WorldWideScience

Sample records for anaerobic waste water

  1. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  2. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  3. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  4. Anaerobic depuration of waste waters; Depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Mejias Sanchez, G.; Vazquez Berger, E.; Magana Pietra, A.H. [Facultad de Ingenieria, Universidad Autonoma de yucatan, Merida (Mexico)

    1996-08-01

    Trials were carried out at a 500 l semi-experimental plant using there reactor models-anaerobic filter, fixed film and UASB type-for the anaerobic treatment of waste from different sources. The results after 24 and 48 hours were compared. The greatest efficiency was obtained after 48 hours the aerobic filter reactor (66% displacement), followed by the fixed film reactor (50%) and the UASB model (41%). (Author) 16 refs.

  5. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  6. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Science.gov (United States)

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  7. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas

  8. Anaerobic biodegradation of a petrochemical waste-water using biomass support particles

    International Nuclear Information System (INIS)

    Sharma, S.; Ramakrishna, C.; Desai, J.D.; Bhatt, N.M.

    1994-01-01

    During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25-30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to >200 days compared to 2200 mg/l and 8-10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25-30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed. (orig.)

  9. Monitoring the anaerobic treatment of waste waters; Control en la depuracion anaerobia de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Leon de Mora, C.; Molina Cantero, F.J.; Romero Galey, F.J.; Gomez Banderas, J.M. [Dpto. Tecnologia Electronica. Esc. Univ. Politec. Sevilla, Sevilla, (Spain)

    1997-04-01

    This article describes the results obtained in developing a system for monitoring sewage treatment. The system, supported by a PC, includes a fuzzy logic control algorithm for monitoring the anaerobic treatment of waste waters on the basis of data from sensors attached to an industrial robot (PLC). Its most outstanding features is that it is also capable of evaluating new monitoring strategies using parameters not originally included. (Author) 6 refs.

  10. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta).

    Science.gov (United States)

    Sode, Sidsel; Bruhn, Annette; Balsby, Thorsten J S; Larsen, Martin Mørk; Gotfredsen, Annemarie; Rasmussen, Michael Bo

    2013-10-01

    Phosphorus and biologically active nitrogen are valuable nutrient resources. Bioremediation with macroalgae is a potential means for recovering nutrients from waste streams. In this study, reject water from anaerobically digested sewage sludge was successfully tested as nutrient source for cultivation of the green macroalgae Ulva lactuca. Maximal growth rates of 54.57±2.16% FW d(-1) were achieved at reject water concentrations equivalent to 50 μM NH4(+). Based on the results, the growth and nutrient removal was parameterised as function of NH4(+) concentration a tool for optimisation of any similar phycoremediation system. Maximal nutrient removal rates of 22.7 mg N g DW(-1) d(-1) and 2.7 mg P g DW(-1) d(-1) were achieved at reject water concentrations equivalent to 80 and 89 μM NH4(+), respectively. A combined and integrated use of the produced biomass in a biorefinery is thought to improve the feasibility of using Ulva for bioremediation of reject water. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Pilot scale anaerobic acidification of waste water containing sucrose and lactate

    Energy Technology Data Exchange (ETDEWEB)

    Zoetemeyer, R J; Borgerding, P H; Van den Heuvel, J C; Cohen, A; Boelhouwer, C

    1982-07-01

    The waste water from a sugar refinery, containing principally sucrose, lactate and ethanol as organic impurities, was anaerobically acidified at a pH of approximately 5.8 and an average temperature of 29 degrees C in a 1 meter cubed upflow reactor. The residence time was decreased, in steps, from 7.2 to 1.7 h. Sucrose was effectively metabolized in all cases, whereas lactate was only decomposed at longer residence times. Ethanol was not converted. The volume activity, and the sludge activity, could be increased to 250 kg/ cubic meters/d, and 14 kg/kg/d, respectively. Results indicated that in order to operate an acidification reactor at its maximum efficiency attention should be paid to the mixing system and to maintaining a constant pH. (Refs. 18).

  12. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  13. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Nusa-Idaman-Said

    2000-01-01

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  14. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    International Nuclear Information System (INIS)

    Rajagopal, Rajinikanth; Lim, Jun Wei; Mao, Yu; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-01-01

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH 4 /gVS added ) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH 4 /gVS added . Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement in methane yield

  15. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Rajinikanth, E-mail: rrajinime@yahoo.co.in [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Mao, Yu [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Energy and Environmental Sciences, Yunnan Normal University, 121 Street, Kunming 650092 China (China); Chen, Chia-Lung [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Wang, Jing-Yuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2013-01-15

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH{sub 4}/gVS{sub added}) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH{sub 4}/gVS{sub added}. Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement

  16. Developing an optimized treatment strategy for anaerobic waste water cleaning; Entwicklung einer optimierten Behandlungstrategie fuer die anaerobe Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.; Manz, W.; Szewzyk, U.; Kozariszczuk, M.; Kraume, M. [Technische Univ. Berlin (Germany)

    1999-07-01

    The paper looks into the opportunities for and limitations of using oligonucleotide probes for in-situ hybridisation in anaerobic systems. As is demonstrated, a large part of the populations can be detected using this method and different physiological groups like sulfate reducers and methanogens can be verified with a high resolution. The technique permits assessing the physiological activity of these groups so that inferences to reactor performance can be drawn. Various physiological groups such as fermenters and homoacetogenous bacteria so far can be detected with inadequate resolution only. Ongoing work with a view to amending this is described. (orig.) [German] Dieser Beitrag beschaeftigt sich mit den Moeglichkeiten und Limitierungen des Einsatzes von Oligonukleotidsonden zur in situ Hybridisierung in anaeroben Systemen. Es wird gezeigt, dass ein grosser Teil der Population mit Hilfe dieser Methode erfasst werden kann und verschiedene physiologische Gruppen wie die Sulfatreduzierer und die Methanogenen mit hoher Aufloesung nachgewiesen werden koennen. Die physiologische Aktivitaet dieser Gruppen kann abgeschaetzt werden und damit sind Rueckschluesse auf die Reaktorleistung moeglich. Verschiedene physiologische Gruppen wie die Gaerer und die homoacetogenen Bakterien werden bisher nur in unzureichender Aufloesung erfasst. Die derzeit laufenden Arbeiten zur Loesung dieser Probleme werden beschrieben. (orig.)

  17. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment; Teknologi Biofilter Anaerob-Aerob Tercelup untuk Pengolahan Air Limbah Domestik

    Energy Technology Data Exchange (ETDEWEB)

    Nusa-Idaman-Said, [The Agency for the Assessment and Application of Technology, Jakarta (Indonesia)

    2000-02-15

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  18. Bacterial population of piggery-waste anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1974-08-01

    A survey was made of the anaerobic and facultatively anaerobic bacteria present in piggery waste, digesting piggery waste and domestic anaerobic sludge used to start a piggery waste digester. An influence of the input waste was shown in that streptococci, the predominant facultatively anaerobic bacteria in the piggery waste, were the predominant bacteria in the digesting waste, and they replaced Entrobacter, predominant in the domestic sludge, when a piggery waste digestion had been established from this latter material. Cellulolytic or methanogenic bacteria could not be detected in the piggery waste but populations of these, and other hydrolytic bacteria, became established at different times during the build-up of digestion by gradual addition of piggery waste to water. The bacteria concerned in degradation of the waste constituents were all anaerobes. Production of methane from H/sub 2//CO/sub 2/, formate and butyrate could be detected in mixed cultures from dilutions of digester contents, but the only methanogenic bacterium that could be isolated in pure culture was Methanobacterium formicicum, which uses H/sub 2//CO/sub 2/ or formate only.

  19. Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Creuly, Catherine; Seon, Jerome; Dussap, Gilles; Lasseur, Christophe

    2004-06-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e., a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T approximately 310-350 degrees C, p approximately 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  20. Anaerobic digestion of hog wastes

    Energy Technology Data Exchange (ETDEWEB)

    Taiganides, E P; Baumann, E R; Johnson, H P; Hazen, T E

    1963-01-01

    A short history, a list of advantages and limitations, and a short introduction to the principles of the process of anaerobic digestion are given. Six five gallon bottle digesters were daily fed hog manure, maintained at 35/sup 0/C, and constantly agitated. Satisfactory operation was assured at 3.2 g VS/l/day with a detention time of 10 days, yielding 490-643 ml gas/g VS/day with a CH/sub 4/ content of 59% (2.1 x 10/sup 7/ joules/m/sup 3/). A figure and discussion portray the interrelationships of loading rate, solids concentration and detention time. They estimate that a marginal profit might be obtained by the operation of a heated digester handling the wastes of 10,000 hogs.

  1. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  2. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  3. Process and design considerations for the anaerobic digestion of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, S.R.; Bastuk, B. [Larsen Engineers, Rochester, NY (United States)

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  4. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  5. Anaerobic Digestion Assessment for Contingency Base Waste

    Science.gov (United States)

    2014-05-01

    heating. The use of anaerobic digestion for high solids organic waste (15 to 50 percent solids; i.e., mixed organic solids, such as food waste, manure ...but the team was not able to identify any for anaerobic digestion . One potentially widespread source is manure from ruminant organisms, such as...plug-flow digesters treating swine manure and used cooking grease. Bioresource Technology 101:4362-4370. ERDC TR-14-3 63 Lansing, S., and A.R

  6. Anaerobic digestion of piggery waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes

  7. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    International Nuclear Information System (INIS)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-01-01

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O 2 /L R -d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied

  8. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, Jing-Yuan, E-mail: jywang@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-04-15

    Highlights: ► Microaeration pretreatment was effective for brown water and food waste mixture. ► The added oxygen was consumed fully by facultative microorganisms. ► Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ► Microaeration pretreatment improved methane yield by 10–21%. ► Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was

  9. Anaerobic/aerobic treatment for the waste water from the Instituto de Investigaciones Electricas installations; Tratamiento anaerobio-aerobio de las aguas residuales de las instalaciones del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu Fernandez, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The waste water treatment plant of the Instituto de Investigaciones Electricas (IIE) is analyzed. This plant originally was a plant of the activated sludge type (aerobic development), process that consumes large amounts of energy and that produces residual sludge 5 or 6 times greater than the anaerobic processes. The methodology and the techniques utilized were base in the analysis of the existing plant introducing an anaerobic treatment and performing laboratory experimentation. The plant design parameters considered are described. The results show the benefits of treating by anaerobic means the waste waters since depuration are obtained on the order of 75%, as well as the reduction of resulting residual sludge and in energy consumption. A reduction of 60% to 70% can be attained if a combination of anaerobic and aerobic processes is utilized [Espanol] Se analiza la planta de tratamiento de aguas residuales del Instituto de Investigaciones Electricas (IIE). Esta planta era originalmente una planta de lodos activados (desarrollo aerobio), proceso que consume mucha energia y genera lodos residuales de 5 a 6 veces mas que los procesos anaerobios. La metodologia y las tecnicas utilizadas se basaron en el analisis de la planta de tratamiento existente en el IIE; en la caracterizacion residual del IIE; en la modificacion de la planta de tratamiento introduciendo un tratamiento anaerobio y efectuando experimentacion en laboratorio. Se describen los parametros de diseno de la planta considerados. Los resultados muestran los beneficios de tratar por medios anaerobios las aguas residuales ya que se obtienen depuraciones del orden del 75%, asi como la reduccion de lodos residuales resultantes y el consumo de energia, pueden reducirse de un 60% a un 70% si se utiliza la combinacion de los procesos anaerobios y aerobios

  10. Anaerobic/aerobic treatment for the waste water from the Instituto de Investigaciones Electricas installations; Tratamiento anaerobio-aerobio de las aguas residuales de las instalaciones del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu Fernandez, Jose Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The waste water treatment plant of the Instituto de Investigaciones Electricas (IIE) is analyzed. This plant originally was a plant of the activated sludge type (aerobic development), process that consumes large amounts of energy and that produces residual sludge 5 or 6 times greater than the anaerobic processes. The methodology and the techniques utilized were base in the analysis of the existing plant introducing an anaerobic treatment and performing laboratory experimentation. The plant design parameters considered are described. The results show the benefits of treating by anaerobic means the waste waters since depuration are obtained on the order of 75%, as well as the reduction of resulting residual sludge and in energy consumption. A reduction of 60% to 70% can be attained if a combination of anaerobic and aerobic processes is utilized [Espanol] Se analiza la planta de tratamiento de aguas residuales del Instituto de Investigaciones Electricas (IIE). Esta planta era originalmente una planta de lodos activados (desarrollo aerobio), proceso que consume mucha energia y genera lodos residuales de 5 a 6 veces mas que los procesos anaerobios. La metodologia y las tecnicas utilizadas se basaron en el analisis de la planta de tratamiento existente en el IIE; en la caracterizacion residual del IIE; en la modificacion de la planta de tratamiento introduciendo un tratamiento anaerobio y efectuando experimentacion en laboratorio. Se describen los parametros de diseno de la planta considerados. Los resultados muestran los beneficios de tratar por medios anaerobios las aguas residuales ya que se obtienen depuraciones del orden del 75%, asi como la reduccion de lodos residuales resultantes y el consumo de energia, pueden reducirse de un 60% a un 70% si se utiliza la combinacion de los procesos anaerobios y aerobios

  11. Effect of Addition of High Strength Food Wastes on Anaerobic Digestion of Sewage Sludge

    OpenAIRE

    Vaidya, Ramola Vinay

    2015-01-01

    Anaerobic co-digestion of municipal sludge and food wastes high in chemical oxygen demand (COD) has been an area of interest for waste water treatment facilities looking to increase methane production, and at the same time, dispose of the wastes and increase the revenue. However, addition of food wastes containing fats, oils and grease (FOG) to the conventional anaerobic digestion process can be difficult and pose challenges to utilities. Incorporating these wastes into the treatment plants c...

  12. Anaerobic co-digestion of organic wastes

    OpenAIRE

    Neves, L.

    2009-01-01

    Tese de doutoramento em Engenharia Química e Biológica Anaerobic digestion is an already established process but the increasing need of bio‐waste recovery has determined the emergence of new substrates, revamping the research in this field. Contrary to some other European countries, in Portugal this technology is still scarcely in use. Nonetheless, the current legislation endorses this application as a waste management and as an energy recovery process. The rapid growth of the ...

  13. Anaerobic biogasification of domestic wastes and direct solar energy use to produce biogas, biofertilizer and distilled water in a city - a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    kumar, R.A.; Pandya, N.H.; Patil, A.M.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    Domestic wastes are a source of gas of high calorific value as well as biofertilizer and distilled water. A pilot project undertaken by the Tata Electric Cos., Bombay on recycling sewage, garbage and garden wastes of a community by converting them into biogas, organic fertilizer and distilled water is described. Techniques used are anaerobic fermentation and Solar drying using Solar stills. A fish pond also can be fed the output slurry as feed material. In this pilot plant, 1 to 2 m/sup 3/ raw sewage and one to two tons of processed garden wastes and garbage would be input daily into the digester. The production is expected to be about 100 m/sup 3/ of gas per day, along with about 1500 litres of slurry from which organic fertilizer of 100 200 Kgs can be bagged and transported as well as distilled water of about 500 to 1000 litres Laboratory studies and studies on an approximate scale model of the plant are described. Scaling up to a pilot plant by about 2000 times would increase the efficiency of the rate of gas production as has been found by other workers. These tests and studies have shown that the project is technically and eonomically viable. Applications of the process on a mass scale would result in increasing replacement of fossil energy intensive processes with negentropic methods of economic and social activities.

  14. Anaerobic digestion of agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N

    1984-01-01

    Farm digesters can operate satisfactorily and have a useful role on the farm. Gas production from the farm digester treating animal slurries could be boosted by adding silage liquid, old potatoes, waste cabbages and other crop wastes to the slurry, although the energy economics of maceration have not been calculated. Pollution control and types of digester are discussed. Uses of digested slurry other than for fertilizers are being tested - as protein supplement to farm animal feeds, silage making, hydroponics, fish farming and growing of worms on algae. Overall, digestion could be a contributor to power requirements especially in countries with high all year round crop production.

  15. Single-stage anaerobic treatment of non-settled slaughterhouse waste water using a fixed-bed reactor. Einstufige anaerobe Behandlung von nicht abgesetztem Schlachthofabwasser in einem Festbettreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, W.P. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Technologie); Meyer-Jacob, H.

    1992-01-01

    Along with the determination of the degree of acidification during an intermediate storage of the crude slaughterhouse wastewater and deriving a single-stage or two-stage process, the start-up behaviour of the fixed-bed reactor, its degradation rates in upflow and downflow operation is descirbed. With regard to a subsequent biological denitrification the COD/N ratio of anaerobically treated wastewater is given. (orig.).

  16. Anaerobic bioconversion of organic waste into biogas by hot water treatment at near-critical conditions: application in bioregenerative life support.

    Science.gov (United States)

    Lissens, Geert; Verstraete, Willy; Albrecht, Tobias; Brunner, Gerd; Lasseur, Christophe

    2003-01-01

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a HRT (hydraulic retention time) of 20 d was obtained. Biogas yields further increased with 10-15% at HRT > 20 d, indicating the hydrolysis of lignocellulose to be the rate-limiting conversion step. The solids present in the CSTR-effluent were subsequently treated by hot water treatment (T approximately 310-350 degrees C, p approximately 240 bar), resulting in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete hygienisation of the residue. Subsequent anaerobic digestion of the hydrolysate allowed further conversion of 48-60% on COD (chemical oxygen demand) basis. Thus, the total process yielded biogas corresponding with a COD conversion up to 90% of the original organic matter. It appears that mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete, non-toxic and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.

  17. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  19. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  20. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  1. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  2. Anaerobic digestion of cellulosic wastes: laboratory tests

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1984-11-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 10 references, 17 figures, 4 tables

  3. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal; Lens, Piet Nl L

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether

  4. Production of a ruminant protein supplement by anaerobic fermentation of feedlot waste filtrate

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.A.; Erdman, M.D.

    1977-01-01

    In studies initiated to develop simple and efficient procedures for the production of feed supplements, it was shown that the filtrate from feedlot wastes diluted with water and filtered could be fermented under anaerobic conditions by mixed rumen bacteria, Lactobacilli, or natural microflora from the feedlot wastes to produce a protein-rich feed supplement. The filtrate is low in carbohydrate and therefore supplemental carbohydrate in the form of whey, molasses, starch from potato processing wastes, or corn starch is necessary. Rigid anaerobic conditions need not be maintained nor must aseptic conditions be observed. (JSR)

  5. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  6. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  7. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  8. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  9. Experimental biogas research by anaerobic digestion of waste of ...

    African Journals Online (AJOL)

    Currently, one of the most efficient and prospective methods of biodegradable waste management is anaerobic digestion in a bio-reactor. The use of this method for managing biodegradable waste generating in agriculture and elsewhere would result in the recovery of biogas that could be used as an alternative to natural ...

  10. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  11. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  12. Assessment of anaerobic biodegradability of five different solid organic wastes

    Science.gov (United States)

    Kristanto, Gabriel Andari; Asaloei, Huinny

    2017-03-01

    The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

  13. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    International Nuclear Information System (INIS)

    Lopez Torres, M.; Espinosa Llorens, Ma. del C.

    2008-01-01

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH) 2 ), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH) 2 /L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m 3 CH 4 /kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW

  14. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  15. Recent development of anaerobic digestion processes for energy recovery from wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  16. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    Science.gov (United States)

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    Science.gov (United States)

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  18. Biogas from organically high polluted industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Sixt, H

    1985-06-01

    Organically high polluted waste water sets special claims for an economical purification and the process treatment. Up to now these waste waters are being purified by anaerobic processes with simultaneous biogas generation. The fourstep anaerobic degradation is influenced by a lot of important parameters. Extensive researchers in the field of anaerobic microbiology has improved the knowledge of the fundamental principles. Parallel the reactor technology is developed worldwide. In general it seems that the fixed-film-reactor with immobilized bacteria has the best future to purify organically high polluted industrial waste water with short retention times under stable operation conditions.

  19. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  20. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  1. Anaerobic digestion of municipal solid waste: Technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  2. Animal and industrial waste anaerobic digestion: USA status report

    Energy Technology Data Exchange (ETDEWEB)

    Lusk, P.D. [Resource Development Associates, Washington, DC (United States)

    1996-01-01

    Pollutants from unmanaged animal and bio-based industrial wastes can degrade the environment, and methane emitted from decomposing wastes may contribute to global climate change. One waste management system prevents pollution and converts a disposal problem into a new profit center. Case studies of operating systems indicate that the anaerobic digestion of animal and industrial wastes is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel. Growth and concentration of the livestock industry create opportunities to properly dispose of the large quantities of manures generated at dairy, swine, and poultry farms. Beyond the farm, extension of the anaerobic digestion process to recover methane has considerable potential for certain classified industries - with a waste stream characterization similar to livestock manures. More than 35 example industries have been identified, and include processors of chemicals, fiber, food, meat, milk, and pharmaceuticals. Some of these industries already recover methane for energy. This status report examines some current opportunities for recovering methane from the anaerobic digestion of animal and industrial wastes in the US. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned,{close_quotes} are included as a reality check. Factors necessary for successful projects, as well as a list of reasons explaining why some anaerobic digestion projects fail, are provided. The role of management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at facilities willing to incorporate the uncertainties of a new technology. Anaerobic digestion can provide monetary benefits and mitigate possible pollution problems, thereby sustaining development while maintaining environmental quality.

  3. Methanization potential of anaerobic biodigestion of solid food waste

    Directory of Open Access Journals (Sweden)

    Laís R. G. de Oliveira

    Full Text Available ABSTRACT Anaerobic biodigestion of solid and semi-solid wastes has been widely used for the treatment of these residues and methane production; however, during the process (more specifically in the acidogenic phase, there is a tendency of pH reduction, an unfavorable condition to methanogenic bacteria. Thus, the present work aims to evaluate the methanization potential of an agroindustrial anaerobic granular sludge (AIS from UASB (Upflow Anaerobic Sludge Blanket reactor, individually and biodigested with food waste (FW from the University Restaurant of the Federal University of Pernambuco with buffering agent (AIS + FW + b and without it (AIS + FW. After the laboratory tests, the AIS + FW + b configuration obtained a cumulative methane production approximately six times greater than that of AIS + FW, and approximately twice that of the inoculum alone (AIS.

  4. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD Method

    Directory of Open Access Journals (Sweden)

    Hawali Abdul Matin Hashfi

    2018-01-01

    Full Text Available An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD. The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  5. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    Science.gov (United States)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  6. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-07-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  7. Anaerobic digestion of solid slaughterhouse waste chemically pretreated

    International Nuclear Information System (INIS)

    Flores, C.; Montoya, L.; Rodirguez, A.

    2009-01-01

    One of the mayor problems facing the industrialized world today is to solve environmental contamination and identify efficient treatment to give solution to the current problems like the generation of enormous quantities of liquid and solid wastes. The solid slaughterhouse waste, due to its elevated concentration of biodegradable organics, can be efficiently treated by anaerobic digestion although the high content of lignocellulose materials, makes it a slowly process. (Author)

  8. Mono-fermentation of shea waste in anaerobic digesters - laboratory ...

    African Journals Online (AJOL)

    For the purpose of understanding the characteristics in performance of the shea waste and to provide the necessary input parameters towards the design of biogas plants, mono-fermentation as an option in anaerobic digestion for energy (methane) generation was investigated. Six horizontal reactors with a liquid volume of ...

  9. Degradation of plant wastes by anaerobic process using rumen bacteria.

    Science.gov (United States)

    Seon, J; Creuly, C; Duchez, D; Pons, A; Dussap, C G

    2003-01-01

    An operational reactor has been designed for the fermentation of a pure culture of Fibrobacter succinogenes with the constraints of strict anaerobic condition. The process is controlled by measurements of pH, redox, temperature and CO2 pressure; it allows an efficient degradation (67%) of lignocellulosic wastes such as a mixture of wheat straw, soya bean cake and green cabbage.

  10. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Techno-economic assessment of anaerobic digestion systems for agri-food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, A.; Baldwin, S.; Wang, M. [British Colombia Univ., Vancouver, BC (Canada)

    2010-07-01

    Activities in British Columbia's Fraser Valley generate an estimated 3 million tones of agriculture and food wastes annually, of which 85 per cent are readily available for anaerobic digestion. The potential for energy generation from biogas through anaerobic digestion is approximately 30 MW. On-farm manure-based systems represent the most likely scenario for the development of anaerobic digestion in British Columbia in the near future. Off-farm food processing wastes may be an alternative option to large centralized industrial complexes. Odour control, pathogen reduction, improved water quality, reduced greenhouse gas emissions and reduced landfill usage are among the environmental benefits of anaerobic digestion. The economical benefits include power and heat generation, biogas upgrading, and further processing of the residues to produce compost or animal bedding. This paper described a newly developed anaerobic digestion (AD) calculator that helps users regarding their investment decision in AD facilities. The calculator classifies various technology options into several major types of AD systems. It also constructs kinetic and economic models for these systems and provides a fair estimation on biogas yield, digester volume, capital cost and annual income. The calculator takes into consideration factors such as the degradability of wastes with different compositions and different operating parameters.

  12. Treating waste waters from anchovy canneries for subsequent re-use by means of a combined anaerobic and anoxic-anaerobic biological process followed by physico-chemical tertiary treatment.; Tratamiento de aguas residuales de industrias conserveras de anchoas para su posterior reutilizacion, mediante un proceso biologico combinado anaerobio, anoxico-aerobio y un tratamiento terciario fisicoquimico

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, N.; Alonso, E.; Giron, A. M.; Amieva, J. J.; Tejero, I. [Universidad de Cantabria. Torrelavaga (Spain)

    2003-07-01

    A study was made at a pilot plant of a method of treating waste waters from anchovy canneries so that they could subsequently be re-used. This waste contains high concentrations of organic matter, ammonia nitrogen, oils and fats, and has a high degree of salinity. The first stage of the pilot plant consisted of a homogenization tank, a dissolved air flotation clarifier, a hybrid anaerobic digester (UASB+ plastic filling filter), an activated sludge aerobic reactor (which alternates aerobic and anoxic stages) and a secondary decanter. The effluent from the biological process was subjected to physicochemical treatment in a second pilot plant operating intermittent lt. The second pilot plant consisted of a granular active carbon filter, a 5 mn filter and a reverse osmosis membrane module. (Author) 8 refs.

  13. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  14. Identification of anaerobic microorganisms for converting kitchen waste to biogas

    International Nuclear Information System (INIS)

    Amirhossein Malakahmad; Shahrom Mohd Zain; Noor Ezlin Ahmad Basri; Shamsul Rahman Mohamed Kutty; Mohd Hasnain Isa

    2010-01-01

    Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system. (Author)

  15. Anaerobic co-digestion of animal waste: swine manure and tuna fish waste

    Energy Technology Data Exchange (ETDEWEB)

    Otero, L.; Alvarez, J. A.; Lema, J. M.

    2009-07-01

    Anaerobic digestion has become an established and proven technology for the treatment of solid wastes. Co-digestion offers several possible ecological, technology and economical advantages. Anaerobic co-digestion can increase CH{sub 4} production of manure diesters in a 50-200% according to the operation conditions and the co-substrates used. Last September 2007, PROBIOGAS project started up with the objective of improving the production and use of biogas from co-digestion of farming, agricultural and industrial waste. Our research group takes part in the study of co-digestion of swine manure firstly with tuna fish waste and secondly with glycerine (bio diesel production waste). (Author)

  16. Anaerobic degradation of phthalates in unsorted household wastes; Anaerob nedbrytning av ftalater med ymp fraan anaerobt behandlat hushaallsavfall

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, H.

    1993-10-01

    Phthalic acid and diethyl phthalate were tested for their biodegradability in anaerobic, unsorted household wastes. The compounds were analyzed by measuring absorbance after centrifugation of a water suspension. This cheap and rapid method was proven to be applicable. Both phthalic acid and diethyl phthalate disappeared almost completely in 1-3 months, using initial concentrations from 50 to 250 mg/l. The same methodology was used for diethylhexyl phthalate, but did not work. The stoichiometrically expected amounts of methane were not found for any of the compounds, and in case of diethyl phthalate an inhibition of the methane production was observed. (36 refs., 17 figs.)

  17. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Ramakrishnan, Anushyaa; Gupta, S.K.

    2006-01-01

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  18. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system

    NARCIS (Netherlands)

    Elmitwalli, T.; Zeeman, G.; Otterpohl, R.

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste(water) produced from the following systems:

  19. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  20. Anaerobic digestion of food waste - Challenges and opportunities.

    Science.gov (United States)

    Xu, Fuqing; Li, Yangyang; Ge, Xumeng; Yang, Liangcheng; Li, Yebo

    2018-01-01

    The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Anaerobic digestion of waste from an intensive pig unit. [NON

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1973-03-01

    Use was made of heated (35/sup 0/C), stirred, and daily fed laboratory digesters. It was found that digestion of undiluted feces-urine was impossible, but balanced digestion could be obtained in digesters originally seeded from a working domestic anaerobic digester or in digesters filled with water into which small amounts of waste were regularly added. The results from running two digesters for over 80 weeks at loading rates of 0.5 to 3.2 g VS/l/day at detention times of 37.5 to 14 days are given. Above a loading rate of about 2.6 g VS/l/day, at a detention time of 14 days, performance in terms of percentage reduction in solids, BOD and COD began to fall. Maximum BOD reduction of 80 to 90% was found at that loading rate. Volatile acids and ammonia remained below inhibitory levels. It was postulated that there was an upper limit of total solids of about 4.5% above which satisfactory performance cannot be expected.

  2. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    Science.gov (United States)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  3. Prestudy: Anaerobic digestion with primary hydrolysis from increased methane production in waste water treatment plants band biogas plants; Foerstudie: Roetning med inledande hydrolyssteg foer utoekad metanutvinning paa avloppsreningsverk och biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin (BioMil AB, Lund (Sweden)); Carlsson, My; Uldal, Martina; Olsson, Lars-Erik (AnoxKaldnes AB, Lund (Sweden))

    2010-04-15

    Anaerobic degradation of organic matter is a multi-step process through the action of various groups of microorganisms whose optimum conditions can differ considerably regarding e.g. nutrient and pH demand, sensitivity for changes and patterns for growth and nutrient uptake. One way of optimizing the anaerobic digestion process, and thereby increase the biogas production and the reduction of organic matter, can be to physically divide the anaerobic digestion process in two steps consisting of an initial hydrolysis and acid production step followed by a methane production step in an anaerobic digester. One problem with the biogas processes of today is that not all organic matter that is added to the process becomes available for conversion into biogas. This is particularly evident in digestion of waste water treatment sludge where almost half of the organic matter added remains after anaerobic digestion. More efficient utilization of substrate in biogas plants is an important element to increase the profitability of biogas production. The possibility to use different pre-treatment methods is being discussed to increase the degree of conversion of organic matter into biogas in the digester. Pre-treatment methods are often energy as well as cost demanding and can require the addition of chemicals. To use the microbiological steps in the biogas process more efficiently by adding an initial hydrolysis step is a method that does not require the usage of chemicals or increased energy consumption. This pre-study is based on literature studies related to anaerobic digestion with initial biological hydrolysis and collected knowledge from full-scale plants, universities and suppliers of equipment. Nearly 70 published scientific articles relevant to the subject have been found in the performed literature searches. The articles have been subdivided according to the purpose of each article. A large part of the articles have concerned modelling of anaerobic digestion why a

  4. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters

    NARCIS (Netherlands)

    Kujawa-Roeleveld, K.; Elmitwalli, T.A.; Zeeman, G.

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams - black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR - decentralised sanitation and reuse). A simple anaerobic digester can be implemented

  5. Evaluation of the performance of different anaerobic digestion technologies for solid waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Vazquez, M.; Bagley, D.M. [Univ. of Toronto, Dept. of Civil Engineering, Toronto, Ontario (Canada)

    2002-06-15

    The anaerobic digestion of solid wastes is now a widely-used technology in Europe with more than 50 full-scale plants operating. However, anaerobic solid waste digestion is still used to only a limited extent in North America with only three facilities in Canada. Because of the expected importance of anaerobic digestion in the future for energy recovery, reliable tools are required to evaluate the different available technologies, as well as the feed stocks that are suitable for treatment. Therefore, this paper presents a framework that has been developed for evaluating anaerobic solid waste digestion. To develop the framework, a review of the performance of digestion processes was first conducted. Because the data presented were for very different operational parameters (retention time, temperature, configuration set up, mixing, etc.) as well as substrates used for digestion, a standard method of comparison was developed. Gas production per Mg input, organic loading rate and percent volatile solids removal were identified as useful standard parameters for evaluating the performance of different technologies. This framework was constructed as a spread sheet and can be used for different set ups (configuration, organic loading rate, etc.) and with different substrates. It can predict, based on the input and using mass balances, the mass of products of the digester including biogas, treated solids and water. This framework provides a useful tool for evaluating the technical capabilities of different technologies, predicting the quantity of the products, and ultimately, making decisions as to which technologies best meet local needs. (author)

  6. Evaluation of the performance of different anaerobic digestion technologies for solid waste treatment

    International Nuclear Information System (INIS)

    Chavez-Vazquez, M.; Bagley, D.M.

    2002-01-01

    The anaerobic digestion of solid wastes is now a widely-used technology in Europe with more than 50 full-scale plants operating. However, anaerobic solid waste digestion is still used to only a limited extent in North America with only three facilities in Canada. Because of the expected importance of anaerobic digestion in the future for energy recovery, reliable tools are required to evaluate the different available technologies, as well as the feed stocks that are suitable for treatment. Therefore, this paper presents a framework that has been developed for evaluating anaerobic solid waste digestion. To develop the framework, a review of the performance of digestion processes was first conducted. Because the data presented were for very different operational parameters (retention time, temperature, configuration set up, mixing, etc.) as well as substrates used for digestion, a standard method of comparison was developed. Gas production per Mg input, organic loading rate and percent volatile solids removal were identified as useful standard parameters for evaluating the performance of different technologies. This framework was constructed as a spread sheet and can be used for different set ups (configuration, organic loading rate, etc.) and with different substrates. It can predict, based on the input and using mass balances, the mass of products of the digester including biogas, treated solids and water. This framework provides a useful tool for evaluating the technical capabilities of different technologies, predicting the quantity of the products, and ultimately, making decisions as to which technologies best meet local needs. (author)

  7. Enhancement of the anaerobic hydrolysis and fermentation of municipal solid waste in leachbed reactors by varying flow direction during water addition and leachate recycle

    Energy Technology Data Exchange (ETDEWEB)

    Uke, Matthew N., E-mail: cnmnu@leeds.ac.uk [Department of Civil Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Stentiford, Edward [Department of Civil Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-06-15

    Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D and U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.

  8. Aged refuse enhances anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Zhao, Jianwei; Gui, Lin; Wang, Qilin; Liu, Yiwen; Wang, Dongbo; Ni, Bing-Jie; Li, Xiaoming; Xu, Rui; Zeng, Guangming; Yang, Qi

    2017-10-15

    In this work, a low-cost alternative approach (i.e., adding aged refuse (AR) into waste activated sludge) to significantly enhance anaerobic digestion of sludge was reported. Experimental results showed that with the addition dosage of AR increasing from 0 to 400 mg/g dry sludge soluble chemical oxygen demand (COD) increased from 1150 to 5240 mg/L at the digestion time of 5 d, while the maximal production of volatile fatty acids (VFA) increased from 82.6 to 183.9 mg COD/g volatile suspended solids. Although further increase of AR addition decreased the concentrations of both soluble COD and VFA, their contents in these systems with AR addition at any concentration investigated were still higher than those in the blank, which resulted in higher methane yields in these systems. Mechanism studies revealed that pertinent addition of AR promoted solubilization, hydrolysis, and acidogenesis processes and did not affect methanogenesis significantly. It was found that varieties of enzymes and anaerobes in AR were primary reason for the enhancement of anaerobic digestion. Humic substances in AR benefited hydrolysis and acidogenesis but inhibited methanogenesis. The effect of heavy metals in AR on sludge anaerobic digestion was dosage dependent. Sludge anaerobic digestion was enhanced by appropriate amounts of heavy metals but inhibited by excessive amounts of heavy metals. The relative abundances of microorganisms responsible for sludge hydrolysis and acidogenesis were also observed to be improved in the system with AR addition, which was consistent with the performance of anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  10. Rumen derived anaerobic digestion of water hyacinth (Eicchornia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... The agar plates were then incubated anaerobically at 37°C for 24 h. The digesters were seeded with rumen bacteria and immersed into water bath operated at 37°C. During the anaerobic digestion, volume of biogas produced was recorded accordingly. This paper, therefore, suggests ways by which water.

  11. Rumen derived anaerobic digestion of water hyacinth (Eicchornia ...

    African Journals Online (AJOL)

    The agar plates were then incubated anaerobically at 37°C for 24 h. The digesters were seeded with rumen bacteria and immersed into water bath operated at 37°C. During the anaerobic digestion, volume of biogas produced was recorded accordingly. This paper, therefore, suggests ways by which water hyacinth can be ...

  12. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  13. Anaerobic digestion and co-digestion of slaughterhouse wastes

    Directory of Open Access Journals (Sweden)

    Sonia Castellucci

    2013-09-01

    Full Text Available The use of renewable energy is becoming increasingly necessary in order to address the global warming problem and, as a consequence, has become an high priority for many countries. Biomass is a clean and renewable energy source with growing potential to replace conventional fossil fuels. Among biomass, residual and waste ones represent a great resource for energy generation since they permit both to eliminate a possible waste and to produce energy. In the present work, the case of slaughterhouse wastes (SHWs has been investigated. Anaerobic digestion is nowadays considered as one of the most important and sustainable conversion technology exploiting organic matter and biodegradable wastes. Biogas results from this bio-chemical process and mainly consists of methane and carbon dioxide, leading to produce thermal energy and/or electricity. In this paper, the European Regulations on animal by-products (ABPs are described, and some previous study on anaerobic digestion and co-digestion of ABPs - more precisely SHWs - are considered and compared in order to fix a starting point for future tests on their co-digestion in a micro-scale pilot digester. This is to define optimal feed ratio values which ensure an increasing content of methane in the outgoing biogas.

  14. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  15. Demonstration of anaerobic stabilization of black water in accumulation systems under tropical conditions

    NARCIS (Netherlands)

    Chaggu, E.J.; Sanders, W.; Lettinga, G.

    2007-01-01

    The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the

  16. Laboratory scale anaerobic digestion of fruit and vegetable solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lane, A.G.

    1984-01-01

    Anaerobic digestions that were fed waste apple, corn cobs, apple press cake, extracted sugarbeet pulp, pineapple pressings or asparagus waste were stable in trials lasting up to 226 days. Loading rates of 3.5-4.25 kg/m/sup 3/ day and conversions of 88-96% of the organic solids fed were obtained by ensuring adequate levels of alkalinity, nitrogen and other nutrients during digestion. Gas yields ranged from 0.429 to 0.568 litre (50-60% methane) per gram organic solids fed. For reasons not understood, gas yields from digestion of apricot waste declined after 63 days from 0.477 to 0.137 litre/g of feedstock. 22 references.

  17. Anaerobic co-digestion of dairy manure and potato waste

    Science.gov (United States)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  18. Anaerobic digestion of waste activated sludge—comparison of thermal pretreatments with thermal inter-stage treatments

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Thygesen, Anders; Thomsen, Anne Belinda

    2011-01-01

    BACKGROUND: Treatment methods for improved anaerobic digestion (AD) of waste activated sludge were evaluated. Pretreatments at moderate thermal (water bath at 80 °C), high thermal (loop autoclave at 130–170 °C) and thermo-chemical (170 °C/pH 10) conditions prior to AD in batch vials (40 days/37 °....... CONCLUSION: Thermal treatment of waste activated sludge for improved anaerobic digestion seems more effective when applied as an inter-stage treatment rather than a pretreatment. Copyright © 2010 Society of Chemical Industry...

  19. Anaerobic microbiological method of cleaning water contaminated by metallurgical slags

    Directory of Open Access Journals (Sweden)

    Олена Леонідівна Дан

    2015-11-01

    Full Text Available The problem of environmental protection and rational use of water resources is one of the most important problems of environmental policy in Ukraine. This problem in Mariupol is particularly acute as metallurgical and coke industries cause significant damage to adjacent water bodies (the Kalchyk, the Kalmius and coastal zone of the Sea of Azov. One of the most harmful components of wastewater of these enterprises are sulfide-containing compounds. These compounds in water can cause great harm to both human health and the environment. For example, in 1999 the main city enterprises (AZOVSTAL IRON & STEEL WORKS and ILYICH IRON AND STEEL WORKS discharged 885,0 million m³ of wastewater (including 403,9 million m³ of polluted waste water into water bodies. The slag dumps and landfills in close proximity to the sea form a source of dangerous pollution, because contaminated water infiltration washed out here in the groundwater and surface water, get into the Sea of Azov later on. There are 97 mg/l of sulfides in the protective dam of AZOVSTAL IRON & STEEL WORKS, what exceeds the standards (MPC = 10 mg/l. It makes it possible for us to put forward biochemical purification processes. Anaerobic microbiological method proposed in the article has several advantages (compact hardware design, a minimum amount of activated sludge and lack of energy consumption for aeration over the existing wastewater treatment (chemical, mechanical, biological. The experimental procedure consisted in introducing the medium to be purified purified into microbial communities of high concentration (Thiobacillus «X», Thiobacillus concretivorus, which assimilated organic substances of the medium as a primary energy source. The kinetics of sulfide compounds removal by means of anaerobic microbiological method was considered. The effectiveness of wastewater treatment with changing purification process conditions has been also assessed (concentration of sulfides, reactor type, p

  20. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  1. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  2. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water.

    Science.gov (United States)

    Paudel, Sachin; Kang, Youngjun; Yoo, Yeong-Seok; Seo, Gyu Tae

    2017-03-01

    Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    Science.gov (United States)

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  4. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  5. Anaerobic degradation of organic municipal solid waste together with liquid manure. Part 1; Anaerob nedbrydning af organisk husholdningsaffald sammen med gylle. Del 1

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, H.; Angelidaki, I.; Ahring, B.K.

    2001-01-01

    This project includes preliminary investigations about anaerobic degradation of organic municipal waste together with liquid manure. Investigations consist of characterization of organic municipal waste and preliminary test of anaerobic degradation of the waste. Characterization is related especially to the contents of environmentally hazardous substances, while the degradation process is characterized by means of determination of biogas potential in batch test and methane yield, organic VS (volatile solids) reduction and process stability in reactor test. In relation to environmentally hazardous substances the content of NPE and LAS in all tests of organic municipal waste was insignificant. The main problem was the content of DEHP, concentration of which is half of the cut-off value in the municipal waste. By TS (Total solid) reduction through the biogas process the DEHP concentration will thus exceed the cut-off value pr kg TS in the effluent if DEHP is not removed at the same time. The PAH concentration in the collected waste was only in one case at the level of the cut-off value which would exceed the cut-off value if no removal happens through the anaerobic degradation. The biogas potential of municipal waste was determined to be 187 m{sup 3}biogas/m{sup 3}waste, which makes organic municipal waste a very attractive waste type for biogas plants. No direct restraint by degradation of clean waste in batch test could be demonstrated. In the reactor test a stable degradation of organic municipal waste with an increasing supply of waste in mixture with manure could be established. By treatment of a mixture of municipal waste and manure in ratio to 50 : 50 a methane yield on 350 lCH{sub 4} kg VS and a VS-reduction between 50% and 60% could be obtained. Using clean municipal waste diluted with water the methane yield was higher than in the batch test and a VS reduction of up to 80% could be obtained. The analyses of DEHP and PAH in influent and effluent of the

  6. A study of operational conditions for anaerobic digestion of solid urban waste

    Directory of Open Access Journals (Sweden)

    Édgar Femando Castillo M.

    2003-07-01

    Full Text Available This paper describes an experimental evaluation of anaerobic digestion as a technological option for organic solid-waste treatment in the city of Bucaramanga (Santander, Colombia. The inoculum was selected by evaluating three different anaerobic sludges. Sludge from UASB No. 2 digestor at the Waste Water Treatment Plant in Rio Frío (Girón, Santander was named [PTAR]. Sludge from the anaerobic biodigestor for pig manure treatment (Mesa de Los Santos, Santander was named [PIG] a 1:1 sludge mixture of [PTAR] and [PIG] sludges was named [MIX]. These sludges' methanisation behaviour was evaluated in three different 500 ml capacity CSTR digesters at mesophyllic and thermophyllic temperatures. 25,20 and 18 day retention times were studied in a 20 1 CSTR digester having a 131 reaction volume. The results showed that raising the temperature from 10 °C to 15 °C above normal reactor temperature increased methane production by 3 times. It was also seen that retention time had a strong influence on specific methane production since the best conversions were registered at the longest time recorded (25 days and it had a strong influence on DQO removal too. Another important condition for biodigestor optimal operation was agitation speed;this operation must be semi-continuous for maintaining methanisation process biological activity.

  7. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne

    2016-01-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed...... screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered...... in the biopulp. The biochemical methane potential for the biopulp was 469±7mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw...

  8. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  9. Improved anaerobic biodegradation of biosolids by the addition of food waste as a co-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-W.; Han, S.-K.; Song, Y.-C.; Baek, B.-C.; Yoo, K.-S.; Lee, J.-J.; Shin, H.-S.

    2003-07-01

    The temperature phased anaerobic digestion (TPAD) process was applied to increase the performance of anaerobic treatment of biosolids. Previously obtained results indicate that this system showed the advantages of thermophilic and mesophilic anaerobic digestion process. By comparing the performance of each reactor of the system, it was illustrated that the main stage of methane production was the thermophilic reactor which has faster microbial metabolism. However, the result revealed that substrate characteristics of low VS/TS limited the system performance. Therefore, to evaluate the effect of food waste as a co-substrate for improving anaerobic biodegradability, biochemical methane potential (BMP) tests were conducted in thermophilic conditions with biomass of thermophilic reactor. It was confirmed that the co-digestion of sewage sludge mixed with food waste had a distinct improvement on biodegradability. The most significant advantages were the preferable environment provided by food waste for the growth and activity of anaerobes and the mutual assistance between biosolids and food waste. (author)

  10. The impact of anaerobic microorganisms activities in ruminant waste and coal

    Science.gov (United States)

    Harlia, Ellin; Hamdani, H.; Winantris, Kurnani, Tb. B. A.; Hidayati, Y. A.; Marlina, E. T.; Rahmah, K. N.; Arief, H.; Ridwan, R.; Joni, I. M.

    2018-02-01

    Ruminant (dairy cattle, beef cattle and buffalo) waste from intensive farming concentrated in highly populated areas when stacked and accumulated in certain heights and in anaerobic condition, may produce Green House Gases (GHGs) which lead to global warming. This condition is generated through fermentation by microorganism contained in livestock waste and biogenic activities on coal. The GHGs include CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide). The GHG emission should be early monitored to minimize greater problems. In the other hand, methane can be utilized as an environmental friendly energy after stored as biogas on digester. The aim of this research is to detect how much GHGs formed from ruminant waste and biogenic activities on coal, which can be utilized as an alternative energy. This research conducted as an explorative study utilizing dairy cattle feces, beef cattle feces, buffalo feces and three types of coal: lignite, bituminous and sub-bituminous, which is separately added into medium 98-5 made from mixture of agar medium and chemical components in powder and crystal form diluted with distilled water and rumen liquid, with six repetitions. Each sample was stored into 250 mL anaerobic digester, observed weekly for period of 4 weeks, analyzed by Gas Chromatography (GC-A14). The result showed that GHGs: CH4, CO2 and N2O were found in all samples. Anticipation of GHGs formation to avoid air pollution is by utilizing livestock waste and coal in aerobic condition or in anaerobic condition through digester.

  11. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  12. Understanding the anaerobic biodegradability of food waste: Relationship between the typological, biochemical and microbial characteristics.

    Science.gov (United States)

    Fisgativa, Henry; Tremier, Anne; Le Roux, Sophie; Bureau, Chrystelle; Dabert, Patrick

    2017-03-01

    In this study, an extensive characterisation of food waste (FW) was performed with the aim of studying the relation between FW characteristics and FW treatability through an anaerobic digestion process. In addition to the typological composition (paper, meat, fruits, vegetables contents, etc) and the physicochemical characteristics, this study provides an original characterisation of microbial populations present in FW. These intrinsic populations can actively participate to aerobic and anaerobic degradation with the presence of Proteobacteria and Firmicutes species for the bacteria and of Ascomycota phylum for the fungi. However, the characterisation of FW bacterial and fungi community shows to be a challenge because of the biases generated by the non-microbial DNA coming from plant and by the presence of mushrooms in the food. In terms of relations, it was demonstrated that some FW characteristics as the density, the volatile solids and the fibres content vary as a function of the typological composition. No direct relationship was demonstrated between the typological composition and the anaerobic biodegradability. However, the Pearson's matrix results reveal that the anaerobic biodegradation potential of FW was highly related to the total chemical oxygen demand (tCOD), the total solid content (TS), the high weight organic matter molecules soluble in water (SOL W >1.5 kDa) and the C/N ratio content. These relations may help predicting FW behaviour through anaerobic digestion process. Finally, this study also showed that the storage of FW before collection, that could induce pre-biodegradation, seems to impact several biochemical characteristics and could improve the biodegradability of FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.

    Science.gov (United States)

    Salminen, E; Rintala, J

    2002-05-01

    This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.

  14. Application of anaerobic digestion products of municipal solid food wastes in treating wastewaters

    Directory of Open Access Journals (Sweden)

    G. Fazeli

    2016-01-01

    Full Text Available Anaerobic digestion is the breakdown of biodegradable organic material by microorganisms in the absence of oxygen or in an oxygen-starved environment.This technology is superior to the landfilling and also the aerobic composting. The aim of the present study was to examine whether the effluent Volatile Fatty Acids from the anaerobic acidogenesis of the food waste can be used du to its high value in organic elements, as an external carbon source for the denitrificationin in waste water treatment plants . The results showed that Volatile Fatty Acids concentration in mg COD/L in the fermentation was in the range between 3,300 mg COD/L and 6,560 mgCOD/L.The n-butiric acid had the highest concentration in mgCOD/L followed by the propionic and acetic acid, while the valeric acid had the lowest concentration. As well as the concentration of the acetic and valeric acid were stable over the time. Opposite to these, the propionic and n-butyric acid showed high variability in the concentration, especially the n-butyric acid. The specific denitrification rate tests tests showed that the ethanol cultivated biomass was more successful in using the effluent of the food waste digestion as carbon source than methanol cultivated biomass.The specific denitrification reta tests results of our experiment, showed that the average of 0.15 an 0.51 mg N/mg for methanol and ethanol cultivated biomass respectively.

  15. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion

    International Nuclear Information System (INIS)

    Zhen, Guangyin; Lu, Xueqin; Li, Yu-You; Zhao, Youcai

    2014-01-01

    Highlights: • Combined electrical-alkali pretreatment for improving sludge anaerobic digestion was proposed. • Combined process enhanced the cell lysis, biopolymers releases, and thus sludge disintegration. • Increased solubilization of sludge increased the anaerobic hydrolysis rate. • Increased solubilization does not always induce an improved anaerobic digestion efficiency. - Abstract: Pretreatment can be used prior to anaerobic digestion to improve the efficiency of waste activated sludge (WAS) digestion. In this study, electrolysis and a commonly used pretreatment method of alkaline (NaOH) solubilization were integrated as a pretreatment method for promoting WAS anaerobic digestion. Pretreatment effectiveness of combined process were investigated in terms of disintegration degree (DD SCOD ), suspended solids (TSS and VSS) removals, the releases of protein (PN) and polysaccharide (PS), and subsequent anaerobic digestion as well as dewaterability after digestion. Electrolysis was able to crack the microbial cells trapped in sludge gels and release the biopolymers (PN and PS) due to the cooperation of alkaline solubilization, enhancing the sludge floc disintegration/solubilization, which was confirmed by scanning electron microscopy (SEM) analysis. Biochemical methane potential (BMP) assays showed the highest methane yield was achieved with 5 V plus pH 9.2 pretreatment with up to 20.3% improvement over the non-pretreated sludge after 42 days of mesophilic operation. In contrast, no discernible improvements on anaerobic degradability were observed for the rest of pretreated sludges, probably due to the overmuch leakage of refractory soluble organics, partial chemical mineralization of solubilized compounds and sodium inhibition. The statistical analysis further indicated that increased solubilization induced by electrical-alkali pretreatment increased the first-order anaerobic hydrolysis rate (k hyd ), but had no, or very slight enhancement on WAS ultimate

  16. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  17. Water: Too Precious to Waste.

    Science.gov (United States)

    National Geographic World, 1983

    1983-01-01

    Provides background information on many topics related to water. These include the water cycle, groundwater, fresh water, chemical wastes, water purification, river pollution, acid rain, and water conservation. Information is presented at an elementary level. (JM)

  18. Energy-environmental benefits and economic feasibility of anaerobic codigestion of Iberian pig slaughterhouse and tomato industry wastes in Extremadura (Spain).

    Science.gov (United States)

    González-González, A; Cuadros, F; Ruiz-Celma, A; López-Rodríguez, F

    2013-05-01

    Anaerobic digestion of Iberian pig slaughterhouse and tomato industry wastes, as well as codigestion operations from such residues, are reported to achieve 54-80% reduction in Chemical Oxygen Demand and 6-19 N m(3)/m(3) substrate methane production. Furthermore, 0.79-0.88 m(3)water/m(3) substrate is seen to be recovered after the above mentioned operations, which might be used as irrigation water, and 0.12-0.21 m(3)agricultural amendment/m(3) substrate with 91-98% moisture content. The present paper also reports on the economic feasibility of both an anaerobic codigestion plant operating with 60% slaughterhouse wastes/40% tomato industry wastes (optimal ratio obtained in previous laboratory-scaled experiments), and an anaerobic digestion plant for Iberian pig slaughterhouse waste. Payback times are reported as 14.86 and 3.73 years, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    Science.gov (United States)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  20. Anaerobic digestion of cellulosic wastes: pilot plant studies

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-08-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas, and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs lasting 36, 90, and 423 d were made using batch and batch-fed conditions. Solids solubilization rates and gas production rates were approximately double the target values of 0.6 g of cellulose per L of reactor volume per d and 0.5 L of off-gas per L of reactor per d. Greater than 80% destruction of solids was obtained. Preliminary effluent characterization and disposal studies were completed. A simple dynamic process model has been constructed to aid in process design and for use in process monitoring and control of a large-scale digester. 5 refs., 20 figs., 3 tabs

  1. Waste sizing solution as co-substrate for anaerobic decolourisation of textile dyeing wastewaters

    NARCIS (Netherlands)

    Bisschops, I.; Santos, dos A.B.; Spanjers, H.

    2005-01-01

    Dyeing wastewaters and residual size are textile factory waste streams that can be treated anaerobically. For successful anaerobic treatment of dyeing effluents, a co-substrate has to be added because of their low concentration of easily biodegradable compounds. Starch-based size contains easily

  2. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies.

    Science.gov (United States)

    Ren, Yuanyuan; Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Gao, Ming; Huang, Qiqi; Liu, Yu

    2018-01-01

    Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  4. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  5. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks.

    Science.gov (United States)

    Pérez-Camacho, María Natividad; Curry, Robin; Cromie, Thomas

    2018-03-01

    In this study, life cycle assessment has been used to evaluate life cycle environmental impacts of substituting traditional anaerobic digestion (AD) feedstocks with food wastes. The results have demonstrated the avoided GHG emissions from substituting traditional AD feedstocks with food waste (avoided GHG-eq emissions of 163.33 CO 2 -eq). Additionally, the analysis has included environmental benefits of avoided landfilling of food wastes and digestate use as a substitute for synthetic fertilisers. The analysis of the GHG mitigation benefits of resource management/circular economy policies, namely, the mandating of a ban on the landfilling of food wastes, has demonstrated the very substantial GHG emission reduction that can be achieved by these policy options - 2151.04 kg CO 2 eq per MWh relative to UK Grid. In addition to the reduction in GHG emission, the utilization of food waste for AD instead of landfilling can manage the leakage of nutrients to water resources and eliminate eutrophication impacts which occur, typically as the result of field application. The results emphasise the benefits of using life-cycle thinking to underpin policy development and the implications for this are discussed with a particular focus on the analysis of policy development across the climate, renewable energy, resource management and bioeconomy nexus and recommendations made for future research priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stabilization of the cleaning of anaerobic waste water with the aid of activated sludge following receipts of hydrogen peroxide; Stabilisierung der anaeroben Abwasserreinigung durch Belebtschlamm nach Eintrag von Wasserstoffperoxid

    Energy Technology Data Exchange (ETDEWEB)

    Stupperich, E. [Ulm Univ. (Germany). Abt. Angewandte Mikrobiologie; Gerstmeir, R. [Ulm Univ. (Germany). Abt. Angewandte Mikrobiologie; Marqua, J. [Ulm Univ. (Germany). Abt. Angewandte Mikrobiologie; Rothfuss, A. [Ulm Univ. (Germany). Abt. Angewandte Mikrobiologie

    1996-12-31

    Some municipal and industrial sewage treatment plants comprise an aerobic and an anaerobic unit. However, discharge conditions may be such as to cause strong oxidants like hydrogen peroxide (H{sub 2}O{sub 2}) to enter the anaerobic unit. As measurements of the reduction-oxidation potential in an acidification stage showed, small concentrations of H{sub 2}O{sub 2}, already, may cause irreversible damage to the anaerobic bacterial strains living there. Adding activated sludge from the aerobic unit to such a system can prevent the damage. Probably, the enzyme catalase protects the anaerobic system against the oxydizing effect of hydrogen peroxide: this enzyme from aerobic bacteria and optionally aerobic bacteria causes the ecologically compatible decomposition of hydrogen peroxide into water and oxygen, which is substantially less reactive. Optionally aerobic bacteria, which are also added, protect the anaerobic system further by consuming this oxygen. (orig.) [Deutsch] Manche kommunalen und industriellen Klaeranlagen bestehen aus einer Aerobie und einer Anaerobie. Verschiedene Einleitungsbedingungen koennen aber dazu fuehren, dass in die Anaerobie starke Oxidationsmittel wie Wasserstoffperoxid (H{sub 2}O{sub 2}) gelangen. Messungen des Redoxpotentials in einer Versaeuerungsstufe zeigen, dass bereits geringe Konzentrationen an H{sub 2}O{sub 2} die dort lebenden anaeroben Bakterienkulturen irreversibel schaedigen. Wird aber einem solchen System Belebtschlamm aus der Aerobie zudosiert, so kann diese Schaedigung verhindert werden. Wahrscheinlich schuetzt das Enzym Katalase die Anaerobie vor der oxidierenden Wirkung des Wasserstoffperoxids. Dieses Enzym aus aeroben und fakultativ aeroben Bakterien zersetzt naemlich Wasserstoffperoxid oekologisch vertraeglich in Wasser und den bedeutend weniger reaktiven Sauerstoff. Zum Schutz der Anaerobie wird auch dieser Sauerstoff durch die zudosierten fakultativ aeroben Bakterien verbraucht. (orig.)

  7. Fermentation of household wastes and industrial waste water; Vergaerung von haeuslichen Abfaellen und Industrieabwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W [Arbeitsgemeinschaft Bioenergie ' arbi' , Maschwanden (Switzerland); Engeli, H [Probag AG, Dietikon (Switzerland); Glauser, M [Biol-Conseils SA, Neuchatel (Switzerland); Hofer, H [HTH-Verfahrenstechnik, Winterthur (Switzerland); Membrez, Y [EREP SA, Aclens (Switzerland); Meylan, J -H [Lausanne (Switzerland); Schwitzguebel, J -P [Swiss Federal Institute of Technology (EPFL), Genie biologique, Lausanne (Switzerland)

    1993-07-01

    This comprehensive brochure reviews various technologies for the environment-friendly treatment of organic wastes and residues. The principles of anaerobic digestion are discussed. Authorities, planners and engineers concerned with waste treatment are provided with an overview of current technology in the organic wastes area. The brochure emphasises the importance of fermentation processes in waste treatment, discusses the legal pre-requisites for biogas production, lists the biological and process-oriented fundamentals of fermentation and examines the energy potential of biogenic wastes and waste water. Further, details are given on the treatment of both industrial waste water and solid organic wastes and, finally, the economics of fermentation is examined. Useful data is presented in table form and the various processes described are illustrated by schematics and flow diagrams. An appendix lists suggestions for further reading on the subject.

  8. Anaerobic digestion of autoclaved and untreated food waste

    Energy Technology Data Exchange (ETDEWEB)

    Tampio, Elina, E-mail: elina.tampio@mtt.fi [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Ervasti, Satu; Paavola, Teija [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Heaven, Sonia; Banks, Charles [University of Southampton, Faculty of Engineering and the Environment, Southampton SO17 1BJ (United Kingdom); Rintala, Jukka [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland)

    2014-02-15

    Highlights: • Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. • Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 ± 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

  9. Anaerobic digestion of autoclaved and untreated food waste

    International Nuclear Information System (INIS)

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-01-01

    Highlights: • Autoclaving decreased the formation of NH4-N and H 2 S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m 3 day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH 4 yields were observed at OLR 3 kg VS/m 3 day with untreated FW. • Autoclaved FW produced highest CH 4 yields during OLR 4 kgVS/m 3 day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m 3 d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m 3 CH 4 /kg VS at 3 kg VS/m 3 d) than autoclaved FW (maximum 0.439 ± 0.020 m 3 CH 4 /kg VS at 4 kg VS/m 3 d). The residual methane potential of both digestates at all OLRs was less than 0.110 m 3 CH 4 /kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components

  10. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste.

    Science.gov (United States)

    Ji, Chao; Kong, Chui-Xue; Mei, Zi-Li; Li, Jiang

    2017-11-01

    Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.

  11. Long-term anaerobic digestion of food waste stabilized by trace elements

    International Nuclear Information System (INIS)

    Zhang Lei; Jahng, Deokjin

    2012-01-01

    Highlights: ► Korean food waste was found to contain low level of trace elements. ► Stable anaerobic digestion of food waste was achieved by adding trace elements. ► Iron played an important role in anaerobic digestion of food waste. ► Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19–6.64 g VS (volatile solid)/L day and 20–30 days of HRT (hydraulic retention time), a high methane yield (352–450 mL CH 4 /g VS added ) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  12. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  13. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass

    Science.gov (United States)

    Steinberg, Lisa M.; Kronyak, Rachel E.; House, Christopher H.

    2017-11-01

    Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design

  14. Energy and nutrient recovery from anaerobic treatment of organic wastes

    Science.gov (United States)

    Henrich, Christian-Dominik

    The objective of the research was to develop a complete systems design and predictive model framework of a series of linked processes capable of providing treatment of landfill leachate while simultaneously recovering nutrients and bioenergy from the waste inputs. This proposed process includes an "Ammonia Recovery Process" (ARP) consisting of: (1) ammonia de-sorption requiring leachate pH adjustment with lime or sodium hydroxide addition followed by, (2) ammonia re-absorption into a 6-molar sulfuric acid spray-tower followed by, (3) biological activated sludge treatment of soluble organic residuals (BOD) followed by, (4) high-rate algal post-treatment and finally, (5) an optional anaerobic digestion process for algal and bacterial biomass, and/or supplemental waste fermentation providing the potential for additional nutrient and energy recovery. In addition, the value provided by the waste treatment function of the overall processes, each of the sub-processes would provide valuable co-products offering potential GHG credit through direct fossil-fuel replacement, or replacement of products requiring fossil fuels. These valuable co-products include, (1) ammonium sulfate fertilizer, (2) bacterial biomass, (3) algal biomass providing, high-protein feeds and oils for biodiesel production and, (4) methane bio-fuels. Laboratory and pilot reactors were constructed and operated, providing data supporting the quantification and modeling of the ARP. Growth parameters, and stoichiometric coefficients were determined, allowing for design of the leachate activated sludge treatment sub-component. Laboratory and pilot algal reactors were constructed and operated, and provided data that supported the determination of leachate organic/inorganic-nitrogen ratio, and loading rates, allowing optimum performance of high-rate algal post-treatment. A modular and expandable computer program was developed, which provided a systems model framework capable of predicting individual component

  15. Biological drinking water treatment of anaerobic groundwater in trickling filters

    NARCIS (Netherlands)

    De Vet, W.W.J.M.

    2011-01-01

    Drinking water production from anaerobic groundwater is usually achieved by so called conventional techniques such as aeration and sand filtration. The notion conventional implies a long history and general acceptation of the application, but doesn’t necessarily mean a thorough understanding of the

  16. The production of anaerobic bacteria and biogas from dairy cattle waste in various growth mediums

    Science.gov (United States)

    Hidayati, Y. A.; Kurnani, T. B. A.; Marlina, E. T.; Rahmah, K. N.; Harlia, E.; Joni, I. M.

    2018-02-01

    The growth of anaerobic bacteria except the ruminal fluid quailty is strongly influenced by the media formulations. Previous researchers have set a standard media formulation for anaerobic bacteria from rumen, however the use of standard media formulations require chemicals with high cost. Moreover, other constraint of using standard media formulations is requires large quantities of media for anaerobic bacteria to grow. Therefore, it is necessary to find media with a new culture media formulation. Media used in this research were minimalist media consist of Nutrient Agar (NA), Lactose broth and rumen fluid; enriched media Rumen Fluid-Glucose-Agar (RGCA); and enriched media 98-5. The dairy cattle waste is utilized as source of anaerobic bacteria. The obtained data was analyzed by descriptive approach. The results showed that minimalist media produced anaerobic bacteria 2148 × 104 cfu/ml and biogas production: 1.06% CH4, 9.893% CO2; enriched media Rumen Fluid-Glucose-Agar (RGCA) produced anaerobic bacteria 1848 × 104 cfu/ml and biogas production 4.644% CH4, 9.5356% CO2; enriched media 98-5 produced anaerobic bacteria growth 15400 × 104 cfu/ml and biogas production 0.83% of CH4, 42.2% of CO2. It is conclude that the minimalist media was showed the best performance for the dairy cattle waste as source of anaerobic bacteria.

  17. Anaerobic treatment techniques

    International Nuclear Information System (INIS)

    Boehnke, B.; Bischofsberger, W.; Seyfried, C.F.

    1993-01-01

    This practical and theoretical guide presents the current state of knowledge in anaerobic treatment of industrial effluents with a high organic pollutant load and sewage sludges resulting from the treatment of municipal and industrial waste water. Starting from the microbiological bases of anaerobic degradation processes including a description and critical evaluation of executed plants, the book evolves the process-technical bases of anaerobic treatment techniques, derives relative applications, and discusses these with reference to excuted examples. (orig./UWA). 232 figs [de

  18. Two Stage Anaerobic Reactor Design and Treatment To Produce Biogas From Mixed Liquor of Vegetable Waste

    Science.gov (United States)

    Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.

    2018-01-01

    Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.

  19. The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico)

    International Nuclear Information System (INIS)

    Hernandez-Berriel, Ma.C.; Marquez-Benavides, L.; Gonzalez-Perez, D.J.; Buenrostro-Delgado, O.

    2008-01-01

    The State of Mexico, situated in central Mexico, has a population of about 14 million, distributed in approximately 125 counties. Solid waste management represents a serious and ongoing pressure to local authorities. The final disposal site ('El Socavon') does not comply with minimum environmental requirements as no liners or leachate management infrastructure are available. Consequently, leachate composition or the effects of rain water input on municipal solid waste degradation are largely unknown. The aim of this work was to monitor the anaerobic degradation of municipal solid waste (MSW), simulating the water addition due to rainfall, under two different moisture content regimes (70% and 80% humidity). The study was carried out using bioreactors in both laboratory and pilot scales. The variation of organic matter and pH was followed in the solid matrix of the MSW. The leachate produced was used to estimate the field capacity of the MSW and to determine the pH, COD, BOD and heavy metals. Some leachate parameters were found to be within permitted limits, but further research is needed in order to analyze the leachate from lower layers of the disposal site ('El Socavon')

  20. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste.

    Science.gov (United States)

    He, Ruo; Yao, Xing-Zhi; Chen, Min; Ma, Ruo-Chan; Li, Hua-Jun; Wang, Chen; Ding, Shen-Hua

    2018-04-07

    Volatile sulfur compounds (VSCs) are not only the main source of malodor in anaerobic treatment of organic waste, but also pose a threat to human health. In this study, VSCs production and microbial community was investigated during the anaerobic degradation of fish and pork waste. The results showed that after the operation of 245 days, 94.5% and 76.2% of sulfur compounds in the fish and pork waste was converted into VSCs. Among the detected VSCs including H 2 S, carbon disulfide, methanethiol, ethanethiol, dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide, methanethiol was the major component with the maximum concentration of 4.54% and 3.28% in the fish and pork waste, respectively. The conversion of sulfur compounds including total sulfur, SO 4 2- -S, S 2- , methionine and cysteine followed the first-order kinetics. Miseq sequencing analysis showed that Acinetobacter, Clostridium, Proteus, Thiobacillus, Hyphomicrobium and Pseudomonas were the main known sulfur-metabolizing microorganisms in the fish and pork waste. The C/N value had most significant influence on the microbial community in the fish and pork waste. A main conversion of sulfur compounds with CH 3 SH as the key intermediate was firstly hypothesized during the anaerobic degradation of fish and pork waste. These findings are helpful to understand the conversion of sulfur compounds and to develop techniques to control ordor pollution in the anaerobic treatment of organic waste. Copyright © 2018. Published by Elsevier Ltd.

  1. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  2. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  3. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    Science.gov (United States)

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Anaerobic digestion of waste waters after washing olives used for oil production: in fluence of harvest time on the kinetics of the process. Digestion anaerobia de las aguas de lavado de aceitunas de almazara: influencia del periodo de recoleccion sobre la cinetica del proceso

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Padilla, R.; Alba-Mendoza, J.; Hidalgo-Casado, F.

    1994-01-01

    A kinetic study was carried out of anaerobic digestion of waste waters after washing olives used for oil production, collected at three different harvest times (December 1992, January and February 1993). A 1-litre mixed batch bioreactor operated at 35 degree centigree and containing a sepiolite-immobilized biomass was used. Assuming that the overall anaerobic digestion process conforms to a first-order kinetics, experimental data pairs, namely methane volume yield (G) and time (t), fit Roediger's equation, from which the rate coefficient values, k[sub o], were determined in each of the situations studied. The rate coefficient considerably decreased with the harvest time, over the substrate concentration range studied (0.5-2.5 g COD/1). The average values obtained were [sub 1.67],[sub 1.13] and [sub 0.75] days for the waste waters corresponding to the three harvest times considered. Also, the methanogenic activity decreased with the ripening of the olives; the observed differences increased when the substrate concentration in the digester increased. The coefficients of methane yield, Yp ranged between 0.263 (first harvest time) and 0.298 I CH[sub 4]/g COD removed (third harvest time). The elimination of COD exceeded 64% in all cases. (Author) 13 refs.

  5. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  6. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  7. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  8. Effect of limonene on anaerobic digestion of citrus waste and pretreatments for its improvement

    OpenAIRE

    RUIZ FUERTES, BEGOÑA

    2016-01-01

    [EN] Anaerobic digestion is a sustainable and technically sound way to valorise citrus waste if the inhibitory effect of the citrus essential oil (CEO) is controlled. Several strategies have been proposed to overcome these difficulties: keeping the organic loading rate (OLR) in low values to avoid excess dosage of inhibitor, supplementing the citrus waste with nutrient and buffering solutions or pre-treating the citrus waste in order to reduce the CEO concentration, either by recovery or by d...

  9. Biogasification of solid wastes by two-phase anaerobic fermentation

    International Nuclear Information System (INIS)

    Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.

    1997-01-01

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  10. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    OpenAIRE

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste...

  11. Characterization and anaerobic biodegradability of grey water

    NARCIS (Netherlands)

    Hernandez Leal, L.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    Grey water consists of the discharges from kitchen sinks, showers, baths, washing machines and hand basins. Thorough characterization of 192 time proportional samples of grey water from 32 houses was conducted over a period of 14 months. COD concentrations were 724 ± 150 mg L- 1, of which 34% was

  12. Anaerobic biological treatment of in-situ retort water

    Energy Technology Data Exchange (ETDEWEB)

    Ossio, E.; Fox, P.

    1980-03-01

    Anaerobic fermentation was successfully used in a laboratory-scale batch digester to remove soluble organics from retort water. Required pretreatment includes reduction of ammonia levels to 360 mg-N/l, pH adjustment to 7.0, sulfide control, and the addition of the nutrients, calcium, magnesium, and phoshorus. If the prescribed pretreatment is used, BOD/sub 5/ and COD removal efficiencies of 89 to 90% and 65 to 70% are achieved, respectively.

  13. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Cecchi, F; Bolzonella, D

    2014-01-01

    In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m(3)d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm(3)biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.

  14. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    Science.gov (United States)

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  16. Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.

    Science.gov (United States)

    Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

    2014-10-01

    The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer.

    Science.gov (United States)

    Lee, K H; Park, K Y; Khanal, S K; Lee, J W

    2013-01-15

    This study examines the effects of household detergent on anaerobic methane fermentation of wastewater from food waste disposers (FWDs). Anaerobic toxicity assay (ATA) demonstrated that methane production substantially decreased at a higher detergent concentration. The Gompertz three-parameter model fitted well with the ATA results, and both the extent of methane production (M) and methane production rate (R(m)) obtained from the model were strongly affected by the concentration of the detergent. The 50% inhibitory concentration (IC(50)) of the detergent was 603 mg/L based on R(m). Results from fatty acid methyl esters (FAMEs) analysis of microbial culture revealed that deterioration of methane fermentation was attributed to impaired structure of anaerobic microbial membrane due to detergent. This study suggests that wastewater from FWD could be used for methane production, but it is necessary to reduce the concentration of detergent prior to anaerobic fermentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Anaerobic digestion of slaughterhouse waste with UF-membrane separation and recycling of permeate after free ammonia stripping.

    Science.gov (United States)

    Siegrist, H; Hunziker, W; Hofer, H

    2005-01-01

    Anaerobic digestion can adapt to free ammonia to a certain extent. During the anaerobic digestion of slaughterhouse waste, however, an ammonia concentration of up to 15 g Nl(-1) can be reached in the sludge liquid and this will even inhibit adapted sludge. To lower this concentration, a fraction of the digester liquid must therefore be continuously separated from the digested sludge and the free ammonia stripped before the liquid is recycled to the digester. A mesophilic laboratory digester was successfully operated with an ammonium concentration of 4-5g l(-1) and a pH of 8.0-8.4. After free ammonia stripping, the excess liquid was treated in a laboratory SBR for nitrogen and phosphorus removal before being added to the receiving water. The effluent had no toxic effect on daphnia and algae.

  19. Treatment of Slaughterhouse Waste Water Mixed with Serum from Lacteal Industry of Extremadura in Spain to Produce Clean Energy

    OpenAIRE

    A. C. Marcos; A. Al-Kassir; Francisco Cuadros; Talal Yusaf

    2017-01-01

    The problem of slaughterhouse waste water can be resolved by mixing it with serum from lacteal industry to produce a biogas. The effect of serum addition on the anaerobic co-digestion of solid and liquid slaughterhouse waste has been studied. The experimental device consisted of a continuous digester by recirculation of biogas produced in the anaerobic digestion. The input effluent was a mixture of slaughterhouse waste from Badajoz city (Spain) and animal serum in a proportion of 20%. The ana...

  20. Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Møller, H.B.; Ahring, Birgitte Kiær

    2004-01-01

    of the principles of the anaerobic digestion process and to an optimization of its large-scale implementation. In order to get an overview of the current situation concerning the treatment of the organic fraction of municipal solid waste (OFMSW) in Denmark, interviews were carried out with operators of the biogas...... in paper bags is preferable to collection in plastic bags and successive separation of plastics in a waste processing treatment plant...... plants where OFMSW is treated and the municipality staff responsible for waste management. With the aim of fulfilling the governmental goal to treat 150 000 tons of OFMSW by the year 2004 mainly by anaerobic digestion, the different municipalities are investigating different concepts of waste collection...

  1. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The prospects for methane recovery from the anaerobic digestion of municipal solid waste in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J. (CPL Scientific Ltd., Newbury (GB))

    1990-01-01

    The availability, composition and energy output of municipal solid wastes (MSW) in the United Kingdom are considered. The sorting of MSW, the production of organic fractions and the technical aspects of their biological consolidation are examined. A description of anaerobic digestion activities and pilot and commercial scale plants in the United Kingdom, the European Communities and the USA is given. Finally,the potential for electricity generation from, and the co-products, by-products and cost of, the anaerobic digestion of MWS are summarized. It is concluded that, on the basis of the evidence available, there appears to be a good case for government support aimed at boosting the waste treatment industry's confidence in the anaerobic digestion of the organic fraction of MSW in fabricated systems. A programme of field trials and related research is recommended. (UK).

  3. A Simple Mathematical Model of the Anaerobic Digestion of Wasted Fruits and Vegetables in Mesophilic Conditions

    Directory of Open Access Journals (Sweden)

    Elena Chorukova

    2015-04-01

    Full Text Available Anaerobic digestion is an effective biotechnological process for treatment of different agricultural, municipal and industrial wastes. Use of mathematical models is a powerful tool for investigations and optimisation of the anaerobic digestion. In this paper a simple mathematical model of the anaerobic digestion of wasted fruits and vegetables was developed and verified experimentally and by computer simulations using Simulink. A three-step mass-balance model was considered including the gas phase. The parameter identification was based on a set of 150 days of dynamical experiments in a laboratory bioreactor. Two step identification procedure to estimate 4 model parameters is presented. The results of 15 days of experiment in a pilot-scale bioreactor were then used to validate the model.

  4. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  5. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    International Nuclear Information System (INIS)

    Stabnikova, O.; Liu, X.Y.; Wang, J.Y.

    2008-01-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment

  6. Anaerobic composting of waste organic fraction. Compostaje anaerobico de la fraccion organica de los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Baere, L. de; Verdonck, O.; Verstraete, W.

    1994-01-01

    The dry anaerobic composting can be carried out in mesophilic and thermophilic conditions. Gas production of 6,2 and 8.5 m''3 biogas m''3 daily in laboratory fermenters was obtained. The quality of waste is higher than obtained in aerobic process. The streptococcus sludge was destroyed. This experimental can be applied for big scale and it permits energy recovery and organic compost of municipal solid wastes. (Author)

  7. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  8. Mesophilic anaerobic co-digestion of municipal solid waste and sewage sludge

    DEFF Research Database (Denmark)

    Aghdam, Ehsan Fathi; Kinnunen, V.; Rintala, Jukka A.

    2015-01-01

    This paper presents mesophilic anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW), biowaste (BW), sewage sludge (SS), and co-digestion of BW and SS. Average methane yields of 386 ± 54, 385 ± 82, 198 ± 14, and 318 ± 59 L CH4/kg volatile solids (VS) were obtained for OFMSW...

  9. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Science.gov (United States)

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor process...... ammonium bicarbonate additions. Dilution of SS-OFMSW with fresh water showed a stable performance with volatile fatty acids of solids (VS). Use of recirculated process water after stripping ammonia showed even better performance with a methane yield...... of 0.43 m(3) kg(-1)VS. Recirculation of process water alone on the other hand, resulted in process inhibition at both TAN levels of 3.5 and 5.5 g-N l(-1). However, after a short period, the process recovered and adapted to the tested TAN levels. Thus, use of recirculated process water after stripping...

  12. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    Science.gov (United States)

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  14. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  15. Importance of storage time in mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing

    2016-07-01

    Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. Copyright © 2016. Published by Elsevier B.V.

  16. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  17. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    2016-01-01

    Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop...... in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter...... (methane productivity and yield) and operational parameter (concentration of ammonia and volatile fatty acid) values were reasonable and displayed good correlation and accuracy. The model was later applied to identify optimal scenarios for an urban organic waste co-digestion process. The simulation...

  19. Start-up of anaerobic digestion of source-sorted organic municipal solid waste

    International Nuclear Information System (INIS)

    Maroun, Rania

    2004-01-01

    Municipal solid waste (MSW) disposal is a major environmental concern worldwide. Among the environmentally sound technologies for the treatment of MSW, composting in the form of anaerobic digestion (AD) appears as a suitable alternative that offers the advantage of rapid stabilization of organic matter, reduction in waste volume, production of methane, and minimal environmental impacts in comparison to land filling and incineration. Yet, although outstanding advances in anaerobic digestion of solid substrate have been made in the last 10 years, some development areas are lagging, including the fast and reliable process start-up in terms of type of inocula and overall start-up strategies. The present study investigates the start-up and operation of bench-scale anaerobic digesters treating the source-sorted organic fraction of municipal solid waste. The experimental program consisted of starting up two digesters in parallel. Three consecutive interventions in the start-up program were implemented to achieve steady state. Start-up was relatively slow indicating the seed obtained from an operating anaerobic wastewater treatment plant was not suitable. The use of cattle manure together with effluent dilution reduced the acclimation period (Author.)

  20. Biogas production from livestock waste anaerobic digesters: evaluation and optimization

    Science.gov (United States)

    Livestock wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. However, feedstocks from livestock re...

  1. Potential for energy conservation in the food and beverage industries through anaerobic digestion of wastes to methane

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The Canadian food and beverage industry is the fourth largest consumer of energy among manufacturers. An area of energy use which has received little attention in the past is that of waste treatment. Conventional aerobic treatment systems tend to be energy-intensive, unlike new high-rate anaerobic processes which often have better balances because they produce recoverable methane that can be used for fuel. For these reasons, anaerobic systems may be attractive to food and beverage industries seeking an economical means of waste treatment. A number of factors will determine whether anaerobic treatment is a feasible option for a given plant. Chief among these are waste strength, waste temperature, waste flow rate, consistent production of waste, and need for and cost of treatment. This study attempted to determine for what proportion of Canadian food and beverage companies anaerobic treatment is likely to be a feasible option in the near to middle term. It was found that the general plant effluents of several industries appear in many cases to be economically treatable by anaerobic processes, and practical considerations involved in methane end-use were briefly considered. A number of barriers to the application of anaerobic technology were revealed, including high capital costs, the dilution of high strength effluents, misconception about anaerobic processes, ignorance of the state of the art and the ambiguities in regulations and standards concerning biogas. 108 refs., 22 figs., 45 tabs.

  2. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios.

    Science.gov (United States)

    Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap

    2018-01-01

    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH 4 -COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH 4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Treating water-reactive wastes

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated

  4. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  5. Recovering Value from Waste: Anaerobic Digester System Basics

    Science.gov (United States)

    Biogas recovery may hold the key to unlocking the financial and environmental benefits of managing manure generated from livestock operations and organic wastes from the agriculture and food production sectors.

  6. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184 ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.120, year: 2015

  7. Anaerobic digestion and co-digestion of slaughterhouse wastes

    OpenAIRE

    Sonia Castellucci; Silvia Cocchi; Elena Allegrini; Luigi Vecchione

    2013-01-01

    The use of renewable energy is becoming increasingly necessary in order to address the global warming problem and, as a consequence, has become an high priority for many countries. Biomass is a clean and renewable energy source with growing potential to replace conventional fossil fuels. Among biomass, residual and waste ones represent a great resource for energy generation since they permit both to eliminate a possible waste and to produce energy. In the present work, the case of slaughterho...

  8. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  9. Anaerobic digestion of slaughterhouse waste to produce energy and fertilizer; Anaerobitekniikka muuttaa teollisuuden orgaaniset jaetteet energiaksi ja lannoitteeksi

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, E.; Rintala, J.

    1999-07-01

    The concern over the re-use of organic wastes on ecological and economical lines is constantly increasing. Anaerobic digestion is gaining popularity as a means of organic waste management, for several reasons. Besides generating biogas for energy production, it also produces a stabilised byproduct with reduced pathogens and thus forms a valuable source of nutrients for agricultural crops. Our primary aim in this part of our work was to develop economically viable and ecologically feasible techniques for treating slaughterhouse waste. Biomethanation of one tonne of poultry slaughterhouse waste produced about 80-100 m{sup 3} of methane with 60-70% reduction in total solids. Ammonification of total organic nitrogen to ammonical nitrogen was about 60%. Evidently, the control of long chain fatty acids under anaerobic conditions is critical for fat-rich wastes. Preliminary assessment of the anaerobically digested poultry slaughterhouse waste confirms its potential as a source of organic fertilizer for agricultural use. (author)

  10. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    Directory of Open Access Journals (Sweden)

    Luca Zuliani

    2016-10-01

    Full Text Available Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  11. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jinming [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Zhang, Ruihong; Sun, Huawei [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); El-Mashad, Hamed M. [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Department of Agricultural Engineering, Mansoura University, El-Mansoura (Egypt); Ying, Yibin [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-12-15

    The effect of different food to microorganism ratios (F/M) (1-10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 {+-} 2 C and 50 {+-} 2 C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H{sub 2}/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H{sub 2}/g VS at the F/M of 6. A modified Gompertz equation adequately (R{sup 2} > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation. (author)

  12. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... sources. Growth on glucose produced acetate, H-2 and carbon dioxide. Maximal H-2 production rate on glucose was 1.1 mmol l(-1) h(-1) with a maximum H-2 yield of 1.9 mole H-2 per mole glucose. 16S ribosomal DNA clone library analyses showed that the culture members were phylogenetically affiliated...

  13. Advanced anaerobic bioconversion of lignocellulosic waste for the melissa life support system

    Science.gov (United States)

    Lissens, G.; Verstraete, W.; Albrecht, T.; Brunner, G.; Creuly, C.; Dussap, G.; Kube, J.; Maerkl, H.; Lasseur, C.

    The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of the MELiSSA loop (Micro-Ecological Life Support System Alternative). The treatment comprised a series of processes, i.e. a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g-1 VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T ˜ 310-350C, p ˜ 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis offers interesting features for (nearly) the MELiSSA system. The described additional technologies show that complete and hygienic carbon and energy recovery from human waste within MELiSSA is technically feasible, provided that the extra energy needed for the thermal treatment is guaranteed.

  14. Fast characterization of solid organic waste content with near infrared spectroscopy in anaerobic digestion.

    Science.gov (United States)

    Charnier, Cyrille; Latrille, Eric; Jimenez, Julie; Lemoine, Margaux; Boulet, Jean-Claude; Miroux, Jérémie; Steyer, Jean-Philippe

    2017-01-01

    The development of anaerobic digestion involves both co-digestion of solid wastes and optimization of the feeding recipe. Within this context, substrate characterisation is an essential issue. Although it is widely used, the biochemical methane potential is not sufficient to optimize the operation of anaerobic digestion plants. Indeed the biochemical composition in carbohydrates, lipids, proteins and the chemical oxygen demand of the inputs are key parameters for the optimisation of process performances. Here we used near infrared spectroscopy as a robust and less-time consuming tool to predict the solid waste content in carbohydrates, lipids and nitrogen, and the chemical oxygen demand. We built a Partial Least Square regression model with 295 samples and validated it with an independent set of 46 samples across a wide range of solid wastes found in anaerobic digestion units. The standard errors of cross-validation were 90mgO 2 ⋅gTS -1 carbohydrates, 2.5∗10 -2 g⋅gTS -1 lipids, 7.2∗10 -3 g⋅gTS -1 nitrogen and 99mgO 2 ⋅gTS -1 chemical oxygen demand. The standard errors of prediction were 53mgO 2 ⋅gTS -1 carbohydrates, 3.2∗10 -2 g⋅gTS -1 lipids, 8.6∗10 -3 g⋅gTS -1 nitrogen and 83mgO 2 ⋅gTS -1 chemical oxygen demand. These results show that near infrared spectroscopy is a new fast and cost-efficient way to characterize solid wastes content and improve their anaerobic digestion monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Process performance and modelling of anaerobic digestion using source-sorted organic household waste

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alvarado-Morales, Merlin

    2018-01-01

    Three distinctive start-up strategies of biogas reactors fed with source-sorted organic fraction of municipal solid waste were investigated to reveal the most reliable procedure for rapid process stabilization. Moreover, the experimental results were compared with mathematical modeling outputs....... The combination of both experimental and modelling/simulation succeeded in optimizing the start-up process for anaerobic digestion of biopulp under mesophilic conditions....

  16. 10. Biogas conference Dresden. Anaerobic treatment of biological wastes. Proceedings

    International Nuclear Information System (INIS)

    Dornack, Christina; Liebetrau, Jan; Fassauer, Burkhardt; Nelles, Michael

    2015-01-01

    The biogas conference in Dresden will be held for the tenth time and is still the only conference in Germany, which focuses on the production of biogas solely from waste. This year, the implementation of paragraph 11 of the Recycling and Waste Management Act and the amendment of the Renewable Energies Act (EEG) in 2014, the chances of the waste management biogas technology will be spotlighted here. The efficiency and wise use of the end products of the biogas production - the biogas and fermentation residues are equally critical for the success of biogas technology as the emission reduction of biogas plants. In this context, the biogas technology will also be dependent in the future on legal requirements and funding instruments such as the EEG. For the technical implementation, the development of reliable system concepts with specific sinking biogas and electricity supply costs and with greater flexibility in terms of launching needs-based biogas and electricity production. The contributions in this paper discuss possible solutions and implementations from the perspective of politics, associations, research and practice. Innovative topics will be discussed, which will be decisive for the future of biogas production from organic wastes. [de

  17. Biogas production from anaerobic digestion of food waste and relevant air quality implications.

    Science.gov (United States)

    Kuo, Jeff; Dow, Jason

    2017-09-01

    Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NO x , SO 2 , CO, CO 2 , and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications. Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to

  18. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment.

    Science.gov (United States)

    Meng, Ying; Luan, Fubo; Yuan, Hairong; Chen, Xue; Li, Xiujin

    2017-01-01

    Three lipases were applied to hydrolyze the floatable grease (FG) in the food waste for eliminating FG inhibition and enhancing digestion performance in anaerobic process. Lipase-I, Lipase-II, and Lipase-III obtained from different sources were used. Animal fat (AF) and vegetable oil (VO) are major crude lipids in Chinese food waste, therefore, applied as substrates for anaerobic digestion tests. The results showed that Lipase-I and Lipase-II were capable of obviously releasing long chain fatty acid in AF, VO, and FG when hydrolyzed in the conditions of 24h, 1000-1500μL and 40-50°C. Compared to the untreated controls, the biomethane production rate were increased by 80.8-157.7%, 26.9-53.8%, and 37.0-40.7% for AF, VO, and FG, respectively, and the digestion time was shortened by 10-40d. The finding suggests that pretreating lipids with appropriate lipase could be one of effective methods for enhancing anaerobic digestion of food waste rich in crude lipid. Copyright © 2016. Published by Elsevier Ltd.

  19. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    Science.gov (United States)

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO 2 and CH 4 ) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report

  1. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  2. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Kinetics and economics of anaerobic digestion of animal waste

    Energy Technology Data Exchange (ETDEWEB)

    Gaddy, J L; Park, E L; Rapp, E B

    1974-06-01

    The initial excursion into kinetics was made to calculate the necessary detention time required in a two-stage digestion system which would reduce steer manure of BOD/sub 5/ 15,000 mg/l to 1,000 mg/l, the effluent to be treated in an aerated lagoon. The authors conclude that a system which would treat the wastes from 100,000 cattle would require an initial investment of $520,000 and yield an annual revenue of $1,020,000 before taxes by the sale of the gas produced. Only the slightest substantiation of their calculations is given.

  4. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  5. Fast Startup of Semi-Pilot-Scale Anaerobic Digestion of Food Waste Acid Hydrolysate for Biogas Production.

    Science.gov (United States)

    Huang, Chao; Zhao, Cheng; Guo, Hai-Jun; Wang, Can; Luo, Mu-Tan; Xiong, Lian; Li, Hai-Long; Chen, Xue-Fang; Chen, Xin-De

    2017-12-27

    In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH 4 content in biogas were 0.542 ± 0.056 m 3 /kg COD consumption , 0.442 ± 0.053 m 3 /kg COD consumption , and 81.52 ± 3.05%, respectively, and these values were high and stable. Besides, the fermentation pH was very stable, in which no acidification was observed during the anaerobic digestion process (outlet pH was 7.26 ± 0.05 for the whole anaerobic digestion). Overall, the startup of this anaerobic digestion can be completed in a short period (the system can be stable 2 days after the substrate was pumped into the bioreactor), and anaerobic digestion of food waste acid hydrolysate is feasible and attractive for industrial treatment of food waste and biogas production.

  6. Anaerobic digestion of organic waste in RDF process - an initial investigation

    International Nuclear Information System (INIS)

    Khaironie Mohd Takip; Muhd Noor Muhd Yunus; Mohamad Puad Abu

    2004-01-01

    Disposing of municipal solid waste (MSW) into a landfill is a method of the past and creates the negative environmental impact. Growing awareness of this negative impact induced the development of Refuse Derived Fuel (RDF) from MSW RDF is not simply converting waste into energy but also enable waste to be recycled into heat and power. However, during the production of RDF, there are some spillages or rejects consist of organic fraction that still can be recovered. One of the options to treat these wastes is by biological treatment, the anaerobic digestion (AD). AD process could occur either naturally or in a controlled environment such as a biogas plant. The process produces a flammable gas known as biogas that can be used for processing heating, power generation, and in internal combustion engines. In general, the process provides not only pollution prevention but can also convert a disposal problem into a new profit centre. This paper will highlight the use of anaerobic technology to treat rejects derived from the RDF production process. (Author)

  7. Study of the operational conditions for anaerobic digestion of urban solid wastes

    International Nuclear Information System (INIS)

    Castillo M, Edgar Fernando; Cristancho, Diego Edison; Victor Arellano, A.

    2006-01-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg -1 of wet waste day -1 . Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT

  8. Simultaneous recovery of calcium phosphate granules and methane in anaerobic treatment of black water

    NARCIS (Netherlands)

    Cunha Costa, da J.M.R.; Tervahauta, T.; Weijden, van der R.D.; Hernández Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2017-01-01

    Calcium phosphate (CaP) granules were discovered in the anaerobic treatment of vacuum collected black water (BW), using upflow anaerobic sludge blanket (UASB) technology. This allows simultaneous recovery of CaP granules and methane in the UASB reactor. However, the role of BW composition on CaP

  9. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  10. Fermentative Hydrogen Production from Combination of Tofu processing and anaerobic digester sludge wastes using a microbial consortium

    International Nuclear Information System (INIS)

    You-Kwan, O.; Mi-Sun, K.

    2009-01-01

    The combination of Tofu manufacturing waste and anaerobic digester sludge was studied for fermentative H 2 production in batch and continuous modes using a mixed culture originated from sewage. In order to increase the solubilization of organic substrates from Tofu waste, various pretreatments including heat-treatment, acid/alkali treatment, and sonication were examined alone or in combination with others. (Author)

  11. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature.

    Science.gov (United States)

    Alatriste-Mondragón, Felipe; Samar, Parviz; Cox, Huub H J; Ahring, Birgitte K; Iranpour, Reza

    2006-06-01

    Codigestion of organic wastes is a technology that is increasingly being applied for simultaneous treatment of several solid and liquid organic wastes. The main advantages of this technology are improved methane yield because of the supply of additional nutrients from the codigestates and more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. Many municipal wastewater treatment plants (WWTPs) in industrialized countries currently process wastewater sludge in large digesters. Codigestion of organic wastes with municipal wastewater sludge can increase digester gas production and provide savings in the overall energy costs of plant operations. Methane recovery also helps to reduce the emission of greenhouse gases to the atmosphere. The goal of this literature survey was to summarize the research conducted in the last four years on anaerobic codigestion to identify applications of codigestion at WWTPs. Because the solids content in municipal wastewater sludge is low, this survey only focuses on codigestion processes operated at relative low solids content (slurry mode). Semi-solid or solid codigestion processes were not included. Municipal wastewater sludge, the organic fraction of municipal solid waste, and cattle manure (CAM) are the main wastes most often used in codigestion processes. Wastes that are codigested with these main wastes are wood wastes, industrial organic wastes, and farm wastes. These are referred to in this survey as codigestates. The literature provides many laboratory studies (batch assays and bench-scale digesters) that assess the digestibility of codigestates and evaluate the performance and monitoring of codigestion, inhibition of digestion by codigestates, the design of the process (e.g., single-stage or two-stage processes), and the operation temperature (e.g., mesophilic or thermophilic). Only a few reports on pilot- and full-scale studies were found. These evaluate general process

  12. Anaerobic digestion of food waste: A review focusing on process stability.

    Science.gov (United States)

    Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di

    2018-01-01

    Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Yu, Zhang [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhenhong, Yuan; Yongming, Sun; Xiaoying, Kong [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2009-01-15

    The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. (author)

  14. Anaerobic composting of pyrethrum waste with and without effective ...

    African Journals Online (AJOL)

    user

    production through composting of solid pyrethrum remains after extraction of pyrethrins (marc). ... production of biogas at EM ratio 1:500 v/v, while biogas produced at EM ratio of 1:250 v/v ..... Handbook of Drinking Water Quality (2nd edition),.

  15. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics...... such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher...... biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS(.)m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS(.)m(-3) d(-1) are applied. Multi...

  16. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  17. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering

    International Nuclear Information System (INIS)

    Gao, Shumei; Huang, Yue; Yang, Lili; Wang, Hao; Zhao, Mingxing; Xu, Zhiyang; Huang, Zhenxing; Ruan, Wenquan

    2015-01-01

    Highlights: • The maximum methane production of SRKW was 479 mL/gTS added . • Anaerobic digestion capacity increased by 33.3% through NaHCO 3 buffering. • Protease activity was mainly affected by high organic load. - Abstract: Anaerobic digestion has been considered as a promising energy-producing process for kitchen waste treatment. In this paper, the anaerobic digestion (AD) performances of solid residual kitchen waste (SRKW) with or without NaHCO 3 buffering were investigated. The results indicated that the methane production reached the maximum of 479 mL/gTS added at the inoculum to substrate ratio (ISR, based on VS) of 1:1.4 without buffering, accompanied by VS removal rate of 78.91%. Moreover, the anaerobic digestion capacity increased by 33.3% through NaHCO 3 buffering, and the methane yield at ISR 1:2.8 was improved by 48.5% with NaHCO 3 addition. However, the methanogenesis with or without NaHCO 3 buffer was suppressed at ISR 1:3.5, indicated from the lowest methane yield of 55.50 mL/gTS added and high volatile fatty acids concentration of more than 14,000 mg/L. Furthermore, proteins in SRKW were not degraded completely at excessive organic loading, since the concentrations of ammonia nitrogen in ISR 1:3.5 groups with (2738 mg/L) and without NaHCO 3 buffering (2654 mg/L) were lower than the theoretical value of 3500 mg/L and the protease activities in ISR 1:3.5 groups were also inhibited

  19. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  20. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    Science.gov (United States)

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    Science.gov (United States)

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-04-25

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  3. Waste Water Disposal Design And Management VI

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book explains in detail anaerobic process, stabilization basins and lagoons, biological elimination of nitrogen and phosphorus, which introduces characteristic and anaerobic process, various methods of anaerobic process such as anaerobic contact process anaerobic biofilm process, anaerobic lagoon law, anaerobic simple digestive treatment using plug flow, mechanism of anaerobic digestive treatment, methods and description of biological elimination of nitrogen and phosphorus.

  4. Anaerobic digestion of animal by-products and slaughterhouse waste: main process limitations and microbial community interactions

    OpenAIRE

    Palatsi Civit, Jordi; Viñas, Marc; Guivernau, Miriam; Fernández García, Belén; Flotats Ripoll, Xavier

    2011-01-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270–300 LCH4 kg 1 COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg 1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to l...

  5. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  6. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    Science.gov (United States)

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  8. The Addition of Hatchery Liquid Waste to Dairy Manure Improves Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    WRT Lopes

    Full Text Available ABSTRACT The objective of this study was to determine the optimal inclusion level of liquid egg hatchery waste for the anaerobic co-digestion of dairy cattle manure. A completely randomized experimental was applied, with seven treatments (liquid hatchery waste to cattle manure ratios of0: 100, 5:95, 10:90, 15:85, 20:80, 25:75 and 30:70, with five replicates (batch digester model each. The evaluated variables were disappearance of total solids (TS, volatile solids (VS, and neutral detergent fiber (NDF, and specific production of biogas and of methane. Maximum TS and VS disappearance of 41.3% and 49.6%, were obtained at 15.5% and 16.0% liquid hatchery waste inclusion levels. The addition of 22.3% liquid hatchery considerably reduced NDF substrate content (53.2%. Maximum specific biogas production was obtained with 17% liquid hatchery waste, with the addition of 181.7 and 229.5 L kg-1TS and VS, respectively. The highest methane production, at 120.1 and 151.8 L CH4 kg-1TS and VS, was obtained with the inclusion of 17.5 and 18.0% liquid hatchery waste, respectively. The addition of liquid hatchery waste atratios of up to 15.5%in co-digestion with cattle manure reduced solid and fiber levels in the effluent, and improved biogas and methane production.

  9. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    International Nuclear Information System (INIS)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-01-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion

  10. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  11. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  12. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  13. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  14. Composting and anaerobic digestion of MSW (Municipal Solid Waste) organic fraction. Energy and CO2 balances

    International Nuclear Information System (INIS)

    De Benedetti, B.

    2001-01-01

    The aim of this study is the comparison between different technologies for the treatment of the organic fraction of Municipal Solid Waste. The Life Cycle Assessment (LCA) methodology constitutes the basic approach of the work, as reference international method of analysis, and allows to compare the energy and CO 2 balances taking into account the fractions deriving from renewable resources or from fossils resources. Results obtained show a significant advantage of the anaerobic treatment of MSW if compared with composting technology: obviously this conclusion refers only to an environmental point of view [it

  15. Equity and debt financing for centralised anaerobic digestion of farm wastes: a feasibility analysis

    International Nuclear Information System (INIS)

    Mills, S.J.

    1994-01-01

    This report has been prepared by Sceptre Management Limited for the Energy Technology Support Unit on behalf of the Department of Trade and Industry, with a view to establishing how a first UK plant for the Centralised Anaerobic Digestion (''CAD'') of farm wastes might be developed in such a way as to make it attractive both to bank lenders and to equity investors. The study on which the report draws was also intended to establish how the first and, hence most risky, such scheme would need to be funded. (UK)

  16. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  17. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    Science.gov (United States)

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  18. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Science.gov (United States)

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  19. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  20. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    Science.gov (United States)

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Anaerobic treatment in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, M; Solisio, C; Ferrailo, G

    1984-02-01

    In Italy, environmental protection and energy conservation have become very important since the increase in oil prices. The law requires that all waste waters have a B.O.D. of 40 mg/l by 1986 so there has been an expansion of purification plants since 1976, using anaerobic digestion. The report deals with the current state of anaerobic treatment in Italy with particular reference to (1) animal wastes. In intensive holdings, anaerobic digestion leads to a decrease in pollution and an increase in biogas generation which can be used to cover the energy demand of the process. The factors which influence the builders of digestors for farms are considered. (2) Non toxic industrial wastes. These are the waste waters emanating from the meat packing, brewing, pharmaceutical and chemical industries. Particular reference is made to the distillery plants using anaerobic treatment prior to aerobic digestion. (3) Urban wastes. The advantages and the disadvantages are considered and further research and development is recommended. 20 references.

  2. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Science.gov (United States)

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Production of bioenergy in anaerobic baffled reactor (ABR) and sludge blanket (UASB) in the treatment os swine waste water; Producao de bioenergia em reatores anaerobios compartimentado (RAC) e de manta de lodo (UASB) no tratamento de efluentes de suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Moterani, Fabricio; Pereira, Erlon Lopes; Campos, Claudio M.M. [Universidade Federal de Lavras (DEG/UFLA), MG (Brazil). Dept. de Engenharia], email: fabricio_moterani@yahoo.com.br

    2011-07-01

    The biogas is obtained in the processes of degradation of organic matter by the action of bacterial consortium in the environment. The aim of this study was to evaluate the biogas production in anaerobic UASB and ABR in swine wastewater treatment. For this we used the theoretical estimated and actual production of biogas measured by anaerobic gasometers installed in the units. Methane was determined by gas chromatography (GC) and its theoretical output was 66 LCH4 kgSVT d{sup -1} and 11.9 LCH4 kgSVT d{sup -1} and 24.7 m{sup 3} d{sup -1} and 5.4 m{sup 3} d{sup -1} to ABR and UASB, respectively. Regarding the actual production of biogas in the reactor provided by the gas tank, found the values of 1,166.4 m{sup 3}; 0.1 m{sup 3}; 27.4 m{sup 3} and 12,598.5 m{sup 3} of biogas for compartments 1, 2 and 3 and ABR for the UASB reactor, respectively, totaling, production of 13,792.4 m{sup 3} in the units together, with an average of 113 m{sup 3} of biogas per day. But, it concludes with this research that the use of effluent from produce energy through biogas in swine farming is effective, which can be used in rural productive system itself. (author)

  4. Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization

    International Nuclear Information System (INIS)

    Molinuevo-Salces, Beatriz; González-Fernández, Cristina; Gómez, Xiomar; García-González, María Cruz; Morán, Antonio

    2012-01-01

    Highlights: ► Vegetable waste as co-substrate for swine manure anaerobic digestion. ► Two hydraulic retention times of 25 and 15 d, respectively. ► SEM characterization of anaerobic sludges to observe microbial composition. ► Vegetable waste as co-substrate increases methane yields up to three times. ► Microbial composition changes after 120 d of digestion. -- Abstract: The effect of adding vegetable waste as a co-substrate in the anaerobic digestion of swine manure was investigated. The study was carried out at laboratory scale using semi-continuous stirred tank reactors working at 37 °C. Organic loading rates (OLRs) of 0.4 and 0.6 g VS L −1 d −1 were evaluated, corresponding to hydraulic retention times (HRTs) of 25 and 15 d, respectively. The addition of vegetable wastes (50% dw/dw) resulted in an improvement of 3 and 1.4-fold in methane yields at HRTs of 25 and 15 d, respectively. Changes on microbial morphotypes were studied by Scanning Electron Microscopy (SEM). Samples analyzed were sludge used as inoculum and digestate obtained from swine manure anaerobic reactors. SEM pictures demonstrated that lignocellulosic material was not completely degraded. Additionally, microbial composition was found to change to cocci and rods morphotypes after 120 d of anaerobic digestion.

  5. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  6. Potential impact of salinity on methane production from food waste anaerobic digestion.

    Science.gov (United States)

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production.

    Science.gov (United States)

    Kim, Jaai; Kim, Hakchan; Baek, Gahyun; Lee, Changsoo

    2017-02-01

    Proper management of spent coffee grounds has become a challenging problem as the production of this waste residue has increased rapidly worldwide. This study investigated the feasibility of the anaerobic co-digestion of spent coffee ground with various organic wastes, i.e., food waste, Ulva, waste activated sludge, and whey, for biomethanation. The effect of co-digestion was evaluated for each tested co-substrate in batch biochemical methane potential tests by varying the substrate mixing ratio. Co-digestion with waste activated sludge had an apparent negative effect on both the yield and production rate of methane. Meanwhile, the other co-substrates enhanced the reaction rate while maintaining methane production at a comparable or higher level to that of the mono-digestion of spent coffee ground. The reaction rate increased with the proportion of co-substrates without a significant loss in methanation potential. These results suggest the potential to reduce the reaction time and thus the reactor capacity without compromising methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Grey water treatment in a series anaerobic--aerobic system for irrigation.

    Science.gov (United States)

    Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.

  9. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  10. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2005-02-18

    Efficient metabolism of fatty acids during anaerobic waste digestion requires development of consortia that include "fatty acid consuming H(2) producing bacteria" and methanogenic bacteria. The objective of this research was to optimize methanogenesis from fatty acids by evaluating a variety of support matrices for use in maintaining efficient syntrophic-methanogenic consortia. Tested matrices included clays (montmorillonite and bentonite), glass beads (106 and 425-600mum), microcarriers (cytopore, cytodex, cytoline, and cultispher; conventionally employed for cultivation of mammalian cell lines), BioSep beads (powdered activated carbon), and membranes (hydrophilic; nylon, polysulfone, and hydrophobic; teflon, polypropylene). Data obtained from headspace methane (CH(4)) analyses as an indicator of anaerobic carbon cycling efficiency indicated that material surface properties were important in maintenance and functioning of the anaerobic consortia. Cytoline yielded significantly higher CH(4) than other matrices as early as in the first week of incubation. 16S rRNA gene sequence analysis from crushed cytoline matrix showed the presence of Syntrophomonas spp. (butyrate oxidizing syntrophs) and Syntrophobacter spp. (propionate oxidizing syntrophs), with Methanosaeta spp. (acetate utilizing methanogen), and Methanospirillum spp. (hydrogen utilizing methanogen) cells. It is likely that the more hydrophobic surfaces provided a suitable surface for adherence of cells of syntrophic-methanogenic consortia. Cytoline also appeared to protect entrapped consortia from air, resulting in rapid methanogenesis after aerial exposure. Our study suggests that support matrices can be used in anaerobic digestors, pre-seeded with immobilized or entrapped consortia on support matrices, and may be of value as inoculant-adsorbents to rapidly initiate or recover proper system functioning following perturbation.

  11. Design parameters and operating characteristics of animal waste anaerobic digestion systems - swine and poultry

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D T

    1983-01-01

    The development and validation of a comprehensive dynamic simulation model of the anaerobic fermentation of animal waste have been described by Hill. This model has proved to be highly accurate, both qualitatively and quantitatively, in predicting the steady-state methane productivity of conventional fermentation plants and in simulating the transient-state response of semi-batch fed digesters. Simulation studies using this model have been performed and results have been used to develop design recommendations for steady-state operations. These simulation studies have also produced a start-up procedure that will ensure successful initial operation of the digestion system and, more importantly, have allowed determination of the operational techniques that will provide recovery from failure due to organic overloading or excessively short detention time. This paper describes the results of these studies for swine and poultry (caged layer) waste and presents the design recommendations and operating techniques developed from the simulations. (Refs. 11).

  12. Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation

    Science.gov (United States)

    Wardhani, Puteri Kusuma; Watanabe, Masaji

    2016-02-01

    The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.

  13. The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation

    Science.gov (United States)

    Hariyadi, H. R.

    2017-03-01

    The presence of bromuconazole fungicide pollutant in organic waste anaerobic fermentation was carried out as well as the influence phenol and benzoate, and biodegradation of bromuconazole. Bromuconazole is a fungicide effective against Ascomycetes, Basidiomycetes and fungi imperfecti in cereals, grapes, top fruits and vegetables. It is also effective against Alternaria and Fusarium sp. The remaining fungicide in leaves might contaminates landfill. One month of organic waste added with bromuconazole was anaerobically incubated in 500 mL bottles at 30°C without shaking in dark room. High-Performance Liquid Chromatography (HPLC) with UV detector and a 100 RP 185μm Lichrosphere column was used to determine bromuconazole concentration. Methane content was determined by Gas Chromatography (GC) method equipped with a flame ionization detector and a metal column packed with 5% neopentyl glycol sebacate and 1% H3PO4 on Chromosorb W-AW (mesh 80-100). After incubation for 225 days, bromuconazole of 200 mg/L inhibited the production of methane (99.5 mM) significantly, but did not inhibit the production of volatile fatty acids. The addition of 100 mg/L phenol or 146 mg/L benzoate increased the production of methane, 143 mM and 135.2 mM, respectively compared with control (121.8 mM). In anaerobic conditions, the presence of toxic pollutants such as fungicide bromuconazole in landfills sites may cause further problems with the accumulation of volatile fatty acids in leachate. Further study to determine the threshold, the presence of bromconazole in low concentration (less than 200 mg/L) on the methane production is recommended.

  14. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    International Nuclear Information System (INIS)

    Sandoval Lozano, Claudia Johanna; Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-01-01

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH 4 and CO 2 ) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L -1 and a concentration of CO 2 of 90%. In this reactor, the fermentative population was predominant (10 5 -10 6 MPN mL -1 ). The acetogenic population was (10 5 MPN mL -1 ) and the sulphate-reducing population was (10 4 -10 5 MPN mL -1 ). In the methanogenic reactor (R2), levels of CH 4 (70%) were higher than CO 2 (25%), whereas the VFA values were lower than 4000 mg L -1 . Substrate competition between sulphate-reducing (10 4 -10 5 MPN mL -1 ) and methanogenic bacteria (10 5 MPN mL -1 ) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH 4 g -1 VSS -1 day -1 ) and hydrogenophilic (0.94 g COD-CH 4 g -1 VSS -1 day -1 ) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified

  15. Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.

    Science.gov (United States)

    Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P

    2017-02-01

    Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon

    Science.gov (United States)

    Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Meissner, Benjamin M.; Williams, Mike; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.

    2013-01-01

    In this study, the distribution of steroid hormones, phytoestrogens, and estrogenic activity was thoroughly characterized within the anaerobic waste lagoon of a typical commercial swine sow operation. Three independent rounds of sampling were conducted in June 2009, April 2010, and February 2011. Thirty-seven analytes in lagoon slurry and sludge were assessed using LC/MS-MS, and yeast estrogen screen was used to determine estrogenic activity. Of the hormone analytes, steroidal estrogens were more abundant than androgens or progesterone, with estrone being the predominant estrogen species. Conjugated hormones were detected only at low levels. The isoflavone metabolite equol was by far the predominant phytoestrogen species, with daidzein, genistein, formononetin, and coumestrol present at lower levels. Phytoestrogens were often more abundant than steroidal estrogens, but contributed minimally towards total estrogenic activity. Analytes were significantly elevated in the solid phases of the lagoon; although low observed log KOC values suggest enhanced solubility in the aqueous phase, perhaps due to dissolved or colloidal organic carbon. The association with the solid phase, as well as recalcitrance of analytes to anaerobic degradation, results in a markedly elevated load of analytes and estrogenic activity within lagoon sludge. Overall, findings emphasize the importance of adsorption and transformation processes in governing the fate of these compounds in lagoon waste, which is ultimately used for broadcast application as a fertilizer.

  17. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  18. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.

    Science.gov (United States)

    Rodríguez-Méndez, R; Le Bihan, Y; Béline, F; Lessard, P

    2017-09-01

    A detailed study of a solid slaughterhouse waste (SHW) anaerobic treatment is presented. The waste used in this study is rich in lipids and proteins residue. Long chain fatty acids (LCFA), coming from the hydrolysis of lipids were inhibitory to anaerobic processes at different degrees. Acetogenesis and methanogenesis processes were mainly affected by inhibition whereas disintegration and hydrolysis processes did not seem to be affected by high LCFA concentrations. Nevertheless, because of the high energy content, this kind of waste is very suitable for anaerobic digestion but strict control of operating conditions is required to prevent inhibition. For that, two inhibition indicators were identified in this study. Those two indicators, LCFA dynamics and LCFA/VS biomass ratio proved to be useful to predict and to estimate the process inhibition degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A new model for calculating the reduction in greenhouse gas emissions through anaerobic co-digestion of manure and organic waste

    International Nuclear Information System (INIS)

    Sommer, S.G.; Moeller, H.B.; Petersen, S.O.

    2002-01-01

    Biogenic emissions of methane (CH 4 ) and nitrous oxide (N 2 0) occur during handling, storage and after field application of animal manure. The emissions are linked to decomposition of volatile solids (VS), which provide energy for microorganisms. During anaerobic storage, turnover of VS drives the microbial processes which lead to CH 4 , production. Also, turnover of VS in slurry applied to fields will consume oxygen and can thereby stimulate N 2 0 production. Anaerobic digestion of manure and organic wastes for biogas production removes VS prior to storage and field application, and therefore this treatment also reduces the potential for CH 4 , and N 2 0 emissions. A model has been developed to evaluate the effect of anaerobic co-digestion of animal manure and organic waste on CH, and N 2 0 emissions. The model estimates the reduction in VS during storage and digestion, and an algorithm for prediction of CH 4 , emissions from manure during storage relates the emission to VS, temperature and storage time. Nitrous oxide emissions from field-applied slurry are calculated using VS, slurry N, soil water potential and application method as input variables, thus linking C and N turnover. The amount of fossil fuel that is substituted by CH 4 , produced during digestion is also calculated in order to estimate the total effect of anaerobic digestion on greenhouse gas emissions from slurry. Model calculations show the potential of manure digestion to modify the emission of greenhouse gases from agriculture. The experience from application of the model to different scenarios is that the emission of greenhouse gases and their reduction must be calculated with dynamic and integrated models. Specifically, the results indicate that digestion of slurry and organic wastes could reduce Danish greenhouse gas emissions by as much as 3%. (au)

  20. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.

    2009-01-01

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks

  1. Preliminary cleaning of brewery waste water in a two-stage anaerobic plant: influence of COD in the inflow on cleaning efficiency and biogas formation; Vorreinigung von Brauereiabwasser in zweistufigen Anaerob-Anlagen: Einfluss des CSB im Zulauf auf die Reinigungsleistung und Biogasbildung

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A.P. [Universitaet des Saarlandes, Saarbruecken (Germany). Lehrstuhl fuer Prozesstechnik; Janke, H.D. [Gesellschaft fuer Umweltkompatible Prozesstechnik mbH (upt), Saarbruecken (Germany); Chmiel, H. [Gesellschaft fuer Umweltkompatible Prozesstechnik mbH (upt), Saarbruecken (Germany); Universitaet des Saarlandes, Saarbruecken (Germany). Lehrstuhl fuer Prozesstechnik

    1999-07-01

    Using a continuously operated, two-stage laboratory system (acidification reactor and packed-bed methane reactor) and with brewery waste water as a substrate, systematic studies concerning the influence of COD{sup inflow} on fatty acid formation, COD reduction and biogas formation were carried out. In the upshot, the executed pilot tests permit the conclusion that treatment of a partial stream (COD{sup inflow} {>=} 5000mg/l), though not advantageous in terms of space/time yield, may be more economical on the whole under certain boundary conditions than treatment of the entire stream (COD{sup inflow} 1800-3000 mg/l). (orig.) [German] Mit einer kontinuierlich betriebenen, zweistufigen Laboranlage (Versaeuerungsreaktor und Festbett-Methanreaktor) wurden unter Verwendung von Brauereiabwasser als Substrat systematische Untersuchungen zum Einfluss des CSB{sup ZULAUF} auf die Fettsaeurebildung, CSB-Reduktion und Biogasbildung durchgefuehrt. Aus den durchgefuehrten Modellversuchen laesst sich zusammenfassend ableiten, dass eine Teilstrombehandlung (CSB{sup ZULAUF}{>=}5.000 mg/l) zwar hinsichtlich der Raum/Zeit-Ausbeute keine Vorteile mit sich bringt, aber unter bestimmten Randbedingungen insgesamt wirtschaftlicher als eine Vollstrombehandlung (CSB{sup ZULAUF} 1.800-3.000 mg/l) sein kann. (orig.)

  2. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  3. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Rajagopal, Rajinikanth; Singh, Gursharan

    2014-01-01

    Highlights: • Long-term anaerobic digestion (AD) process at high-ammonia (>5 gN/L) is limited. • PADSBR technology was validated to treat N-rich waste with 8.2 ± 0.3 gNH 3 -N/L. • Excess ammonia (8.2 gN/L) did not affect the digestion process with no inhibition. • VFA, an indicator for process stability, did not accumulate in PADSBR. • Biomass acclimation in PADSBR ensured a high-stabilization of the AD process. - Abstract: Ammonia nitrogen plays a critical role in the performance and stability of anaerobic digestion (AD) of ammonia rich wastes like animal manure. Nevertheless, inhibition due to high ammonia remains an acute limitation in AD process. A successful long-term operation of AD process at high ammonia (>5 gN/L) is limited. This study focused on validating technical feasibility of psychrophilic AD in sequencing batch reactor (PADSBR) to treat swine manure spiked with NH 4 Cl up to 8.2 ± 0.3 gN/L, as a representative of N-rich waste. CODt, CODs, VS removals of 86 ± 3, 82 ± 2 and 73 ± 3% were attained at an OLR of 3 gCOD/L.d, respectively. High-ammonia had no effect on methane yields (0.23 ± 0.04 L CH 4 /gTCOD fed ) and comparable to that of control reactors, which fed with raw swine manure alone (5.5 gN/L). Longer solids/hydraulic retention times in PADSBRs enhanced biomass acclimation even at high-ammonia. Thus VFA, an indicator for process stability, did not accumulate in PADSBR. Further investigation is essential to establish the maximum concentrations of TKN and free ammonia that the PADSBR can sustain

  4. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  5. Anaerobic co-digestion of municipal organic wastes and pre-treatment to enhance biogas production from waste.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2014-01-01

    Co-digestion and pre-treatment have been recognized as effective, low-cost and commercially viable approaches to reduce anaerobic digestion process limitations and improve biogas yields. In our previous batch-scale study, fat, oil, and grease (FOG) was investigated as a suitable potential co-substrate, and thermo-chemical pre-treatment (TCPT) at pH = 10 and 55 °C improved CH4 production from FOG co-digestions. In this project, co-digestions with FOG were studied in bench-scale two-stage thermophilic semi-continuous flow co-digesters with suitable TCPT (pH = 10, 55 °C). Overall, a 25.14 ± 2.14 L/d (70.2 ± 1.4% CH4) biogas production was obtained, which was higher than in the two-stage system without pre-treatment. The results could provide valuable fundamental information to support full-scale investigations of anaerobic co-digestion of municipal organic wastes.

  6. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    Science.gov (United States)

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  7. Impact of coagulant and flocculant addition to an anaerobic dynamic membrane bioreactor (AnDMBR) treating waste-activated sludge

    NARCIS (Netherlands)

    Kooijman, G.; Lopes, Wilton; Zhou, Z.; Guo, H.; de Kreuk, M.K.; Spanjers, H.L.F.M.; van Lier, J.B.

    2017-01-01

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35°C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1–86), the reactor was operated as a

  8. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  9. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  10. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    Alvarez Alduan, F.; Capdevila, C.

    1979-01-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  11. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  12. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge.

    Science.gov (United States)

    Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh

    2015-06-01

    In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion of food waste stabilized by lime mud from papermaking process.

    Science.gov (United States)

    Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

    2014-10-01

    The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie

    2014-05-01

    Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors.

    Science.gov (United States)

    Huang, Haining; Zheng, Xiong; Chen, Yinguang; Liu, Hui; Wan, Rui; Su, Yinglong

    2017-02-15

    Alkaline fermentation has been reported to be an effective method to recover valuable products from waste sludge. However, to date, the potential effect of alkaline pH on the fate of antibiotic resistance genes (ARGs) during anaerobic fermentation of sludge has never been documented. In this study, the target ARGs in sludge was observed to be removed effectively and stably when sludge was anaerobically fermented at pH10. Compared with the control (without pH adjustment), the abundances of target ARGs at pH10 were reduced by 0.87 (sulI), 1.36 (sulII), 0.42 (tet(O)), 1.11 (tet(Q)), 0.79 (tet(C)) and 1.04 (tet(X)) log units. Further investigations revealed that alkaline fermentation shifted the community structures of potential ARGs hosts. Moreover, alkaline fermentation remarkably decreased the quantities and the ARGs-possessing ability of genetic vectors (plasmid DNA, extracellular DNA and phage DNA), which might limit the transfer of ARGs via conjugation, transformation and transduction. These results suggest that the shifted compositions of gene hosts and restricted gene transfer potential might be the critical reasons for the attenuation of ARGs at pH10. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Hagen, Live H; Svensson, Kine; Linjordet, Roar; Horn, Svein J

    2016-06-01

    Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.

    Science.gov (United States)

    Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y

    2011-08-01

    Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Feasibility of thermophilic anaerobic processes for treating waste activated sludge under low HRT and intermittent mixing.

    Science.gov (United States)

    Leite, Wanderli; Magnus, Bruna Scandolara; Guimarães, Lorena Bittencourt; Gottardo, Marco; Belli Filho, Paulo

    2017-10-01

    Thermophilic anaerobic digestion (AD) arises as an optimized solution for the waste activated sludge (WAS) management. However, there are few feasibility studies using low solids content typically found in the WAS, and that consider uncommon operational conditions such as intermittent mixing and low hydraulic retention time (HRT). In this investigation, a single-stage pilot reactor was used to treat WAS at low HRT (13, 9, 6 and 5 days) and intermittent mixing (withholding mixing 2 h prior feeding). Thermophilic anaerobic digestion (55 °C) was initiated from a mesophilic digester (35 °C) by the one-step startup strategy. Although instabilities on partial alkalinity (1245-3000 mgCaCO 3 /L), volatile fatty acids (1774-6421 mg/L acetic acid) and biogas production (0.21-0.09 m 3 /m 3 reactor .d) were observed, methanogenesis started to recover in 18 days. The thermophilic treatment of WAS at 13 and 9 days HRT efficiently converted VS into biogas (22 and 21%, respectively) and achieved high biogas yield (0.24 and 0.22 m 3 /kgVS fed , respectively). Intermittent mixing improved the retention of methanogens inside the reactor and reduced the washout effect even at low HRT (5% TS). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    Science.gov (United States)

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  20. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    Science.gov (United States)

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    Science.gov (United States)

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  2. Livestock Feed Production from Sago Solid Waste by Pretreatment and Anaerobic Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Food needs in Indonesia is increasing, including beef. Today, Indonesia has problem to do self-sufficiency in beef. The cause of the problem is the quality of local beef is still lower compared with imported beef due to the quality of livestock feed consumed. To increase the quality of livestock is through pretreatment and fermentation. Source of livestock feed that processed is solid sago waste (Arenga microcarpa, because in Indonesia that is relatively abundant and not used optimally. Chemical pretreatment process for delignification is by using NaOH solution. The purposes of this research are to study NaOH pretreatment, the addition of Trichoderma sp, and fermentation time to improve the quality of sago solid waste as livestock feed through anaerobic fermentation. The variables used are addition or without addition (4%w NaOH solution and Trichoderma sp 1%w and fermentation time (7, 14 and 21 days, with the response of crude fiber and protein. The result of this research shows that the pretreatment with soaking of NaOH solution, addition of Trichoderma sp and 14 days of fermentation was more effective to improve the quality of solid sago waste with decrease of crude fiber from 33.37% to 17.36% and increase of crude protein from 4.00% to 7.96%.

  3. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing

    International Nuclear Information System (INIS)

    Linke, Bernd

    2006-01-01

    Anaerobic treatment of solid wastes from potato processing was studied in completely stirred tank reactors (CSTR) at 55 o C. Special attention was paid to the effect of increased organic loading rate (OLR) on the biogas yield in long-term experiments. Both biogas yield and CH 4 in the biogas decreased with the increase in OLR. For OLR in the range of 0.8 gl -1 d -1 -3.4 gl -1 d -1 , biogas yield and CH 4 obtained were 0.85 l g -1 -0.65 l g -1 and 58%-50%, respectively. Biogas yield y as a function of maximum biogas yield y m , reaction rate constant k and HRT are described on the basis of a mass balance in a CSTR and a first order kinetic. The value of y m can be obtained from curve fitting or a simple batch test and k results from plotting y/(y m -y) against 1/OLR from long-term experiments. In the present study values for y m and k were obtained as 0.88 l g -1 and 0.089 d -1 , respectively. The simple model equations can apply for dimensioning completely stirred tank reactors (CSTR) digesting organic wastes from food processing industries, animal waste slurries or biogas crops

  4. Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions.

    Science.gov (United States)

    Kafle, Gopi Krishna; Kim, Sang Hun; Sung, Kyung Ill

    2012-11-01

    The objective of this study was to investigate the feasibility of anaerobic co-digestion of Kimchi factory waste silage (KFWS) with swine manure (SM). Chinese cabbage (CC) is the major waste generated by a Kimchi factory and KFWS was prepared by mixing CC and rice bran (RB) (70:30 on a dry matter basis). In Experiment I, the biogas potential of CC and RB were measured and, in Experiment II, the test was conducted with different ratios of KFWS and SM (KFWS: SM=0:100; 33:67; 67:33; 100:0 by% volatile solids (VS) basis). KFWS produced a 27% higher biogas yield and a 59% higher methane yield compared to CC. The specific biogas yields increased by 19, 40 and 57% with KFWS-33%, KFWS-67% and KFWS-100%, respectively compared to SM-100% (394 mL/g VS). Similarly, VS removal increased by 37, 51 and 74% with KFWS-33%, KFWS-67% and KFWS-100%, respectively compared to SM-100%. These results suggested that Kimchi factory waste could be effectively treated by making silage, and the silage could be used as a potential co-substrate to enhance biogas production from SM digesters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Waste water from dewatering of peat

    International Nuclear Information System (INIS)

    Ringqvist, L.; Bergner, K.; Olsson, Tommy; Bystroem, P.

    1991-01-01

    The influence of waste water from mechanical dewatering of peat was tested on two species of stream invertebrates. We compared the effects of waste water from peat without any chemical treatment, and waste water from peat where one of the following treatments of the peat had preceded dewatering; a: acidification combined with addition of the cationic polymer Zetag 78 FS40, b: addition of aluminium in combination with the anionic polymer Magnafloc E10, c: polymerisation of the peat by acidification and addition of ferrous chloride and hydrogen peroxide. Waste water from Al/Magnafloc and from the polymerisation treatments had a higher content of suspended matter and a higher oxygen demand than those of other treatments. Total metal content of the water from all treatments was higher than in water from non-treated peat. Survival and growth of nymphs of the mayfly Heptagenia fuscogrisa and the stonefly Nemoura cinerea were compared in waste water from the different treatments. In all tests, the waste water was diluted to 5% (volume) with unchlorinated tapwater and pH was between 7.0-8.0 in all treatments during the experiment. The nymphs were fed with birch leaves that had been incubated in natural stream water for one month. Under these conditions, we did not find any significant effect of waste water on either survival or growth of these two species

  6. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Khalid, Azeem; Qadeer, Samia; Miandad, Rashid

    2017-09-01

    Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20-50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l -1 ) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m 3 t -1 substrate compared with 57.35 m 3 t -1 substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.

  7. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  8. Environmental assessment of energy and waste systems based on anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Rehl, Torsten

    2013-08-01

    The results of the studies show that biogas production brings about many or environmental improvements compared to energy generation based on fossil sources when designed and managed properly. Environmental advantages are found for GWP (Global Warming Potential) and energy consumption, disadvantages however for EP (Eutrophication Potential), AP (Acidification Potential) and POCP (Photochemical Ozone Creation Potential). However the large amount of technologies and measures indicate that there is a large potential to reduce the environmental impacts. Another finding is that all life cycle phases and subsystems must be carefully considered, as no single dominating item or aspect in the life cycle can be identified. The most environmentally relevant phases are found to be storage, treatment and field application of manure and digestate. This result is to a large part due to the emission of ammonia, nitrous oxide and nitrate. It can therefore be concluded that from a lifecycle perspective, control and mitigation of nitrogen related emissions will be of utmost importance in the future to improve the environmental performance of biogas systems. Considerable emission reduction potentials are exposed when proper technological modifications (e.g. storage covers, filter technologies, digestate treatment or field application technologies) or adopted management practices (early soil incorporation of digestate) are applied. The environmental analysis also shows that whenever possible the focus of anaerobic digestion should be on the use of organic residues from households, agriculture or food industry instead of using energy crops. In this case conventional waste management systems are replaced and manifold positive effects of anaerobic digestion such as waste stabilization, nutrient recycling and energy generation emerge.

  9. Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Campen, L.V.; Lettinga, G.

    1987-01-01

    This study was carried out to assess the feasibility of the upflow granular anaerobic sludge blanket (UASB) process for one-stage anaerobic treatment of unsettled slaughterhouse wastewater, which contains approximately 50% insoluble coarse suspended COD. The experiments used continuous feeding (24 h day) during the working days combined with weekend feed interruptions at 30 degrees C and 20 degrees C. An organic space load up to 11 and 7 kg COD/cubic m/day was satisfactorily accommodated at process temperatures of 30 degrees C and 20 degrees C, respectively, with a treatment efficiency up to 55% on COD total basis and 85% on COD filtered basis. The system was less effective in the removal of the coarse Suspended Solids than the removal of the colloidal and soluble fractions. The data indicate that a proper application of a one-stage granular UASB system treating unsettled wastewater, such as slaughterhouse waste, strongly depends on the processes involved in the removal of the colloidal and soluble fraction from the waste and on its conversion into methane. Under the optimal loading conditions of 11 kg COD/cubic m/day (30 degrees C) and 7 kg COD/cubic m/day (20 degrees C) the conversion of removed colloidal and soluble materials into methane was up to 87% and 82%. However, the system still performed very satisfactorily in the removal of the colloidal and soluble pollutants up to loading rates of 15 and 9 kg COD/cubic m/day at 30 degrees C and 20 degrees C, respectively, although the conversion of the removed organic matter into methane dropped dramatically, rendering the application of the process under these conditions unattractive, if not impossible. (Refs. 16).

  10. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass

    International Nuclear Information System (INIS)

    Yao, Zhiyi; Li, Wangliang; Kan, Xiang; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2017-01-01

    There is a rapid growing interest in using biomass as an alternative source for clean and sustainable energy production. In this work, a hybrid system was developed to combine anaerobic digestion (AD) and gasification for energy recovery from yard waste and woody biomass. The feasibility of the proposed hybrid system was validated experimentally and numerically and the energy efficiency was maximized by varying energy input in the drying process. The experiments were performed in two stages. At the first stage, AD of yard waste was conducted by mixing with anaerobic sludge. At the second stage, co-gasification was added as post-treatment for the AD residue for syngas production. The co-gasification experiments of AD residue and woody biomass were conducted at varying mixing ratios and varying moisture contents of AD residue. Optimal energy efficiency was found to be 70.8% at mixing ratio of 20 wt% AD residue with 30 wt% moisture content. Two kinetic models were then adapted for prediction of biogas produced in AD process and syngas produced in gasification process, respectively. Both experimental and numerical results showed that full utilization of biomass could be realized to produce energy through the combination of these two technologies. - Highlights: • The feasibility of the proposed two-stage hybrid system was validated experimentally and numerically. • The proposed hybrid system could effectively improve the quality of produced gas. • The operating parameters were optimized to improve the overall energy efficiency of the system. • Drying process was found to play an important role in determining overall energy efficiency. • Optimal moisture content of AD residue was investigated for maximizing energy efficiency.

  11. FEASIBILITY STUDY OF ANAEROBIC DIGESTION OF OCIMUM SANCTUM LEAF WASTE GENERATED FROM SANCTUM SANCTORUM

    Directory of Open Access Journals (Sweden)

    Korla Swapnavahini

    2010-02-01

    Full Text Available The waste originated in temples is presently piled up at one place and then disposed off in water bodies or dumped on land to decay, leading to water and soil pollution. The present work aims to determine the biogas yield and nutrient reduction potential of Ocimum sanctum (basil leaf waste obtained from temples. Laboratory scale digesters of 2.5 L capacity were used and fed with basil leaf waste, which was digested in a batch reactor for a retention period of 30 days at room temperature. Preliminary results indicate that the process is effective in reducing the pollution potential of the basil waste. The process removed up to 73% and 42% of total solids and BOD, respectively, along with biogas production.

  12. A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion.

    Science.gov (United States)

    Yu, Meijuan; Zhao, Mingxing; Huang, Zhenxing; Xi, Kezhong; Shi, Wansheng; Ruan, Wenquan

    2018-02-01

    A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R 2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g -1  TS and 545.29 mL g -1  TS with the model, while the experimental values were 527.47 mL g -1  TS and 522.1 mL g -1  TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    Science.gov (United States)

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  14. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  15. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  16. Environmental sustainability of waste water ozonation

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... and whole effluent toxicity have been developed. About 15 different waste water and sludge treatment technologies (or combinations) have been assessed. This paper will present the LCA results from running the induced versus avoided impact approach on one of the WWTTs, i.e. ozonation....

  17. Environmental sustainability of ozonating municipal waste water

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the WWTTs, i.e. ozonation....

  18. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    Science.gov (United States)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  19. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters.

    Science.gov (United States)

    Kujawa-Roeleveld, K; Elmitwalli, T; Zeeman, G

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.

  20. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhance...... hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction and volatile fatty acid (VFA) production at different hydraulic retention times (HRT...

  1. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  2. Complete census of the anaerobic digesters today operating in Italy on animal waste

    Energy Technology Data Exchange (ETDEWEB)

    Tilche, A; De Poli, F; Bozza, E; Calzolari, C; Ferrante, E; Massari, A

    1983-01-01

    A complete census of all the biogas plants operating or under construction today in Italy has been carried out. This shows that more than 60 full-scale plants treating animal wastes are today in operation. Then there are several pilot and experimental plants built by the numerous Italian firms that design and sell anaerobic digesters and by various research groups of the universities and of state agencies. Some plants, among which some large-size ones, have been self-built by the farmers. The great amount of collected data allowed us to focus the main technological choices regarding materials, mixing and heating systems, technological cycles and to confront them with the performance of the plants and with the principal technical issues and the problems of management that can be found on large scale plants. Then the analysis of daily biogas production allowed us to determine real parameters of specific production for various kinds of animal wastes and animal farms. Other interesting data concern the main technological means used to transform the biogas into energy: in Italy, for the presence of Flat Industries that produce the TOTEM, the prevalent choice is toward cogeneration of electricity and heat. Anyway there are interesting examples of utilization of biogas for drying forages, for steam generation in cheese factories, and compressed, as a fuel for farm tractors and cars. A complete photographic documentation of all the plants enclosed in the census is also available. 3 refs., 1 fig., 23 tabs.

  3. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  4. Increasing Methane Production by Anaerobic Co-Digestion of Slaughterhouse with Fruit and Vegetable Wastes

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2016-12-01

    Full Text Available Despite fossil fuels, the energy supply from biogas process is of renewable energy resources; this kind of energy can be generated in all parts of the world. Thus, the potential of anaerobic co-digestion for production of methane from wastes of an industrial slaughterhouse and fruit and vegetable center in the Hamadan city, west of Iran, was investigated. The digester was operated under the mesophilic (35 - 37°C condition for a period of 40 days with 3 different C/N ratios (20/1, 30/1 and 40/1. Before operation of digester, the amounts of C and N in the wastes were measured and during the experiments pH and composition of the biogas were determined. The cumulative amounts of the generated total biogas and methane at the 3 examined C/N ratios 20/1, 30/1 and 40/1 were, respectively 181, 201.7 and 162.5 L and 129.8, 149.2 and 114 L. The results indicated that the highest contents of biogas and methane (201.68 and 149.29 L, respectively were obtained at C/N of 30 within 31 days.

  5. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    Science.gov (United States)

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. © The Author(s) 2015.

  6. Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota.

    Science.gov (United States)

    Lin, Chiu-Yue; Lay, Chyi-How; Sung, I-Yuan; Sen, Biswarup; Chen, Chin-Chao

    2017-10-01

    The cultivation of mushrooms generates large amounts of waste polypropylene bags stuffed with wood flour and bacterial nutrients that makes the mushroom waste (MW) a potential feedstock for anaerobic bioH 2 fermentation. MW indigenous bacteria were enriched using thermophilic temperature (55°C) for use as the seed inoculum without any external seeding. The peak hydrogen production rate (6.84 mmol H 2 /L-d) was obtained with cultivation pH 8 and substrate concentration of 60 g MW/L in batch fermentation. Hydrogen production yield (HY) is pH and substrate concentration dependent with an HY decline occurring at pH and substrate concentration increasing from pH 8 to 10 and 60 to 80 g MW/L, respectively. The fermentation bioH 2 production from MW is in an acetate-type metabolic path. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Anaerobic digestion of fruit and vegetable processing wastes for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, P.; Sumithra Devi, S.; Nand, K. (Central Food Technological Research Inst., Mysore (IN))

    1992-01-01

    The effect of feeding different fruit and vegetable wastes, mango, pineapple, tomato, jackfruit, banana and orange, was studied in a 60-litre digester by cycling each waste every fifth day in order to operate the digester as and when there was supply of feed. The characteristics of the anaerobically digested fluid and digester performance in terms of biogas production were determined at different loading rates (LR) and at different hydraulic retention times (HRT) and the maximum biogas yield of 0.6 m{sup 3}/kg VS added was achieved at a 20-day HRT and 40 kg TS m{sup -3}day{sup -1} loading rate. The hourly gas production was observed in the digesters operated at 16 and 24 days HRT. The major yield (74.5%) of gas was produced within 12h of feeding at a 16-day HRT whereas at a 24-day HRT only 59.03% of the total gas could be obtained at this time. (author).

  9. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Directory of Open Access Journals (Sweden)

    Yann Nicolas Barbot

    2015-09-01

    Full Text Available The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP and biomethane recovery of industrial Laminaria japonica waste (LJW in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC, as well as a co-digestion approach with maize silage (MS did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.

  10. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    Science.gov (United States)

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  11. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    Directory of Open Access Journals (Sweden)

    Zubayeda Zahan

    2016-01-01

    Full Text Available The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW with sewage sludge (SS, that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284±9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS.

  12. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    Science.gov (United States)

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  13. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  14. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    Science.gov (United States)

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  15. Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy.

    Science.gov (United States)

    Rodríguez-Abalde, Ángela; Gómez, Xiomar; Blanco, Daniel; Cuetos, María José; Fernández, Belén; Flotats, Xavier

    2013-12-01

    Thermogravimetric analysis coupled to mass spectrometry (TGA-MS) and Fourier-transform infrared spectroscopy (FTIR) were used to describe the effect of pasteurization as a hygienic pre-treatment of animal by-products over biogas production. Piggery and poultry meat wastes were used as substrates for assessing the anaerobic digestion under batch conditions at mesophilic range. Poultry waste was characterized by high protein and carbohydrate content, while piggery waste presented a major fraction of fat and lower carbohydrate content. Results from anaerobic digestion tests showed a lower methane yield for the pre-treated poultry sample. TGA-MS and FTIR spectroscopy allowed the qualitative identification of recalcitrant nitrogen-containing compounds in the pre-treated poultry sample, produced by Maillard reactions. In the case of piggery waste, the recalcitrant compounds were not detected and its biodegradability test reported higher methane yield and production rates. TGA-MS and FTIR spectroscopy were demonstrated to be useful tools for explaining results obtained by anaerobic biodegradability test and in describing the presence of inhibitory problems.

  16. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  17. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  18. The influence of aerobic sludge retention time on anaerobic co ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... INTRODUCTION. In developing countries such as China, secondary waste- ..... co-digestion product of azo dye of TDP wastewater. (Razo-Flores et al., .... sludge disintegration for improving anaerobic stabilization. Water. Res.

  19. Organic Waste Anaerobic degradation with bio-activator-5 Effective Microorganism (EM-5 to Produce Biogas

    Directory of Open Access Journals (Sweden)

    Metri Dian Insani

    2014-06-01

    Full Text Available Degradasi Anaerob Sampah Organik dengan Bioaktivator Effective Microorganism-5 (EM-5 untuk Menghasilkan Biogas Abstract: The purpose of this study was to: (1 analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2 analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow dung for a long time flame biogas produced, and (3 analyze the different uses corn cobs, kelaras bananas and banana peel with the addition of cow manure to the C / N ratio end. Experimental study was designed using a completely randomized design (CRD, with three treatments each in 3 repetitions. The research proves that: (1 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to the length of time the flame and (3 there is a difference corncobs, kelaras bananas and banana peel with the addition of cow manure to the C / N ratio end. Key Words: anaerobic degradation, organic waste, EM-5, biogas Abstrak: Tujuan penelitian ini adalah untuk: (1 menganalisis perbedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap tekanan biogas, (2 menganalisis perbedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penam-bahan kotoran sapi terhadap lama waktu nyala api biogas yang dihasilkan, dan (3 menganalisis per-bedaan penggunaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap rasio C/N akhir. Penelitian eksperimen didesain menggunakan rancangan acak lengkap (RAL, dengan tiga perlakuan masing-masing dalam 3 kali ulangan. Hasil penelitian membuktikan bahwa: (1 terdapat perbedaan tongkol jagung, kelaras pisang, dan kulit pisang dengan penambahan kotoran sapi terhadap tekanan biogas, (2 terdapat

  20. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Alzate-Gaviria, Liliana M. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico); Perez-Hernandez, Antonino [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Eapen, D. [Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    Two laboratory scale anaerobic digestion systems for hydrogen production from organic fraction of municipal solid waste (OFMSW) and synthetic wastewater were compared in this study. One of them was formed by a coupled packed bed reactor (PBR) containing 19.4 L of OFMSW and the other an upflow anaerobic sludge bed (UASB) of 3.85 L. The reactors were inoculated with a mixture of non-anaerobic inocula. In the UASB the percentage of hydrogen yield reached 51% v/v and 127NmLH{sub 2}/gvs removed with a hydraulic retention time (HRT) of 24 h. The concentration of synthetic wastewater in the affluent was 7 g COD/L. For the PBR the percentage yield was 47% v/v and 99NmLH{sub 2}/gvs removed with a mass retention time (MRT) of 50 days and the organic load rate of 16 gvs (Grams Volatile Solids)/(kg-day). The UASB and PBR systems presented maximum hydrogen yields of 30% and 23%, respectively, which correspond to 4molH{sub 2}/mol glucose. These values are similar to those reported in the literature for the hydrogen yield (37%) in mesophilic range. The acetic and butyric acids were present in the effluent as by-products in watery phase. In this work we used non-anaerobic inocula made up of microorganism consortium unlike other works where pure inocula or that from anaerobic sludge was used. (author)

  1. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of

  2. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the

  3. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes.

    Science.gov (United States)

    Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang

    2018-02-01

    The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.

  4. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    Science.gov (United States)

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  5. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste.

    Science.gov (United States)

    Park, Jong-Hun; Kumar, Gopalakrishnan; Yun, Yeo-Myeong; Kwon, Joong-Chun; Kim, Sang-Hyoun

    2018-01-01

    The effect of feeding mode and dilution was studied in anaerobic digestion of food waste. An upflow anaerobic digester with a settler was fed at six different organic loading rates (OLRs) from 4.6 to 8.6kgCOD/m 3 /d for 200days. The highest methane productivity of 2.78LCH 4 /L/d was achieved at 8.6kgCOD/m 3 /d during continuous feeding of diluted FW. Continuous feeding of diluted food waste showed more stable and efficient performance than stepwise feeding of undiluted food waste. Sharp increase in propionate concentration attributed towards deterioration of the digester performances in stepwise feeding of undiluted food waste. Microbial communities at various OLRs divulged that the microbial distribution in the continuous feeding of diluted food waste was not significantly perturbed despite the increase of OLR up to 8.6kgCOD/m 3 /d, which was contrast to the unstable distribution in stepwise feeding of undiluted food waste at 6.1kgCOD/m 3 /d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Grey water treatment in a series anaerobic – Aerobic system for irrigation

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant

  7. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems

    NARCIS (Netherlands)

    Luostarinen, S.; Sanders, W.T.M.; Kujawa-Roeleveld, K.; Zeeman, G.

    2007-01-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The

  8. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems

    DEFF Research Database (Denmark)

    Ingerslev, Flemming; Toräng, Lars; Loke, M.-L.

    2001-01-01

    The primary aerobic and anaerobic biodegradability at intermediate concentrations (50-5000 mug/l) of the antibiotics olaquindox (OLA), metronidazole (MET), tylosin (TYL) and oxytetracycline (OTC) was studied in a simple shake flask system simulating the conditions in surface waters. The purpose...

  9. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.; Griffioen, J.; Behrends, T.; Wassen, M.J.; Schot, P.P.; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  10. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    NARCIS (Netherlands)

    Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed

  11. Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study.

    Science.gov (United States)

    Franchetti, Matthew

    2013-07-15

    The US disposes of more than 34 million tons of food waste in landfills per year. As this food waste decomposes it generates methane gas and negatively contributes to global warming. Diverting theses organic food wastes from landfills and to emerging technologies will prevent these wastes and greenhouse gas emissions while at the same time generating a source renewable energy by collecting the emitted gases. From a waste prevention standpoint, instead of the food waste decomposing at local landfills, it is being converted into an energy source and the by-product may be used as a fertilizer (Fine and Hadas, 2012). The purpose of this study was to compare four different configurations of anaerobic digestion of organic waste to energy technologies from an economic, energy, and emissions standpoint using LCA via a case study at a large food services provider in Northwest Ohio, USA. The technologies studied included two-stage anaerobic digestion system using ultrasound pre-treating, two stage continuous combined thermophilic acidogenic hydrogenesis and mesophilic with recirculation of the digested sludge, long-term anaerobic digestion of food waste stabilized by trace elements, and single stage anaerobic digestion. Using LCA, these scenarios were compared to landfill disposal of the food waste. The findings from the case study indicated that implementing on-site waste to energy systems will result in lower operation costs and lower environmental impacts. In addition, a standardized environmental and economic comparison of competing food waste to energy technologies is provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Waste water management in radiation medicine laboratories

    International Nuclear Information System (INIS)

    Song Miaofa

    1990-01-01

    A new building has been used since 1983 in the department of radiation medicine of Suzhou Medical College. Management, processing facilities, monitoring, discharge and treatment of 147 Pm contaminated waste water are reported

  13. Leidenfrost Driven Waste-Water Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — A Leidenfrost Driven Waste-Water Separator (LDS) is proposed in response to TA 6.1: Environmental Control and Life Support Systems and Habitation Systems. The LDS...

  14. Testing the Impact of Waste from Anaerobic Digestion (Enriched with an Organic Component on the Quality of Agricultural Land

    Directory of Open Access Journals (Sweden)

    Kodymová Jana

    2017-12-01

    Full Text Available Waste from anaerobic digestion is considered as a mineral fertilizer and it is usually applied to agricultural land. The aim of our attempt was to enrich this waste from anaerobic digestion (digestate with an organic component (in our case represented by haylage. For this purpose, we made different mixtures of digestate and haylage in different weight ratios. In the field trial, the effect of these mixtures on the soil, under standard agricultural conditions, was monitored. Selected accessible nutrients (P, K, Mg, Mn, Ca and the amount of carbon and nitrogen in the soil were monitored. The results of the laboratory tests confirmed that the areas where the sowing and digestate mixtures were applied showed greater amounts of macro- and micronutrients in plant-accessible forms than the surface fertilized only with digestate or areas fertilized only with standard fertilizers.

  15. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  17. Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example.

    Science.gov (United States)

    Guo, Qia; Dai, Xiaohu

    2017-11-01

    With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lab-scale co-digestion of kitchen waste and brown water for a preliminary performance evaluation of a decentralized waste and wastewater management.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Girotto, Francesca; Hirata, Osamu; Cossu, Raffaello

    2017-08-01

    An overall interaction is manifested between wastewater and solid waste management schemes. At the Laboratory of Environmental Engineering (LISA) of the University of Padova, Italy, the scientific and technical implications of putting into practice a decentralized waste and wastewater treatment based on the separation of grey water, brown water (BW - faecal matter) and yellow water (YW - urine) are currently undergoing investigation in the Aquanova Project. An additional aim of this concept is the source segregation of kitchen waste (KW) for subsequent anaerobic co-digestion with BW. To determine an optimal mixing ratio and temperature for use in the treatment of KW, BW, and eventually YW, by means of anaerobic digestion, a series of lab-scale batch tests were performed. Organic mixtures of KW and BW performed much better (max. 520mlCH 4 /gVS) in terms of methane yields than the individual substrates alone (max. 220mlCH 4 /gVS). A small concentration of urine proved to have a positive effect on anaerobic digestion performance, possibly due to the presence of micronutrients in YW. When considering high YW concentrations in the anaerobically digested mixtures, no ammonia inhibition was observed until a 30% and 10% YW content was added under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  20. Characterization of the anaerobic digestion of thermal pre-treated slaughterhouse waste by applying new IR techniques

    OpenAIRE

    Rodríguez-Abalde, Ángela; Gómez, X.; Blanco, D.; Cuetos, María José; Flotats Ripoll, Xavier; Fernández, B.

    2013-01-01

    In this work, thermal analysis and infrared spectrometry were used to explain the behaviour of two different pasteurized animal by-products with different protein/fat/carbohydrate composition. The presence of hardly degradable nitrogen containing components, identified by infrared spectrometry, and produced during Maillard reactions at pasteurization temperature, explained the different behaviour (methane rate and yield) under anaerobic conditions of pig and poultry wastes

  1. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  2. Anaerobic co-digestion of food waste and septage – A waste to energy project in Nashik city

    Directory of Open Access Journals (Sweden)

    Meghanath Prabhu

    2015-04-01

    Full Text Available The samples for food waste (FW and septage were collected from six localities of Nashik city. Physical and chemical characterizations of the wastes were carried out. A Biomethanation potential (BMP assay was developed to determine the ultimate biodegradability and associated methane yield during the anaerobic methanogenic fermentation of organic substrates. BMP assays of individual substrate, FW and septage were carried out by taking into account the volatile solids/total solids (VS/TS ratio of each while keeping the inoculum’s VS constant. BMP of FW and septage mixture was carried out in different ratios (1:1, 1.5:1, 2:1, 1:1.5 and 1:2 to find the optimum mixing ratio for maximum biogas production. The average methane yield for different locality FW was found to be 503±17.6 ml/g VS and for septage it was 56 ±10.8 ml/g VS. Based on the above results, the total biogas yield and total methane yield for 10 tons of FW would be 2178 m3/d and 1306 m3/d respectively. The total biogas yield and total methane yield for 20 m3 of septage would be 65m3/d and 39m3/d respectively. From our co-digestion studies we also conclude that the mixture of FW to septage at 1:2 ratio gives 2896 m3/day of biogas. The role of septage is to provide essential trace elements that are required for methanogens.

  3. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-01-01

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day −1 . • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day −1

  4. Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage

    Directory of Open Access Journals (Sweden)

    Claudinei de Souza Guimarães

    2018-04-01

    Full Text Available The objective of this study was to build and develop anaerobic biodigesters for optimization of biogas production using food waste (FW and sewage (S co-digestion from a wastewater treatment plant (WWTP. The biodigesters operated with different mixtures and in mesophilic phase (37 °C. During the 60 days of experiments, all control and monitoring parameters of the biodigesters necessary for biogas production were tested and evaluated. The biodigester containing FW, S and anaerobic sludge presented the biggest reduction of organic matter, expressed with removal of 88.3% TVS (total volatile solid and 84.7% COD (chemical oxygen demand the biggest biogas production (63 L and the highest methane percentage (95%. Specific methane production was 0.299 LCH4/gVS and removed. The use of biodigesters to produce biogas through anaerobic digestion may play an important role in local economies due to the opportunity to produce a renewable fuel from organic waste and also as an alternative to waste treatment. Finally, the embedded control and automation system was simple, effective, and robust, and the supervisory software was efficient in all aspects defined at its conception.

  5. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  6. Effects of variation of flow and accumulation of suspended solids on the performance of anaerobic/aerobic biofilm system applied to grey water treatment. kenkiter dot koki roshoho no shori seino ni oyobosu ryuryo hendo oyobi kendaku busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, T; Sagehashi, M; Otsuka, N; Okada, M; Murakami, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1991-04-10

    In this study, effects of variation of flow and accumulation of suspended solids (SS) on the performance of anaerobic/aerobic biofilm system were investigated through the laboratory test using synthetic wastewater and the field test using grey water. Effects of flow variation scarcely appeared on the time change of effluent quality in both cases where daily average hydraulic retention time (HRT) in anaerobic filter was 20h and that of aerobic filter was 6.7h. In the field test, however, removal rate of organic substances was lower (20-30%) than that of the laboratory test (90%), since SS content in grey water accumulated in the anaerobic filter which led dissolution of organic substances from accumulated SS, blocking, and short-circuit flow. Moreover, it was confirmed by the batch test that constituent of grey water has lower resolution for microorganisms and is more difficult to nitrate than synthetic waste water. 24 refs., 11 figs., 4 tabs.

  7. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion.

    Science.gov (United States)

    Nayal, Figen Sisman; Mammadov, Aydin; Ciliz, Nilgun

    2016-12-15

    While Turkey is one of the world's largest producers and exporters of agricultural goods, it is also, at the same time a net importer of energy carriers. This dichotomy offers a strong incentive to generate energy from agricultural and farming waste; something which could provide energy security for rural areas. Combined with the enhanced energy security for farming areas, the production of energy in this manner could conceivably contribute to the overall national effort to reduce the Turkey's carbon footprint. This study explores the environmental benefits and burdens of one such option, that is, biogas production from a mixture of agricultural and animal waste through anaerobic digestion (AD), and its subsequent use for electricity and heat generation. A life-cycle assessment methodology was used, to measure the potential environmental impact of this option, in terms of global warming and total weighed impact, and to contrast it with the impact of producing the same amount of energy via an integrated gasification combined cycle process and a hard coal power plant. This study concentrates on an AD and cogeneration pilot plant, built in the Kocaeli province of Turkey and attempts to evaluate its potential environmental impacts. The study uses laboratory-scale studies, as well as literature and LCI databases to derive the operational parameters, yield and emissions of the plant. The potential impacts were calculated with EDIP 2003 methodology, using GaBi 5 LCA software. The results indicate that N 2 O emissions, resulting from the application of liquid and solid portions of digestate (a by-product of AD), as an organic fertilizer, are by far the largest contributors to global warming among all the life cycle stages. They constitute 68% of the total, whereas ammonia losses from the same process are the leading cause of terrestrial eutrophication. The photochemical ozone formation potential is significantly higher for the cogeneration phase, compared to other life

  8. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  9. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    Science.gov (United States)

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-07-01

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1) The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. © The Author(s) 2014.

  10. Research advances in dry anaerobic digestion process of solid ...

    African Journals Online (AJOL)

    The dry anaerobic digestion process is an innovative waste-recycling method to treat high-solidcontent bio-wastes. This can be done without dilution with water by microbial consortia in an oxygenfree environment to recover potential renewable energy and nutrient-rich fertilizer for sustainable solid waste management.

  11. Effects of organic composition on the anaerobic biodegradability of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of organic composition on mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    Anaerobic digestion of food waste (FW) has been widely investigated, however, little is known about the influence of organic composition on the FW digestion process. This study aims to identify the optimum composition ratios of carbohydrate (CA), protein (CP) and lipid (EE) for maintaining high methane yield and process stability. The results show that the CA-CP-EE ratio was significantly correlated with performance and degradability parameters. Controlling the CA-CP-EE ratio higher than 1.89 (CA higher than 8.3%, CP lower than 5.0%, and EE lower than 5.6%) could be an effective way to maintain stable digestion and achieve higher methane production (385-627mL/gVS) and shorter digestion retention (196-409h). The CA-CP-EE ratio could be used as an important indicator for digestion performance. To effectively evaluate organic reduction, the concentration and removal efficiency of organic compositions in both solid phases and total FW should be considered. Copyright © 2017. Published by Elsevier Ltd.

  13. Identification of synergistic impacts during anaerobic co-digestion of organic wastes.

    Science.gov (United States)

    Astals, S; Batstone, D J; Mata-Alvarez, J; Jensen, P D

    2014-10-01

    Anaerobic co-digestion has been widely investigated, but there is limited analysis of interaction between substrates. The objective of this work was to assess the role of carbohydrates, protein and lipids in co-digestion behaviour separately, and together. Two sets of batch tests were done, each set consisting of the mono-digestion of three substrates, and the co-digestion of seven mixtures. The first was done with pure substrates--cellulose, casein and olive oil--while in the second slaughterhouse waste--paunch, blood and fat--were used as carbohydrate, protein and lipid sources, respectively. Synergistic effects were mainly improvement of process kinetics without a significant change in biodegradability. Kinetics improvement was linked to the mitigation of inhibitory compounds, particularly fats dilution. The exception was co-digestion of paunch with lipids, which resulted in an improved final yield with model based analysis indicating the presence of paunch improved degradability of the fatty feed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  15. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Mezzullo, William G.; McManus, Marcelle C.; Hammond, Geoff P.

    2013-01-01

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  16. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.; El-Fadel, Mutasem E.; Saikaly, Pascal

    2012-01-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  17. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae.

    Science.gov (United States)

    Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong

    2017-03-01

    Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of multiple inhibitory components on anaerobic treatment processes in municipal solid waste incineration leachate.

    Science.gov (United States)

    Lei, Yuqing; Dang, Yan; Lan, Zhangheng; Sun, Dezhi

    2016-06-01

    This study served to investigate the comparative and combined effects of calcium, ammonia nitrogen, and aquatic humic substances (AHS) on specific methanogenic activity (SMA) in municipal solid waste leachate at mesophilic conditions. Using orthogonal experiments, anaerobic granular sludge was cultured with different concentrations combinations of the three added components for 13 days. The combination of 6000 mg/L calcium, 400 mg/L ammonia nitrogen, and 4000 mg/L AHS was the most inhibitory combination on the SMA of granular sludge, with a calculated 4.49 mL (standard temperature and atmospheric pressure) (STP) CH4/(gVSS·d) of SMA. The SMA with the addition of the inhibitory components was much lower than the control group's (1000 mg/L calcium, 200 mg/L ammonia nitrogen and 2000 mg/L AHS) with a calculated 12.97 mL (STP) CH4/(gVSS·d) of SMA. Calcium was the major inhibitor among the three components followed by AHS. High concentrations of calcium significantly inhibited the utilization of propionate and butyrate in the substrate and further affected the methanogenic process.

  20. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  1. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  2. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    Energy Technology Data Exchange (ETDEWEB)

    Brandstätter, Christian, E-mail: bran.chri@gmail.com; Laner, David, E-mail: david.laner@tuwien.ac.at; Fellner, Johann, E-mail: johann.fellner@tuwien.ac.at

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  3. Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion

    International Nuclear Information System (INIS)

    Ortner, Markus; Wöss, David; Schumergruber, Alexander; Pröll, Tobias; Fuchs, Werner

    2015-01-01

    Highlights: • Successful implementation of a new waste and energy concept to large size abattoir. • 85% of slaughterhouse waste accumulated converted to energy by anaerobic digestion. • Coverage of abattoirs’ electrical and thermal energy demand between 50% and 60%. • Reduction of main energy and disposal cost by 63%. • Reduction of greenhouse gas emissions by 79%. - Abstract: Abattoirs have a large number of energy intensive processes. Beside energy supply, disposal costs of animal by-products (ABP) are the main relevant cost drivers. In this study, successful implementation of a new waste and energy management system based on anaerobic digestion is described. Several limitations and technical challenges regarding the anaerobic digestion of the protein rich waste material had to be overcome. The most significant problems were process imbalances such as foaming and floatation as well as high accumulation of volatile fatty acids and low biogas yields caused by lack of essential microelements, high ammonia concentrations and fluctuation in operation temperature. Ultimately, 85% of the waste accumulated during the slaughter process is converted into 2700 MW h thermal and 3200 MW h electrical energy in a biogas combined heat and power (CHP) plant. The thermal energy is optimally integrated into the production process by means of a stratified heat buffer. The energy generated by the biogas CHP-plant can cover a significant share of the energy requirement of the abattoir corresponding to 50% of heat and 60% of electric demand, respectively. In terms of annual cost for energy supply and waste disposal a reduction of 63% from 1.4 Mio € to about 0.5 Mio € could be achieved with the new system. The payback period of the whole investment is approximately 9 years. Beside the economic benefits also the positive environmental impact should be highlighted: a 79% reduction of greenhouse gas emissions from 4.5 Mio kg CO 2 to 0.9 Mio kg CO 2 annually was achieved

  4. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.

    Science.gov (United States)

    Alkan-Ozkaynak, A; Karthikeyan, K G

    2011-11-01

    Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    Science.gov (United States)

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m 3 day, generating about 252NL CH 4 /kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m 3 day, generating about 320NL CH 4 /kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water supply, waste water cleaning and waste disposal. 2. rev. ed.

    International Nuclear Information System (INIS)

    Knoch, W.

    1994-01-01

    The first part of the book contains fundamentals of chemistry, always having environmental protection in mind. Numerous examples are calculated. The second part gives detailed explanations of the material-scientific and analytical bases of the indispensable resource water and its conditioning, waste water cleaning and sludge treatment. Collection, transport, handling, disposal and recycling of unavoidable wastes and toxic wastes are finally dealt with. (orig./EF) [de

  7. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  8. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  9. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  10. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 6th Conference 'Anaerobic treatment of biological wastes'. New tendencies in the biogas technology; 6. Fachtagung Anaerobe biologische Abfallbehandlung. Neue Tendenzen in der Biogastechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Bilitewski, B.; Werner, P.; Dornack, Christina; Stegmann, R.; Rettenberger, G.; Faulstich, M.; Wittmaier, M. (eds.)

    2008-07-01

    Within this 6th conference at 23rd to 24th September, 2008, in Dresden (Federal Republic of Germany), the following lectures were held: (1) Development of biogas technology - influences and tendencies (H. Friedmann); (2) EEG 2009 - Effect on biogas branch (B. Dreher); (3) From composting to fermentation - material flows, technology, cost, practical experiences (M. Kern, T. Raussen, A. Lootsma, K. Funda); (4) Fermentation of vinasses from the production of bioethanol (H. Friedmann); (5) Substrate digestion and microbiological hydrolysis for biogas production from lignocellulosis containing substrates using beer draff as an example (D. Schieder, M. Faulstich, J. Voigt, J. Ellenriedere, B. Haeffner, K. Sommer); (6) Substitution of wheat and corn by grass and manure for improving the economic efficiency of biogas plants (M. Wittmaier); (7) High-efficiency anaerobic digestion with integrated micro filtration using clarification sludge as an example (W. Troesch, B. Kempter-Regel); (8) Modelling of anaerobic digestion; stationary and dynamic parameter of estimation (C. Cimatoribus); (9) Regulation of an anaerobic laboratory reactor by means of fuzzy logic (O. Bade); (10) Model based diagnosis of the state of process in biogas plants (W. Kloeden); (11) Suitability of ADM 1 in the modelling of biogas plants (K. Koch, M. Wichern, M. Luebken, H. Horn, M. Schlattmann, A. Gronauer); (12) Load dependent and automatical operation of biogas plants - an option for the future (M. Mueller, J. Proeter, F. Scholwin); (13) Chances for biogas generation and application in Vietnam (L. van Bot, M. Wittmaier, A. Karagiannidies, B. Bilitewski, P. Werner); (14) State of the art and developments in the fermentation of biological wastes in the Peoples Republic of China (M. Gehring, R. Li, B. Raininger); (15) Bio-methane potential from cattle and pig wastes in Greece (A. Karagiannidis, G. Perkoulidis, T. Kotsopoulos); (16) Contaminants in biogas plants - an assessment of the material flow using

  12. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  13. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    Science.gov (United States)

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  14. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Pitoi, M M; Furness, A J; Bastow, T P; McKinley, A J

    2012-03-15

    Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Modeling the effect of heat fluxes on ammonia and nitrous oxide emissions from an anaerobic swine waste treatment lagoon using artificial neural network

    Science.gov (United States)

    Understanding factors that affect ammonia and nitrous emissions from anaerobic swine waste treatment lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, s...

  16. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    Science.gov (United States)

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  17. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  18. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.; Cooper, P.C.; Vandenburg, A.J.; Musselman, H.D.; Lowe, H.N.; Florida Inst. of Tech., Melbourne; Army Facilities Engineering Support Agency, Fort Belvoir, Va.

    1975-01-01

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.) [de

  19. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community.

    Science.gov (United States)

    Peng, Xuya; Zhang, ShangYi; Li, Lei; Zhao, Xiaofei; Ma, Yao; Shi, Dezhi

    2018-04-22

    A long-term high solids anaerobic digestion of food waste was conducted to identify microbial mechanisms of ammonia inhibition during digestion and to clarify correlations between ammonia accumulation, microbial community dynamics (diversity, composition, and interactions), and process stability. Results show that the effects of ammonia on process performance and microbial community were indirectly caused by volatile fatty acid accumulation. Excess free ammonia blocked acetate metabolism, leading to process instability. Accumulated acetate caused feedback inhibition at the acetogenesis stage, which resulted in considerable accumulation of propionate, valerate, and other long-chain fatty acids. This high concentration of volatile fatty acids reduced the abundance of syntrophic acetogenic bacteria and allowed hydrolytic fermentative bacteria to dominate. The normally interactive and orderly metabolic network was broken, which further exacerbated the process instability. These results improve the understanding of microbial mechanisms which contribute to process instability and provide guidance for the microbial management of anaerobic digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modeling of anaerobic degradation of solid slaughterhouse waste: inhibition effects of long-chain fatty acids or ammonia.

    Science.gov (United States)

    Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J

    2003-01-01

    The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of simulation model was applied for description of experimental data in mesophilic laboratory digester and assays. Additionally, stages of formation and consumption of long chain fatty acids (LCFA) were included in the model. Batch data on volatile solids, ammonium, acetate, butyrate, propionate, LCFA concentrations, pH level, cumulative volume, and methane partial pressure were used for model calibration. As a reference, the model was used to describe digestion of solid sorted household waste. Simulation results showed that an inhibition of polymer hydrolysis by volatile fatty acids and acetogenesis by NH3 or LCFA could be responsible for the complex system dynamics during degradation of lipid- and protein-rich wastes.

  1. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  2. Life Cycle Assessment of different uses of biogas from anaerobic digestion of separately collected biodegradable waste in France. Final report

    International Nuclear Information System (INIS)

    2007-01-01

    In the first part of the study, Gaz de France (GdF) and the French Environment Energy Management Agency (ADEME) wished to identify the best method to use the biogas from anaerobic digestion of separately collected biodegradable waste (bio-waste). Secondly, GdF and ADEME wished to evaluate the strength and weaknesses of the two main different organic recycling: anaerobic digestion (methanization) and composting. The study is based on the life cycle assessment method. The life cycle assessment used for this study consists in quantifying the environmental impacts of all of the activities which are related to the chosen use method. This methodology involves compiling a detailed account of all substances and energy flows removed or emitted from or into the environment at each stage of the life cycle. These flows are then translated into indicators of potential environment impacts. This methodology is based on the international standards ISO14040 and ISO 14044. The life cycle assessment was performed by RDC Environnement. In this study, two questions were treated: - Which is the best valorisation method for biogas produced from the anaerobic digestion of separately collected biodegradable waste: fuel, heat or electricity? ('Biogas' question); - Which is the best treatment for the separately collected biodegradable waste: anaerobic digestion (methanization) or industrial composting? ('Composting' question). The field of the study includes the arrival of the separately collected biodegradable waste at the anaerobic unit as well as the utilisation of the biogas energy and the agricultural use of the digestate from anaerobic digestion. For each biogas utilisation, the environmental impacts of each life cycle stage were considered as well as the impacts that were avoided due to the substitution of the use of non-renewable energy ('conventional' procedures). The modelling of the direct composting of the biodegradable waste was realised taking into account the followings

  3. Nuclear waste water being cleaned in Paldinski

    International Nuclear Information System (INIS)

    Lahtinen, A.

    1995-01-01

    The cleaning of nuclear waste water in the former military base of Paldiski, Estonia, has started with Finnish assistance. During the Soviet era, Paldiski served as a site for training nuclear submarine crews. Spent fuel has already been removed from the two nuclear reactors on the base. The volume of water to be cleaned totals some 450 cubic metres. The work is estimated to take till May 1995. The filtering technique used for cleaning has been developed in cooperation by IVO International and the Department of Radiochemistry of the University of Helsinki. The project is one aspect of an extensive international cooperation programme for reducing environmental hazards arising from the base. The experience of the cleaning obtained so far has been positive. In the first water tank, filtering reduced the cesium activity of waste water from 1,500 becquerels to less than one becquerel. Two water tanks, however, have bottom sediment that probably cannot be treated during the present project. (orig.)

  4. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  5. Anaerobic corrosion of carbon steel under unsaturated conditions in a nuclear waste deep geological repository

    International Nuclear Information System (INIS)

    Kwong, G.; Wang, St.; Newman, R.C.

    2009-01-01

    Full text of publication follows: Anaerobic corrosion behaviour of carbon steel in humid conditions, but not submerged in aqueous solution, was studied based on hydrogen generation. Initial tests monitored the hydrogen evolution from carbon steel in a high humidity environment (≥ 75% RH) at near-ambient temperature (30 C) using a high sensitivity pressure gauge system (sensitivity of 0.01 μm.a -1 ). The presence of hydrogen in test runs that showed no, or minimal, pressure increase was confirmed by a solid-state potentiometric hydrogen sensor which has the capability of detecting hydrogen partial pressure as low as 10 -6 bar or a corrosion rate of 1.5 * 10 -4 μm.a -1 . Preliminary results indicate that a corrosion rate as high as 0.2 μm.a -1 can be sustained for steel coated with salt at 100% RH. Higher corrosion rates (as high as 0.8 μm.a -1 ) were obtained in less humid environment (71% RH). Without a salt deposit, pickled steel in humid environment (as high as 100% RH) also showed detectable corrosion for a period up to 800 hours, during which 0.8 kPa of hydrogen was accumulated prior to the apparent arrest of corrosion, representing a metal loss of 3 nm. Corrosion scales are also identified with x-ray photoelectron spectroscopy (XPS) as well as by mass change monitoring using a quartz crystal microbalance. Corrosion mechanisms and prediction for longer-term exposure will be discussed. Results will be useful in predicting long-term carbon steel corrosion behaviour and improving the current knowledge of hydrogen gas evolution in a deep geological repository for nuclear waste. (authors)

  6. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  7. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-01-01

    Highlights: ► Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. ► System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m 3 d) −1 were analyzed. ► A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and HRT of 15d. ► With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. ► The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m 3 d) −1 , with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m 3 (m 3 d) −1 . A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m 3 d) −1 . This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  8. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-01-01

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  9. Development of a method for direct biological removal of ammonium to nitrogen in treatment of waste waters of the anaerobic sludge digestion - deammonification. Final report; Entwicklung eines Verfahrens zur direkten biologischen Umsetzung von Ammonium zu Stickstoff bei der Behandlung von Abwaessern der Anaerob-Klaerschlammfaulung - Deammonifikation. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwinkel, K.H.; Seyfried, C.F.; Kunst, S.; Diekmann, H.; Hippen, A.; Helmer, C.; Scholten, E.

    2001-07-01

    The nitrogen elimination in municipal and industrial wastewater continues to play a major role in wastewater treatment, especially since the Wastewater Directive (AbwV) from 1997 introduced several changes in the requirements and regulations in regard to the pollutant and nutrient removal. As particularly the nitrogen elimination often makes for a considerable cost factor in wastewater treatment, especially when part-streams with high nitrogen loads must be (co-)treated, there is a constant search for economically viable treatment concepts. In this research project, the method of deammonification was developed, that is the process sequence of aerobic nitritation and anoxic ammonium oxidation ('biological comproportioning' of ammonium and nitrite into molecular nitrogen), which is based completely on the metabolism processes of autotrophic micro-organisms, which leads to saving potentials, especially of the carbon demand. Because of the shortened aerobic oxidation steps and the application of biofilm technology, it is also possible to reduce the oxygen demand and the reaction volume. In regard to the purposeful application of deammonification in operation technology, the project steps were targeted to determine the process-defining parameters and to check suitable method technologies and operation control systems in greater detail. To achieve this, the crucial frame conditions for the realisation and the operation performance of the autotrophic nitrogen elimination were defined on the basis of industrial and pilot-technical examinations under consideration of the (micro-)biological connections. Eventually, directives on the establishment of a stable deammonification operation could be derived. On the one hand, we ran a stock-taking of the operation of three industrial leachate treatment plants, on the other hand we operated test-plants on sludge-water treatment. Furthermore, various examinations with different reactor configurations and purposeful

  10. Anaerobic manganese- or iron-mediated pharmaceutical degradation in water

    NARCIS (Netherlands)

    Liu, Wenbo

    2018-01-01

    Pharmaceutical compounds, originating mainly from industrial production and public consumption, are detected at extremely low levels (ng·L-1 –µg·L-1) in groundwater, surface water, and wastewater. So far, the adverse effects of pharmaceuticals and their intermediates have been widely reported,

  11. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  12. 10. Biogas conference Dresden. Anaerobic treatment of biological wastes. Proceedings; 10. Biogastagung Dresden. Anaerobe biologische Abfallbehandlung. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Dornack, Christina [Technische Univ. Dresden (Germany). Inst. fuer Abfallwirtschaft und Altlasten; Scholwin, Frank [Institut fuer Biogas, Kreislaufwirtschaft und Energie, Weimar (Germany); Liebetrau, Jan [Deutsches Biomasseforschungszentrum (DBFZ), Leipzig (Germany); Fassauer, Burkhardt [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Hermsdorf (Germany); Nelles, Michael (ed.) [Rostock Univ. (Germany). Lehrstuhl fuer Abfall- und Stoffstromwirtschaft

    2015-07-01

    The biogas conference in Dresden will be held for the tenth time and is still the only conference in Germany, which focuses on the production of biogas solely from waste. This year, the implementation of paragraph 11 of the Recycling and Waste Management Act and the amendment of the Renewable Energies Act (EEG) in 2014, the chances of the waste management biogas technology will be spotlighted here. The efficiency and wise use of the end products of the biogas production - the biogas and fermentation residues are equally critical for the success of biogas technology as the emission reduction of biogas plants. In this context, the biogas technology will also be dependent in the future on legal requirements and funding instruments such as the EEG. For the technical implementation, the development of reliable system concepts with specific sinking biogas and electricity supply costs and with greater flexibility in terms of launching needs-based biogas and electricity production. The contributions in this paper discuss possible solutions and implementations from the perspective of politics, associations, research and practice. Innovative topics will be discussed, which will be decisive for the future of biogas production from organic wastes. [German] Die Biogastagung in Dresden findet zum zehnten Mal statt und ist nach wie vor die einzige Tagung in Deutschland, welche die Biogaserzeugung ausschliesslich aus Reststoffen thematisiert. In diesem Jahr sollen vor dem Hintergrund der Umsetzung des paragraph 11 des Kreislaufwirtschaftswirtschaftsgesetzes und der Novellierung des EEG 2014 die Chancen der abfallwirtschaftlichen Biogastechnologie beleuchtet werden. Die effiziente und sinnvolle Nutzung der Endprodukte der Biogaserzeugung - des Biogases und des Gaerrests sind ebenso entscheidend fuer den Erfolg der Biogastechnologie wie die Emissionsminderung aus Biogasanlagen. In diesem Zusammenhang wird die Biogastechnologie auch zukuenftig auf gesetzliche Vorgaben und

  13. Industrial Water Waste, Problems and the Solution

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Full Text Available Recently, the long term development in Indonesia has changed agricultural sector to the industrial sector. This development can apparently harm our own people. This is due to the waste that is produced from factories. The waste from various factories seems to have different characteristics. This defference encourages us to be able to find out different of methods of managing waste so that cost can be reduced, especially in water treatment. In order that industrial development and environmental preservation can run together in balance, many institutions involved should be consider, especially in the industrial chain, the environment, and human resource, these three elements can be examined in terms of their tolerance to waste.

  14. Method of treating waste water

    Science.gov (United States)

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  15. 77 FR 14307 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-03-09

    ... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...

  16. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  17. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butkovskyi, A., E-mail: andrii.butkovskyi@wur.nl [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Ni, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Hernandez Leal, L. [Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Rijnaarts, H.H.M.; Zeeman, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2016-02-13

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  18. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    International Nuclear Information System (INIS)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  19. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Arsenic in industrial waste water from copper production technological process

    OpenAIRE

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  1. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  2. Waste water reuse pathways for processing tomato

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann

      Direct or indirect water reuse involves several aspects: contamination by faecal, inorganic and xenobiotic pollutants; high levels of suspended solids and salinity; rational use of the dissolved nutrients (particularly nitrogen). The challenge is apply new strategies and technologies which allows...... to use the lowest irrigation water quality without harming nor food safety neither yield and fruit or derivatives quality. The EU project SAFIR aims help farmers solve problems with low quality water and decreased access to water. New water treatment devices (prototypes) are under development to allow...... a safe use of waste water produced by small communities/industries (≤2000 EI) or of treated water discharged in irrigation channels. Water treatment technologies are coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management....

  3. Fate of pathogens and micro-pollutants during organic wastes and by-products anaerobic digestion - a review; Etat des connaissances sur le devenir des germes pathogenes et des micropolluants au cours de la methanisation des dechets et sous-produits organiques

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Ch.; Galtier, L.

    1998-09-01

    Based on 300 scientific papers, the following bibliographical research deals with the fate of micro-pollutants (pathogens, heavy metals, organic pollutants) during anaerobic digestion. Different biological and chemical mechanisms allow organic compounds elimination, except from some Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals which are fixed to the solid biomass, permitting water contamination risks attenuation. Unlike mesophilic digestion, thermophilic digestion is a 'sanitation' process regarding pathogens elimination. However, mesophilic digestion offers an important reliability compared with competitive or complementary processes. In particular, energy recovery from anaerobic digestion allows temperature control and makes easier further sanitation heat treatments. In general, anaerobic digestion represents a tool which can be included in an organic waste treatment line assuming waste selection and good agricultural practices. Otherwise, sanitation problem is still badly handled by waste operators and constructors which have been consulted. Research orientations seem especially interesting in improving knowledge of real industrial processes performances. (author)

  4. Fate of pathogens and micro-pollutants during organic wastes and by-products anaerobic digestion - a review; Etat des connaissances sur le devenir des germes pathogenes et des micropolluants au cours de la methanisation des dechets et sous-produits organiques

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Ch; Galtier, L

    1998-09-01

    Based on 300 scientific papers, the following bibliographical research deals with the fate of micro-pollutants (pathogens, heavy metals, organic pollutants) during anaerobic digestion. Different biological and chemical mechanisms allow organic compounds elimination, except from some Polycyclic Aromatic Hydrocarbons (PAHs) and heavy metals which are fixed to the solid biomass, permitting water contamination risks attenuation. Unlike mesophilic digestion, thermophilic digestion is a 'sanitation' process regarding pathogens elimination. However, mesophilic digestion offers an important reliability compared with competitive or complementary processes. In particular, energy recovery from anaerobic digestion allows temperature control and makes easier further sanitation heat treatments. In general, anaerobic digestion represents a tool which can be included in an organic waste treatment line assuming waste selection and good agricultural practices. Otherwise, sanitation problem is still badly handled by waste operators and constructors which have been consulted. Research orientations seem especially interesting in improving knowledge of real industrial processes performances. (author)

  5. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste.

    Science.gov (United States)

    Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can

    2016-11-01

    Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision.

    Science.gov (United States)

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-01-01

    This study used life cycle assessment to evaluate the environmental impact of anaerobic co-digestion (AcoD) and compared it against the current waste management system in two case study areas. Results indicated AcoD to have less environmental impact for all categories modelled excluding human toxicity, despite the need to collect and pre-treat food waste separately. Uncertainty modelling confirmed that AcoD has a 100% likelihood of a smaller global warming potential, and for acidification, eutrophication and fossil fuel depletion AcoD carried a greater than 85% confidence of inducing a lesser impact than the current waste service. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste

    International Nuclear Information System (INIS)

    Wu, Li-Jie; Kobayashi, Takuro; Li, Yu-You; Xu, Kai-Qin

    2015-01-01

    Highlights: • A single-stage and two two-stage anaerobic systems were synchronously operated. • Similar methane production 0.44 L/g VS_a_d_d_e_d from oily food waste was achieved. • The first stage of the two-stage process became inefficient due to serious pH drop. • Recycle favored the hythan production in the two-stage digestion. • The conversion of unsaturated fatty acids was enhanced by recycle introduction. - Abstract: Anaerobic digestion is an effective technology to recover energy from oily food waste. A single-stage system and temperature-phased two-stage systems with and without recycle for anaerobic digestion of oily food waste were constructed to compare the operation performances. The synchronous operation indicated the similar ability to produce methane in the three systems, with a methane yield of 0.44 L/g VS_a_d_d_e_d. The pH drop to less than 4.0 in the first stage of two-stage system without recycle resulted in poor hydrolysis, and methane or hydrogen was not produced in this stage. Alkalinity supplement from the second stage of two-stage system with recycle improved pH in the first stage to 5.4. Consequently, 35.3% of the particulate COD in the influent was reduced in the first stage of two-stage system with recycle according to a COD mass balance, and hydrogen was produced with a percentage of 31.7%, accordingly. Similar solids and organic matter were removed in the single-stage system and two-stage system without recycle. More lipid degradation and the conversion of long-chain fatty acids were achieved in the single-stage system. Recycling was proved to be effective in promoting the conversion of unsaturated long-chain fatty acids into saturated fatty acids in the two-stage system.

  8. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  9. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  10. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste

    OpenAIRE

    Sanati, Mehri; Chen, Xiang; Yan, Wei

    2014-01-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield ...

  11. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  12. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process

    DEFF Research Database (Denmark)

    Luo, Gang; Xie, Li; Zhou, Qi

    2011-01-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single......:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridium thermocellum-like species). The changes...

  13. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    Science.gov (United States)

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Evaluation of a treatment system type septic tank - filter anaerobic of upward flow for the residual waters of the ecological benefit of the coffee

    International Nuclear Information System (INIS)

    Sanchez C, Jose Alejandro

    1997-01-01

    Colombia is the first country in the production of soft coffee in the world. The benefit for humid way it makes that this quality of coffee is obtained; however, the high consumption of water in the process and the later discharge to the superficial or underground sources, they have generated an environmental problem of great magnitude. Also, the sources of water that they have been contaminated with the discharges of the liquid waste that come from benefit of coffee they present, among other, serious inconveniences to be used as supplying sources of drinkable water. In time of crop, the coffee areas and their superficial sources of water usually register high indexes of contamination like consequence of the discharges of residual waters that come from the benefit of the coffee. In the Departments of Quindio, Valle, Caldas, Antioquia, etc., they have been come executing investigations of the residuals treatment that are derived of the pulp removal of the coffee (via humid), for anaerobic methods with satisfactory results. This project had the collaboration of the Departmental Committee of Coffee of Antioquia and the Environmental Engineering of the Antioquia University and it is formulated toward the evaluation of a Anaerobic filter of Ascendant flow, FAFA, preceded of a septic tank (biological sedimentation), as a treatment system of the coffee residual waters, with a waste native of a ecological benefit area. The obtained results were satisfactory although the generated waste is very intermittent and in times that are not of coffee crop it doesn't take place; what hinders more the application of biological systems for its treatment

  15. Properties of waste stillage from shochu distillery and waste water occurred sosei paper production process

    OpenAIRE

    山内, 正仁; 平田, 登基男; 前野, 祐二; 三原, めぐみ; 松藤, 康司

    1999-01-01

    As an effective utilization of waste stillage, which will be banned from being dumped into sea from the year of 2001, authors have been studied and succeeded to make the sosei paper by using waste stillage form shochu distillery. This research is tried to consider the property of waste stillage from shochu distillery ( sweet potato waste stillage and barley waste stillage) and the weight and property of waste water in compressing samples added some amount of old newspaper to waste stillage. F...

  16. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...... with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation...

  17. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  18. Treatment of Slaughterhouse Waste Water Mixed with Serum from Lacteal Industry of Extremadura in Spain to Produce Clean Energy

    Directory of Open Access Journals (Sweden)

    A. C. Marcos

    2017-05-01

    Full Text Available The problem of slaughterhouse waste water can be resolved by mixing it with serum from lacteal industry to produce a biogas. The effect of serum addition on the anaerobic co-digestion of solid and liquid slaughterhouse waste has been studied. The experimental device consisted of a continuous digester by recirculation of biogas produced in the anaerobic digestion. The input effluent was a mixture of slaughterhouse waste from Badajoz city (Spain and animal serum in a proportion of 20%. The anaerobic digestion was developed in a complete mixing continuous digester with a capacity of 6.2 L at 37 °C and a feed rate of 350 mL/day. From the results obtained for the co-digestion of the feeding effluent of the slaughterhouse waste, without and with serum added, in the same operating conditions, comparative data about the biological depuration and biogas production have been obtained. A 10 L biogas production was obtained with the slaughterhouse waste and 18 L with the slaughterhouse waste with serum added. In conclusion, the highest energetic yield (97.52% higher was obtained in the second case, due to the positive action of catalytic enzymes present in the animal serum.

  19. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  20. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    Science.gov (United States)

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  1. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model.

    Science.gov (United States)

    Li, Xiaowei; Mei, Qingqing; Dai, Xiaohu; Ding, Guoji

    2017-03-01

    Thermogravimetric analysis, Gaussian-fit-peak model (GFPM), and distributed activation energy model (DAEM) were firstly used to explore the effect of anaerobic digestion on sequential pyrolysis kinetic of four organic solid wastes (OSW). Results showed that the OSW weight loss mainly occurred in the second pyrolysis stage relating to organic matter decomposition. Compared with raw substrate, the weight loss of corresponding digestate was lower in the range of 180-550°C, but was higher in 550-900°C. GFPM analysis revealed that organic components volatized at peak temperatures of 188-263, 373-401 and 420-462°C had a faster degradation rate than those at 274-327°C during anaerobic digestion. DAEM analysis showed that anaerobic digestion had discrepant effects on activation energy for four OSW pyrolysis, possibly because of their different organic composition. It requires further investigation for the special organic matter, i.e., protein-like and carbohydrate-like groups, to confirm the assumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  4. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  6. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes.

    Science.gov (United States)

    Zhang, Jingxin; Mao, Feijian; Loh, Kai-Chee; Gin, Karina Yew-Hoong; Dai, Yanjun; Tong, Yen Wah

    2018-02-01

    The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  8. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 degrees C.

    Science.gov (United States)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-10-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 degrees C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 degrees C and 55 degrees C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH(4)/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5L vs. 3-3.5 L CH(4)/kg COD x day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Ferrer, Ivet; Palatsi, Jordi; Campos, Elena; Flotats, Xavier

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 o C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 o C and 55 o C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH 4 /kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH 4 /kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  10. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  11. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  12. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.

    Science.gov (United States)

    Zhou, Miaomiao; Yan, Binghua; Wong, Jonathan W C; Zhang, Yang

    2018-01-01

    Recently, efficient disposal of food waste (FW) with potential resource recovery has attracted great attentions. Due to its easily biodegradable nature, rich nutrient availability and high moisture content, FW is regarded as favorable substrate for anaerobic digestion (AD). Both waste disposal and energy recovery can be fulfilled during AD of FW. Volatile fatty acids (VFAs) which are the products of the first-two stages of AD, are widely applied in chemical industry as platform chemicals recently. Concentration and distribution of VFAs is the result of acidogenic metabolic pathways, which can be affected by the micro-environment (e.g. pH) in the digester. Hence, the clear elucidation of the acidogenic metabolic pathways is essential for optimization of acidogenic process for efficient product recovery. This review summarizes major acidogenic metabolic pathways and regulating strategies for enhancing VFAs recovery during acidogenic fermentation of FW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  14. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  15. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1991-10-01

    Waste waters have been generated as result of operations conducted at the Hanford Facility for over 40 years. These waste waters were previously discharged to cribs, ponds, or ditches. Examples of such waste waters include steam condensates and cooling waters that have not been in contact with dangerous or mixed waste and process condensates that may have been in contact with dangerous or mixed waste. Many measures have been taken to reduce the amount of contamination being discharged in these effluents. However, some of these waste waters still require additional treatment before release to the environment. Systems are being designed and built to treat these waste waters along with any future waste waters resulting from remediation activities on the Hanford Facility

  16. THE EFFECT OF F/M RATIO TO THE ANAEROBIC DECOMPOSITION OF BIOGAS PRODUCTION FROM FISH OFFAL WASTE

    Directory of Open Access Journals (Sweden)

    Agus Hadiyarto

    2016-01-01

    Full Text Available Biogas is a gas produced from the anaerobic decomposition of organic compounds. In the production of biogas from anaerobic digestion, value of F/M ratio shows a ratio between the mass of food available in the waste substrate with a mass of microorganisms that act as decomposers. F/M ratio is too small causing microbes could not metabolize perfectly and vice versa on the value of the ratio F / M overload resulting metabolic imbalance. The purpose of this study was to assess the effect of F/M ratio to optimal production of biogas from fish offal waste. The process of anaerobic digestion is conducted in the biodigester with four-liter volume and batch system operated at ambient temperature for 38 days. As a raw material, fish offal and microbial sludge obtained from the curing of fish and river mud discharges in the region of Bandarharjo, Semarang, Central Java. F/M ratio is set at 0.2, 0.4, and 0.6 are derived from sewage sludge VSS weight ratio of fish offal with sludge containing microbes. The addition of micronutrients supplied with a concentration of 0.4 mg/liter. Yield maximum methane gas obtained was 164,7 l/kg CODMn when the ratio F/M was 0.2. Based on the results of the study, found that the ratio F/M affect the amount of biogas produced. Meanwhile, the retention time (HRT is only influenced by the ratio F/M.

  17. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Lindmark, Johan; Eriksson, Per; Thorin, Eva

    2014-01-01

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process

  18. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Johan, E-mail: Johan.lindmark@mdh.se; Eriksson, Per; Thorin, Eva, E-mail: Eva.Thorin@mdh.se

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  19. Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China

    International Nuclear Information System (INIS)

    Yang, Tianxue; Li, Yingjun; Gao, Jixi; Huang, Caihong; Chen, Bin; Zhang, Lieyu; Wang, Xiaowei; Zhao, Ying; Xi, Beidou; Li, Xiang

    2015-01-01

    The dry anaerobic co-digestion of LW (livestock waste), OFHW (organic fraction of household waste), and AR (agricultural residue) was evaluated in terms of pH stability, organic removal rate, and methane yield. The total quantity of the solids involved in the digestion was adjusted to 25%. All the reactors were inoculated by 20% (in dry weight) of the municipal sludge. The dynamic changes in the pH values of the LW-AR-OFHW mixture co-digestions underwent four stages and differed from those of wet anaerobic digestion. The decrease in VS (volatile solids), volume, and weight of the LW-AR-OFHW mixtures was higher than those in AR and OFHW. The VS, volume, and weight reductions in LW-AR-OFHW co-digestion were 54.7%, 82.2%, and 72.7%, respectively. However, the VS, volume, and weight reductions in AR were only 11.1%, 20.5%, and 19.8%, respectively, and those in OFHW were only 27.4%, 45.0%, and 40.9%, respectively. The LW-AR-OFHW mixture co-digestions enhanced the methane production of the co-digester (256 m 3 /ton VS), whereas AR and OFHW produced only 12 and 93 m 3 methane/ton VS, respectively. - Highlights: • The pH values dynamic of LW-AR-OFHW differed from wet anaerobic digestion. • The degradation effect of LW-AR-OFHW was better than those of AR and OFHW. • The LW-AR-OFHW mixture co-digestions enhanced the methane production.

  20. Evaluation of the 5 and 8 pH point titration methods for monitoring anaerobic digesters treating solid waste.

    Science.gov (United States)

    Vannecke, T P W; Lampens, D R A; Ekama, G A; Volcke, E I P

    2015-01-01

    Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.

  1. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  2. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  3. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  4. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    International Nuclear Information System (INIS)

    Martin-Gonzalez, L.; Colturato, L.F.; Font, X.; Vicent, T.

    2010-01-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 o C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 ± 0.02 L g VS feed -1 to 0.55 ± 0.05 L g VS feed -1 as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  5. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  6. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  7. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    Science.gov (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    Science.gov (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A novel approach of anaerobic co-digestion between organic fraction of food waste and waste sludge from municipal wastewater treatment plant: Effect of mixing ratio

    Science.gov (United States)

    Nga, Dinh Thi; Ngoc, Tran Thi Minh; Van Ty, Nguyen; Thuan, Van Tan

    2017-09-01

    The aim of this study was to investigate the effect of mixing ratio of co-anaerobic digestion between dewatered waste sludge from municipal wastewater treatment plant (DS) and organic fraction of food waste (FW). The experiment was carried out in 3L reactors for 16 days at ambient temperature. Four mixing ratios of DW and FW was investigated including 100 % DS : 0 % FW (Run S100); 75% DS : 25 % FW (Run S75); 50% DS : 50% FW (Run S50); and 25% DS : 75% FW (Run S25) in term of VS concentration. As a result, the Run S50 achieved best performance among the four funs indicated in biogas accumulation of 32.48 L biogas and methane yield of 358.9 400ml CH4/g VS removal after 16 days operation at ambient temperature. Biogas accumulation of Run S25 was higher than that of Run S75. Run S100 produced the lowest of biogas of all runs. It is concluded that co-anaerobic digestion of different organic sources could enhance the performance of methane fermentation.

  10. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  11. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  12. ENHANCED ANAEROBIC DIGESTION OF FOOD WASTE BY SUPPLEMENTING TRACE ELEMENTS: ROLE OF SELENIUM (VI AND IRON (II

    Directory of Open Access Journals (Sweden)

    Javkhlan eAriunbaatar

    2016-02-01

    Full Text Available This paper discusses the potential to enhance the anaerobic digestion of food waste FW by supplementing trace elements (Fe, Co, Ni, Zn, Mn, Cu, Se, and Mo individually as well as in cocktails. A series of batch experiments on the biomethane potential of synthetic food waste were performed with low (FW-A and high (FW-B trace element background concentrations prepared in, respectively, Delft (The Netherlands and Tampa (Florida, USA. The most effective trace elements for FW-A were Fe with an increase of 39.2 (± 0.6 % of biomethane production, followed by Se (34.1 ± 5.6 % increase, Ni (26.4 ± 0.2 % increase and Co (23.8 ± 0.2 % increase. For FW-B supplementing these trace elements did not result in enhancement of the biomethane production, except for Se. FW-B had a Se concentration of 1.3 (± 0. 5 µg/gTS, while it was below the detection limit for FW-A. Regardless of the FW source, Se resulted in 30 – 35% increase of biomethane production at a concentration range of 25-50 µg/L (0.32 – 0.63 µM. Volatile fatty acids analysis revealed that TE supplementation enhances their consumption, thus yielding a higher biomethane production. Moreover, additional experiments on sulfide inhibition showed the enhancing effects of trace elements on the anaerobic digestion of food waste were not related with sulfide toxicity, but with the enzymatic reactions and/or microbial biomass aggregation.

  13. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  14. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    International Nuclear Information System (INIS)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N.L.; Pirozzi, Francesco

    2015-01-01

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC 50 of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

  15. Biogas production from food-processing industrial wastes by anaerobic digestion

    DEFF Research Database (Denmark)

    Fang, Cheng

    Konfronteret med energikrise og klimaforandringer, har verden brug for grønne, effektive og kulstofneutrale energikilder, som kan erstatte fossile brændstoffer. Biogas, som dannes ved anaerob nedbrydning af organisk materiale, er en bæredygtig, pålidelig og vedvarende energikilde. Der er stor...

  16. Report for fiscal 1998 on commissioned operation for research cooperation related to simplified purification system for industrial waste water; 1998 nendo sangyo haisui nado no kan'i joka system ni kansuru kenkyu kyoryoku hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    With an objective to serve for environmental preservation in developing countries, joint researches have been performed on anaerobic waste water treatment systems utilizing bio-technology. This paper summarizes the achievements in fiscal 1998. This fiscal year has performed the bench scale test and the operation research of an anaerobic waste water treatment pilot plant jointly with the Standards and Industrial Research Institute in Malaysia on waste waters from the vegetable fat and oil chemical industry. In the bench scale test, data were collected on the oil removing effect of the pressurization and flotation treatment, and the characteristics of the anaerobic treatment. Operation research was performed in the pilot plant by using the anaerobic waste water treatment plant and the aerobic treatment facility. In addition, a feasibility study was carried out to evaluate an optimal treatment system. Furthermore, three researchers were received from Malaysia to whom lectures were given on the Japanese anaerobic treatment technologies, and visits and operation training on the waste water treatment facilities. (NEDO)

  17. Separate collection of household food waste for anaerobic degradation – Comparison of different techniques from a systems perspective

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2012-01-01

    Highlight: ► Four modern and innovative systems for household food waste collection are compared. ► Direct emissions and resource use were based on full-scale data. ► Conservation of nutrients/energy content over the system was considered. ► Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (−0.1 to −2.4 kg NO 3 - eq/ton food waste), acidification potential (−0.4 to −1.0 kg SO 2 - eq/ton food waste), global warming potential (−790 to −960 kg CO 2 - eq/ton food waste) and primary energy use (−1.7 to −3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The

  18. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  19. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  20. The impact of uncontrolled waste disposal on surface water quality ...

    African Journals Online (AJOL)

    The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within water bodies.

  1. Proposal of law about the recovery and valorization of the gas coming from the anaerobic fermentation of organic wastes, renewable energy with a high potentiality

    International Nuclear Information System (INIS)

    2005-12-01

    The goal of this proposal of law is the systematic and mandatory capture and valorization of the methane coming from the anaerobic fermentation of municipal and agricultural wastes, and more generally coming from any activity generating gases with at least 25% of methane. (J.S.)

  2. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  3. Fate of benzotriazole and 5-methylbenzotriazole in recycled water recharged into an anaerobic aquifer: column studies.

    Science.gov (United States)

    Alotaibi, M D; Patterson, B M; McKinley, A J; Reeder, A Y; Furness, A J; Donn, M J

    2015-03-01

    The fate of benzotriazole (BTri) and 5-methylbenzotriazole (5-MeBT) was investigated under anaerobic conditions at nano gram per litre concentrations in large-scale laboratory columns to mimic a managed aquifer recharge replenishment strategy in Western Australia. Investigations of BTri and 5-MeBT sorption behaviour demonstrated mobility of the compounds with retardation coefficients of 2.0 and 2.2, respectively. Degradation processes over a period of 220 days indicated first order biodegradation of the BTri and 5-MeBT under anaerobic aquifer conditions after a biological lag-time of approximately 30-60 days. Biodegradation half-lives of 29 ± 2 and 26 ± 1 days for BTri and 5-MeBT were respectively observed, with no threshold effect to biodegradation observed at the 200 ng L(-1). The detection of degradation products provided further evidence of BTri and 5-MeBT biodegradation. These results suggested that if BTri and 5-MeBT were present in recycled water recharged to the Leederville aquifer, biodegradation during aquifer passage is likely given sufficient aquifer residence times or travel distances between recycled water injection and groundwater extraction. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    Science.gov (United States)

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  6. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  7. Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge.

    Science.gov (United States)

    Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules

    2017-03-23

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

  8. Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW)

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhenhong, Yuan; Yongming, Sun; Longlong, Ma [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-08-15

    In order to harvest high-efficient hydrogen producing seeds, five pretreatment methods (including acid, heat, sonication, aeration and freeze/thawing) were performed on anaerobic digested sludge (AS) which was collected from a batch anaerobic reactor for treating organic fraction of municipal solid waste. The hydrogen production tests were conducted in serum bottles containing 20 gVS/L (24.8 g COD/L) mixture of rice and lettuce powder at 37 C. The experimental results showed that the heat and acid pretreatment completely repressed the methanogenic activity of AS, but acid pretreatment also partially repressed hydrogen production. Sonication, freeze/thawing and aeration did not completely suppress the methanogen activity. The highest hydrogen yields were 119.7, 42.2, 26.0, 23.0, 22.7 and 22.1 mL/gVS for heated, acidified, freeze/thawed, aerated, sonicated and control AS respectively. A pH of about 4.9 was detected at the end of hydrogen producing fermentation for all tests. The selection of an initial pH can markedly affect the hydrogen producing ability for heated and acidified AS. The higher initial pH generated higher hydrogen yield and the highest hydrogen yield was obtained with initial pH 8.9 for heated AS. (author)

  9. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.

    Science.gov (United States)

    Oliver, Ian W; Grant, Cameron D; Murray, Robert S

    2011-03-01

    Water treatment residuals (WTRs) are the by-products of drinking water clarification processes, whereby chemical flocculants such as alum or ferric chloride are added to raw water to remove suspended clay particles, organic matter and other materials and impurities. Previous studies have identified a strong phosphorus (P) fixing capacity of WTRs which has led to experimentation with their use as P-sorbing materials for controlling P discharges from agricultural and forestry land. However, the P-fixing capacity of WTRs and its capacity to retain sorbed P under anaerobic conditions have yet to be fully demonstrated, which is an issue that must be addressed for WTR field applications. This study therefore examined the capacity of WTRs to retain sorbed P and sorb further additional P from aqueous solution under both aerobic and anaerobic conditions. An innovative, low cost apparatus was constructed and successfully used to rapidly establish anoxic conditions in anaerobic treatments. The results showed that even in treatments with initial solution P concentrations set at 100 mg l(-1), soluble reactive P concentrations rapidly fell to negligible levels (due to sorption by WTRs), while total P (i.e. dissolved + particulate and colloidal P) was less than 3 mg l(-1). This equated to an added P retention rate of >98% regardless of anaerobic or aerobic status, indicating that WTRs are able to sorb and retain P in both aerobic and anaerobic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida.

    Science.gov (United States)

    Brück, Wolfram M; Brück, Thomas B; Self, William T; Reed, John K; Nitecki, Sonja S; McCarthy, Peter J

    2010-05-01

    Marine sediments and sponges may show steep variations in redox potential, providing niches for both aerobic and anaerobic microorganisms. Geodia spp. and sediment specimens from the Straits of Florida were fixed using paraformaldehyde and 95% ethanol (v/v) for fluorescence in situ hybridization (FISH). In addition, homogenates of sponge and sediment samples were incubated anaerobically on various cysteine supplemented agars. FISH analysis showed a prominent similarity of microbiota in sediments and Geodia spp. samples. Furthermore, the presence of sulfate-reducing and annamox bacteria as well as other obligate anaerobic microorganisms in both Geodia spp. and sediment samples were also confirmed. Anaerobic cultures obtained from the homogenates allowed the isolation of a variety of facultative anaerobes, primarily Bacillus spp. and Vibrio spp. Obligate anaerobes such as Desulfovibrio spp. and Clostridium spp. were also found. We also provide the first evidence for a culturable marine member of the Chloroflexi, which may enter into symbiotic relationships with deep-water sponges such as Geodia spp. Resuspended sediment particles, may provide a source of microorganisms able to associate or form a symbiotic relationship with sponges.

  11. Organic Waste Anaerobic degradation with bio-activator-5 Effective Microorganism (EM-5) to Produce Biogas

    OpenAIRE

    Metri Dian Insani

    2014-01-01

    Degradasi Anaerob Sampah Organik dengan Bioaktivator Effective Microorganism-5 (EM-5) untuk Menghasilkan Biogas Abstract: The purpose of this study was to: (1) analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow manure to biogas pressure, (2) analyze the differences in the use of corn cobs, kelaras bananas and banana peel with the addition of cow dung for a long time flame biogas produced, and (3) analyze the different uses corn cobs,...

  12. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.

    Science.gov (United States)

    Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae

    2018-01-01

    A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation

    DEFF Research Database (Denmark)

    Liu, Wenzong; He, Zhangwei; Yang, Chunxue

    2016-01-01

    in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activated sludge (WAS). Microbial communities in integrated system would build a thorough energetic and metabolic interaction network regarding fermentation communities and electrode respiring communities...... to Firmicutes (Acetoanaerobium, Acetobacterium, and Fusibacter) showed synergistic relationship with exoelectrogensin the degradation of complex organic matter or recycling of MEC products (H2). High protein and polysaccharide but low fatty acid content led to the dominance of Proteiniclasticum...... biofilm. The overall performance of WAS cascade utilization was substantially related to the microbial community structures, which in turn depended on the initial pretreatment to enhance WAS fermentation. It is worth noting that species in AD and MEC communities are able to build complex networks...

  14. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: bentonite addition and autoclaved de-oiling pretreatment

    DEFF Research Database (Denmark)

    Zhang, Duojiao; Duan, Na; Tian, Hailin

    2018-01-01

    The effects of different enhancement methods, including adding bentonite (1.25%, w/w, wet substrate) and autoclaved de-oiling pretreatment (121 °C, 30 minutes), on the anaerobic digestion of kitchen waste (KW) were comparably studied. Mesophilic continuous stirred tank reactors were used under...... different organic loading rates (OLRs) of 1.11 to 1.84 gVS (volatile solid)L−1d−1 and two different hydraulic retention times (HRTs) (20 d and 25 d). In this study, two enhancement methods and extending HRT could prevent volatile fatty acids (VFA) accumulation and obtain a high methane production at low OLR...... design and process evaluation of a CSTR biogas plant treating with KW based on the laboratory experiment was stated....

  15. Use of respirometer in evaluation of process and toxicity of thermophilic anaerobic digestion for treating kitchen waste.

    Science.gov (United States)

    Kuo, Wen-Chien; Cheng, Kae-Yiin

    2007-07-01

    A thermophilic anaerobic digestion (TAnD, 55 degrees C) system was adopted to hydrolyze the kitchen waste for 3 days, which was then fermented for a hydraulic retention time (HRT) of 10 days. The TAnD system performed much better than a similar system without thermal pre-treatment. A bubble respirometer was employed to study the effects of thermal pre-treatment, which showed that pre-treatment at 60 degrees C yielded the highest Total COD (TCOD) removal efficiency (79.2%) after 300h reaction. Respirometer results also indicated that oil and grease (O and G) began to inhibit the TAnD system at a concentration of approximately 1000mg/L and the gas production was inhibited by 50% at a concentration of approximately 7500mg/L of sodium.

  16. Dry anaerobic digestion of rejects from pre-treated food waste; Torroetning av rejekt fraan foerbehandling av matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Irene [NSR, Helsingborg (Sweden); Murto, Marika; Bjoernsson, Lovisa [Bioteknik, LTH, Lund (Sweden); Rosqvist, Haakan [Rosqvist Resurs, Klaagerup (Sweden)

    2011-11-15

    When the organic fraction of source separated municipal solid waste is digested anaerobically in a continuously stirred tank reactor there is a need for a pretreatment to make the waste pumpable and remove contaminants. In one type of pretreatment the material passes through a screw press which separates waste in a liquid fraction and a dry fraction (the reject). At NSR this technique is used and at present the reject is incinerated. A previous study has shown that about 30 % of the methane potential of the incoming organic waste can be found in the reject. The aim of the present project was to investigate the possibilities of realizing the methane potential through batch wise dry anaerobic digestion followed by composting as an alternative to incineration. In the technique used in the present project the material was digested in an anaerobic leach-bed with recirculation of leachate over the bed. It is important that the material is sufficiently porous to let the leachate spread evenly through the leach-bed. Treatment of reject and a mixture of reject and structural material were tested to investigate if the addition of structural material had an effect on the porosity. The flow of liquid through a leach-bed of reject and one of reject mixed with structural material was studied using LiBr as tracer. The digestate from the dry digestion process was composted, and the resulting compost was evaluated. The odor from the digestate, the active compost and the compost product was measured by analyzing the odor in the air of the porous space in heaps of the different materials. This was used to evaluate the risk of odor problems. The dry digestion and the tracer experiment both showed that mixing the reject with structural material had a positive effect on the flow of liquid through the material and the digestion process. Addition of structural material to the reject was needed in order to achieve an efficient digestion process. Using tracers proved to be a useful way of

  17. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  18. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  19. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading.

    Science.gov (United States)

    Salminen, Esa A; Rintala, Jukka A

    2002-07-01

    We studied the effect of hydraulic retention time (HRT) and loading on anaerobic digestion of poultry slaughterhouse wastes, using semi-continuously fed, laboratory-scale digesters at 31 degrees C. The effect on process performance was highly significant: Anaerobic digestion appeared feasible with a loading of up to 0.8 kg volatile solids (VS)/m3 d and an HRT of 50-100 days. The specific methane yield was high, from 0.52 to 0.55 m3/kg VS(added). On the other hand, at a higher loading, in the range from 1.0 to 2.1 kg VS/m3 d, and a shorter HRT, in the range from 25 to 13 days, the process appeared inhibited and/or overloaded, as indicated by the accumulation of volatile fatty acids and long-chain fatty acids and the decline in the methane yield. However, the inhibition was reversible. The nitrogen in the feed, ca. 7.8% of total solids (TS), was organic nitrogen with little ammonia present, whereas in the digested material ammonia accounted for 52-67% (up to 3.8 g/l) of total nitrogen. The TS and VS removals amounted to 76% and 64%, respectively. Our results show that on a continuous basis under the studied conditions and with a loading of up to 0.8 kg VS/m3 d metric ton (wet weight) of the studied waste mixture could yield up to 140 m3 of methane.

  20. Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market.

    Science.gov (United States)

    Masebinu, S O; Akinlabi, E T; Muzenda, E; Aboyade, A O; Mbohwa, C

    2018-05-01

    Substrate-induced instability of anaerobic digestion from fruit and vegetable waste (FVW) results in low biogas yield. In this study, substrate management through fruit to vegetable mix ratio in a two-stage semi-continuous digester was investigated as a pathway for optimality of yield. The experiment conducted over 105 days with 62.52 kg of FVWs sourced from Joburg Market, South Africa showed that a stable process was achieved at a fruit to vegetable waste mix ratio of 2.2:2.8. At this ratio, optimal organic loading rate ranged between 2.68 and 2.97 kg VS/m 3 -d which resulted in a specific biogas yield of 0.87 Nm 3 /kg VS with 57.58% methane on average. The results of the experimental study were used as a feasibility assessment for a full-scale 45 tonnes/d plant for Joburg Market considering three energy pathways. The plant will produce 1,605,455 Nm 3 /y of biogas with the potential for offsetting 15.2% of the Joburg Market energy demand. Conversion of all biogas to biomethane was the most economically attractive energy pathway with a net present value of $2,428,021, an internal rate of return of 16.90% and a simple payback period of 6.17 years. This route avoided the greenhouse gas emission of 12,393 tonnes CO 2 , eq. The study shows that the anaerobic digestion of FVWs as sole substrate is possible with financial and environmental attractiveness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  2. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  3. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts.

    Science.gov (United States)

    Chiu, Sam L H; Lo, Irene M C

    2016-12-01

    In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.

  4. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  5. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    International Nuclear Information System (INIS)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W.C.

    2014-01-01

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH 4 /g VS added in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO 2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste

  6. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  7. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  8. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    Science.gov (United States)

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.

  9. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    Science.gov (United States)

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  11. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  12. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  14. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    wastewater treatment plants for the food and beverage industry . Biogas is the result of decomposition of organic wastes, but the methane is diluted with...for the food and beverage industry . Biogas is the result of decomposition of organic wastes, but the methane is diluted with large amounts of CO2

  15. The effect of system parameters on the biogas production from anaerobic digestion of livestock wastes

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  16. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    International Nuclear Information System (INIS)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-01-01

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively

  18. Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature

    DEFF Research Database (Denmark)

    Alatriste-Mondragon, Felipe; Samar, P.; Cox, H.H.J.

    2006-01-01

    increase digester gas production and provide savings in the overall energy costs of plant operations. Methane recovery also helps to reduce the emission of greenhouse gases to the atmosphere. The goal of this literature survey was to summarize the research conducted in the last four years on anaerobic......-stage processes), and the operation temperature (e.g., mesophilic or thermophilic). Only a few reports on pilot; and full-scale studies were found. These evaluate general process performance and pretreatment of codigestates, energy production, and treatment costs....

  19. Effects of aerobic-anaerobic transient conditions on sulfur and metal cycles in sewer biofilms

    NARCIS (Netherlands)

    Nielsen, A.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between sulfur and metals were studied in aerobic and anaerobic biofilms grown on domestic waste water at 15°C. The dominant metals in the waste water were iron, zinc and copper, which were present in average concentrations of 0.5mg/l, 0.6mg/l and 0.1m/l, respectively. Copper and zinc

  20. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.