaerobic membrane bioreactors (AnMBRs) treating a synthetic dilute wastewater (a glucose medium) were assessed experimentally and theoretically. The AnMBR was maintained at a temperature of 24-26 °C as the organic loading rate increased from 0.39 to 1.1 kg COD/m(3)-d. The measured concentration of dissolved methane was consistently 2.2- to 2.5-fold larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH4 partial pressure, and the fraction of dissolved methane was as high as 76% of the total methane produced. The low gas production rate in the AnMBR significantly slowed the mass transport of dissolved methane to the gas phase. Although the production rate of total methane increased linearly with the COD loading rate, the concentration of dissolved methane only slightly increased with an increasing organic loading rate, because the mass-transfer rate increased by almost 5-fold as the COD loading increased from 0.39 to 1.1 kg COD/m(3)-d. Thus, slow mass transport kinetics exacerbated the situation in which dissolved methane accounted for a substantial fraction of the total methane generated from the AnMBR. PMID:26238158

  8. Effect of Mecoprop (RS)-MCPP on the biological treatment of synthetic wastewater in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Yuzir, Ali; Abdullah, Norhayati; Chelliapan, Shreeshivadasan; Sallis, Paul

    2013-04-01

    The effects of Mecoprop (RS)-MCPP were investigated in an anaerobic membrane bioreactor (AnMBr) fed with synthetic wastewater containing stepwise increases in Mecoprop concentration, 5-200 mg L(-1) over 240 days. Effects were observed in terms of soluble chemical oxygen demand (COD) removal efficiency, volatile fatty acid (VFA) production, and methane yield. Soluble COD removal efficiency was stable at Mecoprop concentrations below 200 (±3) mg L(-1), with an average of 98 (±0.7)% removal. However, at 200 (±3) mg L(-1) Mecoprop, the COD removal efficiency decreased gradually to 94 (±1.5)%. At 5 mg L(-1) Mecoprop, acetic and propionic acid concentrations increased by 60% and 160%, respectively. In contrast, when Mecoprop was increased to 200 (±3) mg L(-1), the formation and degradation of acetate was unaffected by the higher Mecoprop concentration, acetate remaining below 35 mg L(-1). Increases in the Mecoprop specific utilization rate were observed as Mecoprop was increased stepwise between 5 and 200 mg L(-1). PMID:23422308

  9. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    Science.gov (United States)

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  10. 污水厌氧生物处理监控技术研究进展%Research advance of monitoring technologies of anaerobic biological treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    常佳; 费学宁; 郝亚超; 李彤鲜; 朱慧芳

    2013-01-01

      在厌氧生物处理技术中,通过对各类厌氧菌在工艺运行期间的形态变化及其在污泥中的分布的实时监控,合理把握厌氧工艺进程,充分发挥厌氧菌的各自优势,对废水处理效率的提高具有重要意义。本文介绍了厌氧工艺进程实时监控技术的研究进展,从反应器启动运行中常规指标监测、菌群形态学监测方法及分子生物学监测技术三方面对监控技术加以论述;归纳比较了各方法在监测准确度和灵敏度上的差异,并在此基础上提出了将传统监测方法和分子生物学技术进行结合、将荧光探针标记靶点转移到细胞膜表面等建议,展望了分子生物学技术在污水厌氧生物处理监控领域的应用前景。%  In anaerobic biological treatment of wastewater,real-time monitoring of anaerobic bacteria morphologic change and distribution in the sludge,and process control are important to increase wastewater treatment efficiency. This paper presented the developments of monitoring technologies processing this area. Determination of conventional indicators of reactor start-up,monitoring methods of bacterial communities’ morphology and molecular biology monitoring technologies were stated. The differences in accuracy and sensitivity among the three methods were summarized and compared. Combining the traditional monitoring methods with molecular biology techniques and transferring the target of fluorescent probe to the surface of cell membrane were also suggested as possible improvements. Furthermore,the application prospects of molecular biology techniques in the monitoring fields of anaerobic biological treatment of wastewater were proposed.

  11. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  12. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    OpenAIRE

    Yans Guardia Puebla; Suyén Rodríguez Pérez; Yennys Cuscó Varona; Janet Jiménez Hernández; Víctor Sánchez Girón

    2014-01-01

    The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR) values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT) of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidog...

  13. Anaerobic Pre-treatment of Strong Sewage

    NARCIS (Netherlands)

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised

  14. Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring.

    Science.gov (United States)

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2005-03-01

    This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters. PMID:15491835

  15. Identical full-scale biogas-lift reactors (Blrs) with anaerobic granular sludge and residual activated sludge for brewery wastewater treatment and kinetic modeling.

    Science.gov (United States)

    Xu, Fu; Huang, Zhenxing; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing; Ruan, Wenquan

    2013-10-01

    Two identical full-scale biogas-lift reactors treating brewery wastewater were inoculated with different types of sludge to compare their operational conditions, sludge characteristics, and kinetic models at a mesophilic temperature. One reactor (R1) started up with anaerobic granular sludge in 12 weeks and obtained a continuously average organic loading rate (OLR) of 7.4 kg chemical oxygen demand (COD)/(m3 x day), COD removal efficiency of 80%, and effluent COD of 450 mg/L. The other reactor (R2) started up with residual activated sludge in 30 weeks and granulation accomplished when the reactor reached an average OLR of 8.3 kg COD/(m3 x day), COD removal efficiency of 90%, and effluent COD of 240 mg/L. Differences in sludge characteristics, biogas compositions, and biogas-lift processes may be accounted for the superior efficiency of the treatment performance of R2 over R1. Grau second-order and modified StoverKincannon models based on influent and effluent concentrations as well as hydraulic retention time were successfully used to develop kinetic parameters of the experimental data with high correlation coefficients (R2 > 0.95), which further showed that R2 had higher treatment performance than R1. These results demonstrated that residual activated sludge could be used effectively instead of anaerobic granular sludge despite the need for a longer time. PMID:24494489

  16. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia

    Science.gov (United States)

    Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng

    2014-01-01

    A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981

  17. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  18. Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process (IZVI) combined with anaerobic filter and biological aerated filter (AF/BAF)

    Institute of Scientific and Technical Information of China (English)

    潘碌亭; 韩悦; 吴锦峰

    2015-01-01

    Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process (IZVI) and anaerobic filter and biological aerated filter (AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total nitrogen (TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum (GC/MS) and gel permeation chromatography (GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.

  19. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  20. Supernatant Sludge Treatment on the Ljubljana Wastewater Treatment Plant

    OpenAIRE

    Vrbančič, Mojca

    2013-01-01

    Supernatant, generated from mechanical compaction previously anaerobically stabilized sludge at the wastewater treatment plant, is heavily loaded with ammonium nitrogen. Usually is leaded to an inflow of wastewater treatment plant and represents approximately 30 % of the additional nitrogen load in the biological treatment stage. To avoid this problem and due to increasingly stringent regulations, which has in recent years heavily limited emissions of nitrogen in the effluent from wastewater...

  1. REMOVAL EFFICIENCY OF NITROGEN AND PHOSPHORUS FROM DAIRY WASTEWATER ANAEROBIC REACTOR WITH CAGE MIXING SYSTEM

    OpenAIRE

    Anna Hajduk; Marcin Dębowski; Marcin Zieliński; Agnieszka Ligus

    2016-01-01

    An alternative to aerobic wastewater treatment systems are anaerobic reactors. When designing anaerobic reactors attention is paid to the appropriate filling, pumping systems, or mixing systems, enabling the re-duction of technological limitations, which contribute to the improvement of end effects such as, quantity and quality of the resulting biogas and the quality of treated wastewater. Described experiment related to researches on the evaluation of the efficiency of removing contamina-tio...

  2. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    OpenAIRE

    Kittikhun Taruyanon; Sarun Tejasen

    2010-01-01

    This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR) and an upflow anaerobic sludge blanket (UASB) connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT) were 12 and 70 hours, re...

  3. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland

    Directory of Open Access Journals (Sweden)

    María L. Merino-Solís

    2015-03-01

    Full Text Available This work assesses the performance of a municipal pilot wastewater treatment system employing an up-flow anaerobic filter (UAF followed by a horizontal subsurface constructed wetland (HSSCW. This pilot scale demonstration project was implemented in a zone with subtropical climate in order to protect Lake Chapala from wastewater loads that are discharged by small communities in the Lake’s vicinity. The filters were filled with tezontle as the media for biofilm support and the HSSCW was planted with two ornamental plants species, Canna hybrids and Strelitzia reginae. The experiment evaluated three hydraulic retention times (HRT of 18, 28 and 38 h in the UAF, which corresponds to two, three and four days in HSSCW over 66 weeks. The mean efficiencies found for the complete system were 80% and 90% of BOD, 80% and 86% of COD, 30% and 33% of Ntot and between 24% and 44% of Ptot. It was possible to remove almost 80% of organic matter in 18 h in the UAF while the HSSCW reached 30% of removal for Ntot in a HRT of three days. As expected, the UAF was responsible for removing most of the organic matter and the HSSCW removed most of the nitrogen.

  4. Performance evaluation of up-flow anaerobic sludge blanket (UASB) reactor for treatment of paper mill wastewater

    Institute of Scientific and Technical Information of China (English)

    M. Mahadevaswamy; B.M. Sadashiva Murthy; A.R. Girijamma

    2004-01-01

    The present study deals with the performance evaluation of the UASB reactor under varied organic loadingrate(OLR) for the treatment of paper mill wastewater. The sludge granulation process started after 120 days from thed) the VSS concentration was 12.86 gVSS/L, which got increased to 38.05 gVSS/L at the end of an OLR 2.1process. Many times the pH observed was between 6.5 and 7.8, which is more favorable for any anaerobicprocess. It is also found that pH within the reactor increases along with the height of reactor. The total maximumremoval at this stage was observed to be 90%.

  5. 利用厌氧生物反应器处理奶牛饲养废水%Dairy Shed Wastewater Treatment Using Anaerobic Bioreactors

    Institute of Scientific and Technical Information of China (English)

    西瓦库马 M; 铁玲

    2008-01-01

    Continued growth and consolidation of the livestock industry such as dairy industry has generated large quantities of wastewater,which has long been identified as a major contributor to diffuse source pollution in Australia. However,the conventional dairy shed wastewater treatment practices used in Australia such as two pond systems still do not provide sufficient treatment. In addition,relevant laws and regulations in terms of nutrient management plans and manure solids disposal require new waste management approaches. Anaerobic Digestion(AD) is an alternative technology which can not only minimise the environmental pollution but also maximise resource recovery especially generation of useful renewable biofuel(methane). A brief review of AD technology and its advantages in the context of dairy shed wastes is given. The necessity of AD application on Australian dairy farming is discussed,based on conventional dairy waste management practices and relevant laws and regulations. The unique characteristics of Australian dairy shed wastes require high-efficiency anaerobic digesters. Laboratory experiments are undertaken using an anaerobic fixed film digester to treat dairy shed wastewater. Preliminary results show that an anaerobic fixed-film digester can be successfully used to convert hydraulically flushed dairy shed waste from typical Australian dairy farms to biogas.%澳大利亚的畜禽养殖业,如奶牛饲养业,在不断的发展壮大,在生产中产生了大量的奶牛饲养废水,这些废水长期以来一直被视为主要的污染物扩散源.但是,常规的奶牛饲养废水处理方法,如两池系统,对该废水的处理并不充分.另外,从营养物质管理规划和固态粪便处理的角度讲,新的相关法规要求对该废水应采用新的处理和管理方法.厌氧消化(AD)是一种可替代技术,该技术不仅能使环境污染实现最小化,而且能够实现资源回收利用,尤其是可再生生物燃料(甲烷)产生,可实

  6. Treatment of high concentration methanol wastewater using an anaerobic sequencing batch reactor%ASBR处理高浓度甲醇废水的研究

    Institute of Scientific and Technical Information of China (English)

    邵享文

    2011-01-01

    采用ASBR处理高浓度甲醇废水,考察了甲醇的厌氧抑制性,容积负荷和水力停留时间对COD去除率的影响,及不同负荷下甲醇代谢途径的变化.试验结果表明,甲醇浓度在3000~30000mg·L(-1)内对ASBR系统无厌氧抑制性;系统的最佳COD容积负荷为4.6~9.1㎏·m(-3)·d(-1).甲醇的代谢途径对COD的去除率有很大影响,乙酸代谢速率随负荷的提高而升高.当容积负荷小于8㎏·m(-3)·d(-1)时,乙酸代谢速率占整个甲醇代谢速率的不到5%,COD去除率达95%以上;当容积负荷为12㎏·m(-3)·d(-1)时,乙酸代谢速率为15.8%,处理效率下降为78%.%Anaerobic treatment of high concentration methanol waetewater was studied using an anaerobic sequencing batch reactor (ASBR). The anaerobic inhibition of methanol, the effects of volume load and HRT on the treatment efficiency, and the metabolism variation of different methanol load were studied in the experiment. The results of the anaerobic inhibition experiment showed that the activity of methanogenic bacteria wouldn' t be inhibited by methanol wastewater when the concentration of COD ranged from 3 000 to 30 000 mg · L-1. The system worked efficiently when the system volume loading was 4.6 ~ 9. 1 kg · M-3 · D-1. The route by which methanol was converted into methane had great effect on the COD removal of system. The acetate utilization rate increased with the volume loading. When the volume loading was 8 kg · M-3 · D-1, the acetate utilization rate was 5% and the COD removal was over 95%. While the volume loading was 12kg·m-3·d-1,the acetate utilization rate was 15.8% and the COD removal is less than 78%.

  7. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.

    KAUST Repository

    Ren, Lijiao

    2014-03-10

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m(2)/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m(3), which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m(3)). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m(3)). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements.

  8. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2012-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  9. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2013-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  10. Electrocoagulation in Wastewater Treatment

    OpenAIRE

    Mohammed Suleiman Al Ahmad; Ruth Yu-Li Yeh; Yung-Tse Hung; Erick Butler

    2011-01-01

    A review of the literature published in from 2008 to 2010 on topics related to electrochemical treatment within wastewater was presented. The review included several sections such as optimization, modeling, various wastewater treatment techniques, analytical and instrumentation, and comparison with other treatment methods.

  11. Review of Anaerobic Bioreactors for Wastewater Treatment%厌氧生物处理反应器概述

    Institute of Scientific and Technical Information of China (English)

    张鹏; 赵衍武; 郭宏山

    2013-01-01

      The theory and main influencing factors in anaerobic digestion stage were summarized;and the development history of anaerobic bioreactors was also introduced.The operating principles, structures, technical characteristics, operation mechanism and application of several typical anaerobic bioreactors ( upflow anaerobic sludge blanket, anaerobic buffed reactor, expanded granular sludge blanket, internal cyclic reactor ) were discussed in details. Finally, research trend of anaerobic bioreactors in the future was prospected.%  概述了厌氧消化阶段理论与厌氧消化的主要影响因素;介绍了厌氧生物反应器的发展历史;并对几种典型的高效厌氧生物反应器(上流式厌氧污泥床,厌氧折板反应器,厌氧膨胀颗粒污泥床和内循环式反应器)的工作原理、构造、技术特点、运行机制及其应用情况等做了详尽的阐述;最后,对厌氧反应器今后的研究方向给予了展望。

  12. Investigations on degradation of nitrogen compounds by anaerobic-aerobic treatment of concentrated wastewaters with special regard to nitrogen removal via nitrite

    International Nuclear Information System (INIS)

    The main result is, that the two-stage anaerobic-aerobic treatment of high strength ammonium wastewater is an economical solution, save to operate and with high efficiency. Therefore its very important, to project and optimize the total process. On the one hand the biogas production has to be maximized, on the other hand the energy consumption for aeration and excess sludge treatment and resulting excess sludge has to be minimized. One possibility to realize this, is the nitrogen removal via nitrite. This process has been investigated in half-technical pilot plants. The carbon consumption amounts only to 63% in comparison with dentrification via nitrate. The 37% which are saved could be transformed into biogas during the anaerobic stage. The excess sludge production and the energy consumption in the aerobic stage is correspondingly lower. The essential parameter for regulating the process is the concentration of free ammonia (1-5 mg NH3/l) in the reactor (controlled by means of a continuous NH4- and pH-measurement). The inhibition of the nitrobacter amounts to 80%. - The storage of nitrifying biomass for several months (for industries working in campaigns) is possible without adding nitrogen and with an aeration intensity of e.g. 1 h/d, depending on the actual ammonium increase in the reactor (< 10 mg/l). To avoid inhibition during the reactivation of the sludge, the load has to be adapted to the actual activity (measured by means of an ammonium-degradation-test) and the dentrification has to be started at the same time. (orig.). 27 figs., 42 tabs., 104 refs

  13. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla, Dept. de Ingenieria Quimica y Ambiental, Sevilla (Spain); Gutierrez, J.C. [Universidad Pablo de Olavide, Dept. de Ciencias Ambientales, Sevilla (Spain); Lebrato, J. [Universidad de Sevilla, Grupo Tratamiento de Aguas Residuales, Sevilla (Spain)

    2005-07-01

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (Author)

  14. Biomass stabilization in the anaerobic digestion of wastewater sludges

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica. Departamento de Ingenieria Quimica y Ambiental; Gutierrez, J.C. [Universidad Pablo de Olavide, Sevilla (Spain). Departamento de Ciencias Ambientales; Lebrato, J. [Universidad de Sevilla (Spain). Escuela Universitaria Politecnica

    2006-07-15

    Sludge stabilization processes include both volatile solid destruction and biomass stabilization. Traditionally, both processes have been considered together, in such a way that, when volatile solid destruction is achieved, the biomass is considered stabilized. In this study, volatile solids reduction and biomass stabilization in the anaerobic digestion of primary, secondary and mixed sludges from municipal wastewater treatment plants were researched in batch cultures by measurements of suspended solids and suspended lipid-phosphate. The estimated kinetic constants were higher in all sludge types tested for the biomass stabilization process, indicating that volatile solids destruction and biomass stabilization are not parallel processes, since the latter one is reached before the former. (author)

  15. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  16. Anaerobic Pre-treatment of Strong Sewage

    OpenAIRE

    Halalsheh, M.M.

    2002-01-01

    The main objective of this research was to assess the feasibility of applying low cost anaerobic technology for the treatment of relatively high strength sewage of Jordan using two-stage and one-stage UASB reactors operated at ambient temperatures. The wastewater produced in Jordan is characterised by a high concentration of COD tot with averages higher than 1200 mg/l and with a large fraction in the suspended form (65-70%). The average wastewater temperature fluctuates between 18 and 25 oC f...

  17. Upflow Constructed Wetland for On-site Industrial Wastewater Treatment

    OpenAIRE

    Yamagiwa, Kazuaki; Ong, Soon-An

    2007-01-01

    Constructed wetlands are cost-effective wastewater treatment technology highly applicable to Asia region. Combination of anaerobic and aerobic processes can upgrade constructed wetlands to treat industrial wastewater containing less-degradable organic pollutants. Controllability of anaerobic and aerobic activities in a vertical constructed wetland was investigated with and without supplementary aeration. The ORP profile along the wetland bed showed clear distinguishes between the anaerobic an...

  18. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination...

  19. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process. PMID:27120630

  20. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing.

    Science.gov (United States)

    Shu, Duntao; He, Yanling; Yue, Hong; Wang, Qingyi

    2015-06-01

    The microbial communities and abundance in anaerobic sludge from 4 industrial and 2 municipal wastewater treatment plants were investigated using 454 pyrosequencing technology in this study. A total of 5482-8692 high-quality reads of 16S rRNA V3-V5 regions were obtained. Taxonomic analysis using QIIME and RDP classifier found that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were the most abundant phyla in these samples. Furthermore, real-time PCR was used to validate the absolute abundance of these 16S rRNAs and some functional genes, including total bacteria, anammox bacteria, NOB (Nitrobacter, Nitrospira), AOA amoA, AOB amoA, nosZ, nirS, nirK, narG, napA, nrfA, mcrA and dsrA. Multivariate linear regression analysis indicated that AOA might be mixotrophic. Finally, redundancy analysis was used to reveal the relationships between operation parameters and microbial communities. Results showed that the coexistence of anammox, denitrification and DNRA could be useful for the simultaneous removal of nitrogen and organic matter. PMID:25817026

  1. Potentials of high-temperature anaerobic treatment and redox mediators for the reductive decolorization of azo dyes from textile wastewaters

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Lier, van J.B.

    2006-01-01

    The discharge of dye-colored wastewaters in surface water represents a serious environmental problem because it may decrease the water transparency, therefore having an effect on photosynthesis, and a public health concern because dyes and their reducing products are carcinogenic. In recent years, b

  2. Application of Anaerobic Digestion Technologies to Organic Wastewater and Organic Wastes Treatment in Japan%厌氧消化技术在日本有机废水和废弃物处理中的应用

    Institute of Scientific and Technical Information of China (English)

    池勇志; 习钰兰; 薛彩红; 小林拓朗; 李玉友

    2011-01-01

    In Japan, anaerobic sewage sludge digestion began in 1932, and is now used in over 300 sewage treatment plants with a total digester volume of 210 × 104 m3. Over 300 upflow anaerobic sludge bed ( UASB) and expanded granular sludge bed (EGSB) full-scale plants are now in operation for the treatment of industrial wastewaters with high concentration from beer, soft drink, liquor, food and chemicals production. The applications and parameters of anaerobic digestion technologies in Japan for organic wastewater and organic wastes treatment are summarized. Recent developments of anaerobic digestion technologies including anaerobic membrane bioreactor, hydrogen-methane fermentation and biological desulfurization of biogas are introduced.%日本污泥厌氧消化始于1932年,目前污泥厌氧消化工程已超过300个,消化池总容积达210×10m.目前,全日本共有300多座升流式厌氧污泥床反应器(upflow anaerobic sludgebed,UASB)和膨胀颗粒污泥床(expanded granular sludge bed,EGSB)处理厂,主要用于包括啤酒废水、软饮料废水、酿酒废水、食品加工废水和化工废水在内的高浓度有机工业废水的处理.总结了厌氧消化技术在日本有机废水和有机废弃物处理中的应用状况,以及运行参数.此外,对日本厌氧消化技术在厌氧膜生物反应器、产氢产甲烷两段发酵和沼气生物脱硫等方面的新进展也进行了介绍.

  3. Use of cassava wastewater treated anaerobically with alkaline agents as fertilizer for maize (Zea mays L.)

    OpenAIRE

    Maria Magdalena Ferreira Ribas; Marney Pascoli Cereda; Roberto Lyra Villas Bôas

    2010-01-01

    The wastewater of the processing of cassava's flour (manipueira) was submitted to the anaerobic treatment in two phases: acidogenic and methanogenic. In the acidogenic phase, the wastewater was stabilized with NaOH (ASH) and with limestone (ASL). After that, both stabilized effluents were treated by a methanogenic reactor. Then, the effluent of the methanogenic reactor was used as fertilizer on maize in the initial growth stage (30 days), cultivated in pots in a greenhouse. The treatments wer...

  4. Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance

    Directory of Open Access Journals (Sweden)

    Yans Guardia Puebla

    2014-01-01

    Full Text Available The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidogenic reactor. In the anaerobic system with a recycle rate of 1,0 the total chemical oxygen demand (COD removal was 90%. The introduction of the recycle decreased the concentration of total volatile fatty acids (VFA, but it did not affect their composition, suggesting that the degradation pattern did not change. The presence of the acidogenic reactor in the two-phase system improved the stability of the anaerobic digestion process and increased the efficiency of methanogenic digester.

  5. Continuous High Rate Anaerobic Treatment of Oleic Acid Based Wastewater is Possible after a Step Feeding Start-Up

    OpenAIRE

    Cavaleiro, A. J.; Salvador, A. F.; Alves, J.I.; Alves, M. M.

    2009-01-01

    Mineralization of a synthetic effluent containing 50% COD as oleic acid was achieved in a continuous anaerobic reactor at organic loading rates up to 21 kg COD m−3 day−1, HRT of 9 h, attaining 99% of COD removal efficiency and a methane yield higher than 70%. A maximum specific methane production rate of 1170 ± 170 mg COD-CH4 g VS−1 day−1 was measured during the reactor’s operation. A start-up strategy combining feeding phases and batch degradation phases was applied to promote the developmen...

  6. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    Science.gov (United States)

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly

  7. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    OpenAIRE

    Nurdan BÜYÜKKAMACI; Yunus AKSOY

    2016-01-01

    The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR) using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB) and an ultrafiltration (UF) membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days) and organic loading rates (5-15 kg COD/m3.day). As a result of the experimental studies, maximum treatment effici...

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  9. 旋流内循环厌氧-A2/O处理玉米淀粉废水%TREATMENT OF CORN STARCH PRODUCTION WASTEWATER BY EIC ANAEROBIC-A2/O PROCESS

    Institute of Scientific and Technical Information of China (English)

    董春艳; 张尊举; 戴秋香

    2011-01-01

    According to the com starch wastewater quality characteristics, the EIC anaerobic-A2/O Process was used to treat corn starch production wastewater. The running results indicated that the system operated steadily with high treatment efficiency. The effluent quality met the first level requirements of integrated wastewater discharge standard (GB 89782- 1996).%根据玉米淀粉废水的水质特性,工程采用旋流内循环厌氧-A2/O工艺处理玉米淀粉废水.实际运行结果表明,旋流内循环厌氧-A2/O组合工艺成熟可靠,处理效果稳定,出水能够达到GB 8978-1996的一级排放标准.

  10. 两相厌氧系统处理磺胺废水的试验研究%Study on Treatment of Sulfanilamide Wastewater by Two-Phase Anaerobic System

    Institute of Scientific and Technical Information of China (English)

    任南琪; 刘艳玲; 刘敏; 周雪飞; 李建政; 王爱杰

    2001-01-01

    高浓度有机酸性磺胺废水通过中和、稀释、两相厌氧处理及对所产甲烷的毒性检测结果表明,该废水对产酸菌和产甲烷菌都有毒害抑制作用,但经中和、用其他废水稀释7倍后可进行厌氧处理,同时提出了适宜处理磺胺废水的工艺流程。%Treatment of acidic sulfanilamide wastewater with high concentration of organic matter by neutralization,dilution and two-phase anaerobic treatment was reported.The toxicity to methanogenic bacteria was monitored to determine its feasibility for anaerobic bio-treatment.The results showed that the wastewater had toxic and inhibitory effect on both acidogenic bacteria and methanogenic bacteria,while it was suitable to be anaerobically treated with the dilution of 7 times after neutralized pretreatment.In addition,the corresponding treatment process was presented.

  11. Combined carbon and nitrogen removal in integrated anaerobic/anoxic sludge bed reactors for the treatment of domestic sewage

    OpenAIRE

    Kassab, G.

    2009-01-01

    The main objective of this research is to assess the applicability and effectiveness of integrating anaerobic digestion and denitrification processes in a single sludge system. The integrated concept is of particular interest for the treatment of highstrength domestic wastewater and is accomplished by means of a sequential anaerobic-aerobic system. The anaerobic pre-treatment can consist of a single anaerobic stage or two anaerobic stages, conditioned mainly by the wastewater characteristics,...

  12. Influence of the agitation rate on the treatment of partially soluble wastewater in anaerobic sequencing batch biofilm reactor.

    Science.gov (United States)

    Pinho, Samantha Cristina; Ratusznei, Suzana Maria; Rodrigues, José Alberto Domingues; Foresti, Eugenio; Zaiat, Marcelo

    2004-11-01

    This work reports on the influence of the agitation rate on the organic matter degradation in an anaerobic sequencing batch reactor, containing biomass immobilized on 3 cm cubic polyurethane matrices, stirred mechanically and fed with partially soluble soymilk substrate with mean chemical oxygen demand (COD) of 974+/-70 mg l(-1). Hydrodynamic studies informed on the homogenization time under agitagion rates from 500 to 1100 rpm provided by three propeller impellers. It occurred very quickly compared to the total cycle time. The results showed that agitation provided good mixing and improved the overall organic matter consumption rates. A modified first-order kinetic model represented adequately the data in the entire range of agitation rate. The apparent first-order kinetic constant for suspended COD rose approximately 360% when the agitation rate was changed from 500 to 900 rpm, whereas the apparent first-order kinetic constant for soluble COD did not vary significantly. PMID:15491659

  13. 硫酸盐还原菌及其在废水厌氧治理中的应用%Application of sulfate-reducing bacteria to anaerobic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    肖利萍; 张镭; 李月

    2011-01-01

    硫酸盐还原菌(SRB)在废水处理方面有独特的优势,在厌氧环境中能以硫酸盐作为电子受体降解有机污染物.本文阐明了SRB处理废水中污染物的机理,综述了国内外利用SRB处理重金属离子废水、含硫酸盐有机废水和酸性矿山废水的研究进展.最后总结了目前在工程应用方面尚存在的问题.%Sulfate reducing bacteria (SRB) has unique advantage in wastewater treatment and can degrade organic pollutants with sulfate as electron acceptor in the anaerobic environment. This paper introduced the SRB mechanism for wastewater treatment, summarized the applications of SRB on the treatment of heavy metal wastewater , organic wastewater containing sulfate and acid mine wastewater at home and abroad. At last, the current problems in engineering application are explained.

  14. Enhanced deodorization and sludge reduction in situ by a humus soil cooperated anaerobic/anoxic/oxic (A2O) wastewater treatment system.

    Science.gov (United States)

    Yan, Xing; Li, Biqing; Lei, Fang; Feng, Xin; Pang, Bo

    2016-08-01

    Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 (+)-N and NO3 (-)-N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m(3), 0.025 mg/m(3) in anaerobic area, with the corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ.

  15. Mathematical Modelling Of Cyanide Inhibition on Cassava Wastewater Treatment

    OpenAIRE

    E. Onukwugha

    2013-01-01

    Anaerobic Baffled Reactors (ABR) is used to evaluate the extent of cyanide inhibition of cassava wastewater treatment. The reactor has aspect ratio of 4:1:1. Kinetic analyses of specific growth rate μmax and half saturation constant

  16. Wetlands for Wastewater Treatment.

    Science.gov (United States)

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  17. 2-丁烯醛生产废水对厌氧生物处理的毒性%Toxicity of crotonaldehyde wastewater to anaerobic biological treatment

    Institute of Scientific and Technical Information of China (English)

    宋广清; 席宏波; 孙秀梅; 周岳溪; 宋玉栋; 邢鑫

    2015-01-01

    以厌氧颗粒污泥为受试生物、乙酸钠为底物,研究了2-丁烯醛废水的厌氧处理毒性及污泥胞外聚合物(EPS)的组成变化.结果表明,2-丁烯醛废水COD≤850mg/L时,厌氧颗粒污泥的比产甲烷活性(SMA)几乎不受影响;当废水COD从2125mg/L提高到4249mg/L时,厌氧颗粒污泥的比产甲烷活性(SMA)从70.5mLCH4/(gVSS·d)降低至9.4mLCH4/(gVSS·d);COD 为8499mg/L 时,厌氧颗粒污泥的 SMA 仅为4.7mLCH4/(gVSS·d),且废水中有毒物质表现为杀菌性毒素.随着 COD 升高,EPS(TOC 表征)、多聚糖、蛋白质含量呈现先降低后升高趋势.三维荧光光谱结果显示,不同COD条件下EPS荧光峰数量及位置相同,分别为类酪氨酸荧光峰peak A (λex/λem=275nm/305nm)、类色氨酸荧光峰Peak B (λex/λem=275nm/350nm)、辅酶F420贡献的荧光峰Peak C (λex/λem=415nm/470nm)及类富里酸荧光峰Peak D (λex/λem=335nm/450nm),其中荧光峰peak A和peak B峰强度较强.%With anaerobic granular sludge as the test organisms and sodium acetate as substrate, the toxicity of crotonaldehyde wastewater to anaerobic treatment was studied and the influences on the composition of extracellular polymeric substance (EPS) of the granular sludge were investigated. The results showed that when COD of the crotonaldehyde wastewater was less than 850mg/L, it had little effect on the specific methanogenic activity (SMA). However, the inhibitory impact was serious when COD increased from 2125mg/L to 4249mg/L, with SMA decreasing from 70.5mLCH4/(gVSS·d) to 9.4mLCH4/(gVSS·d). Futhermore, when COD was as high as 8499mg/L, SMA was merely 4.7mLCH4/(gVSS·d), which proved crotonaldehyde wastewater manifesting bactericidal toxin. Meanwhile, the changes of EPS of anaerobic granular sludge under different concentratios of crotonaldehyde wastewater were studied. It displayed that with COD increasing, the amount (represented by TOC), polysaccharides content and protein content of ESP all exhibited a

  18. Effect of filtration flux on the development and operation of a dynamic membrane for anaerobic wastewater treatment.

    Science.gov (United States)

    Saleem, Mubashir; Alibardi, Luca; Lavagnolo, Maria Cristina; Cossu, Raffaello; Spagni, Alessandro

    2016-09-15

    Dynamic membrane represents a cost effective alternative to conventional membranes by employing fouling as a means of solid-liquid separation. This study evaluated the effects of initial flux on both development rate of dynamic membrane and bioreactor performance during two consecutive experiments. The dynamic membrane was developed over a 200 μm mesh and the reactor was operated under anaerobic conditions. It was found that the effect of an initial higher applied flux on dynamic membrane development was more pronounced than mixed liquor suspended solid concentration inside the bioreactor. The development of the dynamic membrane was therefore positively associated with the applied flux. The rapid development of the dynamic membrane during the second experimental run at high initial fluxes and lower MLSS concentrations also affected the performance of the bioreactor in terms of more efficient COD removal and biogas production. A major shortcoming of applying higher initial applied flux was the formation of a denser and robust dynamic membrane layer that was resistant to applied hydraulic shear to control desired permeability and thus represented an obstacle in maintaining a long term operation with sustainable flux at lower transmembrane pressure (TMP). PMID:27280854

  19. Anaerobic Digestion of Food Waste-recycling Wastewater

    Science.gov (United States)

    Han, Gyuseong; Shin, Seung Gu; Lim, Juntaek; Jo, Minho; Hwang, Seokhwan

    2010-11-01

    Food waste-recycling (FWR) wastewater was evaluated as feedstock for two-stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two-stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10-25 days. In the acidogenic reactor, the total carbohydrate reduction efficiency and volatile fatty acid production dramatically decreased when acidogenic HRT was two-stage HRT = 15 days). High organic removal ratios of 75.5-85.9% for COD and 68.8-83.6% for VS were achieved throughout the two-stage process. Methane production rate of 1.7-3.6 L-gas/L-reactorṡd was observed. These results suggested that two-stage anaerobic process was successful at the laboratory scale with FWR wastewater as feedstock.

  20. 挡板式水解酸化法处理印染废水的中试试验研究%Study on treatment of printing and dyeing wastewater by anaerobic baffled reactor in a pilot plant

    Institute of Scientific and Technical Information of China (English)

    贾洪斌; 王力民; 赵大传

    2001-01-01

    Treatment of printing and dyeing wastewater by anaerobic baffledreactor in a pilot plant has been studied. As the influent pH is 10.0, MLSS 20 g/L, and HRT 9~10 h, the removal rates of COD could reach average 36.8%, and the BOD/COD ratio of influent to effluent could increase from 0.285 to 0.447, and the biodegradability of wastewater is improved obviously. As a pretreatment method before aerobic biological treatment of printing and dyeing wastewater, anaerobic baffled reactor is feasible both technically and economically.%对印染废水进行了挡板式水解酸化中试试验。结果表明,调节原水pH值为10左右,污泥质量浓度为20g/L,水力停留时间为9~10h的条件下,处理后的废水COD去除率平均为38.6%,进出水的BOD/COD比值由0.285升高至0.447,废水可生化性得到明显改善。挡板式水解酸化法作为印染废水好氧生物处理的前处理在技术上和经济上都是可行的。

  1. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡香; 谢丽; 张善发; 杨殿海

    2014-01-01

    A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and 4NH+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1︰1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A2O-MBR process.

  2. Olive mill wastewater anaerobically digested : phenolic compounds with antiradical activity

    OpenAIRE

    La Cara, Francesco; Ionata, Elena; Del Monaco, Giovanni; Marcolongo, Loredana; Gonçalves, Marta R.; Marques, I. P.

    2012-01-01

    The recovery of phenolic compounds, present in the olive fruits and its by-products, has been intensively studied by the antioxidant properties. Olive mill wastewater (OMW) is a phenolic-rich industrial effluent that can be advantageously valorized by the anaerobic digestion to the methane and agricultural fertilizer productions. The objective of this work was to evaluate the antiradical activity of OMW after anaerobic digestion in order to maximize the valorization of this type o...

  3. Anaerobic treatment of phthalates

    OpenAIRE

    Kleerebezem, R.

    1999-01-01

    Phthalic acid isomers (dicarboxy benzenes) play an important role in our human environment as constituents of polyester fibres, films, polyethylene terephthalate (PET) bottles and other plastics. Due to the use and generation of water during phthalic acid production from the corresponding xylenes, a concentrated wastewater is generated. The generated wastewater consists of a mixture of phthalic acid isomers, acetic acid, benzoic acid, and toluic acids. The aim of the work described in this th...

  4. The role of natural wood constituents on the anaerobic treatability of forest industry wastewaters

    NARCIS (Netherlands)

    Sierra-Alvarez, R.

    1990-01-01

    Anaerobic treatment has been shown to be an efficient and energy conserving method for treating various types of readily biodegradable non-inhibitory forest industry wastewaters. However, the high toxicity of paper mill effluents derived from chemical wood processing operations has hampered the wide

  5. Commissioning of Two-phase Anaerobic Biological Process for Treatment of Mustard Tuber Production Wastewater at Ambient Temperature%榨菜废水常温两相厌氧生物处理工艺的调试

    Institute of Scientific and Technical Information of China (English)

    许劲; 王阳阳; 田建波; 李森; 李家祥; 余泽强; 蒙丽容

    2013-01-01

    High salinity and difficult start-up are common problems faced by commissioning of twophase anaerobic biological process for treating mustard tuber production wastewater at ambient temperature.The hydrolysis acidification/anaerobic contact oxidation process was applied to wastewater treatment in a mustard tuber production plant in Chongqing.Several approaches,such as controlling the pH of anaerobic unit,domesticating anaerobic salt-tolerant microbes,analyzing biofilm and methanogens in anaerobic contact reactor and adjusting the function of two-phase anaerobic reactor,were investigated to achieve stable operation under low influent COD concentration.The commissioning results showed that the two-phase anaerobic biological process at ambient temperature could be operated stably,and the removal rate of COD was around 75% when pH and volumetric load of the hydrolysis acidification reactor were 6.5 to 7.5 and 1.31 kgCOD/(m3 · d).Those of the anaerobic contact reactor were 6.8 to 7.4 and 0.17kgCOD/(m3 · d) respectively,and the salinity was about 1% (measured by NaCl).%榨菜废水常温两相厌氧处理工艺的调试具有高盐、常温厌氧启动难等不利条件.重庆某榨菜废水处理采用水解酸化/厌氧接触氧化工艺,通过控制厌氧单元的pH值、驯化厌氧耐盐微生物、观察和分析厌氧接触池生物膜与产甲烷菌属、灵活调整两相厌氧反应器功能等方法,探讨了在进水COD浓度偏低的条件下,常温两相厌氧系统达到稳定运行的技术途径.调试结果表明,保持水解酸化池和厌氧接触池的pH值分别为(6.5 ~7.5)和(6.8~7.4)、容积负荷分别为1.31和0.17 kgCOD/(m3·d)、盐度(以NaCl计)为1%左右,可使系统运行稳定,对COD的去除率约为75%.

  6. Domestic wastewater treatment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Duncan

    2004-09-15

    Details methods of domestic wastewater treatment that are especially suitable in developing countries. The emphasis is on low-cost, low-energy, low-maintenance, high-performance systems that contribute to environmental sustainability by producing effluents that can be safely and profitably used in agriculture for crop irrigation and/or in aquaculture for fish and aquatic vegetable pond fertilization. Modern design methodologies, with worked design examples, are described for waste stabilization ponds (WSPs), wastewater storage and treatment reservoirs, constructed wetlands, upflow anaerobic sludge blanket reactors, biofilters, aerated lagoons and oxidation ditches. (Author)

  7. Microalgal biofilms for wastewater treatment

    OpenAIRE

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scenario analysis. Then biofilms were grown on wastewater treatment plant effluent in horizontal flow cells under different nutrient loads to determine the maximum uptake capacity of the biofilms for N...

  8. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bing; SUN Ying-lan; LI Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.

  9. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  10. Anaerobic digestion of wastewater screenings for resource recovery and waste reduction

    Science.gov (United States)

    Wid, N.; Horan, N. J.

    2016-06-01

    Wastewater screenings are produced during the first stage of the wastewater treatment process and at present are disposed of to landfill. This material may not only cause operational failure to the treatment system, but also lead to environmental problems. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery, but also nutrient. In this study the, anaerobic batch digestion was performed at different dry solids concentrations of screenings to study the potential of biogas and phosphorus recovery. The tests demonstrated wastewater screenings were amenable to anaerobic digestion with methane yield was 355 m3/kg VS, which are comparable to the previous results. The digestate was high in P content and can be recovered up to 41%. This study also shows that anaerobic digestion was not only to turn this waste into useful resources, but also has a potential in reducing the organic content up to 31% for safe disposal. In this way the amount of wastewater screenings going to landfill is not only can be reduced, but also valuable products such as methane and phosphorus can also be recovered.

  11. On-line cake-layer management by trans-membrane pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane bioreactors have been increasingly applied for wastewater treatment during the last two decades. High energy requirements and membrane capital costs remains as their main drawback. A new strategy of operation is presented based on a continuous critical flux determination, preventing excessi

  12. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies. PMID:26473754

  13. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    Science.gov (United States)

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies.

  14. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  15. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions.

    Science.gov (United States)

    Gouveia, J; Plaza, F; Garralon, G; Fdz-Polanco, F; Peña, M

    2015-06-01

    The performance of a pilot scale anaerobic membrane bioreactor (AnMBR), comprising an upflow anaerobic sludge blanket (UASB) reactor coupled to an external ultrafiltration membrane treating municipal wastewater at 18±2°C, was evaluated over three years of stable operation. The reactor was inoculated with a mesophilic inoculum without acclimation. The AnMBR supported a tCOD removal efficiency of 87±1% at hydraulic retention time (HRT) of 7h, operating at a volumetric loading rate (VLR) of between 2 and 2.5kgtCOD/m(3)d, reaching effluent tCOD concentrations of 100-120mg/L and BOD5 concentrations of 35-50mgO2/L. Specific methane yield varied from 0.18 to 0.23Nm(3)CH4/kgCODremoved depending on the recirculation between the membrane module and the UASB reactor. The permeate flow rate, using cycles of 15s backwash, 7.5min filtration, and continuous biogas sparging (40-60m/h), ranged from 10 to 14Lm(2)/h with trans-membrane pressure (TMP) values of 400-550mbar. PMID:25770470

  16. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  17. Advances in high rate anaerobic treatment: staging of reactor systems.

    NARCIS (Netherlands)

    Lier, van J.B.; Zee, van der F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R.

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptan

  18. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  19. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    description of biological phosphorus removal, physical–chemical processes, hydraulics, and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2-D/3-D dynamic numerical models. Plant-wide modeling is set to advance further......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  20. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  1. Treatment of Chinese Traditional Medicine Wastewater by Photosynthetic Bacteria

    Institute of Scientific and Technical Information of China (English)

    WANG You-zhi; WANG Feng-jun; BAO Li

    2005-01-01

    The influence factors treating wastewater of Chinese traditional medicine extraction by photosynthetic bacteria are tested and discussed. The results indicate that the method of photosynthetic bacteria can eliminate COD and BCD from wastewater in high efficiency. And it also has high load shock resistance. On the conditions of slight aerobic and semi-darkness, treating wastewater of Chinese traditional medicine extraction, the method has better efficiency to eliminate COD and BOD from the wastewater than those by anaerobic illumination and aerobic darkness treatments. After pretreatment of hydrolytic acidization, the removal rate of COD in the wastewater reached more than 85 %, and that rate of BOD reached more than 90% in the treating system of photosynthetic bacteria. It may be more feasible and advantageous than traditional anaerobic biological process to treat organic wastewater using PSB system.

  2. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  3. 高温CSTR-中温UASB两级厌氧处理木薯酒精废水%Two-stage anaerobic treatment of cassava ethanol wastewater using thermophilic CSTR and mesophilic UASB

    Institute of Scientific and Technical Information of China (English)

    陈金荣; 谢丽; 罗刚; 周琪

    2011-01-01

    Since cassava ethanol wastewater is characterized by high temperature,high solid content and high organism concentration,the two-stage anaerobic treatment using thermophilic continuous stirred tank reactor (CSTR)and mesophilic upflow anaerobic sludge bed (UASB) has been conducted. Experimental results show that when the influent COD loading of thermophilic CSTR is controlled 14 kg/(m3·d) and COD loading of mesophilic UASB reactor is controlled 3 kg/(m3·d) ,the total removal rates of COD,SS,TN and TP are 94% ,96% ,44% and 87% ,respectively, after the two-stage anaerobic treatment.The life cycle of cassava ethanol production and economic benefits of such wastewater treatment are discussed,indicating that two-stage anaerobic treatment process can not only reduce the pollution resulted from cassava ethanol production, but also create economic benefits from the biogas produced in the course of treatment.%针对木薯酒精废水温度、固体含量及有机物浓度高的特点,采用高温CSTR-中温UASB两级厌氧工艺处理木薯酒精废水.小试结果表明,控制高温CSTR进水COD负荷为14 kg/(m3·d),中温UASB COD负荷为3 kg/(m3·d)时,两级厌氧对COD、SS、溶解性TN、溶解性TP的总去除率分别达94%、96%、44%和87%.对木薯酒精生产周期和废水处理经济效益的分析表明,采用两级厌氧工艺处理木薯酒精废水,不仅削减了木薯酒精生产过程中产生的污染物,其处理过程中产生的沼气还带来了一定的经济效益.

  4. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants.

    Science.gov (United States)

    Ghosh, Sudeshna; Ramsden, Sara J; LaPara, Timothy M

    2009-09-01

    In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion. PMID:19597810

  5. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  6. Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

    KAUST Repository

    Jimenez Sandoval, Rodrigo J.

    2013-11-01

    Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.

  7. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    2016-01-01

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  8. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    Science.gov (United States)

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  9. Anaerobic biodegradability essays from brewery wastewater using granular and flocculent sludges

    Directory of Open Access Journals (Sweden)

    C J Collazos Chávez

    2010-03-01

    Full Text Available At the beginning of nineties the colombian beer industry begun the application of anaerobic technology for the treatment of their wastewater efluents throught different regions of the country. These treatment plants have not been working appropriately due to different factors, and are creating concern among the industrial sector and the water pollution control agencies. This work constitutes the second phase of a research project designed to establish a selection and improvement criteria of the sludges used in the systems. It also looks to analyze other associated factors such as: waste, characteristics, operation conditions and design parameters. The investigation was conducted in two phases using granular and floculent sludges. This method was used for determining the anaerobic biodegradability of wastewater from two industrial plants.

  10. The Efficiency of Anaerobic Wastewater Stabilization Pond in Removing Phenol from Kermanshah Oil Refinery Wastewater

    Directory of Open Access Journals (Sweden)

    Ali Almasi

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Phenol is one of the aromatic compounds, which due to its high toxicity and its presence in the industrial effluents, should be removed and prevented it, to the receiving water resources. The natural biological plant has been accepted as one of the most feasible, eco-friendly and cost-effective options for the treatment of pollutants such as Phenol. The aim of this study is efficiency evaluation of the anaerobic stabilization pond performance in removing phenol and other organic compounds from Kermanshah oil refinery wastewater. Materials and Methods: The method of study was experimental and analytical, a laboratory scale anaerobic stabilization pond, with dimensions of 1 × 1 × 0/2 m, using fiberglass sheet with a thickness of 6 mm was designed and built up. In this study The hydraulic retention time and hydraulic loading rate were expected 2 days and 95 liters per day respectively. Organic loading rate for anaerobic pond was 100 g/m3. After starting, seeding and biological stability, samples were taken. Initial phenol concentration was added about of 100 mg/l to pilot input, then the parameters such as NH3, PO4 and Phenol were measured by Varian spectrophotometer model UV-120-02 in the wavelength 425, 690, 500 nm respectively.  TCOD, SCOD, TBOD, SBOD, pH and ORP were measured according to the standard methods of water and wastewater. Results: The results showed that the removal efficiency of NH3, PO4, phenol, TCOD, SCOD, TBOD, SBOD in the anaerobic pond were obtained 91.51%, 64.34%, 89.82% 74.99 % 73.34% 71.75%, 68.9% respectively. Conclusion: The results showed that the ability for phenol and other organic compounds removal in anaerobic pond using petroleum refinery wastewater is higher than the other systems which are expensive and complex. st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso

  11. Anaerobic Digestion of Wastewaters from Pulp and Paper Mills : A Substantial Source for Biomethane Production in Sweden

    OpenAIRE

    Larsson, Madeleine

    2015-01-01

    The Swedish pulp and paper industry is the third largest exporter of pulp and paper products worldwide. It is a highly energy-demanding and water-utilising industry, which generates large volumes of wastewater rich in organic material. These organic materials are to different extents suitable for anaerobic digestion (AD) and production of energy-rich biomethane. The implementation of an AD process within the wastewater treatment plant of a mill would increase the treatment capacity and decrea...

  12. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology

    International Nuclear Information System (INIS)

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  13. Anaerobic digestion of oily wastewater as a valuable source of bioenergy

    OpenAIRE

    Cavaleiro, A. J.; Salvador, Andreia Filipa Ferreira; Alves, M. M.

    2008-01-01

    Lipids are a group of organic pollutants whose conversion into biogas has been considered very difficult. During the anaerobic treatment of lipid-rich wastewater this conversion generally decreases with the increase of the organic loading rate (OLR) applied, due to long chain fatty acids (LCFA) accumulation. To overcome this problem, correct equilibrium between LCFA accumulation and degradation should be assured [1, 2, 3], and discontinuous operation was proposed by Pereira et ...

  14. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    description of biological phosphorus removal, physicalchemical processes, hydraulics and settling tanks. For attached growth systems, biofilm models have progressed from analytical steady-state models to more complex 2D/3D dynamic numerical models. Plant-wide modeling is set to advance further the practice......The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...

  15. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons

    Science.gov (United States)

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling of nitrogen is only beginning to become understood. Within this cycling, nitrification can be performed by organisms which produce the enzyme ammonia monooxygenase (AMO). For denitrification,...

  16. Characterization of livestock wastewater at various stages of wastewater treatment plant

    International Nuclear Information System (INIS)

    A characterization study has been conducted at Gongju Livestock Wastewater Treatment Plant, Gongju, South Korea. It is owned and operated by the government with treatment capacity of 250 tons per day. Livestock wastewater was collected from individual farmer and treated at the treatment plant. The centralized livestock wastewater treatment plant has various treatment processes namely pre-treatment, anaerobic digestion, nitrification, de-nitrification , chemical treatment, sand filtration and ozonization. The livestock wastewater was characterized by high COD, SS, T-N and T-P with concentration of 20600 mg/l, 6933 mg/l, 2820 mg/l and 700 mg/ l, respectively. After the wastewater has undergone various treatment processes it was discharged to waterways with concentration of COD, SS, T-N and T-P at 105 mg/l, 73 mg/l, 2.1 mg/l and 9 mg/l, respectively. This is part of the study to investigate the potential of irradiation to be applied at the centralized livestock wastewater treatment plant. Although livestock wastewater can be potentially applied to crop as source of nutrients it also affect the water quality due to runoff and leaching. When the wastewater applied at the rates in excess of crop uptake rates, the excess wastewater could potentially enter surface and groundwater and polluted them. (author)

  17. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  18. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  19. Treatment of organic wastewater in anaerobic fixed bed reactor with porous mineral carriers%多孔矿物载体厌氧固定床处理有机废水研究

    Institute of Scientific and Technical Information of China (English)

    朱峰; 潘涌璋; 洪利明; 师波

    2011-01-01

    通过天然浮石和塑料多孔空心球而制成复合式多孔矿物载体应用于厌氧固定床反应器中,研究反应器挂膜性能,以及处理生活污水、啤酒废水效果,应用扫描电镜观察生物膜微生物相的形态结构.结果表明,反应器挂膜69 d后COD去除率稳定在70%以上,初次启动成功;处理生活污水中平均COD去除率为61.72%;处理啤酒废水中COD去除率高于88%,生物膜中微生物优势种群为杆菌和球菌.%A compound porous mineral carrier made from natural pumice and plastic porous hollow ball was applied in the anaerobic fixed bed reactor to study the performance of biofilm culturing, treat the domestic wastewater and beer-brewing wastewater, and observe the morphology and dominant species of microorganism in biofilm with scanning electron microscope (SEM). The research showed that the system started successfully. The removal rate of COD was stabilized above 70% after 69 days in the course of biofilm culturing. The average removal rate of COD for the treatment of domestic wastewater and beer-brewing wastewater was 61.72% and above 88% ,respectively. SEM pictures indicated that the dominant species in biofilm were bacillus and cocci.

  20. Anaerobic biodegradation of a petrochemical waste-water using biomass support particles

    International Nuclear Information System (INIS)

    During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25-30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to >200 days compared to 2200 mg/l and 8-10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25-30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. (orig.)

  1. Addition of anaerobic tanks to an oxidation ditch system to enhance removal of phosphorus from wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35% -50%. After this, two anaerobic tanks with total volume of 11 m3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71 % was achieved.

  2. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  3. Effect of anaerobic digestion on the high rate of nitritation, treating piggery wastewater

    Institute of Scientific and Technical Information of China (English)

    Jiyeol Im; Kyungik Gil

    2011-01-01

    The amount of piggery wastewater as domestic livestock is increasing.The volume of piggery wastewater produced is less than the volume of other wastewaters,but piggery wastewater has a heavy impact on wastewater streams due to an extremely high concentration of nitrogen and COD.In this study,laboratory reactors were operated using piggery wastewater and the effluent of anaerobic digester from piggery wastewater plants.The purpose of this study was to induce the nitritation process,which is an economically advantageous nitrogen removal method that converts ammonium nitrogen into nitrite.The results showed that the effluent of anaerobic digester from piggery wastewater was more efficient than raw piggery wastewater in terms of inducing nitritation.It can be deduced that nitritation is largely affected by an organic fraction of piggery wastewater.It can also be concluded that a small amount of biodegradable organic matter in piggery wastewater is efficient in inducing nitritation.

  4. Thermal Treatment of Industrial Wastewater

    OpenAIRE

    Vysokomornaya Olga V.; Balakhnina Julia E.; Shikhman M. V.

    2015-01-01

    The paper provides an overview on the major methods of thermal wastewater treatment in the power industry. Here, we present the main advantages and disadvantages of methods based on the concentration of inorganic substances (evaporation or distillation) or the burning of organic compounds (combustion neutralization). The study suggests the possible future directions for the development of thermal wastewater treatment.

  5. Wastewater Treatment I. Instructor's Manual.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment Plants."…

  6. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  7. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential of several mixtures and that of wastewater alone. The co-digestion of decanter cake with rubber block wastewater of the R4 (wastewater 200 mL with decanter cake 8 g produces the highest biogas yield 3,809 mL CH4/g COD removal and the percentage maximum methane gas is 66.7%. The experimental result shows that the mixing and mesophilic temperature have no significant effect on the biogas potential production. The co-digestion of decanter cake with rubber block wastewater provides the highest biogas yield potential production in the ambient temperature. The experimental results reveal that the decanter cake can be potential sources for biogas production.

  8. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2013-01-01

    Full Text Available The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential of several mixtures and that of wastewater alone. The co-digestion of decanter cake with rubber block wastewater of the R4 (wastewater 200 ml with decanter cake 8 g produces the highest biogas yield 3,809 mL CH4/g COD removal and the percentage maximum methane gas is 66.7%. The experimental result shows that the mixing and mesophilic temperature have no significant effect on the biogas potential production. The co-digestion of decanter cake with rubber block wastewater provides the highest biogas yield potential production in the ambient temperature. The experimental results reveal that the decanter cake can be potential sources for biogas production.

  9. Research achievements and application in anaerobic treatment of organic solid wastes--A review

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fuchun; XIONG Deguo; XIAN Xuefu; XU Longjun

    2006-01-01

    Anaerobic digestion is a good method, which possesses the optimal combination of volume reduction, probability of success and potential for resource and energy recovery. However, relatively little research has been done on the anaerobic digestion of organic solid wastes ( OSW ), especially in China.However, different substrates, start-up conditions, micro-organisms, processing technologies, pre-treatment methods could influence the result of anaerobic digestion. Anaerobic treatment of municipal OSW is less than that of wastewaters because some problems and obstructions need to be solved. Meanwhile, the application of anaerobic digestion of OSW is also discussed in the present paper.

  10. Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters.

    Science.gov (United States)

    Dong, Qirong; Dagnew, Martha; Cumin, Jeff; Parker, Wayne

    2015-01-01

    This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60-82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria. PMID:26465317

  11. MADFORWATER – WP2: Adaptation of wastewater treatment technologies for agricultural reuse – Task 2.3: Agro-industrial wastewater treatment – Subtask 2.3.1: Treatment of olive mill wastewater – Olive mill wastewater treatment by polyphenol separation and anaerobic digestion

    OpenAIRE

    Pinelli, Davide; FRASCARI, Dario; Bertin, Lorenzo

    2016-01-01

    This dataset reports the data relative to a study of polyuphenol separation from olive mill wastewater. The goals of this study were (i) to compare two anion ion exchange resins (IRA958 Cl and IRA67) and a non-ionic resin (XAD16) in terms of phenolic compounds adsorption capacity from olive mill wastewater, and (ii) to compare the adsorption capacity of the best resin on columns of different length. The ion exchange resins proved less performant than non-ionic XAD16 in terms of resin utilizat...

  12. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  13. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30C) and thermophilic (55C) treatments for decolourisation of textile wastewaters

    NARCIS (Netherlands)

    Bezerra Dos Santos, A.; Bisschops, I.A.E.; Cervantes, F.J.; Lier, van J.B.

    2004-01-01

    The impact of different redox mediators on colour removal of azo dye model compounds and textile wastewater by thermophilic anaerobic granular sludge (55 C) was investigated in batch assays. Additionally, a comparative study between mesophilic (30 C) and thermophilic (55 C) colour removal was perfor

  14. A Study on the Wastewater Treatment from Antibiotic Production

    OpenAIRE

    Jayati Chatterjee; Neena Rai; Santosh K. Sar

    2014-01-01

    Wastewater from cephalosporin antibiotic production with high bio-toxicity is hard to degrade, and could cause great harm to environment and human being. In the present paper, wastewater from cephalosporin production was processed with biochemical treatments as hydrolytic acidification, Up-flow Anaerobic Sludge Bed(UASB), Sequencing Batch Reactor Activated Sludge Process(SBR), biological activated carbon process(BAC). Among them, hydrolytic acidification could efficaciously enhance the biodeg...

  15. [Acute toxicity of antibiotics and anaerobic digestion intermediates in pharmaceutical wastewaters].

    Science.gov (United States)

    Ji, Jun-Yuan; Xing, Ya-Juan; Zheng, Ping

    2012-12-01

    In order to determine the toxicity of antibiotics and anaerobic digestion intermediates on anaerobic treatment of pharmaceutical wastewaters containing antibiotics, the single and joint toxicities of some antibiotics and intermediates to Photobacterium phosphoreum were tested by using the 15-min half inhibitory concentration (15 min-IC50) at pH = 7.00 +/- 0.05. The results showed that the 15 min-IC50 of ethanol, acetate, propionate and butyrate were 19.40, 20.71, 10.47 and 12.17 g x L(-1), respectively, which indicated that the toxicity descended in the order of propionate, butyrate, ethanol and acetate. The 15 min-IC50 of Amoxicillin, Kanamycin, Lincomycin and Ciprofloxacin were 3.99, 5.11, 4.32 and 5.63 g x L(-1), respectively, so the toxicity descended in the order of Amoxicillin, Lincomycin, Kanamycin and Ciprofloxacin. Using equal effect mixing method, the joint toxicity of four anaerobic digestion intermediates, the four intermediates together with Amoxicillin, Ciprofloxacin, Kanamycin, Lincomycin individually and all together were investigated, which demonstrated that the first three interactions were additive and the last three were synergistic. The observations have laid a foundation for control and optimization of anaerobic biotechnology for pharmaceutical wastewater containing antibiotics. PMID:23379166

  16. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    Science.gov (United States)

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  17. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...... emphasis on the sustainable aspects, on green accounting and on the health aspects. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  18. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  19. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The methan

  20. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2014-01-01

    Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS) contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT) will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production pot...

  1. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    OpenAIRE

    A.Mesdaghinia

    1986-01-01

    The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw do...

  2. Pilot study on treatment of antibiotic wastewater by CASB anaerobic bioreactor%CASB 厌氧反应器处理抗生素废水中试研究

    Institute of Scientific and Technical Information of China (English)

    孙继辉

    2016-01-01

    采用 CASB 厌氧反应器处理某企业经初沉后的抗生素废水,中试装置进水取自该企业废水处理站初沉池上部,COD 5000~9000 mg/L、NH 3-N 600~900 mg/L、SO2-4小于2000 mg/L、pH 4~6、B/C≥0.3。在反应器水力停留时间3 d 条件下,COD 去除率可达70%,与现有该企业MIC 反应器比较,在水力停留时间减少一半的条件下,COD 去除率仍可提高10~20个百分点。试验过程中,沼气产气率为0.4~0.5 m3沼气/kgCOD,达到正常厌氧反应器产气率水平。利用 CASB厌氧反应器对抗生素废水进行处理取得了较好的效果。由中试结果还可以看出其处理效果受水温影响较大,在维持较高水温情况下,处理效果有进一步提升的空间。%Antibiotic wastewater after primary sedimentation was treated by CASB anaerobic bioreactor in an enterprise.The effluent of this pilot study was from the top level wastewater in the primary sedimentation tank of the wastewater treatment process of this enterprise.The COD of ef-fluent was 5 000~9 000 mg/L,NH 3 -N was 600~900 mg/L,SO2 -4 was below 2 000 mg/L,pH was 4~6,and B/C was no less than 0.3.If the hydraulic retention time of reactor was 3 days,the COD removal rate could be 70%.Compared with the existing MIC reactor in this enterprise,the CASB reactor could increase the COD removal rate 10~20 percent points with half hydraulic reten-tion time.During experiment,the methane production rate was about 0.4 ~0.5 m3 methane per kilogram of removed COD which meet the usual anaerobic reactor methane production rate.The re-sults showed that CASB anaerobic reactor could treat antibiotic wastewater effectively.However, its effects would be affected by temperature greatly.If the water temperature could be kept in high range,the treatment effects would be improved furtherly.

  3. Wastewater Mass Rates as a Sustainable Wastewater Treatment Plant Indicator

    OpenAIRE

    Neilands, R; Govša, J; Gjunsburgs, B

    2012-01-01

    his article presents a methodology for wastewater treatment plant sustainability consideration and process evaluation in to the selection of wastewater treatment process improvement options. For illustration, the indicator approach is applied to a case study of the Jurmala town wastewater treatment plant in Latvia.

  4. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  5. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment. PMID:19135363

  6. Mathematical Modelling Of Cyanide Inhibition on Cassava Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    E. Onukwugha

    2013-09-01

    Full Text Available Anaerobic Baffled Reactors (ABR is used to evaluate the extent of cyanide inhibition of cassava wastewater treatment. The reactor has aspect ratio of 4:1:1. Kinetic analyses of specific growth rate μmax and half saturation constant

  7. Anammox treatment of swine wastewater using immobilized technology

    Science.gov (United States)

    Partial nitrification (PN) coupled with anaerobic oxidation of ammonium (anammox) stands for a totally autotrophic strategy for the removal of nitrogen. This new bioprocess is particularly useful for the treatment of wastewaters with a high ammonium concentration and a low organic load such as lives...

  8. Application of waterworks sludge in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Thornberg, D.; Andersen, Henrik Rasmus

    2013-01-01

    in pH due to the produced alkalinity from dissolution of iron(III)hydroxides from waterworks sludge, lower internal recirculation of phosphate concentration in the reject water and reduced sulphide in the digested liquid. However, recirculation of the produced soluble iron(II) as an iron source...... for removal of phosphate in the wastewater treatment was limited, because the dissolved iron in the digester liquid was limited by siderite (FeCO3) precipitation. It is concluded that both acidic and anaerobic dissolution of iron-rich waterworks sludge can be achieved at the wastewater treatment plant......The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing...

  9. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order t

  10. Cotton-textile wastewater management: investigating different treatment methods.

    Science.gov (United States)

    Georgiou, D; Aivasidis, A

    2012-01-01

    The cotton-textile industry consumes significant amounts of water during manufacturing, creating high volumes of wastewater needing treatment. The organic-load concentration of cotton-textile wastewater is equivalent to a medium-strength municipal wastewater; the color of the water, however, remains a significant environmental issue. This research, in cooperation with a cotton-textile manufacturer, investigated different treatment methods and different combinations of methods to identify the most cost-effective approaches to treating textile wastewater. Although activated-sludge is economical, it can only be used as part of an integrated wastewater management system because it cannot decolorize wastewater. Coagulation/flocculation methods are able to decolorize cotton-wastewater; however, this process creates high amounts of wastewater solids, thus significantly increasing total treatment costs. Chemical oxidation is an environmentally friendly technique that can only be used as a polishing step because of high operating costs. Anaerobic digestion in a series of fixed-bed bioreactors with immobilized methanogens using acetic acid as a substrate and a pH-control agent followed by activated-sludge treatment was found to be the most cost-effective and environmentally safe cotton-textile wastewater management approach investigated.

  11. 多模式厌氧/缺氧/好氧污水处理工艺的稳态与动态模拟%Modeling and Dynamic Simulation of the Multimode Anaerobic/Anoxic/Aerobic Wastewater Treatment Process

    Institute of Scientific and Technical Information of China (English)

    周振; 吴志超; 王志伟; 杜兴治; 蒋玲燕; 邢灿

    2013-01-01

    数学模拟是污水处理系统教学科研、工艺评估、运行优化和自动控制的重要工具,在污水处理厂中得到了广泛应用.利用过程数据对ASM2d模型进行校正,并分析评估了校正模型在多模式厌氧/缺氧/好氧(AAO)工艺3个模式15个工况下稳态模拟及AO模式下动态模拟的可靠性.15个工况的稳态模拟表明,校正模型能准确模拟污泥浓度和出水水质;在AO模式的动态模拟中,模拟曲线与出水水质以及污泥浓度的变化趋势相一致,模拟结果具有较高的准确度.%Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic ( AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs.

  12. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    Directory of Open Access Journals (Sweden)

    Nurdan BÜYÜKKAMACI

    2016-06-01

    Full Text Available The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB and an ultrafiltration (UF membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days and organic loading rates (5-15 kg COD/m3.day. As a result of the experimental studies, maximum treatment efficiency with respect to COD reduction (95% was achieved at 7.5 kg COD/m3.day OLR (CODinfluent=15.000 mg/L, HRT=2 days applications. When OLR was increased to 15 kg COD/m3.day, system performance decreased sharply. Similarly, methane gas production decreased by increasing OLR. After then, feed was changed to real wastewater, which was alcoholic beverage industry effluent. At this study, maximum COD removal efficiency of the system and maximum methane gas production was 88% and 74%, respectively.

  13. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater.

    Science.gov (United States)

    Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao

    2014-10-01

    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (pmethane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.

  14. Start-up of horizontal anaerobic reactors with sludge blanket and fixed bed for wastewater treatment from coffee processing by wet method Partida de reatores anaeróbios horizontais com manta de lodo e de leito fixo para tratamento de águas residuárias do beneficiamento de frutos do cafeeiro por via úmida

    OpenAIRE

    Roberto A. de Oliveira; Natani M. N. Bruno

    2013-01-01

    In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention...

  15. Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Gonzalez, L.J.; Moreno-Davila, I.M.; Rodriguez-Martinez, J.; Garza-Garcia, Y. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico)]. E-mail: leopoldo.rios@mail.uadec.mx

    2009-09-15

    This article describes biological hydrogen production from diary wastewater via anaerobic fermentation using pretreated heat shock (100 degrees Celsius, 30 min.) and acid (pH 3.0, 24 h) treatment procedures to selectively enrich the hydrogen producing mixed consortia prior to inoculation to batch reactors. Bioreactor used for immobilization consortia was operated at mesophilic (room) temperature (20{+-}3 degrees Celsius), under acidophilic conditions (pH 4.0-4.5), HRT (2h), and a natural support for generate hydrogen producing mixed consortia biofilm: Opuntia imbricata. Reactor was initially operated with sorbitol (5g/L) for 60 days of operation. Batch tests were conducted using 20{+-}0.02g of natural support with biofilm. Batch experiments were conducted to investigate the effect of COD (2.9-21.1 g-COD/L), at initial pH of 7.0, 32{+-}1 degrees Celsius. Maximum hydrogen yield was obtained at 21.1 g-COD/L. Experiments of pH effect were conducted using the optimal substrate concentration (21.2 g-COD/L), at pH 4 to 7 and 11.32 (pH diary wastewater) ,and 32{+-}1 degrees Celsius. Experiments results indicate the optimum initial cultivation was pH 4.0, but we can consider also a stable hydrogen production at pH 11.32 (pH diary wastewater), so we can avoid to fit the pH, and use diary wastewater as it left the process of cheese manufacture. The operational pH of 4.0 is 1.5 units below that of previously reported hydrogen producing organisms. The influence of the effect of temperature were conducted using the optimal substrate concentration (21.2 g-COD/L), two pH levels: 4.0 and 11.32, and four different temperatures: 16{+-}3 degrees Celsius (room temperature), 3 C, 45{+-}1 degrees Celsius y 55{+-}1 degrees Celsius.Optimal temperature for hydrogen production from diary wastewater at pH 4.0 was 55{+-}1 degrees Celsius, and for pH 11.32 was 16{+-}3 degrees Celsius.Therefore, the results suggests biofilm reactors in a natural support like Opuntia imbricata have good potential

  16. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  17. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    OpenAIRE

    Jie Zeng; Jun-Min Gao; You-Peng Chen; Peng Yan; Yang Dong; Yu Shen; Jin-Song Guo; Ni Zeng; Peng Zhang

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extr...

  18. Research on anaerobic membrane bioreactor applied to the wastewater treatment and its development direction%厌氧膜生物反应器在废水处理中的研究及发展方向

    Institute of Scientific and Technical Information of China (English)

    袁博; 李靖; 郭强

    2015-01-01

    可持续污水处理技术及资源管理的核心就是降低能耗、回收资源以减轻环境影响. 厌氧膜生物反应器(AnMBR)具有能耗低、产泥率低、污泥自然回流等优点. 从AnMBR技术组成、膜结构形态、应用、膜污染原因、厌氧微生物生态学等方面介绍了AnMBR技术的最新研究状况,指出其面临的难题及今后的发展方向,以期为后续研究以及实际应用提供理论参考.%The core objective of sustainable wastewater treatment technology and resource management is to reduce energy consumption,and recover resources,in order to lighten influences on the environment. The advantages of anaerobic membrane bioreactor(AnMBR) are low energy consumption,low sludge producing rate,natural sludge re-flow,etc. The latest research situations of AnMBR,regarding AnMBR technology components,membrane structure characters,application,membrane fouling causes and anaerobic microbial ecology,etc.,are introduced. The prob-lems to be faced and the future development direction of AnMBR are proposed ,so as to provide a theoretical refer-ence for its sequent research and practical application.

  19. Reliability analysis of wastewater treatment plants.

    Science.gov (United States)

    Oliveira, Sílvia C; Von Sperling, Marcos

    2008-02-01

    This article presents a reliability analysis of 166 full-scale wastewater treatment plants operating in Brazil. Six different processes have been investigated, comprising septic tank+anaerobic filter, facultative pond, anaerobic pond+facultative pond, activated sludge, upflow anaerobic sludge blanket (UASB) reactors alone and UASB reactors followed by post-treatment. A methodology developed by Niku et al. [1979. Performance of activated sludge process and reliability-based design. J. Water Pollut. Control Assoc., 51(12), 2841-2857] is used for determining the coefficients of reliability (COR), in terms of the compliance of effluent biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and fecal or thermotolerant coliforms (FC) with discharge standards. The design concentrations necessary to meet the prevailing discharge standards and the expected compliance percentages have been calculated from the COR obtained. The results showed that few plants, under the observed operating conditions, would be able to present reliable performances considering the compliance with the analyzed standards. The article also discusses the importance of understanding the lognormal behavior of the data in setting up discharge standards, in interpreting monitoring results and compliance with the legislation.

  20. Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    V. Reginatto

    2005-12-01

    Full Text Available Ammonium oxidation was thought to be an exclusively aerobic process; however, as recently described in the literature, it is also possible under anaerobic conditions and this process was named ANAMMOX. This work describes the operation of a system consisting of a denitrifying reactor coupled to a nitrifying reactor used for removal of nitrogen from slaughterhouse wastewater. During operation of the denitrifying reactor an average nitrogen ammonium removal rate of 50 mg/Ld was observed. This biomass was used to seed a second reactor, operated in repeated fed batch mode, fed with synthetic medium specific to the growth of bacteria responsible for the ANAMMOX process. The nitrogen loading rate varied between 33 and 67 mgN/Ld and average nitrogen removal was 95% and 40%, respectively. Results of fluorescence in situ hybridization (FISH confirmed the presence of anammox-like microorganisms in the enriched biomass.

  1. Comparative study on toxicity evaluation of anaerobically treated parboiled rice manufacturing wastewater through fish bioassay.

    Science.gov (United States)

    Giri, Dipti Ramesh; Singh, Ekta; Satyanarayan, Shanta

    2016-01-01

    Short term aquatic bioassay has been developed into a useful tool in water quality management. These tests give information on comparative toxicity of several compounds. The objective of this study was to evaluate the acute toxicity of raw and anaerobically treated effluents of the parboiled rice manufacturing industry. The acute toxicity test was carried out by using the fish Lebistes reticulatus under laboratory conditions. LC50 values for 24, 48, 72 and 96 hours ranged between 4.6 and 7.0% for the raw parboiled rice manufacturing wastewater. Two anaerobic fixed film fixed bed reactors and two different media matrices, i.e. UV stabilized Biopac media and Fugino spirals, were used for the treatment of parboiled rice mill wastewater. Effluents from these two reactors depicted LC50 values in the range of 68-88% and 62-78% for Biopac and Fugino spiral packed reactors, respectively. From the results, it is evident that anaerobically treated effluents from Biopac packed reactor is marginally better than Fugino spiral packed reactor. Results subjected to statistical evaluation depicted regression coefficient of more than 0.9 indicating good correlation between the mortality and effluent concentration. PMID:27120636

  2. Comparative study on toxicity evaluation of anaerobically treated parboiled rice manufacturing wastewater through fish bioassay.

    Science.gov (United States)

    Giri, Dipti Ramesh; Singh, Ekta; Satyanarayan, Shanta

    2016-01-01

    Short term aquatic bioassay has been developed into a useful tool in water quality management. These tests give information on comparative toxicity of several compounds. The objective of this study was to evaluate the acute toxicity of raw and anaerobically treated effluents of the parboiled rice manufacturing industry. The acute toxicity test was carried out by using the fish Lebistes reticulatus under laboratory conditions. LC50 values for 24, 48, 72 and 96 hours ranged between 4.6 and 7.0% for the raw parboiled rice manufacturing wastewater. Two anaerobic fixed film fixed bed reactors and two different media matrices, i.e. UV stabilized Biopac media and Fugino spirals, were used for the treatment of parboiled rice mill wastewater. Effluents from these two reactors depicted LC50 values in the range of 68-88% and 62-78% for Biopac and Fugino spiral packed reactors, respectively. From the results, it is evident that anaerobically treated effluents from Biopac packed reactor is marginally better than Fugino spiral packed reactor. Results subjected to statistical evaluation depicted regression coefficient of more than 0.9 indicating good correlation between the mortality and effluent concentration.

  3. Measurement of triclosan in wastewater treatment systems.

    Science.gov (United States)

    McAvoy, Drew C; Schatowitz, Bert; Jacob, Martin; Hauk, Armin; Eckhoff, William S

    2002-07-01

    The objective of this study was to investigate the fate and removal of triclosan (TCS; 5-chloro-2-[2,4-dichloro-phenoxy]-phenol), an antimicrobial agent used in a variety of household and personal-care products, in wastewater treatment systems. This objective was accomplished by monitoring the environmental concentrations of TCS, higher chlorinated derivatives of TCS (4,5-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra II]; 5,6-dichloro-2-[2,4-dichloro-phenoxy]-phenol [tetra III]; and 4,5,6-trichloro-2-(2,4-dichloro-phenoxy)-phenol [penta]), and a potential biotransformation by-product of TCS (5-chloro-2-[2,4-dicholoro-phenoxy]-anisole [TCS-OMe]) during wastewater treatment. These analytes were isolated from wastewater by using a C18 solid-phase extraction column and from sludge with supercritical fluid CO2. Once the analytes were isolated, they were derivatized to form trimethylsilylethers before quantitation by gas chromatography-mass spectrometry. Recovery of TCS from laboratory-spiked wastewater samples ranged from 79 to 88% for influent, 36 to 87% for final effluent, and 70 to 109% for primary sludge. Field concentrations of TCS in influent wastewater ranged from 3.8 to 16.6 microg/L and concentrations for final effluent ranged from 0.2 to 2.7 microg/L. Removal of TCS by activated-sludge treatment was approximately 96%, whereas removal by trickling-filter treatment ranged from 58 to 86%. The higher chlorinated tetra-II, tetra-III, and penta closans were below quantitation in all of the final effluent samples, except for one sampling event. Digested sludge concentrations of TCS ranged from 0.5 to 15.6 microg/g (dry wt), where the lowest value was from an aerobic digestion process and the highest value was from an anaerobic digestion process. Analysis of these results suggests that TCS is readily biodegradable under aerobic conditions, but not under anaerobic conditions. The higher chlorinated closans were near or below the limit of quantitation in all of the

  4. Diagnosis of an anaerobic pond treating temperate domestic wastewater: An alternative sludge strategy for small works

    OpenAIRE

    Cruddas, Peter; Wang, K.; Best, D.; Jefferson, Bruce; Cartmell, Elise; Parker, Alison; McAdam, Ewan J.

    2014-01-01

    An anaerobic pond (AP) for treatment of temperate domestic wastewater has been studied as a small works sludge management strategy to challenge existing practice which comprises solids separation followed by open sludge storage, for up to 90 days. During the study, effluent temperature ranged between 0.1 °C and 21.1 °C. Soluble COD production was noted in the AP at effluent temperatures typically greater than 10 °C and was coincident with an increase in effluent volatile fatty acids (VFA) con...

  5. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass.

    Science.gov (United States)

    Cohen, Michael F; Hare, Caden; Kozlowski, John; McCormick, Rachel S; Chen, Lily; Schneider, Linden; Parish, Meghan; Knight, Zane; Nelson, Timothy A; Grewell, Brenda J

    2013-01-01

    Constructed wetlands (CW) offer a mechanism to meet increasingly stringent regulatory standards for wastewater treatment while minimizing energy inputs. Additionally, harvested wetland phytomass subjected to anaerobic digestion can serve as a source of biogas methane. To investigate CW wastewater polishing activities and potential energy yield we constructed a pair of secondary wastewater-fed channelized CW modules designed to retain easily harvestable floating aquatic vegetation and maximize exposure of water to roots and sediment. Modules that were regularly harvested averaged a nitrate removal rate of 1.1 g N m(-2) d(-1); harvesting, sedimentation and gasification were responsible for 30.5%, 8.0% and 61.5% of the N losses, respectively. Selective harvesting of a module to maintain dominance of filamentous algae had no effect on nitrate removal rate but lowered productivity by one-half. The average monthly productivity for unselectively harvested modules was 9.3 ± 1.7 g dry wt. m(-2) d(-1) (±SE). Cessation of harvesting in one module resulted in a significant increase in nitrate removal rate and decrease in phosphate removal rate. Compared to the influent, the effluent of the harvested module had significantly lower levels of estrogenic activity, as determined by a quantitative PCR-based juvenile trout bioassay, and significantly lower densities of E. coli. In mixed vertical-flow reactors anaerobic co-digestion of equal dry weight proportions of harvested aquatic vegetation, wine yeast lees and dairy manure was greatly improved when the manure was replaced with the crude glycerol by-product of biodiesel production. Remaining solids were vermicomposted for use as a soil amendment. Our results indicate that incorporation of constructed wetlands into an integrated treatment system can simultaneously enhance the economic and energetic feasibility of wastewater and organic waste treatment processes. PMID:23245307

  6. A granulation model using diosgenin wastewater in an upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    Jianguo BAO; Hui LIU; Yanxin WANG; Lijun ZHANG

    2009-01-01

    An enhanced start-up of an upfiow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000-7000 mg/L) and COD (5000-13000mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms' metabolism inside the granules.

  7. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. PMID:27309773

  8. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    Science.gov (United States)

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively). PMID:22571523

  9. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater.

    Science.gov (United States)

    Kim, Hyun-Chul; Shin, Jaewon; Won, Seyeon; Lee, Jung-Yeol; Maeng, Sung Kyu; Song, Kyung Guen

    2015-03-15

    A fermentative strategy with an anaerobic moving bed biofilm reactor (AMBBR) was used for the treatment of domestic wastewater. The feasibility of using a membrane separation technique for post-treatment of anaerobic bio-effluent was evaluated with emphasis on employing a membrane distillation (MD). Three different hydrophobic 0.2 μm membranes made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) were examined in this study. The initial permeate flux of the membranes ranged from 2.5 to 6.3 L m(-2) h(-1) when treating AMBBR effluent at a temperature difference between the feed and permeate streams of 20 °C, with the permeate flux increasing in the order PP 98% rejection of dissolved organic carbon was also achieved. The characterization of wastewater effluent organic matter (EfOM) using an innovative suite of analytical tools verified that almost all of the EfOM was rejected via the PVDF MD treatment.

  10. Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology.

    Science.gov (United States)

    Moñino, P; Jiménez, E; Barat, R; Aguado, D; Seco, A; Ferrer, J

    2016-10-01

    Food waste was characterized for its potential use as substrate for anaerobic co-digestion in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater (WW). 90% of the particles had sizes under 0.5mm after grinding the food waste in a commercial food waste disposer. COD, nitrogen and phosphorus concentrations were 100, 2 and 20 times higher in food waste than their average concentrations in WW, but the relative flow contribution of both streams made COD the only pollutant that increased significantly when both substrates were mixed. As sulphate concentration in food waste was in the same range as WW, co-digestion of both substrates would increase the COD/SO4-S ratio and favour methanogenic activity in anaerobic treatments. The average methane potential of the food waste was 421±15mLCH4g(-1)VS, achieving 73% anaerobic biodegradability. The anaerobic co-digestion of food waste with WW is expected to increase methane production 2.9-fold. The settleable solids tests and the particle size distribution analyses confirmed that both treatment lines of a conventional WWTP (water and sludge lines) would be clearly impacted by the incorporation of food waste into its influent. Anaerobic processes are therefore preferred over their aerobic counterparts due to their ability to valorise the high COD content to produce biogas (a renewable energy) instead of increasing the energetic costs associated with the aeration process for aerobic COD oxidation.

  11. INCREASING ANAEROBIC DIGESTION PERFORMANCE OF WASTEWATER WITH CO-DIGESTION USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2014-01-01

    Full Text Available Low biogas production in the frozen seafood wastewater anaerobic digestion is observed due to the low organic and Total Solids (TS contents in the wastewater. In this research the decanter cake will be used in the anaerobic co-digestion process to improve the biogas production rate. The effect of co-digestion and Hydraulic Retention Time (HRT will be investigated using the continuously stirred tank reactors under anaerobic conditions. Moreover, the study determines the biogas production potential of different HRTs and that of wastewater digestion alone. The anaerobic co-digestion is operated in continuous with continuously stirred reactors at HRT of 10, 20 and 30 days. The mechanical stirring units of all reactors are operated automatically. The stirring action occurred continuously during the experiments. The anaerobic co-digestion results show that the anaerobic co-digestion provides higher biogas production rate and higher methane yield than that of the wastewater digestion alone. The optimum HRT of the anaerobic co-digestion is 20 days. This reactor produces 2.88 L day-1, with 64.5% of methane and the maximum methane production rate of 1.87 L day-1 and the methane yield of 0.321 l CH4/g CODremoved. The anaerobic co-digestion of wastewater with decanter cake provides the higher methane yield potential production than that provided by the wastewater digestion alone at the ambient temperature. The best HRT is 20 days for anaerobic co-digestion between the wastewater and decanter cake. The experimental results reveal that HRT and co-digestion are the parameters that can affect the biogas production and methane yield.

  12. Biological Treatment of a Synthetic Dye Water and an Industrial Textile Wastewater Containing Azo Dye Compounds

    OpenAIRE

    Wallace, Trevor Haig

    2001-01-01

    In this research, the ability of anaerobic and aerobic biological sludges to reduce and stabilize azo dye compounds was studied. Synthetic dye solutions and an industrial textile wastewater were both treated using anaerobic and aerobic biomass, separately and in sequential step-treatment processes. The primary objective was to reduce the wastewater color to an intensity that complies with the Virginia Pollutant Discharge Elimination System (VPDES) permit level. This level is set at 300 Ame...

  13. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

    Science.gov (United States)

    Keating, Ciara; Chin, Jason P; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; McGrath, John W; O'Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded

  14. Biological phosphorus removal during high-rate, low-temperature, anaerobic digestion of wastewater

    Directory of Open Access Journals (Sweden)

    Ciara eKeating

    2016-03-01

    Full Text Available We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD. A hybrid sludge bed/fixed-film (packed pumice stone reactor was employed for low-temperature (12°C anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2% within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was

  15. Improving anaerobic biodigestion of manioc wastewater with human urine as co-substrate

    Directory of Open Access Journals (Sweden)

    Kpata-Konan Nazo Edith

    2013-03-01

    Full Text Available This study investigated anaerobic co-digestion of cassava liquid waste (very acid and poor in nitrogen and human urine. Three experimental digesters were used: manioc effluent; manioc effluent + urine; manioc effluent + urine + cow dung. All digesters have functioned with mesophilic temperatures between 24.0 and 35.6°C. Digesters without urine have a pH varying between 3 and 4 during experimentation. In reactors containing urine, the pH oscillated between 6.46 and 10.29. The COD/TKN ratios recorded in digesters buffered with human urine are lower than those observed in digester without human urine. Volume of gas produced by the two digesters containing human urine was significantly higher than that of the digester without urine. The additions of human urine and cow dung improve highly the methane potential during anaerobic co-digestion of manioc effluent. The flammability test is positive except for the digester without urine. Using human urine as a co-substrate for anaerobic digestion of cassava wastewater requires a large quantity of urine (40% in terms of proportion for a best productivity. As well as allowing biogas production as a source of renewable energy, this system of co-digestion could help to resolve the sensitive problem of human excreta management in poor area. Indeed, human urine with an alkaline pH and richness in nitrogen can substitute chemicals commonly used to correct the pH during anaerobic biodigestion, in particular for the treatment of cassava wastewater which is very acid.

  16. Characterization of the biomass of a hybrid anaerobic reactor (HAR) with two types of support material during the treatment of the coffee wastewater

    OpenAIRE

    Vivian Galdino da Silva; Cláudio Milton Montenegro Campos; Erlon Lopes Pereira; Júlia Ferreira da Silva

    2013-01-01

    This study investigated the microbiology of a hybrid anaerobic reactor (HAR) in the removal of pollutant loads. This reactor had the same physical structure of an UASB reactor, however with minifilters inside containing two types of support material: expanded clay and gravel. Two hydraulic retention times (HRT) of 24h and 18h were evaluated at steady-state conditions, resulting in organic loading rates (OLR) of 0.032 and 0.018 kgDBO5m-3d-1 and biological organic loading rates (BOLR) of 0,0015...

  17. Wastewater Treatment: The Natural Way

    Science.gov (United States)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  18. Sustainability of wastewater treatment technologies.

    Science.gov (United States)

    Muga, Helen E; Mihelcic, James R

    2008-08-01

    A set of indicators that incorporate environmental, societal, and economic sustainability were developed and used to investigate the sustainability of different wastewater treatment technologies, for plant capacities of resource utilization, and performance of the technology in removing conventional wastewater constituents such as biochemical oxygen demand, ammonia nitrogen, phosphorus, and pathogens. These indicators also determine the reuse potential of the treated wastewater. Societal indicators capture cultural acceptance of the technology through public participation and also measure whether there is improvement in the community from the specific technology through increased job opportunities, better education, or an improved local environment. While selection of a set of indicators is dependent on the geographic and demographic context of a particular community, the overall results of this study show that there are varying degrees of sustainability with each treatment technology. PMID:17467148

  19. Effect of high salinity on anaerobic treatment of low strength effluents.

    Science.gov (United States)

    Ozalp, G; Gomec, C Y; Ozturk, I; Gonuldinc, S; Altinbas, M

    2003-01-01

    In anaerobic treatment, it is obligatory to know the effect of potentially inhibitory compounds due to the fact that methane formation may retard severely and may proceed slower than organic acid production. One of the most important inhibitory substances in anaerobic treatment is high salinity. In many cases, the main collectors of a municipal sewer system should have been built in the coastal zone and below the ground water level due to the available topography of wastewater catchments area, which is carrying the risk of seawater infiltration. Besides, one of the most convenient methods for leachate control is to treat landfill leachates with domestic wastewaters in the central municipal wastewater treatment plants such as in Istanbul. Thus, the nitrogen load of the treatment plants increase significantly. In this study, the effects of high salinity and ammonium nitrogen levels on mesophilic anaerobic tretament processes were investigated. In the first part of the study, high salinity effect on anaerobic treatment was investigated by feeding synthetic wastewater containing high salinity between 0.15%-1.5% ratios. In the second part of the study, the simultaneous effect of high salinity and ammonia (1.5% salinity+1,000 mg NH3/l) was examined by a lab-scale Upflow Anaerobic Sludge Bed Reactor (UASBR). Results indicated no significant inhibition in both cases and effective COD removals (89%) and total biogas productions having methane content of 84% could be achieved. PMID:14753538

  20. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, D. [Department of Environmental Engineering, Demokritos University of Thrace, 67100 Xanthi (Greece)]. E-mail: dgeorgio@env.duth.gr; Aivasidis, A. [Department of Environmental Engineering, Demokritos University of Thrace, 67100 Xanthi (Greece)

    2006-07-31

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran'' (registered)) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly.

  1. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  2. Efficiency influence of exogenous betaine on anaerobic sequencing batch biofilm reactor treating high salinity mustard tuber wastewater.

    Science.gov (United States)

    He, Qiang; Kong, Xiang-Juan; Chai, Hong-Xiang; Fan, Ming-Yu; Du, Jun

    2012-01-01

    When treating a composite mustard tuber wastewater with high concentrations of salt (about 20 g Cl(-) L(-1)) and organics (about 8000 mg L(-1) COD) by an anaerobic sequencing batch biofilm reactor (ASBBR) in winter, both high salinity and low temperature will inhibit the activity of anaerobic microorganisms and lead to low treatment efficiency. To solve this problem, betaine was added to the influent to improve the activity of the anaerobic sludge, and an experimental study was carried to investigate the influence of betaine on treating high salinity mustard tuber wastewater by the ASBBR. The results show that, when using anaerobic acclimated sludge in the ASBBR, and controlling biofilm density at 50% and water temperature at 8-12 degrees C, the treatment efficiency of the reactor could be improved by adding the betaine at different concentrations. The efficiency reached the highest when the optimal dosage ofbetaine was 0.5 mmol L(-1). The average effluent COD, after stable acclimation, was 4461 mg L(-1). Relative to ASBBR without adding betaine, the activity of the sludge increased significantly. Meanwhile, the dehydrogenase activity of anaerobic microorganisms and the COD removal efficiency were increased by 18.6% and 18.1%, respectively. PMID:22988630

  3. Wastewater Treatment I. Student's Guide.

    Science.gov (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  4. Sustainability of municipal wastewater treatment.

    NARCIS (Netherlands)

    Roeleveld, P.J.; Klapwijk, A.; Eggels, P.G.; Rulkens, W.H.; Starkenburg, van W.

    1997-01-01

    n this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to eval

  5. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    Science.gov (United States)

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased.

  6. Characterization of the biomass of a hybrid anaerobic reactor (HAR with two types of support material during the treatment of the coffee wastewater

    Directory of Open Access Journals (Sweden)

    Vivian Galdino da Silva

    2013-06-01

    Full Text Available This study investigated the microbiology of a hybrid anaerobic reactor (HAR in the removal of pollutant loads. This reactor had the same physical structure of an UASB reactor, however with minifilters inside containing two types of support material: expanded clay and gravel. Two hydraulic retention times (HRT of 24h and 18h were evaluated at steady-state conditions, resulting in organic loading rates (OLR of 0.032 and 0.018 kgDBO5m-3d-1 and biological organic loading rates (BOLR of 0,0015 and 0.001 kgDBO5kgSVT- 1d¹, respectively. The decrease in concentration of organic matter in the influent resulted an endogenous state of the biomass in the reactor. The expanded clay was the best support material for biofilm attachment.

  7. Using Analytical Hierarchy Process for Selecting the OptimumWastewater Treatment Process For Dairy Products Factories

    Directory of Open Access Journals (Sweden)

    Gh Asgari

    2014-07-01

    Conclusions: Due to the influence of various parameters in choosing optimal wastewater treatment, Multi-criteria decision-making methods are necessary. Finally, “UASB + Aeration” was found to be the first priority followed by “Anaerobic filter + Aeration”, “Anaerobic lagoon + Aeration (2 + Sedimentation (2”,” Anaerobic filter + Aeration (2 + Sedimentation (2”. “Septic tank + Trickling filter + Aeration” system was found to be less preferable than other options.

  8. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao

    2015-05-01

    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  9. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  10. Start-up and Acclimation of Anaerobic Baffled Reactor for Treatment of Diseased Animal Wastewater%ABR处理疫病动物废水的启动驯化研究

    Institute of Scientific and Technical Information of China (English)

    卢韬; 李平; 吴锦华; 王向德

    2013-01-01

    采用厌氧折流板反应器(ABR)处理疫病动物废水,对其启动驯化过程进行了研究.结果表明,在逐级提高进水浓度的条件下,历经58 d成功启动反应器,当进水COD平均为8 120mg/L时,出水COD平均为491 mg/L,对COD的去除率可达94%,总产气量达到21.15 L/d,平均产气率为0.55 m3/kgCOD,疫病动物废水在ABR中可以得到高效降解.在启动过程中,随着进水浓度的提升,挥发性脂肪酸(VFA)在第1格室中不断积累,但同时废水在厌氧生物降解过程中可以产生大量碱度,保证了反应器内的中性环境条件,反应器未发生酸败现象.启动成功后,反应器各格室内的活性污泥主要以颗粒形态存在,且颗粒粒径沿水流方向逐渐减小,呈现明显的分级现象.%The start-up and acclimation of anaerobic baffled reactor (ABR) for treatment of diseased animal wastewater were investigated. The results showed that the reactor started up successfully after 58 d by gradually increasing influent concentration. When the mean influent COD was 8 120 mg/L, the mean effluent COD was 491 mg/L, and 94% COD removal rate was achieved. Besides, total biogas production and mean biogas production rate were 21. 15 L/d and 0. 55 mVkgCOD, respectively. VFA accumulation mainly occurred in compartment 1 because of the increasing COD in the influent. Since a-bundant alkalinity was generated in the anaerobic process, reactor acidification was avoided. After the successful start-up, the activated sludge in each compartment was mainly granular sludge. The particle size of the granular sludge decreased along the flow direction, which presented an obvious classification phenomenon in the reactor.

  11. Treatment of Molasses Alcohol Wastewater by Anaerobic Baffled Reactor%厌氧折流板反应器处理糖蜜酒精废水的研究

    Institute of Scientific and Technical Information of China (English)

    赵宸艺; 陈源龙; 蒋永荣; 韦添尹

    2012-01-01

    Removal efficiency of anaerobic baffled reactor (ABR) treating molasses alcohol industrial wastewater was investigated, which had succeeded in treating simulated molasses alcohol wastewater. During the experiments of 30 days, chemical oxygen demand (COD) and sulfate (SO4 2-) removal efficiency, volatile fatty acid (VFA).pH and sulfide(S2-) distribution in each compartment were studied. Experimental results showed that under the conditions of the load of COD and SO4 2- as 4.8 kg/(m3·d) and 0.32 kg/(m3·d),the removal efficiency of COD and SO4 2- were 83% and 98% respectively. The change of VFA concentration and pH in each compartment were basically identical. S2- concentration in each compartment was low, and S2- concentrations in Compartment 4 and 5 were less than 40 mg/L. Multi-phase separation characteristics (acidogenic phase and methanogenic phase, sulfate-reducing phase and sulfur-producing phase) that had formed during simulated molasses alcohol wastewater treatment were remained, which would ensure the removal efficiency of ABR treating molasses alcohol industrial wastewater.%为探究厌氧折流板反应器(ABR)对糖蜜酒精实际废水的处理效果,该实验采用已成功处理人工模拟糖蜜酒精废水的ABR,研究了该反应器处理糖蜜酒精工业废水过程中COD和SO42-的去除效果,以及各隔室VFA、pH和S2-的分布规律.实验结果表明,反应器处理糖蜜酒精工业废水,在30d内达到稳定,COD和SO42-负荷分别为4.8 kg/(m3·d)和0.32 kg/(m3 ·d),COD和SO42-的去除率分别为83%和98%.反应器内各隔室挥发性脂肪酸(VFA)浓度变化规律与pH值变化规律一致,各隔室硫化物(S2-)浓度较低,其中第4、5隔室的S2-浓度低于40 mg/L.反应器内微生物菌群仍能保持处理模拟废水时形成的多相(产酸硫酸盐还原相和生成硫单质产甲烷相)分离特征,保证了ABR对实际工业废水的处理效率.

  12. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system.

    Science.gov (United States)

    De Gioannis, G; Diaz, L F; Muntoni, A; Pisanu, A

    2008-01-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater. PMID:18191559

  13. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR)

    OpenAIRE

    Maria Octoviane Dyan; Gita Permana Putra; Budiyono Budiyono; Siswo Sumardiono; Tutuk Djoko Kusworo

    2015-01-01

    Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW) with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic p...

  14. Anaerobic digestion challenge of raw olive mill wastewater.

    Science.gov (United States)

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  15. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  16. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  17. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    Science.gov (United States)

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on γ-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others.

  18. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  19. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  20. Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry

    Science.gov (United States)

    Dors, Gisanara; Mendes, Adriano A.; Pereira, Ernandes B.; de Castro, Heizir F.; Furigo, Agenor

    2013-03-01

    Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry with porcine pancreatic lipase at different concentrations (from 1.0 to 3.0 g L-1) were performed. The efficiency of the enzymatic pretreatment was measured by the Chemical Oxygen Demand (COD) removal and formation of methane. All samples pretreated with lipase showed a positive effect on the COD removal and formation of methane. After 30 days of anaerobic biodegradation the methane production varied from 569 ± 95 to 1,101 ± 10 mL for crude wastewater and pretreated at 3.0 g L-1 enzyme, respectively. COD removal of wastewater supplemented at different enzyme concentrations was found to be threefold higher than crude wastewater. The use of lipases seems to be a promising alternative for treating lipid-rich wastewaters such as those from the poultry industry.

  1. Fate of Radionuclides in Wastewater Treatment Plants

    OpenAIRE

    Shabani Samgh Abadi, Farzaneh

    2013-01-01

    In the western United States and in many arid regions, wastewater reclamation is becoming a common way of increasing water supplies. More and more wastewater is being reclaimed for non-potable uses such as irrigation, but reclamation for potable use is also being practiced. One of the concerns for wastewater reclamation is the distribution of contaminants that are not removed by either the wastewater treatment plant or the water treatment plant in the case of potable reclamation. The recent a...

  2. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids. PMID:27620110

  3. CFD for wastewater treatment: an overview.

    Science.gov (United States)

    Samstag, R W; Ducoste, J J; Griborio, A; Nopens, I; Batstone, D J; Wicks, J D; Saunders, S; Wicklein, E A; Kenny, G; Laurent, J

    2016-01-01

    Computational fluid dynamics (CFD) is a rapidly emerging field in wastewater treatment (WWT), with application to almost all unit processes. This paper provides an overview of CFD applied to a wide range of unit processes in water and WWT from hydraulic elements like flow splitting to physical, chemical and biological processes like suspended growth nutrient removal and anaerobic digestion. The paper's focus is on articulating the state of practice and research and development needs. The level of CFD's capability varies between different process units, with a high frequency of application in the areas of final sedimentation, activated sludge basin modelling and disinfection, and greater needs in primary sedimentation and anaerobic digestion. While approaches are comprehensive, generally capable of incorporating non-Newtonian fluids, multiphase systems and biokinetics, they are not broad, and further work should be done to address the diversity of process designs. Many units have not been addressed to date. Further needs are identified throughout, but common requirements include improved particle aggregation and breakup (flocculation), and improved coupling of biology and hydraulics. PMID:27508360

  4. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity.

    Science.gov (United States)

    Wei, Xiao-xue; Zhang, Zi-yang; Fan, Qing-lan; Yuan, Xiao-ying; Guo, Dong-sheng

    2012-11-15

    This study investigated the change of hazardous materials in coking wastewater at different treatment stages (anaerobic, anaerobic/aerobic, anaerobic/aerobic/photo degradation, anaerobic/aerobic/ozone oxidation treatment) and the effects of them on the development of maize embryos and the activity of amylase and protease in maize seeds. Moreover the interaction of refractory organic matters in the wastewater at different treatment stages with amylase and protease also were determined in vitro. The results show that the biodegradable and the refractory organic compounds in the wastewater both can affect maize embryo development (germination inhibition rate is 19.3% for biodegradable organic compounds). As the treatment stage preceding, the inhibition effect of coking wastewater on the development of the maize embryo (for germination inhibition rates change from 49.3% to 24.6%) and on enzymatic activity (inhibition rates change from 63.9% to 22.4% for amylase) decreases gradually, but the photo-degradation treatment to anaerobic/aerobic effluent can increase its toxicity. The changes in the ability of the refractory organic compounds to bind with enzyme proteins, combined with the analysis of the organic components by GC/MS, show that in the process of coking wastewater treatment no new toxic chemicals were produced. PMID:23022415

  5. Application of two phase anaerobic process on treatment of molasses wastewater%糖蜜废水在两相厌氧消化工艺中的应用

    Institute of Scientific and Technical Information of China (English)

    雷瑞盈; 王安娜; 王玥; 蒋志飞; 周仓力; 李永峰

    2014-01-01

    针对糖蜜废水排放量大、有机负荷高、悬浮物浓度高和成分复杂等特点,结合两相厌氧消化工艺具有产酸相与产甲烷相分离的特性,在处理高浓度有机废水和能源回收利用上有独特优势进行讨论。并例举了糖蜜废水在两相厌氧消化工艺中的应用实例和特性研究,指出了两相厌氧消化工艺存在的问题和未来的发展趋势。%The characteristics of molasses wastewater and two -phase anaerobic digestion process were introduced respectively in this paper. Some examples of research application and molasses wastewater features in two -phase anaerobic digestion process were listed, and the problems and future trends were also summarized.

  6. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR.

  7. Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent

    OpenAIRE

    Ferrer, J; Seco, A.; Martí,N; Gimenez, J.B.

    2012-01-01

    The present paper presents a submerged anaerobic membrane bioreactor (SAnMBR) as a sustainable approach for urban wastewater treatment at 33 and 20 C, since greenhouse gas emissions are reduced and energy recovery is enhanced. Compared to other anaerobic systems, such as UASB reactors, the membrane technology allows the use of biogas-assisted mixing which enhances the methane stripping from the liquid phase bulk. The methane saturation index obtained for the whole period (1.00 ± ...

  8. Shortcut Nitrification/Anaerobic Ammonium Oxidation/Complete Nitrification Process for Treatment of Coking Wastewater%短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水

    Institute of Scientific and Technical Information of China (English)

    薛占强; 李玉平; 李海波; 林琳; 曹宏斌

    2011-01-01

    通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.%The combined process of shortcut nitrification, anaerobic ammonium oxidation and complete nitrification was developed for the treatment of coking wastewater. The organic pollutants are mainly removed, and shortcut nitrification is obtained in the first-stage aerobic continuous-flow biofilm reactor at temperature of (35 ± 1 ) ℃ and DO of 2.0 to 3.0 mg/L. The effects of HRT, DO and volume load on the operation efficiency of the reactor were investigated. The results show that the shortcut nitrification is obtained, and ammonia nitrogen is effectively removed in the reactor. The process parameters of the reactor are controlled to achieve anaerobic ammonium oxidation in the anaerobic reactor

  9. Polyurethane rotating disc system for post-treatment of anaerobically pre-treated sewage

    NARCIS (Netherlands)

    Tawfik, A.; Klapwijk, A.

    2010-01-01

    The performance of polyurethane rotating discs (RBC-1) versus polystyrene rotating discs (RBC-2) for the treatment of an up-flow anaerobic sludge blanket (UASB) reactor effluent fed with domestic wastewater was investigated. Both RBC units were operated at the same organic loading rate (OLR) of 10.5

  10. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    NARCIS (Netherlands)

    Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed i

  11. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  12. Fate and degradation of nonylphenolic compounds during wastewater treatment process

    Institute of Scientific and Technical Information of China (English)

    Jing Lian; Junxin Liu

    2013-01-01

    In order to explore the biodegradation behavior of nonylphenolic compounds during wastewater treatment processing,two full-scale wastewater treatment plants were investigated and batch biodegradation experiments were conducted.The biodegradation pathways under the various operational conditions were identified from batch experiments:shortening of ethoxy-chains dominated under the anaerobic condition,whereas oxidizing of the terminal alcoholic group prevailed over the other routes under the aerobic condition.Results showed that the anoxic condition could accelerate the biodegradation rates of nonylphenolic compounds,but had no influence on the biodegradation pathway.The biodegradation rates of nonylphenol (NP) and short-chain nonylphenol polyethoxylates (NPnEOs,n:number of ethoxy units) increased from the anaerobic condition,then the anoxic,finally to the aerobic condition,while those of long-chain NPnEOs and nonylphenoxy carboxylates (NPECs) seemed similar under the various conditions.Under every operational condition,long-chain NPnEOs showed the highest biodegradation activity,followed by NPECs and short-chain NPnEOs,whereas NP showed relatively recalcitrant characteristics especially under the anaerobic condition.In addition,introducing sulfate and nitrate to the anaerobic condition could enhance the biodegradation of NP and short-chain NPnEOs by supplying more positive redox potentials.

  13. Fate and degradation of nonylphenolic compounds during wastewater treatment process.

    Science.gov (United States)

    Lian, Jing; Liu, Junxin

    2013-08-01

    In order to explore the biodegradation behavior of nonylphenolic compounds during wastewater treatment processing, two full-scale wastewater treatment plants were investigated and batch biodegradation experiments were conducted. The biodegradation pathways under the various operational conditions were identified from batch experiments: shortening of ethoxy-chains dominated under the anaerobic condition, whereas oxidizing of the terminal alcoholic group prevailed over the other routes under the aerobic condition. Results showed that the anoxic condition could accelerate the biodegradation rates of nonylphenolic compounds, but had no influence on the biodegradation pathway. The biodegradation rates of nonylphenol (NP) and short-chain nonylphenol polyethoxylates (NPnEOs, n: number of ethoxy units) increased from the anaerobic condition, then the anoxic, finally to the aerobic condition, while those of long-chain NPnEOs and nonylphenoxy carboxylates (NPECs) seemed similar under the various conditions. Under every operational condition, long-chain NPnEOs showed the highest biodegradation activity, followed by NPECs and short-chain NPnEOs, whereas NP showed relatively recalcitrant characteristics especially under the anaerobic condition. In addition, introducing sulfate and nitrate to the anaerobic condition could enhance the biodegradation of NP and short-chain NPnEOs by supplying more positive redox potentials. PMID:24520688

  14. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    Science.gov (United States)

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  15. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed. PMID:25746594

  16. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  17. Livestock wastewater treatment: ammonia removal

    International Nuclear Information System (INIS)

    Livestock wastewater contains high concentration of ammonia. Removal of this inorganic species of nitrogen could be achieved through nitrification and de-nitrification. Nitrification process was conducted in the laboratory using activated sludge process with HRT of three and five days. After wastewater undergone nitrification process at Livestock Wastewater Treatment Plant the concentration of influent for N-NH4+ reduced from 400 mg/l to 0 mg/l and concentration of N-NO3- increased from 11 mg/l to 300 mg/l. Nitrification using lab-scale activated sludge process also recorded similar result. Concentration of N-NH4+ reduced from 400 mg/l to 2 mg/l and 380 mg/l to 1.1 mg/l for HRT=5 days and HRT=3 days respectively. N-NO3- was increased from 11 mg/l to 398 mg/l and 14 mg/l to 394 mg/l for HRT=5 days and HRT=3 days, respectively. However changes of N-NH4+ and N=NO3- were not observed using gamma irradiation. The combination of gamma irradiation with activated sludge process indicated difference and its contribution is still investigated

  18. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Maria Octoviane Dyan

    2015-01-01

    Full Text Available Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor. The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7

  19. Sludge from pulp and paper mills for biogas production : Strategies to improve energy performance in wastewater treatment and sludge management

    OpenAIRE

    Hagelqvist, Alina

    2013-01-01

    The production of pulp and paper is associated with the generation of large quantities of wastewater that has to be purified to avoid severe pollution of the environment. Wastewater purification in pulp and paper mills combines sedimentation, biological treatment, chemical precipitation, flotation and anaerobic treatment, and the specific combination of techniques is determined by the local conditions. Wastewater treatment generates large volumes of sludge that after dewatering can be inciner...

  20. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  1. Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater.

    Science.gov (United States)

    Yang, Libin; Tan, Xiaobo; Li, Deyi; Chu, Huaqiang; Zhou, Xuefei; Zhang, Yalei; Yu, Hong

    2015-04-01

    The cultivation of microalgae Chlorella pyrenoidosa (C. pyrenoidosa) using anaerobic digested starch wastewater (ADSW) and alcohol wastewater (AW) was evaluated in this study. Different proportions of mixed wastewater (AW/ADSW=0.176:1, 0.053:1, 0.026:1, v/v) and pure ADSW, AW were used for C. pyrenoidosa cultivation. The different proportions between ADSW and AW significantly influenced biomass growth, lipids production and pollutants removal. The best performance was achieved using mixed wastewater (AW/ADSW=0.053:1, v/v), leading to a maximal total biomass of 3.01±0.15 g/L (dry weight), lipids productivity of 127.71±6.31 mg/L/d and pollutants removal of COD=75.78±3.76%, TN=91.64±4.58% and TP=90.74±4.62%.

  2. A Technology of Wastewater Sludge Treatment

    Science.gov (United States)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  3. Floating treatment wetlands for domestic wastewater treatment.

    Science.gov (United States)

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment. PMID:22105133

  4. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae.

    Science.gov (United States)

    Tommaso, Giovana; Chen, Wan-Ting; Li, Peng; Schideman, Lance; Zhang, Yuanhui

    2015-02-01

    This study examined the chemical characteristics and the anaerobic degradability of the aqueous product from hydrothermal liquefaction (HTL-ap) from the conversion of mixed-culture algal biomass grown in a wastewater treatment system. The effects of the HTL reaction times from 0 to 1.5 h, and reaction temperatures from 260 °C to 320 °C on the anaerobic degradability of the HTL-ap were quantified using biomethane potential assays. Comparing chemical oxygen demand data for HTL-ap from different operating conditions, indicated that organic matter may partition from organic phase to aqueous phase at 320 °C. Moderate lag phase and the highest cumulative methane production were observed when HTL-ap was obtained at 320 °C. The longest lag phase and the smallest production rate were observed in the process fed with HTL-ap obtained at 300 °C. Nevertheless, after overcoming adaptation issues, this HTL-ap led to the second highest accumulated specific methane production. Acetogenesis was identified as a possible rate-limiting pathway. PMID:25455086

  5. Start- up strategies of UASB reactor for treatment of pharmaceutical wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two start-up strategies of upflow anaerobic sludge blanket (UASB) reactor for treatment of pharmaceutical wastewater were investigated. The results showed that both of them were workable. Compared with the strategy that started up the reactor directly using chloromycetin wastewater, the strategy that started up the reactor first using mixed wastewater and then using chloromycetin wastewater could save time by 23%. When the latter strategy was adopted the development of sludge activity fluctuated more largely and its final activity was lower, but the sludge grew faster in the course of start-up.

  6. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation.

    Science.gov (United States)

    Bajaj, Mini; Winter, Josef

    2013-10-15

    High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions.

  7. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    N. C. S. Amorim

    2014-09-01

    Full Text Available The effect of hydraulic retention time (HRT and organic loading rate (OLR on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m³-d. The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.00, while the influent chemical oxygen demand (COD measured 4000 mg COD/L. The hydrogen yield production increased from 0.13 to 1.91 mol H2/mol glucose as the HRT decreased from 8 to 2 h. The hydrogen production rate significantly increased from 0.20 to 2.04 L/h/L when the HRT decreased from 8 to 1 h. The main soluble metabolites were ethanol (1.87-100%, acetic acid (0.00-84.80%, butyric acid (0.00-66.78% and propionic acid (0.00-50.14%. Overall, we conclude that the best hydrogen yield production was obtained at an HRT of 2 h.

  8. Phenolic compouds with antiradical activity from the cork boiling wastewater anaerobic digestion

    OpenAIRE

    Marques, Isabel Paula Ramos; Gil, Luís; La Cara, F

    2013-01-01

    This work aims to develop a procedure that explores the different types of valorization that can be obtained by integrating a biological process, such as the anaerobic digestion, to promote the bioconversion of the industrial cork effluents (cork boiling wastewater, CBW).

  9. Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities

    Science.gov (United States)

    Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g-COD fed were achieved at food-to-microorganism (F/M) ratios of ...

  10. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus

    OpenAIRE

    Ashlynn S. Stillwell; David C. Hoppock; Webber, Michael E.

    2010-01-01

    This manuscript uses data from the U.S. Environmental Protection Agency to analyze the potential for energy recovery from wastewater treatment plants via anaerobic digestion with biogas utilization and biosolids incineration with electricity generation. These energy recovery strategies could help offset the electricity consumption of the wastewater sector and represent possible areas for sustainable energy policy implementation. We estimate that anaerobic digestion could save 628 to 4,940 mil...

  11. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  12. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  13. Treatment and recycling of textile wastewaters

    International Nuclear Information System (INIS)

    The results of an experimental campaign involving the treatment of textile wastewaters for recycle by mean of an absorption resins pilot plant are briefly described. The case study concerned the treatment and reuse of yarns dyeing wastewaters. Results obtained indicate the possibility of an industrial scale implementation of the technique

  14. Wastewater treatment after reactive printing

    OpenAIRE

    Šostar-Turk, Sonja; Simonič, Marjana; Petrinić, Irena

    2012-01-01

    Membrane filtration of wastewater after textile printing with reactive dyes isdescribed. The wastewater from a Slovenian factory, whose output is approx. 80% reactive dyes printed and dyed on cotton, was studied. In particular, the presence of urea, sodium alginate, oxidation agent and reactive dyes, used forthe printing paste preparation, in the wastewater was studied. Chemical analyses of actual, non-purified, wastewater showed that many Slovenian regulations were exceeded. The study of mem...

  15. Sustainable treatment of rubber latex processing wastewater : The UASB-system combined with aerobic post-treatment

    NARCIS (Netherlands)

    Nguyen Trung Viet,

    1999-01-01

    The main objective of this PhD-thesis is to assess the applicability of UASB-process for treating RLP wastewater and the feasibility of some adequate post-treatment processes for the effluent of the anaerobic treatment process.The studies were carried out in The Netherlands during November 1990-May

  16. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  17. RECENT ADVANCES IN LEATHER TANNERY WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy

    2016-05-01

    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  18. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems. PMID:26877027

  19. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems.

  20. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics

    OpenAIRE

    Peng Zhang; Yu Shen; Jin-Song Guo; Chun Li; Han Wang; You-Peng Chen; Peng Yan; Ji-Xiang Yang; Fang Fang

    2015-01-01

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activ...

  1. Electron beam treatment of textile dyeing wastewater

    International Nuclear Information System (INIS)

    A pilot plant with e-beam for treating 1,000m3/day of dyeing wastewater were constructed and started in operation from 1998, together with the biological treatment facility. The wastewater from various stages of the existing purification process can be treated with electron beam in this plant, and it will give rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam treatment results in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Commercial plants for treating over 10,000m3/day each, based upon this pilot experimental result, will start in construction from 2001 by the support of IAEA and Korean Government. (author)

  2. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m3/day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  3. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater.

    Science.gov (United States)

    Ou, Changjin; Shen, Jinyou; Zhang, Shuai; Mu, Yang; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2016-09-15

    Packing of iron powder into anaerobic system is attractive for enhancing removal of recalcitrant pollutants from wastewater, but is limited by various inherent drawbacks of iron powder, such as easy precipitation and poor mass transfer. To address the above issues, iron shavings were packed into an upflow anaerobic sludge blanket (UASB) for enhancing 2,4-dinitroanisole (DNAN) reduction in this study, with system stability and microbial biodiversity emphasized. The results showed that both DNAN reduction and 2,4-diaminoanisole (DAAN) formation could be notably improved in the iron shavings coupled UASB system. Moreover, the ability to resist environmental stress was also strengthened through the addition of iron shavings in the UASB reactor. Compared with a loose and rough surface of the sludge in the control UASB reactor, the sludge in the coupled system presented a compact, rigid and granular appearance under iron shavings simulation. Furthermore, high throughput sequencing analysis indicated that the diversity of microbial community in the iron shavings coupled UASB system was significantly higher than that of the control UASB reactor. Additionally, species related to DNAN reduction and methane production were enriched in the coupled system. The observed long-term stable performance highlights the full-scale application potential of iron shavings coupled anaerobic sludge process for the treatment of nitroaromatic compounds containing wastewater. PMID:27295620

  4. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.

    Science.gov (United States)

    Dutta, Kasturi; Lee, Ming-Yi; Lai, Webber Wei-Po; Lee, Chien Hsien; Lin, Angela Yu-Chen; Lin, Cheng-Fang; Lin, Jih-Gaw

    2014-08-01

    The aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR) and influent COD concentration of 250mg/L. About 67% COD and 99% TSS removal efficiency could be achieved by the system treating the effluent from primary clarifier of municipal wastewater treatment plant, at HRT of 1.28h and OLR of 5.65kg COD/m(3)d. The system could also effectively remove twenty detected pharmaceuticals in raw wastewaters with removal efficiency in the range of 86-100% except for diclofenac (78%). No other membrane fouling control was required except scouring effect of GAC for flux of 16LMH. PMID:24745898

  5. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1986-08-01

    Full Text Available The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw domestic sewage was fed to the anaerobic unit, and the aerobic unit was fed with the anaerobic unit was fed with the anaerobic effluent. Although, the anaerobic filter did not show a considerable organic removal with domestic sex age it was improved when glucose was added to the influent to increase influent soluble COD. When glucose was added the anaerobic filter removed about 290 mg/1 of influent soluble COD. The aerobic unit produced an excellent effluent with COD, BOD5 and TSS concentrations of 37 mg/1, 9 mg/1 and 10 mg/l respectively. Overall, the system removed 95 percent of influent COD, 97 percent of influent BOD5 and 96 percent of influent TSS.

  6. Tratamento de águas residuárias de suinocultura em reator anaeróbio operado em batelada sequencial Treatment of swine wastewater in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Roberto Alves de Oliveira

    2009-12-01

    Full Text Available Neste estudo avaliou-se o desempenho de um reator anaeróbio operado em batelada sequencial, em escala piloto, com volume total de 280 L, no tratamento de águas residuárias de suinocultura. As cargas orgânicas volumétricas aplicadas no reator foram de 4,42; 5,27; 9,33 e 11,79 g DQOtotal (L d-1. As eficiências médias de remoção de DQOtotal, sólidos suspensos totais (SST e sólidos suspensos voláteis (SSV variaram de 56 a 87%. O nitrogênio total Kjedahl (NTK, fósforo total (P-total e magnésio (Mg foram removidos com eficiências médias de 26 a 39%. As produções volumétricas de metano variaram de 0,50 a 0,64 L CH4 (L reator d-1 e não foram observadas diferenças significativas. As relações sólidos voláteis/sólidos totais (SV/ST do lodo de tal reator variaram de 0,74 a 0,58. As maiores concentrações médias de nutrientes no lodo do reator foram para o nitrogênio, fósforo, ferro e cálcio, com valores de 30.610 a 64.400, 1.590 a 9.870, 6.180 a 8.700 e 1.180 a 6.760 mg kg-1 base seca, respectivamente.In the present study, we evaluated an anaerobic sequencing batch reactor, in pilot scale and with a total volume of 280 L, for the treatment of swine wastewater. The organic loading rates applied in such reactor were 4.42; 5.27; 9.33 and 11.79 g CODtotal (L d-1. The average efficiencies of removal of CODtotal total solids suspension (TSS and volatile suspension solids (VSS varied from 56 to 87%. The nutrients total Kjedahl nitrogen (TKN, total phosphorus (total P and Mg were removed with average efficiencies from 26 to 39%. The volumetric methane productions varied from 0.50 to 0.64 L CH4 (L reactor d-1 and did not present significant differences. The VS/TS relations of the aforementioned reactor's sludge varied from 0.74 to 0.58. The highest mean concentrations of nutrients in the reactor sludge were those of nitrogen, phosphorus, iron and calcium, with values from 30.610 to 64.400, 1.590 to 9.870, 6.180 to 8.700 and 1.180 to 6

  7. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water.

  8. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. PMID:25898079

  9. 物化/厌氧水解/生物强化脱色处理印染废水%Treatment of printing and dyeing wastewater by the combined physic-chemical/anaerobic hydrolysis/bio-augmented decolorization process

    Institute of Scientific and Technical Information of China (English)

    龚为进; 窦艳艳; 刘玥

    2013-01-01

    介绍了某印染废水工程实例,针对该工程废水的特点,设计采用物化沉淀—厌氧水解—生物接触氧化—曝气生物滤池组合工艺进行处理.在好氧生化阶段接种强化脱色菌,强化生物脱色效果.运行结果表明,进水CODCr为1 500 mg/L、BOD5为350 mg/L、色度为1 000倍时,处理出水水质为CODCr≤80 mg/L、BOD5≤25 mg/L、色度≤40倍,优于《纺织染整工业水污染物排放标准》(GB 4287-1992)的一级排放标准要求.%An instance of a printing and dyeing wastewater project is introduced.According to the characteristics of the wastewater,the combined treating process,physic-chemical precipitation/anaerobic hydrolysis/biological contact oxidation/aerated biological aerated filter has been designed.Inoculating augmented decolorizing germs during aerobic bio-chemical stage can strengthen the bio-decolorizing efficiency.The running results show that when the influent CODCr is 1 500 mg/L,BOD5 350 mg/L,and chroma 1 000 times,the treated effluent water quality is CODCr ≤ 80 mg/L,BOD5 ≤ 25 mg/L,and chroma ≤ 40 times,which is better than the requirements of the first class of Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry(GB 4287-1992).

  10. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    Science.gov (United States)

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  11. [Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength].

    Science.gov (United States)

    Wei, Yuan-Song; Yu, Da-Wei; Cao, Lei

    2014-04-01

    As the second largest amounts of COD discharged in 41 kinds of industrial wastewater, it is of great urgency for the agricultural and food processing industry to control water pollution and reduce pollutants. Generally the agricultural and food processing industrial wastewater with high strength COD of 8 000-30 000 mg x L(-1), is mainly treated with anaerobic and aerobic processes in series, but which exists some issues of long process, difficult maintenance and high operational costs. Through coupling anaerobic digestion and membrane separation together, anaerobic membrane bioreactor (AnMBR) has typical advantages of high COD removal efficiency (92%-99%), high COD organic loading rate [2.3-19.8 kg x (m3 x d)(-1)], little sludge discharged (SRT > 40 d) and low cost (HRT of 8-12 h). According to COD composition of high strength industrial wastewater, rate-limiting step of methanation could be either hydrolysis and acidification or methanogenesis. Compared with aerobic membrane bioreactor (MBR), membrane fouling of AnMBR is more complicated in characterization and more difficult in control. Measures for membrane fouling control of AnMBR are almost the same as those of MBR, including cross flow, air sparging and membrane relaxation. For meeting discharging standard of food processing wastewater with high strength, AnMBR is a promising technology with very short process, by enhancing COD removal efficiency, controlling membrane fouling and improving energy recovery. PMID:24946624

  12. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions

    Energy Technology Data Exchange (ETDEWEB)

    Song Yonghui, E-mail: songyh@craes.org.cn [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China); College of Water Science, Beijing Normal University, Xinjiekou Wai Street 19, Beijing 100875 (China); Qiu Guanglei; Yuan Peng [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China); College of Water Science, Beijing Normal University, Xinjiekou Wai Street 19, Beijing 100875 (China); Cui Xiaoyu; Peng Jianfeng; Zeng Ping; Duan Liang; Xiang Liancheng; Qian Feng [Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012 (China)

    2011-06-15

    Anaerobically digested swine wastewater contains high concentrations of phosphorus (P) and nitrogen (N). A pilot-scale experiment was carried out for nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization. In the pilot plant, a sequencing batch reactor (SBR) and a continuous-flow reactor with struvite accumulation devices were designed and employed. The wastewater pH value was increased by CO{sub 2} stripping, and the struvite crystallization process was performed without alkali and Mg{sup 2+} additions. Results of the long-term operation of the system showed that, both reactors provided up to 85% P removal and recovery over wide ranges of aeration times (1.0-4.0 h), hydraulic retention times (HRT) (6.0-15.0 h) and temperatures (0-29.5{sup Degree-Sign }C ) for an extended period of 247 d, in which approximate 30% of P was recovered by the struvite accumulation devices. However, 40-90% of NH{sub 4}{sup +}-N removed was through air stripping instead of being immobilized in the recovered solids. The recovered products were detected and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and chemical methods, which were proved to be struvite with purity of more than 90%. This work demonstrated the feasibility and effects of nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions.

  13. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    Science.gov (United States)

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  14. Effect of corrosion of steel elements on the treatment of dairy wastewater in a UASB reactor.

    Science.gov (United States)

    Jędrzejewska Cicińska, M; Krzemieniewski, M

    2010-05-01

    Experiments were performed in parallel using two laboratory upflow anaerobic sludge blanket (UASB) reactors. One of the two reactors was packed with spiral elements made of steel wire with 48% iron content in order to examine the influence of the steel elements on the chemical oxygen demand (COD) and efficiency of phosphorus removal from synthetically prepared dairy wastewater. A strong relationship was found between anaerobic corrosion and efficiency of phosphorus removal. Phosphorus removal in the reactor packed with steel elements was between 16.4% and 64.4% higher than without the steel elements present. The anaerobic corrosion process improved COD removal efficiency by 1.0-3.1%, which was statistically significant. When steel elements were present the methane content of the biogas was increased by 6.7%. Increasing the organic loading rate had a strong effect on the anaerobic efficiency of the dairy wastewater treatment.

  15. Nitrification Processes in Tehran Wastewater Treatment Plant

    OpenAIRE

    S. A. Sadrnejad

    2011-01-01

    A wastewater treatment plant is designed to daily treat 450000 m3 of wastewater collected from the city of Tehran. The wastewater treatment plant is located at the south of Shahr-Ray in southern Tehran with the area of 110 hectares. The treatment plant effluent will be transferred to Varamin agricultural lands to be used for the irrigation of crops. A conventional activated sludge for carbon removal and a high-rate trickling filter for nitrification of ammonia to nitrate are designed and cons...

  16. Tratamento de águas residuárias de suinocultura em reator UASB e filtro anaeróbio em série seguidos de filtro biológico percolador Treatment of swine wastewater in UASB reactor and anaerobic filter in series followed of trickling filter

    Directory of Open Access Journals (Sweden)

    Rose Maria Duda

    2011-03-01

    Full Text Available Avaliou-se o desempenho de um reator anaeróbio de fluxo ascendente com manta de lodo (UASB seguido de um filtro anaeróbio, instalados em série, com volume total de 300 L e 190 L, respectivamente, no tratamento de águas residuárias de suinocultura. As cargas orgânicas volumétricas aplicadas no reator UASB foram de 12,4;15,5; 23,2 e 26,3 g DQOtotal (L d-1. Para o pós-tratamento do efluente do sistema anaeróbio em dois estágios utilizou-se um filtro biológico percolador com volume total de 250 L. O meio suporte utilizado nos filtros anaeróbio e biológico percolador foi composto por anéis de bambu. No sistema de tratamento anaeróbio e de pós-tratamento foram observadas eficiências médias de remoção de demanda química de oxigênio total (DQOtotal, sólidos suspensos totais (SST, nitrogênio total (NT, fósforo total (P-total, Cu e Zn de até 98, 99, 78, 84, 99 e 98%, respectivamente.The performance of an upflow anaerobic sludge blanket (UASB followed by the anaerobic filter, installed in series, was evaluated for the treatment of swine wastewater. The total volume of UASB and anaerobic filter were of 300 L and 190 L, respectively. The organic load rate applied on the reactor UASB were of 12.4, 15.5, 23.2 and 26.3 g total COD (L d-1. For the post-treatment of effluent the anaerobic system was used a trickling filter with total volume of 250 L. The supports used in the anaerobic filter and trickling filter were composed by bamboo rings. The efficiencies of removal the chemical oxygen demand, total solids suspended, nitrogen, total phosphorus, Cu and Zn were of up to 98, 99, 78, 84, 99 and 98%, respectively, for the anaerobic and aerobic treatment system.

  17. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Chen, Guocai; Gu, Jingjing;

    2014-01-01

    Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose...... and the influent NB concentration increased from 400 to 800 mg l super(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide...... an effective yet low cost method for treatment of NB-containing industrial wastewater....

  18. Mechanisms of granular activated carbon anaerobic fluidized-bed process for treating phenols wastewater

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Granular activated carbon (GAC) anaerobic fluidized-bed reactor was applied to treating phenols wastewater. When influent phenol concentration was 1000 mg/L, volume loadings of phenol and CODCr were 0.39 kg/(m3*d) and 0.98 kg/(m3*d), their removal rates were 99.9% and 96.4% respectively. From analyzing above results, the main mechanisms of the process are that through fluidizing GAC, its adsorption is combined with biodegradation, both activities are brought into full play, and phenol in wastewater is effectively decomposed. Meanwhile problems concerning gas-liquid separation and medium plugging are well solved.

  19. Anaerobic treatment in decentralised and source-separation-based sanitation concepts

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Zeeman, G.

    2006-01-01

    Anaerobic digestion of wastewater should be a core technology employed in decentralised sanitation systems especially when their objective is also resource conservation and reuse. The most efficient system involves separate collection and anaerobic digestion of the most concentrated domestic wastewa

  20. Micropollutant removal in an algal treatment system fed with source separated wastewater streams

    NARCIS (Netherlands)

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Hernandez Leal, Lucia; Fernandes, T.V.; Langenhoff, Alette; Zeeman, Grietje

    2016-01-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceu

  1. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    Science.gov (United States)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  2. Gravity separation for oil wastewater treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar

    2010-01-01

    In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.

  3. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  4. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda

    2015-11-01

    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  5. Biological Hazards in Sewage and Wastewater Treatment Plants

    Science.gov (United States)

    Biological Hazards in Sewage and Wastewater Treatment Plants Hazard Alert During construction and maintenance of sewage and wastewater plants, workers may be killed by drowning, trench collapses, falls, ...

  6. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents.

    Science.gov (United States)

    Carvajal-Arroyo, José M; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2013-03-01

    Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.

  7. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    Science.gov (United States)

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. treatment. PMID:22819886

  8. Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Batstone, Damien J

    2016-09-01

    Low wastewater temperatures affect microbial growth rates and microbial populations, as well as physical chemical characteristics of the wastewater. Wastewater treatment plant design needs to accommodate changing temperatures, and somewhat limited capacity is a key criticism of low strength anaerobic treatment such as Anaerobic Membrane Bioreactors (AnMBR). This study evaluates the applicability of an alternative platform utilizing purple phototrophic bacteria for low temperature domestic wastewater treatment. Two photo-anaerobic membrane bioreactors (PAnMBR) at ambient (22 °C) and low temperatures (10 °C) were compared to fully evaluate temperature response of critical processes. The results show good functionality at 10 °C in comparison with ambient operation. This enabled operation at 10 °C to discharge limits (TCOD < 100 mg L(-1); TN < 10 mg L(-1) and TP < 1 mg L(-1)) at a HRT < 1 d. While capacity of the system was not limited, microbial community showed a strong shift to a far narrower diversity, almost complete dominance by PPB, and of a single Rhodobacter spp. compared to a more diverse community in the ambient reactor. The outcomes of the current work enable applicability of PPB for domestic wastewater treatment to a broad range of regions. PMID:27235774

  9. OPTIMIZATION OF HYDRAULIC RETENTION TIME (HRT FOR RAW SUGARMILL WASTEWATER USING ANAEROBIC SEQUENTIAL BATCH REACTOR (AnSBR

    Directory of Open Access Journals (Sweden)

    Dr. S. JAYANTHI

    2013-04-01

    Full Text Available Sugar Industries in India generate about 1000 litres of wastewater for every tonne of sugarcane crushed during the manufacturing process of white crystals i.e. Sugar. There are various biological treatments for treating the wastewater of which here AnSBR is used. Anaerobic Sequential Batch Reactor (AnSBR was operated in mesophillic condition (27°C - 35°C for the treatment of Sugar mill wastewater. The study was initiated by studying the characteristics of the wastewater for the parameters such as pH, Chlorides, Acidity, Alkalinity, Total Solids, Suspended Solids, Total Dissolve Solids, Volatile Solids, Chemical Oxygen Demand (COD and Volatile Fatty Acids. The treatment of the sugar mill wastewater for the production of bio-methane gas is to be carried out in AnSBR at lab scale at room temperature with a volume of 3.5 Litres. The reactors are to be operated in 8 hours cyclic steps for different Hydraulic Retention Time (HRT such as 36, 48 and 72. Four steps involved during the 8 hours operation a Feeding Time (10 mins b Decanting time (10 mins c Reaction time (5.6 hours d Settling time (2 hours. AnSBR was operated in 8hr cyclic steps for 36, 48, 72 hrs HRT. The efficiency of the reactor was determined on basis of the maximum gas production by varying sequence lengths.OLR and HRTs. After 30 days, the AnSBR reactor could able to start with successful granulation. Optimum HRT was found to be 48 hrs at optimum HRT the COD removal % of 92 with a gas yield of 6.7828 L/L.day. The performance of reactor was considerably increased to a tune of 92%.

  10. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR) to Treat Industrial Wastewater

    OpenAIRE

    Laura C. Zuluaga; Luz N. Naranjo; Jan Svojitka; Thomas Wintgens; Manuel Rodriguez; Nicolas Ratkovich

    2015-01-01

    A Computational Fluid Dynamics (CFD) simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR) to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i) reactor and (ii) membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS) concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, wher...

  11. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative

    OpenAIRE

    Regmi, Shakil

    2013-01-01

    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...

  12. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  13. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. PMID:25113994

  14. Optimization of the anaerobic digestion through application of ultrasounds in secondary sludge of the wastewater treatment plant of Molina de Segura (Murcia, Spain); Optimizacion de la digestion anaerobia mediante la aplicacion del ultrasonidos en los fangos secundarios de la EDAR Molina de Segura (Murcia)

    Energy Technology Data Exchange (ETDEWEB)

    Simon Andreu, P. J.; Lardin, C.; Andreu, J. a.; Bolinches Sanchez, S.; Garcia, A.; Pinana, L.; Pradas, P.; Gutierrez Garcia, D.

    2007-07-01

    The application of ultrasounds in secondary sludge in the wastewater treatment plant of Molina de Segura produces an instantaneous hydrolysis on the existing cellular walls in secondary sludge, all it in a time of retention of 2 seconds as opposed to the 8 days of minimum time of required retention in any anaerobic digestion. This hydrolysis instantaneously increases the biodegradable matter easily biodegradable accelerating the processes of digestion and allowing to the passage to next the three stages (acidogenesis, acetogenesis and methanogenesis), providing great amount of benefits, as are, an increase of the yield of elimination of volatile material, an increase in the production of biogas and a reduction in the production of dehydrated sludge. (Author)

  15. Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobic-aerobic biofilm system with recirculation

    International Nuclear Information System (INIS)

    Wastewater containing highly concentrated nitrogenous and aromatic compounds, such as aniline, is difficult to degrade and very toxic to microorganisms, especially to nitrifier. In order to remove both carbon and nitrogen from aniline wastewater, recently two biofilm reactors equipped with anaerobic-aerobic cycle and internal recirculation have demonstrated some potential in treating the wastewater. In such system, ammonification, methanogenesis and denitrification reactions occurred simultaneously in one anaerobic reactor, followed by COD removal and nitrification in the aerobic reactor. The effect of recirculation ratio on COD and nitrogen removal using such reactor arrangement was therefore investigated in the present work. The results showed that recirculation had little impact on the overall COD removal or denitrification activity in the anaerobic reactor at any tested ratio, 96-98% of overall COD removal efficiency was achieved with a final effluent COD value below 200 mg/L. But nitrification and TN removal were strongly affected by recirculation. The nitrification rate reached a maximum of 0.48 kg N/(m3 d) at recirculation ratio of 1 and complete nitrification was achieved at the recirculation ratios over 2. TN removal efficiency increased continuously and a sharp reduction of sludge production in the system was observed with increasing recirculation.

  16. Operation Analysis of Sludge Anaerobic Digestion System at Bailonggang Wastewater Treatment Plant%白龙港污水处理厂污泥厌氧消化系统的运行分析

    Institute of Scientific and Technical Information of China (English)

    蒋玲燕; 杨彩凤; 胡启源; 李震; 郭志义

    2013-01-01

    The operation of the sludge anaerobic digestion system in Bailonggang WWTP, which has the largest treatment capacity (204 tDS/d) in China, was analyzed. After a successful commissioning in May 2011, the biogas production of the sludge anaerobic digestion system showed regular seasonal variation owing to the fluctuation of incoming sludge flow rate and sludge characteristics. The actual annual average biogas production and biogas yield were 10.73 mVm3 sludge and 0. 82 mVkgVSS, respectively. Scum and foam, struvite scaling and sand accumulation were major problems affecting the operation of the sludge anaerobic digestion system. The corresponding recommendations were given based on analyzing the causes of the problems.%对目前国内规模最大的上海市白龙港污水处理厂污泥厌氧消化系统的运行情况进行了系统分析.该污泥厌氧消化系统的设计规模为204 tDS/d,于2011年5月完成启动调试,稳定运行后的产气量受进泥流量和性质的影响呈现较为规律的季节性变化,单位污泥实际年均产气量为10.73 m3/m3污泥,沼气产率为0.82 m3/kgVSS.厌氧消化系统运行中存在的较为突出的问题包括浮渣泡沫、鸟粪石结晶、池内积砂等,分析了其产生原因,并给出了相应的解决措施.

  17. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m3/day of wastewater from 80,000m3/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  18. Computing the resilience of a wastewater treatment bioreactor

    OpenAIRE

    Mabrouk, N.; Mathias, J.D.; Deffuant, G.

    2010-01-01

    International audience Biological wastewater treatment reactor are designed to reduce the pollutant content of a wastewater to an acceptable level often fixed by wastewater discharge regulations. The reactor design is often based on average wastewater flow and composition patterns. However, industrial wastewater treatment reactors are often subject to unexpected perturbations (variations in wastewater flow, composition or shift in the microbial communities). Hence the capacity of the react...

  19. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.

    Science.gov (United States)

    Luo, Le; He, Huijun; Yang, Chunping; Wen, Shan; Zeng, Guangming; Wu, Mengjie; Zhou, Zili; Lou, Wei

    2016-09-01

    Coelastrella sp. QY01, a microalgae species isolated from a local pond, was identified and used for the treatment of anaerobically and aerobically treated swine wastewater (AnATSW). Microalgal growth characteristics, nutrient removal and lipid accumulation of QY01 cultivated in the initial concentration of AnATSW ranged from 63 to 319mg NH3-N/L were examined. The specific growth rate of QY01 cultivated in cultures ranged from 0.269 to 0.325day(-1) with a biomass productivity from 42.77 to 57.46mgL(-1)day(-1). Removal rates for NH3-N, TP and inorganic carbon in AnATSW at the various nutrient concentrations ranged from 90% to 100%, from 90% to 100% and from 74% to 78%, respectively. The lipid content of QY01 ranged from 22.4% to 24.8%. The lipid productivity was positive correlation with the biomass productivity. 40% AnATSW was optimal for QY01 cultivation, in which nutrient removal and productivity of biomass and lipid were maximized. PMID:27236400

  20. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters

    Science.gov (United States)

    Hussain, Ali; Qazi, Javed Iqbal

    2016-06-01

    Biological treatment of sulphate-rich wastewaters employing dissimilatory sulphate reducing bacteria as remedial agents is an attractive technique and has gained importance in the last few years. Industrial effluents enriched with sulphates are generally deficient in electron donors. And thus cannot be treated biologically without supplementation of carbon through an external source. For scalable operations, however, the carbon source must not be expensive. In this context, present study reports the efficiency of biological sulphate reduction using sugarcane bagasse as a cost-effective carbon source. An average 0.00391 ± 0.001 gL-1 day-1 (3.91 mgL-1 day-1) sulphate reduction was observed reaching maximally to 0.00466 ± 0.001 gL-1 day-1 (4.66 mgL-1 day-1) while employing Desulfovibrio fructosovorans-HAQ2 and Desulfovibrio piger-HAQ6 in a 60-day trial of anaerobic incubation using sugarcane bagasse as growth substrate. These findings will be helpful in developing economical bioremediation processes tending to operate for a longer period of time to reduce sulphate contents of contaminated waters.