WorldWideScience

Sample records for anaerobic thermophilic bacteria

  1. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  2. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  3. Regularities of polymer substances transformation into methane by thermophilic anaerobic bacteria

    OpenAIRE

    V. І. Karpenko; L. S. Yastremska; І. G. Burun; Y. V. Lembey; O. S. Tatarchenko

    2006-01-01

    The paper shows the regularities of polymer substances transformation into methane by extracted thermophilic anaerobic bacteria. The sequence of substrate use by the methane generating bacteria corresponds to the energy efficiency of the methane genesis reactions as in the first place hydrogen is used and then acetate is. Combined cultivation of extracted different anaerobic cultures gives the opportunity to increase ethanol and hydrogen yield as well as the effectiveness of methane formation.

  4. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  5. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  6. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  7. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.;

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  8. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  9. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable. alpha. -amylases and pullulanases

    Energy Technology Data Exchange (ETDEWEB)

    Klingeberg, M. (Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie); Vorlop, K.D. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Technische Chemie); Antranikian, G. (Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1)

    1990-08-01

    For the production of cell-free thermostable {alpha}-amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full was well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60deg C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/10{sup 12} cells up to 700 U/10{sup 12} cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. (orig.).

  10. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  11. Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost ▿ †

    OpenAIRE

    Sizova, M. V.; Izquierdo, J. A.; Panikov, N. S.; Lynd, L. R.

    2011-01-01

    Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xy...

  12. Isolation and characterization of two novel thermophilic anaerobic bacteria from syngas - and carbon monoxide - degrading cultures

    OpenAIRE

    Alves, J.I.; Alves, M.M.; Stams, A. J. M.; Plugge, C.M.; Sousa, D. Z.

    2012-01-01

    Syn(thesis)gas is a mixture containing hydrogen, carbon monoxide and carbon dioxide, in variable ratios. Syngas is commonly produced from fossil fuels, but it can be generated from a vast array of feedstocks such as lignocellulosic biomass and carbon-based wastes, including recalcitrant wastes. Production of biofuels and bulk chemicals from syngas, both by thermochemical or microbial processes, is a field of promising technological developments. In this work, thermophilic (55ºC...

  13. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  14. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...

  15. Microbial influenced corrosion by thermophilic bacteria

    Science.gov (United States)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  16. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  17. Bioleaching of marmatite using moderately thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; LIU Fei-fei; ZOU Ying-qin; ZENG Xiao-xi; QIU Guan-zhou

    2008-01-01

    The process of bioleaching marmatite using moderately thermophilic bacteria was studied by comparing marmatite leaching performance of mesophiles and moderate thermophiles and valuating the effect of venting capacity as well as pulp density on marmatite leaching performance of moderate thermophiles. The results show that moderate thermophiles have more advantages over mesophilies in bioleaching marmatite at 45℃ and the pulp density of 50g/L, and the zinc extraction efficiency reaches 93.1% in 20d. Aeration agitation can improve the transfer of O2 and CO2 in solution and promote the growth of bacteria and therefore, enhance the leaching efficiency. Under the venting levels of 50, 200 and 800mL/min, the zinc extraction efficiencies by moderate thermophiles are 57.8%, 92.5% and 96.0%, respectively. With the increase of pulp density, the total leaching amount of valuable metals increases, however, the extraction efficiency decreases due to many reasons, such as increasing shear force leading to poorly growth condition for bacteria, etc. The zinc extraction decreases remarkably to 58.9% while the pulp density mounts up 20%.

  18. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions ofS.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation;(3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.

  19. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  20. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  1. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  2. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes

    NARCIS (Netherlands)

    Sokolova, T.G.; Henstra, A.M.; Sipma, J.; Parshina, S.N.; Stams, A.J.M.; Lebedinsky, A.V.

    2009-01-01

    Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens

  3. Effect of cobalt on the Anaerobic Thermophilic Conversion of Methanol

    NARCIS (Netherlands)

    Paulo, P.L.; Jiang, B.; Cysneiros, D.; Stams, A.J.M.

    2004-01-01

    The importance of cobalt on the anaerobic conversion of methanol under thermophilic conditions was studied in three parallel lab-scale UASB-reactors and in cobalt-limited enriched cultures. Reactors R1, R2, and R3 were fed with methanol in a bicarbonate-buffered medium, supplied with iron and macron

  4. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 to...... exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration...

  5. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  6. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  8. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  9. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  10. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of...... cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for...... efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in...

  11. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria.

    Science.gov (United States)

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J; Misra, Anup K; Chakraborty, Ranadhir; Nanda, Ashish K; Mukhopadhyay, Subhra K; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding

  12. Startup and stability of thermophilic anaerobic digestion of OFMSW

    KAUST Repository

    El-Fadel, Mutasem E.

    2013-01-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and more recently as a greenhouse gas (GHG) mitigation measure. In this context, AD systems operating at thermophilic temperatures (55-60°C)-compared to mesophilic temperatures (35-40°C)-have the unique feature of producing hygienic soil conditioners with greater process efficiency, higher energy yield, and more GHG savings. Startup of AD systems is often constrained by the lack of acclimated seeds, leading to process instability and failure. The authors focus on strategies to startup thermophilic digesters treating OFMSW in the absence of acclimated seeds and examines constraints associated with process stability and ways to overcome them. Relevant gaps in the literature and future research needs are delineated. © 2013 Taylor & Francis Group, LLC.

  13. Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors

    International Nuclear Information System (INIS)

    This Study describes the feasibility of anaerobic degradation of United States Environmental Protection Agency (USEPA) listed 4-chloro-2-nitrophenol (4C-2-NP), 2-chloro-4-nitrophenol (2C-4-NP), 2-chloro-5-methylphenol (2C-5-MP) from a simulated wastewater using four identical 7L bench scale hybrid up flow anaerobic sludge blankets (HUASBs) at five different hydraulic retention times (HRTs) under thermophilic condition (55 ± 3 deg. C). The substrate to co-substrate ratios were maintained between 1:33.3 and 1:166.6. Continuous monitoring of parameters like pH, volatile fatty acids (VFAs) accumulation, oxidation reduction potential, chemical oxygen demand (COD), alkalinity, gas productions, methane percentages were carried out along with compound reduction to asses the efficiency of biodegradation. The compound reduction was estimated by using spectrophotometric methods and further validated with high-performance liquid chromatography (HPLC). Optimum HRT values were observed at 24 h. Optimum ratio of substrate (phenolic compounds) to co-substrate (glucose) was 1:100. Scanning electron micrographs show that the granules were composed of thermophilic Methanobrevibacter and thermophilic Methanothrix like bacteria.

  14. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of...

  15. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  16. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  17. Start-up and HRT Influence in Thermophilic and Mesophilic Anaerobic Digesters Seeded with Waste Activated Sludge

    OpenAIRE

    Benabdallah, El-Hadj T.; Dosta, J.; Mata-Alvarez, J.

    2007-01-01

    Since thermophilic anaerobic digestion represents an efficient alternative to mesophilic anaerobic digestion, multiple studies have been developed to compare their performance and viability. One of the problems related to thermophilic anaerobic digestion is the availability of an adequate seed to start-up the process. The goal of this study is to evaluate the possibility of using waste activated sludge (WAS) as a seed for both mesophilic (35 °C) and thermophilic (55 °C) anaerobic digesters...

  18. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  19. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  20. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    Science.gov (United States)

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. PMID:20692678

  1. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood

    OpenAIRE

    Herring, Christopher D; Kenealy, William R.; Joe Shaw, A.; Covalla, Sean F.; Olson, Daniel G; Zhang, Jiayi; Ryan Sillers, W.; Tsakraklides, Vasiliki; Bardsley, John S.; Rogers, Stephen R.; Thorne, Philip G.; Johnson, Jessica P.; Foster, Abigail; Shikhare, Indraneel D.; Klingeman, Dawn M

    2016-01-01

    Background The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. Results Here, we describe the highest ethanol titers achieved from T. saccharolyticum...

  2. Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes.

    Directory of Open Access Journals (Sweden)

    Lu Lin

    Full Text Available BACKGROUND: Thermophilic, Gram-positive, anaerobic bacteria (TGPAs are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. METHODOLOGY/PRINCIPAL FINDINGS: Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6x10(2 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. CONCLUSIONS/SIGNIFICANCE: In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically.

  3. The impact of mesophilic and thermophilic anaerobic digestion on biogas production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: of this paper is to compare mesophilic and thermophilic anaerobic digestion of three maize varieties. Parameters such as biogas production and biogas composition from maize silage were measured and calculated. The amount of biogas production (methane) was observed by the mini digester.Design/methodology/approach: Biogas production and composition in mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions were measured and compared. The measurements were performed with mi...

  4. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhanc...

  5. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater

    DEFF Research Database (Denmark)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon;

    2015-01-01

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic...

  6. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the...

  7. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  8. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric;

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... from digested household wastes. This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H-2 production from complex organic wastes....

  9. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  10. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  11. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  12. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are pro

  13. The bioleaching of different sulfide concentrates using thermophilic bacteria

    Science.gov (United States)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  14. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  15. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  16. Investigations on the inactivation of selected bacteria and viruses during mesophilic and thermophilic anaerobic alkaline cofermentation of biological waste materials, food residues and other animal residues; Seuchenhygienische Untersuchungen zur Inaktivierung ausgewaehlter Bakterien und Viren bei der mesophilen und thermophilen anaeroben alkalischen Faulung von Bio- und Kuechenabfaellen sowie anderen Rest- und Abfallstoffen tierischer Herkunft

    Energy Technology Data Exchange (ETDEWEB)

    Hoferer, M. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Umwelt- und Tierhygiene sowie Tiermedizin mit Tierklinik

    2001-07-01

    The purpose of this study is to investigate the inactivation kinetics of a number of different bacteria (Salmonella Senftenberg, Escherichia coli O157, Enterococcus faecium) and viruses (Bovine Enterovirus (ECBO), Equine Rhinovirus (ERV), Poliovirus, Bovine Parvovirus (BPV)) during the process of anaerobic cofermentation. Experiments were conducted in a semi-technical biogas plant at the University of Hohenheim. The fermenter was fed with a mixture of slurry from pigs or cattle (75%) and leftovers (25%) and was run under mesophilic (30 C + 35 C) as well as under thermophilic temperature conditions (50 C + 55 C). Volume and filter-sandwich germ-carriers were specifically developed and/or optimised for these analyses. Parallel to the experiments at the University of Hohenheim and under almost identical process conditions, various viruses (African Swine Fever Virus, Pseudorabies Virus, Classical Swine Fever Virus, Foot and Mouth Disease Virus, Swine Vesicular Disease Virus) were examined at the Federal Research Centre for Virus Diseases of Animals in Tuebingen. The results obtained at each research institution are directly compared. (orig.)

  17. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny;

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...

  18. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    NARCIS (Netherlands)

    Henstra, A.M.; Stams, A.J.M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial cat

  19. Solar Thermophilic Anaerobic Reactor (STAR) for Renewable Energy Production

    OpenAIRE

    Mashad, El, H.

    2003-01-01

    Liquid and solid cattle manures are major waste streams inEgypt. The main objective of this research was maximising the net energy production from these wastes by using a solar energy heating system. High concentration of ammonia can strongly affect the gross methane production via inhibition of methanogenesis and reduced hydrolysis. The latter is only limited addressed so far in literature and therefore taken as a second objective of this study.To be able to design a solar thermophilic anaer...

  20. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 oC was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 oC and 55 oC, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH4/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH4/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  1. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  2. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 °C

    OpenAIRE

    Ferrer Martí, Ivet; Campos Pozuelo, Elena; Flotats Ripoll, Xavier; Palatsi Civit, Jordi

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre...

  3. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  4. Toxicity of heavy metals to thermophilic anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Westermann, P.

    1983-01-01

    The effects of heavy metals on the thermophilic digestion of sewage sludge was studied in three semicontinuous digesters step-fed with cadmium, copper and nickel, respectively. The daily gas production, gas composition, the quantitative accumulation of volatile fatty acids, and the distribution of the heavy metals were measured. The fermentations were carried out at 58 degrees C with a retention time of 10 days and an addition of 1.7 g volatile solids/l of reactor volume per day. Nickel was found to be 2-3 times more water soluble than cadmium and copper when the digesters were fed raw sludge containing heavy metals. The three digesters all showed tendencies to acclimate to the heavy metals up to a certain level. 200 mg nickel/l was completely inhibitory while the same response was observed for cadmium and copper at 300 mg/l. (Refs. 20).

  5. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær; Lyberatos, G.

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the...... were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen...

  6. Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw.

    Science.gov (United States)

    Fu, Shan-Fei; Shi, Xiao-Shuang; Xu, Xiao-Hui; Wang, Chuan-Shui; Wang, Lin; Dai, Meng; Guo, Rong-Bo

    2015-06-01

    Thermophilic microaerobic pretreatment (TMP) has been proved to be an alternative pretreatment method during anaerobic digestion (AD) of corn straw. In this study, in order to improve the fermentation efficiency during late AD stage, improve the methane yield and volatile solid (VS) removal efficiency, a secondary thermophilic microaerobic treatment (STMT) was applied in the late AD stage of corn straw. Results showed STMT obviously improved the fermentation efficiency, methane yield and VS removal efficiency. The maximum methane yield and maximum VS removal efficiency were simultaneously obtained when the oxygen loads during STMT was 10 ml/g VS (VS of residual substrate). The maximum methane yield was 380.6 ml/g VS(substrate), which was 28.45% and 10.61% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively. The maximum VS removal efficiency was 81.85%, which was 29.43% and 17.23% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively. PMID:25818257

  7. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes

    Institute of Scientific and Technical Information of China (English)

    LU Shu-guang; IMAI Tsuyoshi; UKITA Masao; SEKINE Masahiko

    2007-01-01

    Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities,i.e., β-glucosidase, β-glucosidase, N-α -benzoyl-L-argininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The lower BAA-hydrolysing protease activity during the first 2-3 weeks was due to the inhibition of the low pH, but was enhanced simultaneously later with the pH increase. β-glucosidase activity showed the lowest values in weeks 1-2, and recovered simultaneously with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion is confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.

  8. Selecting the best inoculation for anaerobic thermophilic treatment in sewage plants; Seleccion de inoculo para el tratamiento anaerobio termofilico de lodos de depuradora

    Energy Technology Data Exchange (ETDEWEB)

    Riau, V.; Rubia, M. A. de la; Forster, T.; Perez, M.

    2009-07-01

    The objective of the present work is to propose a suitable method to obtain an thermophilic inoculum source able for the anaerobic thermophilic digestion of sludge raw. Also, the acclimatization period to the temperature and the substrate is study as well as the thermophilic process at different solids retention of solids is analyzed. (Author) 18 refs.

  9. Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus.

    Science.gov (United States)

    Gaisin, Vasil A; Grouzdev, Denis S; Namsaraev, Zorigto B; Sukhacheva, Marina V; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2016-03-01

    Isolated environments such as hot springs are particularly interesting for studying the microbial biogeography. These environments create an 'island effect' leading to genetic divergence. We studied the phylogeographic pattern of thermophilic anoxygenic phototrophic bacteria, belonging to the Roseiflexus genus. The main characteristic of the observed pattern was geographic and geochronologic fidelity to the hot springs within Circum-Pacific and Alpine-Himalayan-Indonesian orogenic belts. Mantel test revealed a correlation between genetic divergence and geographic distance among the phylotypes. Cluster analysis revealed a regional differentiation of the global phylogenetic pattern. The phylogeographic pattern is in correlation with geochronologic events during the break up of Pangaea that led to the modern configuration of continents. To our knowledge this is the first geochronological scenario of intercontinental prokaryotic taxon divergence. The existence of the modern phylogeographic pattern contradicts with the existence of the ancient evolutionary history of the Roseiflexus group proposed on the basis of its deep-branching phylogenetic position. These facts indicate that evolutionary rates in Roseiflexus varied over a wide range. PMID:26826142

  10. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    Directory of Open Access Journals (Sweden)

    Mohammed Rabbani

    2013-12-01

    Full Text Available The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  11. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    Science.gov (United States)

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  12. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Stams, Alfons J M

    2002-07-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMOT, was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 C with methanol as the sole substrate. The G+C content of the DNA of strain TMOT was 39.2 mol%. The optimum pH, NaCl concentration, and temperature for growth were 7.0, 1.0%, and 65 degrees C, respectively. Strain TMOT was able to degrade methanol to CO2 and H2 in syntrophic culture with Methanothermobacter thermautotrophicus AH or Thermodesulfovibrio yellowstonii. Thiosulfate, elemental sulfur, Fe(III) and anthraquinone-2,6-disulfonate were able to serve as electron acceptors during methanol degradation. In the presence of thiosulfate or elemental sulfur, methanol was converted to CO2 and partly to alanine. In pure culture, strain TMOT was also able to ferment methanol to acetate, CO2 and H2. However, this degradation occurred slower than in syntrophic cultures or in the presence of electron acceptors. Yeast extract was required for growth. Besides growing on methanol, strain TMOT grew by fermentation on a variety of carbohydrates including monomeric and oligomeric sugars, starch and xylan. Acetate, alanine, CO2, H2, and traces of ethanol, lactate and alpha-aminobutyrate were produced during glucose fermentation. Comparison of 16S rDNA genes revealed that strain TMOT is related to Thermotoga subterranea (98%) and Thermotoga elfii (98%). The type strain is TMOT (= DSM 14385T = ATCC BAA-301T). On the basis of the fact that these organisms differ physiologically from strain TMOT, it is proposed that strain TMOT be classified as a new species, within the genus Thermotoga, as Thermotoga lettingae. PMID:12148651

  13. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    International Nuclear Information System (INIS)

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m3 d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m3 CH4/kg CODremoved. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  14. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 oC) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  15. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sentuerk, E.; Ince, M. [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey); Onkal Engin, G., E-mail: guleda@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey)

    2010-04-15

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m{sup 3} d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m{sup 3} CH{sub 4}/kg COD{sub removed}. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  16. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Science.gov (United States)

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p co-digestion of sewage sludge under mesophilic and thermophilic conditions. PMID:26300352

  17. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    OpenAIRE

    Sheng Zhou; Jining Zhang; Guoyan Zou; Shohei Riya; Masaaki Hosomi

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure trea...

  18. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    OpenAIRE

    Abreu Angela A; Karakashev Dimitar; Angelidaki Irini; Sousa Diana Z; Alves M.

    2012-01-01

    Abstract Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. T...

  19. Effects of Temperature on Methanogenesis in a Thermophilic (58°C) Anaerobic Digestor

    OpenAIRE

    Zinder, S H; Anguish, T.; Cardwell, S.C.

    1984-01-01

    The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO− or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°...

  20. Selective Inhibition by 2-Bromoethanesulfonate of Methanogenesis from Acetate in a Thermophilic Anaerobic Digestor

    OpenAIRE

    Zinder, S H; Anguish, T.; Cardwell, S.C.

    1984-01-01

    The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (58°C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO−, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethanesulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h. it cau...

  1. Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion.

    Science.gov (United States)

    Jariyaboon, Rattana; O-Thong, Sompong; Kongjan, Prawit

    2015-12-01

    Anaerobic digestion by two-stage process, containing hydrogen-producing (acidogenic) first stage and methanogenic second stage, has been proposed to degrade substrates which are difficult to be treated by single stage anaerobic digestion process. This research was aimed to evaluate the bio-hydrogen and the bio-methane potentials (BHP and BMP) of skim latex serum (SLS) by using sequential batch hydrogen and methane cultivations at thermophilic conditions (55°C) and with initial SLS concentrations of 37.5-75.0% (v/v). The maximal 1.57 L H2/L SLS for BHP and 12.2L CH4/L SLS for BMP were both achieved with 60% (v/v) SLS. The dominant hydrogen-producing bacteria in the H2 batch reactor were Thermoanaerobacterium sp. and Clostrdium sp. Meanwhile, the CH4 batch reactor was dominated by the methanogens Methanosarcina mazei and Methanothermobacter defluvii. The results demonstrate that SLS can be degraded by conversion to form hydrogen and methane, waste treatment and bioenergy production are thus combined. PMID:26386423

  2. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  3. Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions

    KAUST Repository

    Atallah, Nabil M.

    2014-12-01

    In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester.

  4. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    Science.gov (United States)

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible. PMID:27020398

  5. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    Science.gov (United States)

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

  6. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    Science.gov (United States)

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  7. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Sludge physicochemical composition, methane (CH4) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  8. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  9. Evaluation of two-phase thermophilic anaerobic methane fermentation for the treatment of garbage

    International Nuclear Information System (INIS)

    Municipal solid wastes (MSW) in Japan are generally incinerated. However, in recent years, garbage has been recognized as a renewable energy source. This has resulted in an increase in the use of biological processes, such as anaerobic digestion, to treat organic waste such as sewage sludge and garbage. The two phases of anaerobic digestion are the acidogenic phase and the methane producing phase. Both differ significantly in their nutritional and physiological requirements. This study evaluated the effectiveness of treating garbage with the two-phase thermophilic methane fermentation system (TPS). The performance of the acid fermentation phase in TPS was examined with particular reference to operational parameters such as pH, hydraulic retention time and organic loading rate on volatile fatty acid fermentation. It was shown that TPS was more efficient than the single-phase thermophilic methane fermentation system (SPS). Acidification control in the first stage resulted in better stability of methane fermentation in the second stage. VFA formation was optimized at a pH of 6. The recovery ratios of VFAs and methane were achieved in the range of 42 to 44 per cent and 88 to 91 per cent of garbage by high organic loading rate respectively. 12 refs., 6 tabs., 4 figs

  10. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite.

    Science.gov (United States)

    Angelidaki, I; Petersen, S P; Ahring, B K

    1990-07-01

    The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaptation of the digestors, very rapid degradation of oil was observed and more than 80% of the oil was degraded within a few hours after daily feeding. In batch experiments, glyceride trioleate was found to be inhibitory to thermophilic anaerobic digestion when the concentrations were higher than 2.0 g/l. However, addition of bentonite (a clay mineral) at concentrations of 0.15% and 0.45% was found to partly overcome this inhibition. Addition of calcium chloride in concentration of 3 mM (0.033% w/v) showed a similar positive effect on the utilization of oil, but the effect was lower than with bentonite. PMID:1366749

  11. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  12. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  13. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV Sin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  14. A culture-dependent survey of thermophilic bacteria from hot springs in Xiamen area in China

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; OUYANG Jianping; AO Jingqun; CHEN Xinhua

    2009-01-01

    Microbes are believed to play important roles in ecosystem function in many environments. The hot springs of Xiamen Island are close to the Xiamen Sea, and may have some characteristics different from those of inland hot springs. Microbes living in the hot springs of Xiamen may have new characteristics. However, little is known about microbial communities of hot springs close to the Xiamen Sea. A cuhure-dependent survey of microbial population in the Xiamen hot springs was pcrformed by using an approach combining total cellular protein profile identification and 16S rRNA gene sequencing. A total of 328 isolates of bacteria were obtained from liquid and sediment samples from the Xiamen hot springs, including neutrophilie thermophilic bacteria and moderately thermophilic acidophiles. Neutrophilic thermophilic bacteria, which grow at a temperature range of 55-90℃ including Rhodothermus marinus (Strain 1) , Thermus thermophilus (Strain 2), Thermus thiopara (Strain 3) , Geobacillus stearothermophilus(Strain 4) , Geobacillus thermoleovorans (Strain 5) , and Pseudomonas pseudoal-caligenes (Strain 6), were recovered by 2216E plates. Moderately thermophilic acidophiles, which can grow at temperatures above 50℃ and a pH range of 1. 8-3.5 such as Alicyclobacillus acidoterrestris (Strain 8) , Sul-fobacillus acidophilus (Strain 9), and Sulfobacillus thermosulfidooxidans (Strain 10), were isolated on selective solid medium containing sulfur and Fe2+. Among these strains, Rhodothermus marinus, Thermus thermophilus and Geobacillus stearothermophilus are not only thermophilcs, but also halophiles. One bacterium strain (Strain 6) shared 99% nucleotide sequence homology with Pseudomonas pseudoalcaligenes on the 16S rRNA gene se-quence, but was quite different from Pseudomonas pseudoalcaligenes in biological characteristics, suggesting that it may represent a novel thermophilic species. Results indicated that various species of neutrophilic thermophiles and moderately thermophilic

  15. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    An extremely thermophilic, xylanolytic, spore-forming and strict anaerobic bacterium DTU01(T) was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter...

  16. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  17. Thermophilic fermentation of hydrolysates: the effect of inhibitors on growth of thermophilic bacteria.

    Science.gov (United States)

    Thomasser, Christiane; Danner, Herbert; Neureiter, Markus; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Lignocellulosic biomass has great potential as a cheap feedstock in biological processes to produce biofuels or chemicals; however, dilute acid pretreatment at high temperatures produces undesirable compounds. Toxicity tests were done with inhibitors in standard media, to predict the growth-limiting effects on thermophilic strains. The 22 inhibitors included furfural, levulinic acid, acetic acid, and cinnamaldehyde. Neutralizing reagents and additional treatment steps have been tested. PMID:12018300

  18. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    Science.gov (United States)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  19. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  20. [Sensitivity of anaerobic bacteria to therapeutic agents (Zurich 1984)].

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1985-12-28

    There are several reports in the literature on resistance of anaerobic bacteria against antimicrobial agents. Therefore, 231 anaerobic strains of various bacterial genera, isolated from clinical specimens during fall 1984, were tested for susceptibility to antimicrobial agents active against anaerobic bacteria. Whereas 23% of the Bacteroides species not belonging to the B. fragilis group were resistant to penicillin, the anaerobic bacteria were still susceptible to chloramphenicol, clindamycin and the nitroimidazoles. The resistance rate against the various new beta-lactam antibiotics was comparable to results of other studies. Due to the increasing resistance it is recommended that the susceptibility of clinically important anaerobes be tested by appropriate techniques. The agar diffusion test must not be used due to unreliable results. Instead, the minimal inhibitory concentration should be determined or the "broth-disk" test performed. PMID:4089587

  1. Thermophilic Bacteria Colony Growwth and its Consequences in the Food Industry

    Czech Academy of Sciences Publication Activity Database

    Melzoch, K.; Votruba, Jaroslav; Sekavová, B.; Piterková, L.; Rychtera, M.

    2004-01-01

    Roč. 22, č. 1 (2004), s. 1-8. ISSN 1212-1800 R&D Projects: GA ČR GA525/03/0375 Institutional research plan: CEZ:AV0Z5020903 Keywords : thermophilic bacteria * colony growth Subject RIV: EE - Microbiology, Virology

  2. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...... hydrolysates indicate the great potential of the tested strain as a realistic candidate for industrial scale bioethanol production from lignocellulose. The study shows that the use of fluidized bed reactor technology might be a viable approach in a commercial lignocellulose-based bioethanol process using......Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns...

  3. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  4. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  5. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  6. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors

    DEFF Research Database (Denmark)

    Palatsi, J.; Laureni, M.; Andres, M.V.;

    2009-01-01

    Long chain fatty acids (LCFA) concentrations over 1.0 g L1 were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feeding...... patterns, dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA...... and reducing the bioavailable LCFA concentration, were found to be the best recovery strategies, improving the recovery time from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by repeated inhibition and process recovery. The subsequent exposure of the anaerobic...

  7. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor

    International Nuclear Information System (INIS)

    The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (580C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO-, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethansulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h, it caused a 60% reduction in methanogenesis and a corresponding increase in acetate accumulation; at 50 μmol/ml it caused complete inhibition of methanogenesis and accumulation of acetate, H2, and ethanol

  8. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.

    Science.gov (United States)

    Kimura, Zen-ichiro; Kita, Akihisa; Iwasaki, Yuki; Nakashimada, Yutaka; Hoshino, Tamotsu; Murakami, Katsuji

    2016-03-01

    Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M. thermoacetica, strain Y72, produces both ethanol and acetate from H(2)/CO(2); however, the maximum concentrations of these two products are too low to enable commercialization of the syngas fermentation process. In the present study, glycerol was identified as a novel electron sink among the fermentation products of strain Y72. Notably, a 1.5-fold increase in the production of ethanol (1.4 mM) was observed in cultures supplemented with glycerol during syngas fermentation. This discovery is expected to aid in the development of novel methods that allow for the regulation of metabolic pathways to direct and increase the production of desirable fermentative compounds. PMID:26452417

  9. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Highlights: ► We investigate the digestion of two algae biomasses in hybrid flow-through reactors. ► We determine the bio-methane potential of these biomasses through batch assays. ► Conversion efficiencies of 20–50% with an HRT of 2.2 days are possible. ► We valorise microalgae biomass by anaerobic digestion in a high rate reactor. -- Abstract: Two types of non-axenic algal cultures, one dominated by the freshwater microalgae Scenedesmus obliquus and the other by the marine microalgae Phaeodactylum tricornutum, were cultivated in two types of simple photobioreactor systems. The production rates, expressed on dry matter (DM) basis, were in the order of 0.12 and 0.18 g DM L−1 d−1 for S. obliquus and P. tricornutum respectively. The biogas potential of algal biomass was assessed by performing standardized batch digestion as well as digestion in a hybrid flow-through reactor (combining a sludge blanket and a carrier bed), the latter under mesophilic and thermophilic conditions. Biomethane potential assays revealed the ultimate methane yield (B0) of P. tricornutum biomass to be about a factor of 1.5 higher than that of S. obliquus biomass, i.e. 0.36 and 0.24 L CH4 g−1 volatile solids (VS) added respectively. For S. obliquus biomass, the hybrid flow-through reactor tests operated at volumetric organic loading rate (Bv) of 2.8 gVS L−1 d−1 indicated low conversion efficiencies ranging between 26–31% at a hydraulic retention time (HRT) of 2.2 days for mesophilic and thermophilic conditions respectively. When digesting P. tricornutum at a Bv of 1.9 gVS L−1 d−1 at either mesophilic or thermophilic conditions and at an HRT of 2.2 days, an overall conversion efficiency of about 50% was obtained. This work indicated that the hydrolysis of the algae cells is limiting the anaerobic processing of intensively grown S. obliquus and P. tricornutum biomass.

  10. Biological hydrogen production from sweet sorghum by thermophilic bacteria

    OpenAIRE

    Claassen, P A M; Vrije, de, T.; Budde, M.A.W.; Koukios, E.G.; Gylnos, A.; Reczey, K.

    2004-01-01

    Sweet sorghum cultivation was carried out in South-west Greece. The fresh biomass yield was about 126 t/ha. Stalks weight accounts for 82% of total crop weight while leaves and panicle account for 17% and 1%, respectively. The major components in variety 'Keller' stalks were, based on dry weight, sugars (45%), (hemi)cellulose (35%), lignin (9%) and ash (3%). This means that per hectare, 14.5 ton sugars is produced for hydrogen fermentation. Hydrogen fermentations by the extreme thermophilic b...

  11. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents

    NARCIS (Netherlands)

    Harmsen, HJM; Prieur, D; Jeanthon, C

    1997-01-01

    Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems, We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the

  12. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Science.gov (United States)

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  13. Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    H.DEVECI; M.A.JORDAN; N.POWELL; I.ALP

    2008-01-01

    The effects of bacterial strain,salinity and pH on the bioleaching of a complex ore using mesophilic and extremely thermophilic bacteria were investigated and the statistical analysis of the results was performed using ERGUN's test.The extreme thermophiles were shown to display superior kinetics of dissolution of zinc compared with the mesophiles as confirmed by the statistical analysis.Bioleaching performance of the extreme thermophiles is found to improve in response to the increase in acidity (pH from 2.0 to 1.0) whilst the activity of the mesophiles is adversely affected by decreasing pH.Statistical analysis of the bioleaching data indicates that the effect of pH is insignificant in the range of pH 1.0-1.2 for the extreme thermophiles and pH 1.4-2.0 for the mesophiles.Salinity is shown to have a suppressing effect on the mesophiles.However,the extreme thermophiles appear to be halophilic in character as they could operate efficiently under saline conditions (1%-4%C1- (w/v)).

  14. Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes.

    Science.gov (United States)

    Walker, Lee; Charles, Wipa; Cord-Ruwisch, Ralf

    2009-08-01

    The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation. PMID:19345576

  15. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  16. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  17. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. PMID:23510903

  18. Bioleaching of pollymetallic sulphide concentrate using thermophilic bacteria

    Directory of Open Access Journals (Sweden)

    Vuković Milovan

    2014-01-01

    Full Text Available An extreme thermophilic, iron-sulphur oxidising bacterial culture was isolated and adapted to tolerate high metal and solids concentrations at 70°C. Following isolation and adaptation, the culture was used in a batch bioleach test employing a 5-l glass standard magnetic agitated and aerated reactor, for the bioleaching of a copper-lead-zinc collective concentrate. The culture exhibited stable leach performance over the period of leach operation and overall copper and zinc extractions higher than 97%. Lead sulphide is transformed into lead sulphate remaining in the bioleach residue due to the low solubility in sulphate media. Brine leaching of bioleach residue yields 95% lead extraction. [Projekat Ministarstva nauke Republike Srbije, br. 34023

  19. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  20. Semi-continuous solid substrate anaerobic reactors for H{sub 2} production from organic waste: Mesophilic versus thermophilic regime

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania; Rios-Leal, Elvira; Esparza-Garcia, Fernando; Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department Biotechnology and Bioengineering, Environmental Biotechnology, P.O. Box 14-740, Mexico D.F. 07000 (Mexico); Cecchi, Franco [Universita degli Studi di Verona, Verona (Italy)

    2005-11-01

    We evaluated the influence of the operation temperature (mesophilic vs. thermophilic regime) of semicontinuous, acidogenic solid substrate anaerobic digestion (A-SSAD) of the organic fraction of municipal solid waste (OFMSW) at lab scale. The H{sub 2} percentage was higher in the thermophilic regime than in the mesophilic operation (58% and 42%, respectively). The H{sub 2} yield of thermophilic A-SSAD was significantly higher than in our mesophilic reactors (360 vs. 165NmL H{sub 2}/g VS{sub rem}) and other studies reported in the literature (range of 62-180mL/g VS). Mesophilic A-SSAD showed a yield of 37% of the maximum yield based on 4molH{sub 2}/mol hexose, while thermophilic A-SSAD exhibited a yield of 80% of the maximum yield. This result is similar to works with pure cultures of extremophile microorganisms where H{sub 2} yields of 83% of the maximum were reported. We found higher concentrations of acetic acid in the digestates of thermophilic A-SSAD, while butyrate was in higher proportion in mesophilic A-SSAD spent solids. The moderate-to-high yields obtained with the semicontinuous process used in this work are in disagreement with previous reports claiming that batch and semicontinuous processes are less efficient than continuous ones. (author)

  1. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Samaras, Vasilios G; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Mamais, Daniel; Lekkas, Themistokles D

    2014-06-01

    The removal of endocrine disrupting compounds (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) was studied in three lab-scale anaerobic digestion (AD) systems; a single-stage mesophilic, a single-stage thermophilic and a two-stage thermophilic/mesophilic. All micropollutants underwent microbial degradation. High removal efficiency (>80%) was calculated for diclofenac, ibuprofen, naproxen and ketoprofen; whereas triclosan, bisphenol A and the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate were moderately removed (40-80%). NSAIDs removal was not affected by the type of AD system used; whereas slightly higher EDCs removal was observed in two-stage system. In this system, most microcontaminants were removed in thermophilic digester. Biotransformation of NP1EO and NP was affected by the temperature applied to bioreactors. Under mesophilic conditions, higher removal of NP1EO and accumulation of NP was noticed; whereas the opposite was observed under thermophilic conditions. For most analytes, higher specific removal rates were calculated under thermophilic conditions and 20 days SRT. PMID:24768891

  2. Thermophilic Anaerobic Biodegradation of [14C]Lignin, [14C]Cellulose, and [14C]Lignocellulose Preparations

    OpenAIRE

    Benner, Ronald; Hodson, Robert E.

    1985-01-01

    Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were ...

  3. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  4. The Role of Anaerobic Bacteria in Cystic Fibrosis Lung Disease.

    OpenAIRE

    Murray, Michelle

    2014-01-01

    Recurrent bacterial infections in Cystic Fibrosis (CF) are the primary cause for morbidity and mortality in CF. Advancements in second generation sequencing and evolution of the lung microbiome has prompted greater interest in other bacteria present in the lung. Anaerobic bacteria have been one of the most common bacteria found on molecular sequencing, their cause and role is as of yet unknown. In our project, we recruited 450 patients prospectively and followed them at both stable and exacer...

  5. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  6. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yongzhi Chi; Yuyou Li; Xuening Fei; Shaopo Wang; Hongying Yun

    2011-01-01

    Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency.Uniform design was applied to determine the combination of target temperature (110-210℃),microwave holding time (1-51 min),and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization.Maximum solubilization ratio (85.1%) of VSS was observed at 210℃ with 0.2 g-NaOH/g-SS and 35 min holding time.The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP).Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge.The highest CMP was a 27% improvement over the control.In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge,a semi-continuous thennophilic reactor fed with pretreated TWAS without neutralization (at 170℃ with 1 rain holding time and 0.05 g NaOH/g SS) was stable and functioned well,with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%,respectively,which were higher than those of the control system.Additionally,methane yields (L@STP/g-CODadded,at standard temperature and pressure (STP) conditions of 0℃ and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%,respectively,compared to the control reactor.

  7. Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S.;

    2014-01-01

    silage, and deep litter was incubated with 100 mM of [2-13C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days...... a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic...

  8. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste.

    Science.gov (United States)

    Hoyos-Hernandez, Carolina; Hoffmann, Marieke; Guenne, Angeline; Mazeas, Laurent

    2014-02-01

    Anaerobic digestion makes it possible to valorize municipal solid waste (MSW) into biogas and digestate which are, respectively, a renewable energy source and an organic amendment for soil. Phenols are persistent pollutants present in MSW that can inhibit the anaerobic digestion process and have a toxic effect on microbiota if they are applied to soil together with digestate. It is then important to define the operational conditions of anaerobic digestion which allow the complete degradation of phenol. In this context, the fate of phenol during the anaerobic digestion of MSW at 55°C was followed using an isotopic tracing approach ((13)C6-phenol) in experimental microcosms with inoculum from an industrial thermophilic anaerobic digester. With this approach, it was possible to demonstrate the complete phenol biodegradation into methane and carbon dioxide via benzoate. Benzoate is known to be a phenol metabolite under mesophilic conditions, but in this study it was found for the first time to be a phenol degradation product at thermophilic temperature. PMID:24238916

  9. Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wu Wang; Seung-Hwan Lee; James G.Elkins; Yongchao Li; Scott Hamilton-Brehm; Jennifer L.Morrell-Falvey

    2013-01-01

    Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets.In the bioenergy field,much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however,little effort is dedicated to the development of imaging tools to monitor this dynamic biological process.This is,in part,due to the experimental challenges of imaging ceils under both anaerobic and thermophilic conditions.Here an imaging system is described that integrates confocal microscopy,a flow cell device,and a lipophilic dye to visualize cells.Solutions to technical obstacles regarding suitable fluorescent markers,photodamage during imaging,and maintenance of environmental conditions during imaging are presented.This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60℃.This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.

  10. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  11. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. PMID:25813393

  12. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application. PMID:24679088

  13. Susceptibility of anaerobic bacteria to carbenicillin.

    Science.gov (United States)

    Blazevic, D J; Matsen, J M

    1974-05-01

    One hundred and seventy-one strains of anaerobes were tested for susceptibility to carbenicillin by using agar dilution, broth dilution, and two disk diffusion methods. The minimal inhibitory concentration (MIC) for 67% of 51 strains of Bacteroides fragilis, 7 of 9 strains of Bacteroides melaninogenicus, and all of 8 strains of Eubacterium was 100 mug or less per ml. The MICs of the remaining anaerobes were 50 mug or less per ml. The broth dilution results were felt to be the most accurate of the four methods utilized. PMID:4462461

  14. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  15. Isolation and identification of thermophilic and mesophylic proteolytic bacteria from shrimp paste "Terasi"

    Science.gov (United States)

    Murwani, R.; Supriyadi, Subagio, Trianto, A.; Ambariyanto

    2015-12-01

    Terasi is a traditional product generally made of fermented shrimp. There were many studies regarding lactic acid bacteria of terasi but none regarding proteolitic bacteria. This study was conducted to isolate and identify the thermophilic and mesophylic proteolytic bacteria from terasi. In addition, the effect of different salt concentrations on the growth of the isolated proteolytic bacteria with the greatest proteolytic activity was also studied. Terasi samples were obtained from the Northern coast region of Java island i.e. Jepara, Demak and Batang. The study obtained 34 proteolytic isolates. Four isolates were identified as Sulfidobacillus, three isolates as Vibrio / Alkaligenes / Aeromonas, two isolates as Pseudomonas, 21 isolates as Bacillus, three isolates as Kurthia/ Caryophanon and one isolates as Amphibacillus. The growth of proteolytic bacteria was affected by salt concentration. The largest growth was found at 0 ppm salt concentrations and growth was declined as salt concentration increased. Maximum growth at each salt concentration tested was found at 8 hours incubation.

  16. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    DEFF Research Database (Denmark)

    De Abreu, Angela Alexandra Valente; Karakashev, Dimitar Borisov; Angelidaki, Irini;

    2012-01-01

    . Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic anaerobic mixed cultures was studied in continuous (70oC, pH 5.5) and batch (70oC, pH 5.5 and pH 7) assays. Two EGSB reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant...... differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.......0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. DGGE results revealed no significant difference on the bacterial community composition between operational periods...

  17. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  18. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    Directory of Open Access Journals (Sweden)

    Sheng Zhou

    2015-01-01

    Full Text Available To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20:1 and 30:1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  19. Comparison of Cellulolytic Activities in Clostridium thermocellum and Three Thermophilic, Cellulolytic Anaerobes.

    Science.gov (United States)

    Reynolds, P H; Sissons, C H; Daniel, R M; Morgan, H W

    1986-01-01

    Avicelase, carboxymethyl cellulase (CMCase), and beta-glucosidase activities have been compared between Clostridium thermocellum and three extremely thermophilic, cellulolytic anaerobes, isolates TP8, TP11, and KT8. The three isolates were all small, gram-negative staining, oval-ended rods which occurred singly and, at exponential phase, in long chains. They were nonflagellated and no spores were visible. The KT8 and TP11 isolates caused clumping of the cellulose during growth. In all four organisms the CMCase activity paralleled cell growth; however, in C. thermocellum and TP8 the avicelase activity did not increase until early stationary phase. Total CMCase activity in C. thermocellum was significantly higher than in the three isolates; however, avicelase activities were much more comparable among the four organisms. C. thermocellum produced higher levels of ethanol, and all four organisms produced similar concentrations of acetate. The amounts of free and bound CMCase and avicelase activities were investigated. In C. thermocellum and TP8 most of the CMCase and avicelase activities were bound to the cellulose in the medium. In contrast, most of the CMCase activity in TP11 and KT8 was free in the culture supernatant; a significant percentage of avicelase activity was also free. The TP8 isolate was also grown on a defined medium with urea as sole nitrogen source and cellulose serving as the carbon source. Under these conditions the pattern of enzyme production was the same as that in the enriched medium, although the level of that production was considerably reduced. PMID:16346961

  20. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    OpenAIRE

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected ...

  1. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  2. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    Science.gov (United States)

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  3. Unconventional lateral gene transfer in extreme thermophilic bacteria

    OpenAIRE

    César, Carolina Elvira; Bricio, Carlos; van Heerden, Esta; Littauer, Dereck; Berenguer, José; Álvarez, Laura

    2011-01-01

    Conjugation and natural competence are two major mechanisms that explain the acquisition of foreign genes throughout bacterial evolution. In recent decades, several studies in model organisms have revealed in great detail the steps involved in such processes. The findings support the idea that the major basis of these mechanisms is essentially similar in all bacteria. However, recent work has pinpointed the existence of new, evolutionarily different processes underlying lateral gene transfer....

  4. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced...... Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation...... enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  5. Improving the stability of thermophilic anaerobic digesters treating SS-OFMSW through enrichment with compost and leachate seeds

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-03-01

    This paper examines the potential of improving the stability of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) by adding leachate and compost during inoculation. For this purpose, two stable thermophilic digesters, A (control) and B (with added leachate and compost), were subjected to a sustained substrate shock by doubling the organic loading rate for one week. Feeding was suspended then gradually resumed to reach the pre-shock loading rate (2. gVS/l/d). Digester A failed, exhibiting excessive increase in acetate and a corresponding decrease in pH and methane generation, and lower COD and solids removal efficiencies. In contrast, digester B was able to restore its functionality with 90% recovery of pre-shock methane generation rate at stable pH, lower hydrogen levels, and reduced VFAs and ammonia accumulation. © 2012 Elsevier Ltd.

  6. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions

    DEFF Research Database (Denmark)

    Johansen, Anders; Bangsø Nielsen, Henrik; Hansen, Christian M.;

    2013-01-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit...... from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs......, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was...

  7. State of the art and future perspectives of thermophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Mladenovska, Zuzana; Iranpour, R.;

    2002-01-01

    The slate of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures......-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65degreesC or more may be necessary in the future to meet the demands for full sanitation of the waste material...

  8. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    International Nuclear Information System (INIS)

    Highlights: ► High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. ► The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. ► The temperature phased anaerobic digestion process (65 + 55 °C) showed the best performances with yields of 0.49 m3/kgVSfed. ► Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 °C), thermophilic (55 °C) and temperature phased (65 + 55 °C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m3d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m3/kgVSfed at 35, 55, and 65 + 55 °C, respectively. The extreme thermophilic reactor working at 65 °C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVSfed. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were

  9. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    International Nuclear Information System (INIS)

    Highlights: ► Methane generation may be modeled by means of modified product generation model of Romero García (1991). ► Organic matter content and particle size influence the kinetic parameters. ► Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 °C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, YpMAX and θMIN) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μmax) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d−1 (K = 1.391 d−1; YpMAX = 1.167 L CH4/gDOCc; θMIN = 7.924 days) vs. 0.135 d−1 (K = 1.282 d−1; YpMAX = 1.150 L CH4/gDOCc; θMIN = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  10. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.;

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor process...... water with or without stripping ammonia. Three continuously stirred tank reactors were operated at 55 degrees C with 11.4 gVS d(-1) loading rate and 15 d retention time. Total ammonia nitrogen (TAN) level in the reactor fed with recirculated water alone was spiked to 3.5 and 5.5 g-N l(-1) through...

  11. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  12. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC5 = 26 μg phenols g-1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC5 = 43-110 μg g-1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  13. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an...

  14. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  15. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.

    Science.gov (United States)

    Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

    2015-01-01

    The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). PMID:25442104

  16. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. PMID:23648369

  17. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  18. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jie

    2016-01-01

    The present study investigates the enrichment of anaerobic ammonium oxidation (anammox) bacteria in the marine environment using sediment samples obtained from the East China Sea and discusses the nitrogen removal efficiency of marine anammox bioreactor. Enrichment of anammox bacteria with simultaneous removal of nitrite and ammonium ions was observed in the Anaerobic Sequencing Batch Reactor under a total nitrogen loading rate of 0.37kg-N m-3day-1. In this study, The nitrogen removal efficiency was up to 80% and the molar-reaction ratio of ammonium, nitrite and nitrate was 1.0:1.22:0.22 which was a little different from a previously reported ratio of 1.0:1.32:0.26 in a freshwater system.

  19. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  20. Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria

    OpenAIRE

    Roslev, P.; King, G. M.

    1995-01-01

    The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic prote...

  1. Xylitol Production From D-Xylose by Facultative Anaerobic Bacteria

    OpenAIRE

    Rangaswamy, Sendil

    2003-01-01

    Seventeen species of facultative anaerobic bacteria belonging to three genera (Serratia, Cellulomonas, and Corynebacterium) were screened for the production of xylitol; a sugar alcohol used as a sweetener in the pharmaceutical and food industries. A chromogenic assay of both solid and liquid cultures showed that 10 of the 17 species screened could grow on D-xylose and produce detectable quantities of xylitol during 24-96 h of fermentation. The ten bacterial species were studied for the effe...

  2. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    OpenAIRE

    Niftrik, L.A.M.P. van; Jetten, M.S.M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm,...

  3. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    Science.gov (United States)

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. PMID:23266071

  4. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    Directory of Open Access Journals (Sweden)

    Abreu Angela A

    2012-02-01

    Full Text Available Abstract Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5 and batch (70°C, pH 5.5 and pH 7 assays. Two expanded granular sludge bed (EGSB reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively. Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars

  5. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    Science.gov (United States)

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  6. Chemical behaviors of different arsenic-bearing sulphides bio-oxidated by thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-ying; GONG En-pu; YANG Li-li; WANG Da-wen

    2005-01-01

    The study on arsenopyrite and realgar of bacterial oxidation shows that the chemical behaviors of different arsenic-bearing sulphides oxidated by thermophilic bacteria are quite distinct. Arsenopyrite is active and quickly eroded in bacteria-bearing solution. With a high leaching rate over 95%, the arsenopyrite phase cannot be detected by X-ray diffraction(XRD). Arsenopyrite is highly toxic to bacteria that at the initial stage of bio-oxidation, bacterial growth is inhibited and the number of bacterium cell drops from 2.26 × 108/mL to the lowest 2.01 × 105/mL. At the later stages of bio-oxidation, bacteria grow fast and reach 2.23 × 108/mL. Comparably, realgar is inertial and resistive to bacterial corrosion and oxidation. Arsenic in realgar crystal is hard to be leached and the residue is still realgar phase, as indicated by XRD. The cell number of bacteria varies a little, decreasing from 2.26 × 108/mL to 2.01 × 107/mL, during the bacterial oxidation. The results show that the crystal structure and arsenic valency of arsenic-bearing sulphides play a vital role during the leaching process of bacterial oxidation.

  7. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. PMID:27108212

  8. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains

    DEFF Research Database (Denmark)

    Jensen, Marie Elisabeth Penderup; Ardö, Ylva Margareta; Vogensen, Finn Kvist

    2009-01-01

    Aims: To isolate cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and compare them with dairy-related Lactobacillus helveticus strains using molecular typing methods. Methods and Results: The number of thermophilic bacteria in seven commercial cheeses...... was identical to the rep-PCR profile of the Lact. helveticus adjunct culture used in the specific cheese, but their pulsed field gel electrophoresis profiles differed slightly. Conclusion: It was possible to isolate cultivable thermophilic bacteria from ripened cheeses manufactured with mesophilic...... starter and thermophilic adjunct cultures by using an enumeration step. Significance and Impact of the Study: Isolation of cultivable thermophilic bacteria from ripened cheeses made with mesophilic starters offers an original source for new dairy-relevant cultures....

  9. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters

    International Nuclear Information System (INIS)

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulgotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media

  10. Disk susceptibility testing of slow-growing anaerobic bacteria.

    Science.gov (United States)

    Kwok, Y Y; Tally, F P; Sutter, V L; Finegold, S M

    1975-01-01

    The susceptibility of 55 strains of slow-growing anaerobes to eight clinically useful or potentially useful antibiotics was determined by agar dilution and disk diffusion tests. Strains of the genera Peptococcus, Peptostreptococcus, Megasphaera, Veillonella, Eubacterium, Bifidobacterium, Clostridium, and Fusobacterium were included. All strains were susceptible to chloramphenicol, but varied in their susceptibility to penicillin, lincomycin, clindamycin, tetracyclines, and vancomycin. Correlation between minimal inhibitory concentration and inhibition zone diameters was generally good. Prediction of susceptibility based on zone diameter measurements appeared satisfactory. Although routine susceptibility testing of anaerobic bacteria is not recommended, there are circumstances where such testing is relevant to the clinical situation. For those laboratories ill-equipped to do dilution tests, a disk diffusion test would give relatively accurate preliminary information. Quantitative susceptibility tests could then be done by a reference laboratory. PMID:1137353

  11. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  12. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions

    Science.gov (United States)

    Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou

    2015-08-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  13. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.

    Science.gov (United States)

    Dong, Ze Hua; Liu, Tao; Liu, Hong Fang

    2011-05-01

    Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions. PMID:21604218

  14. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  15. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day−1. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day−1

  16. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Sajeena Beevi, B; Madhu, G; Sahoo, Deepak Kumar

    2015-02-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9L/kg VS (volatile solid) for the total solid (TS) concentration of 100g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day(-1). PMID:25449607

  17. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    Science.gov (United States)

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating. PMID:15246444

  18. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

    Science.gov (United States)

    Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

    2014-06-01

    An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

  19. State of the art and future perspectives of thermophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Mladenovska, Zuzana; Iranpour, R.; Westermann, Peter

    2002-01-01

    over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up...

  20. High-temperature crystallization of the secondary alcohol dehydrogenase from the extreme thermophilic bacteria Thermoanaerobacter ethanolicus, a bifunctional alcohol dehydrogenase-acetyl-CoA thio esterase

    International Nuclear Information System (INIS)

    Full text. Ethanol fermentations from Saccharomyces sp. are used in industrial ethanol production and are performed at mesophilic temperatures where final ethanol concentrations must exceed 4% (v/v) to make the process industrially economic. In addition, distillation is required to recover ethanol. Thermophilic fermentations are very attractive since they enable separation of ethanol from continuous cultures at process temperature and reduced pressure. Two different ethanol-production pathways have been identified for thermophilic bacteria; type I from Clostridium thermocellum, which contains only NADH-linked primary-alcohol dehydrogeneases, and type II from Thermoanaerobacter brockii which in addition include NADPH-linked secondary-alcohol dehydrogenases. The thermophilic anaerobic bacterium T ethanolicus 39E produces ethanol as the major end product from starch, pentose and herose substrates. The 2 Adh has a lower catalytic efficiency for the oxidation of 1 alcohols, including ethanol, than for the oxidation of secondary (2) alcohols or the reduction of ketones or aldehydes and possesses a significant acetyl-CoA reductive thioesterase activity. Large single crystals (0.7 x 0.3 x 0.3 mn) of this enzyme have been obtained at 400C and diffraction data to 2.7 A resolution has been collected (Rmerge = 10.44%). Attempts are currently underway to obtain higher resolution data and a search for heavy atom derivatives is currently underway. The crystals belong to the space group P21 21 2 with cell constants of a a= 170.0 A, b=125.7 A and c=80.5 A. The asymmetric unit contains a tetramer as in the case of the crystals of the secondary alcohol dehydrogenase from Thermoanaerobacter brockii with a VM of 2.85 A3/Da. (author)

  1. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge.

    Science.gov (United States)

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-03-15

    Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1). PMID:21277081

  2. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; Su, Min; di Pumpo, Francesca; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2016-09-01

    High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C. PMID:27295255

  3. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  4. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste.

    Science.gov (United States)

    Wu, Bo; Wang, Xing; Deng, Ya-Yue; He, Xiao-Lan; Li, Zheng-Wei; Li, Qiang; Qin, Han; Chen, Jing-Tao; He, Ming-Xiong; Zhang, Min; Hu, Guo-Quan; Yin, Xiao-Bo

    2016-10-01

    A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD. PMID:27251412

  5. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    Directory of Open Access Journals (Sweden)

    Anne M. Henstra

    2011-01-01

    Full Text Available Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently low levels of CO are reached. Here we study CO conversion and final CO levels in cultures of C. hydrogenoformans grown in batch cultures that were started with a 100% CO gas phase with and without removal of formed CO2. Final CO levels were 117 ppm without CO2 removal and below 2 ppm with CO2 removal. The Gibbs free energy change calculated with measured end concentrations and the detection of acetate suggest that C. hydrogenoformans shifted from a hydrogenogenic to an acetogenic metabolism.

  6. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park

    OpenAIRE

    T. Sokolova(University for Friendships between the Nations, Moscow, Russia); González Grau, Juan Miguel; Kostrikina, N.A.; Chernyh, N. A.; Slepova, T. V.; Bonch-osmolovskaya, E. A.; Robb, F T

    2004-01-01

    A new anaerobic, thermophilic, facultatively carboxydotrophic bacterium, strain Nor1T, was isolated from a hot spring at Norris Basin, Yellowstone National Park. Cells of strain Nor1T were curved motile rods with a length of 2.6-3 μm, a width of about 0.5 μm and lateral flagellation. The cell wall structure was of the Gram-negative type. Strain Nor1T was thermophilic (temperature range for growth was 40-68 °C, with an optimum at 60 °C) and neutrophilic (pH range for growth was 6.5-7.6, with a...

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  8. Lack of activity of sulfamethoxazole and trimethoprim against anaerobic bacteria.

    Science.gov (United States)

    Rosenblatt, J E; Stewart, P R

    1974-07-01

    The activity of sulfamethoxazole (SMX), trimethoprim (TMP), and the combination of the two was determined against a variety of anaerobic bacteria. Brucella agar was somewhat inhibitory for SMX and TMP but activity was good and equivalent in Diagnostic Sensitivity Test Agar (Oxoid) and Mueller-Hinton agar and the latter was selected for use in these studies. Agar dilution susceptibility tests showed that 95 of 98 anaerobic isolates were resistant to >/=100 mug of SMX per ml and 85 were resistant to >/=6.25 mug of TMP per ml. "Checkerboard" agar dilution studies of combined activity showed that 66 of 72 isolates were resistant to >/= (100 mug of SMX per ml + 6.25 mug of TMP per ml) and only six isolates were susceptible to the synergistic activity of the combination. The majority of 32 isolates tested by the disk diffusion method were also resistant to SMX and TMP individually and to the combination 25-mug disk. Correlation between agar dilution minimal inhibitory concentration and disk zone size results was in general good for individual agents. Four Bacteroides fragilis isolates were inhibited by the combination 25-mug disk but were resistant to SMX + TMP by agar dilution "checkerboard." This discrepancy may have been due to different incubation periods since disk results also showed resistance when read after 48 h (as is done with agar dilution) rather than the standard 24 h for disk tests. These studies suggest that SMX and TMP, either individually or in combination, are not active against the great majority of anaerobic bacteria. PMID:15828176

  9. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker;

    2010-01-01

    well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter......Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as...

  10. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture

    OpenAIRE

    Lai, Zhicheng; Zhu, Muzi; Yang, Xiaofeng; Wang, JuFang; Li, Shuang

    2014-01-01

    Background Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields. Results Sugarcane baga...

  11. Biosynthesis of omega-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber

    Czech Academy of Sciences Publication Activity Database

    Siřišťová, L.; Luhový, R.; Sigler, Karel; Řezanka, Tomáš

    2011-01-01

    Roč. 15, č. 3 (2011), 423-429. ISSN 1431-0651 Institutional research plan: CEZ:AV0Z50200510 Keywords : Thermophilic bacteria * Geobacillus * Meiothermus Subject RIV: EE - Microbiology, Virology Impact factor: 2.941, year: 2011

  12. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    Science.gov (United States)

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  13. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  14. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    International Nuclear Information System (INIS)

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D10) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  15. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced...... enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...... during batch cultivations, at different (DM) concentrations ranging from 1.5 g-sugars/L to 50.1 g-sugars/L. The highest yield of 237 ml-H2/g-sugar was achieved during the DM batch fermentation at concentration of 2.1 g-sugars/L, whereafter the yield decreased with increasing DM concentration. The...

  16. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to γ-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to γ-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S1-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  17. Volume ratios between the thermophilic and the mesophilic digesters of a temperature-phased anaerobic digestion system affect their performance and microbial communities.

    Science.gov (United States)

    Lv, Wen; Zhang, Wenfei; Yu, Zhongtang

    2016-01-25

    An experimental temperature-phased anaerobic digestion (TPAD) system, with the thermophilic digester operated at neutral pH and with a balanced acidogenesis and methanogenesis (referred to as NT-TPAD), was evaluated with respect to the microbial communities and population dynamics of methanogens when digesting dairy cattle manure at 15-day overall system hydraulic retention time (HRT). When fed a manure slurry of 10% total solid (TS), similar system performance, 36-38% volatile solid (VS) removal and 0.21-0.22 L methane g(-1) VS fed, was achieved between a 5-day and 7.5-day HRT for the thermophilic digester. However, the thermophilic digester achieved a greater volumetric biogas yield when operated at a 5-day RT than at a 7.5-day HRT (6.3 vs. 4.7 L/L/d), while the mesophilic digester had a stable volumetric biogas yield (about 1.0 L/L/d). Each of the digesters harbored distinct yet dynamic microbial populations, and some of the methanogens were significantly correlated with methane productions. Methanosarcina and Methanosaeta were the most important methanogenic genera in the thermophilic and the mesophilic digesters, respectively. The microbiological findings may help understand the metabolism that underpins the anaerobic processes within each of the two digesters of TPAD systems when fed dairy manure. PMID:26232524

  18. Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria

    Science.gov (United States)

    Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

    2007-12-01

    In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

  19. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  20. Population dynamics during startup of thermophilic anaerobic digesters: The mixing factor

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-11-01

    Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used. © 2013 Elsevier Ltd.

  1. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    OpenAIRE

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk...

  2. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    NARCIS (Netherlands)

    Mashad, El H.; Zeeman, G.; Loon, van W.K.P.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    The influence of temperature, 50 and 60 °C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fl

  3. The use of ultrasound and {gamma}-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lafitte-Trouque, S.; Forster, C.F. [The University of Birmingham (United Kingdom). School of Engineering

    2002-09-01

    The effect of ultrasound and {gamma}-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the {gamma}-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, {gamma}-irradiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained <100 g{sup -1} TS. Thermophilic anaerobic digestion produced sludges which contained <1 g{sup -1} TS irrespective of any pre-treatment. (author)

  4. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  5. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Phelps, Tommy Joe [ORNL; Keller, Martin [ORNL; Carroll, Sue L [ORNL; Allman, Steve L [ORNL; Podar, Mircea [ORNL; Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  6. Use of mesophilic and thermophilic bacteria for the improvement of copper extraction from a low-grade ore

    Science.gov (United States)

    Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.

    2011-04-01

    Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.

  7. Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties

    International Nuclear Information System (INIS)

    Highlights: • Thermophilic anaerobic codigestion of sewage sludge and grease waste (GW) doubles methane yield. • High GW doses in the influent leads to instability and LCFA accumulation in the effluent. • GW addition promotes acetoclastic activity whilst worsening the hydrogenothrophic activity. • The mesophilic codigestion with GW performs better than the thermophilic one. - Abstract: Thermophilic co-digestion of sewage sludge with three different doses of trapped grease waste (GW) from the pre-treatment of a WWTP has been assessed in a CSTR bench-scale reactor. After adding 12% and 27% of grease waste (on COD basis), the organic loading rate increased from 2.2 to 2.3 and 2.8 kgCOD m−3 d−1 respectively, and the methane yield increased 1.2 and 2.2 times. Further GW increase (37% on COD basis) resulted in an unstable methane yield and in long chain fatty acids (LCFA) accumulation. Although this inestability, the presence of volatile fatty acids in the effluent was negligible, showing good adaptation to fats of the thermophilic biomass. Nevertheless, the presence of LCFA in the effluent worsens its dewatering properties. Specific methanogenic activity tests showed that the addition of grease waste ameliorates the acetoclastic activity in detriment of the hydrogenotrophic activity, and suggests that the tolerance to LCFA can be further enhanced by slowly increasing the addition of lipid-rich materials

  8. Thermophilic-anaerobic digestion to produce class A biosolids: initial full-scale studies at Hyperion Treatment Plant.

    Science.gov (United States)

    Iranpour, R; Cox, H H J; Oh, S; Fan, S; Kearney, R J; Abkian, V; Haug, R T

    2006-02-01

    biosolids are land-applied, require compliance with both bacterial limits. Additional work identified dewatering, cooling of biosolids after the dewatering centrifuges, and contamination as possible factors in the rise in density of fecal coliforms. These results provided the basis for the full conversion of HTP to the Los Angeles continuous-batch, thermophilic-anaerobic-digestion process. During later phases of testing, this process was demonstrated to produce fully disinfected biosolids at the farm for land application. PMID:16566524

  9. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    OpenAIRE

    Pongsak (Lek) Noophan; Chalermraj Wantawin; Siriporn Sripiboon; Sanya Sirivitayapakorn

    2008-01-01

    Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR). The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron accep...

  10. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    Science.gov (United States)

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. PMID:25617867

  11. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  12. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment

    International Nuclear Information System (INIS)

    Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor was developed with the aim to minimize operational problems in the anaerobic treatment of Palm Oil Mill Effluent (POME) under thermophilic conditions. The performance of UASB-HCPB reactor on POME treatment was investigated at 55 °C. Subsequent to start-up, the performance of the UASB-HCPB reactor was evaluated in terms of i) effect of hydraulic retention time (HRT); ii) effect of organic loading rate (OLR); and iii) effect of mixed liquor volatile suspended solid (MLVSS) concentration on thermophilic POME treatment. Start-up up of the UASB-HCPB reactor was completed in 36 days, removing 88% COD and 90% BOD respectively at an OLR of 28.12 g L−1 d−1, producing biogas with 52% of methane. Results from the performance study of the UASB-HCPB reactor on thermophilic POME treatment indicated that HRT of 2 days, OLR of 27.65 g L−1 d−1 and MLVSS concentration of 14.7 g L−1 was required to remove 90% of COD and BOD, 80% of suspended solid and at the same time produce 60% of methane. - Highlights: • UASB-HCPB was proposed for POME treatment under thermophilic conditions. • Start-up up of the UASB-HCPB reactor was completed in 36 days. • 88% COD and 90% BOD were removed at an OLR of 28.12 g COD/L.day during start-up. • HRT of 2 days and OLR of 27.65 g COD/L.day was required to produce 60% methane. • Methanosarcina sp. forms the majority of microbial population in the UASB section

  13. Chemical Hydrolysis and Thermophilic Anaerobic Digestion of Organic Fraction of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Yosvany Díaz Domínguez

    2014-03-01

    Full Text Available The hydrolysis of the macromolecules that compose the organic fraction of municipal solid waste canbe taken for chemical, physical and biological methods, having all as aim the unfolding of the complexmolecules in simplier monomer. Thereby the degradation of organic matter is enhanced and resultsmore efficient the process of biogas via anaerobic. Chemical pretreatments were employed in the workusing sodium hydroxide (NaOH and hydrogen peroxide (H2O2 as reagents.The soluble chemicaloxygen demand (COD, the maximum methane yield and the methane rates production were used toevaluate the pretreatment actions. The degradation of the waste was able to be increased by allowinga comparative analysis to determine the best working conditions for this stage and subsequently itsimpact in the generation of biogas, methane specifically.

  14. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    to sugar mixtures of glucose and xylose ranging from 12 to 41 g/l. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/l) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate...... was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested...

  15. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    Science.gov (United States)

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  16. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.;

    2010-01-01

    . Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta......Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community...... structure. Improvement of hydrogenotrophic and acidogenic (beta-oxidation) activity rates was detected upon successive LCFA pulses, while different inhibition effects over specific anaerobic trophic groups were observed. Bioreactor recovery capacity and biomass adaptation to LCFA inhibition were verified...

  17. Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria.

    Science.gov (United States)

    Wilkins, T D; Thiel, T

    1973-03-01

    The most commonly used method for testing the antibiotic susceptibility of aerobic and facultative bacteria is the disk diffusion method. However, some anaerobic bacteria do not grow well enough in anaerobic jars for performance of disk diffusion tests. A modification of the broth-disk method of Schneierson allowed us to determine antibiotic susceptibility in a completely anaerobic environment. Commercial antibiotic disks were added anaerobically to tubes of prereduced brain heart infusion broth to achieve a concentration of each antibiotic approximating that attainable in blood. The tubes were then inoculated and incubated for 18 h. Resistance or susceptibility to each antibiotic was determined according to the amount of growth in each tube as compared with a control culture without the antibiotic. There was good correlation between results obtained by this broth-disk method and minimal inhibitory concentrations. PMID:4790595

  18. Anaerobic bacteria: evaluation of disc susceptibility to four cephalosporins.

    Science.gov (United States)

    Dubois, J; Pechère, J C

    1978-01-01

    The disc diffusion technique was evaluated with 178 strains of anaerobes and four cephalosporins (cephalothin, cefamandole, cefazolin and cefoxitin). Good correlation in results was found in comparison with the agar dilution technique (p less than 0.001) with the exception of cefamandole and cefazolin against anaerobic cocci (p greater than 0.05). Choosing a breakpoint of 8 microgram/ml for distinguishing susceptible and resistant strains, we determined corresponding incubation, the rate of error is less than 1% for false susceptible and less than 5% for false resistant. However, some strains of anaerobic cocci required a 48 hour incubation period for allowing visible growth. Moreover, a great deal (60.5%) of overlapping zone diameters made interpretation of disc diffusion test difficult among Bacteroides fragilis strains classed as susceptible, intermediate and resistant occuring with cefoxitin. The results have shown that the cephalothin disk will not accurately predict susceptibility of B. fragilis to cefoxitin. PMID:730395

  19. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  20. New techniques for growing anaerobic bacteria: Experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  1. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.; Schmid, M.; Jørgensen, BB; Kuenen, JG; Damste, JSS; Strous, M.; Jetten, MSM

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the...... anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  2. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    De Vrije, G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M. [Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen (Netherlands)

    2009-06-17

    The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l{sup -1} in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H{sub 2} per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l{sup -1}, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  3. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    de Vrije Truus

    2009-06-01

    Full Text Available Abstract Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.

  4. Making soy sauce from defatted soybean meal without the mejus process by submerged cultivation using thermophilic bacteria.

    Science.gov (United States)

    Hur, Jeong Min; Park, Doo Hyun

    2015-08-01

    The diversity of thermophilic bacteria was not significantly altered while growing in a defatted soybean meal (DFSM) slurry at 60 °C for 10, 20, and 30 days. Five species of thermophilic bacteria, which belong to the genera Aeribacillus (temperature gradient gel electrophoresis [TGGE] band no. 1), Saccharococcus (TGGE band no. 2), Geobacillus (TGGE band no. 3), Bacillus (TGGE band no. 4), and Anoxybacillus (TGGE band no. 5), were detected in the fermenting DFSM slurry. The cell-free culture fluid obtained from the fermenting DFSM slurry on day 14 hydrolyzed starch and soy protein at 60 °C but not at 30 °C. Soy sauce (test soy sauce) was prepared from the fermented DFSM slurry after a 30 day cultivation at 60 °C and a 60 day ripening at 45 °C. Free amino acid (AA) and organic acid contents in the soy sauce increased in proportion to the fermentation period, whereas ammonium decreased proportionally. Mg and Ca contained in the soy sauce decreased proportionally during fermentation and were lower than those in the non-fermented DFSM extract (control). Spectral absorbance of soy sauce prepared from the fermented DFSM slurry was maximal at 430 nm and increased slightly in proportion to the fermentation period. The aroma and flavor of the test soy sauce were significantly different from those of traditional Korean soy sauce. Conclusively, soy sauce may be prepared directly from the fermented DFSM slurry without meju-preparing process and fermentation period may be a factor for control of soy sauce quality. PMID:26243923

  5. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    Science.gov (United States)

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite. PMID:11257551

  6. Degradation of BTEX by anaerobic bacteria: physiology and application

    OpenAIRE

    Weelink, S.A.B.; Eekert, van, M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the a...

  7. Distribution of Digoxin-reducing, Oxalate-degrading, and Total Anaerobic Bacteria in the Human Colon

    OpenAIRE

    Weaver, G A; Krause, J A; Allison, M J; Lindenbaum, J.

    2011-01-01

    Samples of the mucosal surface of the caecum and sigmoid colon were obtained from 33 colonoscopy subjects for microbiol studies using a microbiology brush system. Faecal samples and caecal lumen aspirates were also obtained. Estimated numbers of digoxin-reducing, oxalate-degrading and total anaerobic bacteria from the caecal brush samples correlated significantly with the respective concentrations of these organisms from the sigmoid area. The concentrations of oxalate-degrading bacteria and t...

  8. Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum

    Energy Technology Data Exchange (ETDEWEB)

    Germain, P.; Toukourou, F.; Donaduzzi, L.

    1986-07-01

    The enzyme lactate dehydrogenase (LDH) in Clostridium thermohydrosulfuricum is controlled by the type and the concentration of the substrate. In batch fermentations an increase of the initial concentration of glucose leads to an increase in the activity of LDH. This increase in activity is related to the accumulation of fructose 1,6-diphosphate (F 1,6-DP), an intermediate of the Embden-Meyerhof-Parnas (EMP) pathway, which stimulates the enzyme by increasing its affinity for pyruvate and NADH. The Ksub(m) values of LDH for pyruvate and NADH, which are 2.5 x 10/sup -3/ M and 9.1 x 10/sup -5/ M respectively in absence of F 1,6-DP, fall considerably in the presence of this substrate. In presence of 0.2 mM of F 1,6-DP we observed a Ksub(m) of 3.3 x 10/sup -4/ M for pyruvate and 4.1 x 10/sup -5/ M for NADH.

  9. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    Directory of Open Access Journals (Sweden)

    N. S. Mechael

    2012-01-01

    Full Text Available Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. septicum with each of Staphylococcus and E.coli were isolated at the percentage of 5.2%, 6.25% respectively. Highest bacterial isolation was from the faecal samples collected during April. McIntosh jar method show isolation of pure culture of anaerobic bacteria (Cl. perfringens, while Candle jar method show detection of 56 isolates in mixed cultures of aerobic and anaerobic bacteria.

  10. Bioaugmentation of a Two-Stage Thermophilic (68°C/55°C) Anaerobic Digestion Concept for Improvement of the Methane Yield From Cattle Manure

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2007-01-01

    The possibility of improving a two-stage (68°C/55°C) anaerobic digestion concept for treatment of cattle manure was studied. In batch experiments, a 10-24% increase of the specific methane yield from cattle manure and its fractions was obtained, when the substrates were inoculated with bacteria of...... of the two-stage setup....

  11. Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.

    Science.gov (United States)

    Ogg, Christopher D; Patel, Bharat K C

    2009-05-01

    A strictly anaerobic, thermophilic bacterium, designated strain Y170(T), was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170(T) were slightly curved rods (1.2-12x0.8-1.1 mum) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 degrees C (temperature range for growth was 55-80 degrees C) and pH 7 (pH range for growth was 5-9). Strain Y170(T) grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, myo-inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO(2) and H(2). Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170(T) was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and

  12. Prevalence of Anaerobic and Aerobic Bacteria in Early Onset Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    F Nili

    2008-09-01

    Full Text Available "nBackground: To determine prospectively the prevalence of anaerobic and aerobic infection in early onset (during 72 hours of age neonatal sepsis, in Tehran Vali-e-Asr Hospital."nMethods: Among all the live birth, neonates suspecting of having septicemia were investigated for isolation of micro­organisms. Culture bottle containing enriched tryptic soy broth was used for standard blood culture system to detect aerobes and an ANAEROBIC/F bottle was inoculated using BACTEC 9120 continuous monitoring blood culture system to deter­mine the growth of anaerobic bacteria. Among 1724 live births, 402 consecutive neonates suspecting of having septicemia were investigated for isolation of micro organism."nResults: A total of 27 episodes of early onset neonatal sepsis occurred with an incidence of 15.66 (11.6 aerobe + 4.0 anaer­obe per 1000 live births. Aerobic bacteria were the major etiological agents, accounting for 20 cases. 7 (26% cases had posi­tive blood cultures with anaerobic bacteria. Propionibacterium and Peptostreptococccus (amongst anaerobic and coagu­lase-negative staphylococci and staphylococcus aureus (amongst aerobic were the most commonly isolated organisms. Compari­son of clinical findings and demographic characteristics between aerobic and anaerobic infection did not have a signifi­cant statistical difference."nConclusion: Our impression is that while anaerobic bacteremia in the newborn infants can occasionally cause severe morbid­ity and mortality, majority of cases experience a self limited illness with transient bacteremia.

  13. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Chandrashekhar,

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  14. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1988-04-01

    Full Text Available During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  15. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transm...

  16. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    Science.gov (United States)

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea. PMID:24803272

  17. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    Science.gov (United States)

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  18. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor

    International Nuclear Information System (INIS)

    Thermophilic hydrogen fermentation of cellulose was evaluated by a long term continuous experiment and batch experiments. The continuous experiment was conducted under 55 °C using a continuously stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 10 day. A stable hydrogen yield of 15.4 ± 0.23 mol kg−1 of cellulose consumed was maintained for 190 days with acetate and butyrate as the main soluble byproducts. An analysis of the 16S rRNA sequences showed that the hydrogen-producing thermophilic cellulolytic microorganisms (HPTCM) were close to Thermoanaerobacterium thermosaccharolyticum, Clostridium sp. and Enterobacter cloacae. Batch experiment demonstrated that the highest H2 producing activity was obtained at 55 °C and the ultimate hydrogen yield and the metabolic by-products were influenced greatly by temperatures. The effect of temperature variation showed that the activation energy for cellulose and glucose were estimated at 103 and 98.8 kJ mol−1, respectively. - Highlights: • Continuous cellulosic-hydrogen fermentation was conducted at 55 °C. • Hydrogen yield was improved to 15.4 mol kg−1 of consumed-cellulose. • The cellulosic hydrogen bacteria were close to Clostridia and Enterobacter genus. • The mixed microflora produced H2 within a wide range of temperatures (35 °C–65 °C). • Activation energy of cellulose and glucose were 103 and 98.8 kJ mol−1, respectively

  19. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste

    OpenAIRE

    Hoyos, C.; Hoffmann, M; Guenne, A.; Mazéas, L.

    2014-01-01

    International audience Anaerobic digestion makes it possible to valorize municipal solid waste (MSW) into biogas and digestate which are, respectively, a renewable energy source and an organic amendment for soil. Phenols are persistent pollutants present in MSW that can inhibit the anaerobic digestion process and have a toxic effect on microbiota if they are applied to soil together with digestate. It is then important to define the operational conditions of anaerobic digestion which allow...

  20. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  1. Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience.

    Science.gov (United States)

    Giuliano, A; Zanetti, L; Micolucci, F; Cavinato, C

    2014-01-01

    A two-stage thermophilic anaerobic digestion process for the concurrent production of hydrogen and methane through the treatment of the source-sorted organic fraction of municipal solid waste was carried out over a long-term pilot scale experience. Two continuously stirred tank reactors were operated for about 1 year. The results showed that stable production of bio-hythane without inoculum treatment could be obtained. The pH of the dark fermentation reactor was maintained in the optimal range for hydrogen-producing bacteria activity through sludge recirculation from a methanogenic reactor. An average specific bio-hythane production of 0.65 m(3) per kg of volatile solids fed was achieved when the recirculation flow was controlled through an evaporation unit in order to avoid inhibition problems for both microbial communities. Microbial analysis indicated that dominant bacterial species in the dark fermentation reactor are related to the Lactobacillus family, while the population of the methanogenic reactor was mainly composed of Defluviitoga tunisiensis. The archaeal community of the methanogenic reactor shifted, moving from Methanothermobacter-like to Methanobacteriales and Methanosarcinales, the latter found also in the dark fermentation reactor when a considerable methane production was detected. PMID:24901613

  2. Evaluation of Port-A-Cul transport system for protection of anaerobic bacteria.

    Science.gov (United States)

    Mena, E; Thompson, F S; Armfield, A Y; Dowell, V R; Reinhardt, D J

    1978-07-01

    The protection of anaerobes in Port-A-Cul (PAC) transport system (Bioquest, Div. of Becton, Dickinson &Co., Cockeysville, Md.) tubes and vials was studied. Ten species of obligately anaerobic bacteria commonly isolated from clinical specimens were used to prepare simulated swab and fluid specimens in high and low concentrations. Samples in PAC tubes and vials were held for 2, 24, and 48 h at ambient temperature and in a refrigerator. In addition, samples of the simulated specimens were exposed to controlled anaerobic and aerobic conditions in vented tubes and vials, with and without PAC medium, at ambient and refrigerator temperatures. Viable bacterial colony counts from specimens in PAC tubes and vials used as recommended by the manufacturer were consistently greater than those from specimens exposed to the different controlled conditions. The protection in PAC was about equal for specimens with either high or low concentrations of bacteria. Protection of the anaerobes in PAC was more obvious with swab than with fluid specimens. Quantitative recovery of anaerobes from refrigerated PAC samples, with few exceptions, was comparable to that from PAC samples held at ambient temperature. PMID:353071

  3. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    Science.gov (United States)

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  4. Bacteremia due to anaerobic bacteria: epidemiology in a northern Bari Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Distasi

    2015-06-01

    Full Text Available Background. Anaerobic bacteria are part of the commensal bacterial flora of skin and mucosae. Iatrogenic and pathological conditions altering this commensal relationship cause life-threatening diseases. Materials and Methods. We analysed the blood cultures sent to the microbiology of our hospital between 2008 and the first quarter of 2013 to measure the frequency of bacteraemia caused by anaerobia. We examined 3138 vials of blood cultures for anaerobia, inoculated following in-house standard procedures. The colonies grown in absence of air were subjected to biochemical analysis. The MICs of metronidazole for 23 of the 26 organisms was tested. Results. Twelve bacteria of the Bacteroides genus were identified, 9 Propionibacterium acnes, 1 Peptosctreptococcus micros, 1 Lactobacillus acidophilus, 1 Clostridium perfringens, 1 Prevotella oralis, 1 Eubacterium lentum. Conclusions. The analysis of the results suggests that the incidence of cultures positive to anaerobia was constant across the years. We note that advanced age, altered mucocutaneous tropism, alterations to the oral and intestinal bacterial flora intensify the risk of anaerobial pathogenicity. The analysis of the metronidazole-determined MIC suggests that the intestinal anaerobic flora responds well to therapy and prophylaxis with Metronidazole, while the anaerobic bacteria residing on skin and other mucosae are resistant. It is however hard to determine the clinical impact of anaerobic bacteremiae and their effect on the outcome of the patient, due to the scarcity of available clinical data.

  5. The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester.

    Science.gov (United States)

    Tang, Yueqin; Shigematsu, Toru; Ikbal; Morimura, Shigeru; Kida, Kenji

    2004-05-01

    We demonstrated previously that micro-aeration allows construction of an effective thermophilic methane-fermentation system for treatment of municipal solid waste (MSW) without production of H(2)S. In the present study, we compared the microbial communities in a thermophilic MSW digester without aeration and with micro-aeration by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), phylogenetic analysis of libraries of 16S rRNA gene clones and quantitative real-time PCR. Moreover, we studied the activity of sulfate-reducing bacteria (SRB) by analysis of the transcription of the gene for dissimilatory sulfite reductase (dsr). Experiments using FISH revealed that microorganisms belonging to the domain Bacteria dominated in the digester both without aeration and with micro-aeration. Phylogenetic analysis based on 16S rRNA gene and analysis of bacteria by DGGE did not reveal any obvious difference within the microbial communities under the two aeration conditions, and bacteria affiliated with the phylum Firmicutes were dominant. In Archaea, the population of Methanosarcina decreased while the population of Methanoculleus increased as a result of micro-aerations as revealed by the analysis of 16S rRNA gene clones and quantitative real-time PCR. Reverse transcription and PCR (RT-PCR) demonstrated the transcription of dsrA not only in the absence of aeration but also in the presence of micro-aeration, even under conditions where no H(2)S was detected in the biogas. In conclusion, micro-aeration has no obvious effects on the phylogenetic diversity of microorganisms. Furthermore, the activity of SRBs in the digester was not repressed even though the concentration of H(2)S in the biogas was very low under the micro-aeration conditions. PMID:15159157

  6. Aerobic and anaerobic spore-forming bacteria in Sardinian honey.

    OpenAIRE

    Farris, Giovanni Antonio; Fatichenti, Fabrizio; Deiana, Pietrino; Agostini, Franco

    1986-01-01

    Apart from an ubiquitous microflora, this investigation into 52 samples of honey revealed some undesirable spore-forming bacteria, Bacillus alvei and B. larvae which are bee pathogens. Bacillus cereus can cause spoilage and food poisoning. It is, therefore, considered essential that every country includes microbiological standards in its Food Safety Regulations for honey, so that the consumer is guaranteed as to the wholesomeness as well as the quality of the product.

  7. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 470C and 700C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  8. The Start-up of Hybrid, Anaerobic up-flow Sludge Blanket (HUASB under a Range of Mesophiclic and Thermophilic Temperatures

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb

    2011-07-01

    Full Text Available We have examined the effect of gradual increase of the temperature on the performance of anaerobic process of palm oil mill effluent (POME, and sludge granules development. Two hybrid up-flow anaerobic sludge blanket (HUASB reactors R1 and R2 were employed to be run at 27±2 and 37±1°C, respectively. R1 was kept at room temperature for the whole experiment, where the temperature of R2 was increased up to 49ºC (3ºC after every steady-state occurrence. Maximum COD removal of 91% was obtained in R2 at optimum temperature of 46°C, while 84% was recorded in R1. Additional parameters were applied to evaluate the performance of the process, i.e. total suspended solids (TSS, Turbidity, and Color. The imaging of sludge aggregate has revealed the effect of temperature on granulation development during the experiment. Throughout the operation period, it can be seen that the microbial growth rate was significantly affected by temperature. Hence, the use of HUASB reactor could be productively implemented for POME treatment as an efficient system under the mesophilic and thermophilic temperatures.

  9. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Mladenovska, Zuzana; Westermann, Peter;

    2004-01-01

    /fermentative bacteria were significantly lower in the 68degreesC reactor than in the 55degreesC reactors. The density levels of methanogens utilizing H-2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68degreesC reactor than......-stage reactor. The 68degreesC reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic...

  10. In vitro activity of ceftriaxone combined with tazobactam against anaerobic bacteria.

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1994-02-01

    The in vitro activity of ceftriaxone combined with tazobactam against 190 strains of anaerobic bacteria was compared with that of amoxicillin with clavulanic acid, ampicillin with sulbactam, piperacillin alone and with tazobactam, cefoxitin, and imipenem, i.e. beta-lactam antibiotics established in the treatment of anaerobic infections. All anaerobes tested were susceptible to ceftriaxone when tazobactam was added at fixed ratios (ceftriaxone to tazobactam) of 2:1 and 8:1 and at constant concentrations of 2,4 and 8 mg/l, respectively. When 4 mg/l tazobactam was added, the MICs of ceftriaxone for 83 of 94 strains of the Bacteroides fragilis group were reduced by a factor of 8 to 512; for eight strains, this reduction was two to fourfold. Only the MICs of ceftriaxone for three Bacteroides fragilis strains were not influenced. PMID:8013494

  11. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Mladenovska, Zuzana; Westermann, Peter;

    2004-01-01

    A two-stage 68degreesC/55degreesC anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68degrees......C for periods of 36, 108, and 168 h, and subsequently digested at 55degreesC. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68degreesC with a hydraulic retention time (HRT) of 3 days, connected to a 55degreesC reactor with 12-day HRT, was...... compared with a conventional single-stage reactor running at 55degreesC with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single...

  12. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    OpenAIRE

    Tal, Yossi; Joy E M Watts; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR product...

  13. Biochemical Characterization and 16S rRNA Sequencing of Few Lipase-Producing Thermophilic Bacteria from Taptapani Hot Water Spring, Orissa, India

    OpenAIRE

    Satpal S. Bisht; Amrita K. Panda

    2011-01-01

    Three lipase-producing thermophilic bacteria (AK-P1, AK-P2, and AK-P3) were isolated from the Taptapani hot water spring in Orissa, India. The crude extra cellular lipases from cell-free culture supernatant were reacted in an olive oil mixture, and their lipolytic activities were compared. Identification of the bacteria was carried out using biochemical tests, 16SrRNA sequencing and sequences submitted to NCBI GenBank. Strain AK-P3, exhibited the highest lipolytic activity of 5.5 U/mL was ide...

  14. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    OpenAIRE

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-a...

  15. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria

    DEFF Research Database (Denmark)

    Musat, Niculina; Halm, Hannah; Winterholler, Bärbel;

    2008-01-01

    -SIMS), and show that it allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. Using HISH-SIMS, individual cells of the anaerobic, phototropic bacteria Chromatium okenii, Lamprocystis purpurea, and Chlorobium clathratiforme...... a significant role in the nitrogen and carbon cycles in the environment. By introducing this quantification method for the ecophysiological roles of individual cells, our study opens a variety of possibilities of research in environmental microbiology, especially by increasing the ability to examine...

  16. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    OpenAIRE

    C. Arnosti; Repeta, D. J.

    1994-01-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapid...

  17. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    OpenAIRE

    A. Akhavan Sepahei ، V. Rashetnia

    2009-01-01

    Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3) is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp.) were isolated from Sarcheshme copper mine(Kerman, Iran) which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crys...

  18. STUDY OF RELATIONSHIP BETWEEN DEPTH OF PERIODONTAL POCKETS, ANAEROBIC BACTERIA AND INFLAMMATORY CELLS IN PERIODONTITIS

    OpenAIRE

    P. Owlia; Salari MH.; H Saderi; Z. Kadkhoda

    2000-01-01

    In this study 100 cases of advanced periodontitis were compared with a control group of 100 persons. The parameters were the depth of the periodontal pockets, radiographic images, presence of inflammatory cells and different types of anaerobic bacteria in the pockets. The depth of pocket was measured by a sterile probe and the presence of inflammatory cells was determined through sterile curettage. The smears were stained by Gimsa and Gram methods. For the purpose of microbiological studies, ...

  19. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    Science.gov (United States)

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  20. Radionuclide sorption to a mixture of anaerobic bacteria in the repository environment

    International Nuclear Information System (INIS)

    The sorption of the radionuclides, Pu, Np, Pa, Sr and Cs, to a mixture of anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after a long dormant period has been investigated. For Pu, after 4 hours at neutral pH, the distribution coefficient (Kd) between bacteria and aqueous phase at 308 and 278K was around 103-4 (ml g-1). Over 5 days, however, the Kd at 308K increased to over 105. Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. Kd for Np at 308K after 5 days had a low value around 102. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd for Np at 278K remained low, without any significant increase over time. The interaction between Pa and bacteria was found to be stronger than that for Np, with Kd for Pa about 100 times higher. For Sr and Ca, significant Kd change was not seen through 120 d. The value for Sr is a few times larger than that for Cs due to the different electrostatic interaction with the bacteria based on the charge of ion. (author)

  1. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  2. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    International Nuclear Information System (INIS)

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9 or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria

  3. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

  4. Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean

    OpenAIRE

    Csotonyi, Julius T.; Stackebrandt, Erko; Yurkov, Vladimir

    2006-01-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and red...

  5. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Continuous H2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H2-producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The H2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH4 was detected during the operation. The maximal volumetric H2 production rate and H2 yield to glucose were 1714 mmol H2/L.d and 1.1 mol H2/mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H2 production. (authors)

  6. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  7. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO2−-N/L d (using synthetic medium) and 37.8 mg NO2−-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  8. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  9. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  10. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO2. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  11. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease. PMID:24646757

  12. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  13. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  14. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

    Science.gov (United States)

    Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

    2004-01-01

    Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

  15. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. PMID:26810032

  16. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    Science.gov (United States)

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. PMID:25306229

  17. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Directory of Open Access Journals (Sweden)

    Rasmus Lund Andersen

    Full Text Available Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose, volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion.

  18. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411.

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47-0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2-2.7 g/L/h and a total sugar conversion of 90-99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  19. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). PMID:26210142

  20. Evaluation of the matrix effect of thermophilic anaerobic digestion on inactivation of infectious laryngotracheitis virus using real-time PCR and viral cell culture.

    Science.gov (United States)

    Gao, Tiejun; Bowlby, Evelyn; Tong, Yupin; Wu, John T Y; Wong, Lester; Tower, Robert J; Pang, Xiaoli; Li, Xiaomei

    2012-04-01

    The matrix effect of the thermophilic anaerobic digestion (TAD) process on inactivation of infectious laryngotracheitis virus (ILTV) was evaluated. Viral cell culture and real-time PCR were used for assessing removal of the viral infectivity and degradation of viral DNA, respectively. Results showed that the TAD-derived matrix alone can inactivate the virus and destroy the nucleic acid helix core of ILTV in a time-and- dose-dependent manner. No cytopathogenic effect (CPE) was observed in the cells exposed to ILTV pre-treated with TAD matrix for 1.5h in experiment 1 and for 16h in experiment 2. There was a significant statistical difference between TAD matrix treated and non-treated cultures (p<0.001, Chi-test). Amplifiable ILT viral DNA was reduced 2.27 log by 1.5h-treatment and was not present by 16h-treatment with TAD matrix, indicating complete viral DNA fragmentation. The TAD process is an environmentally friendly way for disposing of poultry biowaste and carcasses. PMID:22349192

  1. Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: system amendments and membrane performance.

    Science.gov (United States)

    Qiao, Wei; Takayanagi, Kazuyuki; Shofie, Mohammad; Niu, Qigui; Yu, Han Qing; Li, Yu-You

    2013-12-01

    Coffee grounds are deemed to be difficult for degradation by thermophilic anaerobic process. In this research, a 7 L AnMBR accepting coffee grounds was operated for 82 days and failed with pH dropping to 6.6. The deficiency of micronutrients in the reactor was identified. The system was recovered by supplying micronutrient, pH adjustment and influent ceasing for 22 days. In the subsequent 160 days of co-digestion experiment, waste activated sludge (15% in the mixture) was mixed into coffee grounds. The COD conversion efficiency of 67.4% was achieved under OLR of 11.1 kg-COD/m(3) d and HRT of 20 days. Tannins was identified affecting protein degradation by a batch experiment. Quantitative supplements of NH4HCO3 (0.12 g-N/g-TSin) were effective to maintain alkalinity and pH. The solid concentration in the AnMBR reached 75 g/L, but it did not significantly affect membrane filtration under a flux of 5.1 L/m(2) h. Soluble carbohydrate, lipid and protein were partially retained by the membrane. PMID:24177158

  2. Continuous Ethanol Fermentation of Pretreated Lignocellulosic Biomasses, Waste Biomasses, Molasses and Syrup Using the Anaerobic, Thermophilic Bacterium Thermoanaerobacter italicus Pentocrobe 411

    Science.gov (United States)

    Andersen, Rasmus Lund; Jensen, Karen Møller; Mikkelsen, Marie Just

    2015-01-01

    Lignocellosic ethanol production is now at a stage where commercial or semi-commercial plants are coming online and, provided cost effective production can be achieved, lignocellulosic ethanol will become an important part of the world bio economy. However, challenges are still to be overcome throughout the process and particularly for the fermentation of the complex sugar mixtures resulting from the hydrolysis of hemicellulose. Here we describe the continuous fermentation of glucose, xylose and arabinose from non-detoxified pretreated wheat straw, birch, corn cob, sugar cane bagasse, cardboard, mixed bio waste, oil palm empty fruit bunch and frond, sugar cane syrup and sugar cane molasses using the anaerobic, thermophilic bacterium Thermoanaerobacter Pentocrobe 411. All fermentations resulted in close to maximum theoretical ethanol yields of 0.47–0.49 g/g (based on glucose, xylose, and arabinose), volumetric ethanol productivities of 1.2–2.7 g/L/h and a total sugar conversion of 90–99% including glucose, xylose and arabinose. The results solidify the potential of Thermoanaerobacter strains as candidates for lignocellulose bioconversion. PMID:26295944

  3. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  4. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  5. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The...

  6. Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters

    International Nuclear Information System (INIS)

    Cattle excreta and two-phase olive mill wastes (TPOMW) were codigested at a 3:1 ratio in two 75 L continuous stirred tank reactors at 37 oC and 55 oC to analyse their biogas production. The contribution of each residue to the total gas production at 37 oC was evaluated in reactors digesting either 3:1 excreta:water or 3:1 water:TPOMW. The mesophilic co-fermentation of cattle excreta with TPOMW at an organic loading rate (OLR) of 5.5 g COD L-1 d-1 rendered 1096 mL biogas L-1 sludge d-1. This was 337% higher than that of excreta alone. The methane yield resulting from the codigestion was 179 L CH4 kg-1 VS loaded, of which 42% was attributed to the quarter of the reactor corresponding to TPOMW. Under thermophilic conditions, the codigestion yielded 17.3% more methane than mesophilically. In the reactor digesting TPOMW alone (OLR = 3.8 g COD L-1 d-1) the ratio VFA/alkalinity exceeded 0.8 after 21 d, leading to its acidification and inhibition of methanogenesis. Farm-scale digestion of animal excreta and TPOMW should be promoted in Mediterranean countries as an environmentally sound option for waste recycling and renewable energy production.

  7. Activity of difloxacin (A-56619) and A-56620 against clinical anaerobic bacteria in vitro.

    OpenAIRE

    Bansal, M B; Thadepalli, H

    1987-01-01

    We determined the MICs of difloxacin (A-56619) and A-56620 against anaerobic bacteria and assessed the effects of alterations in pH, size of inoculum, addition of human serum, and repeated exposure to subinhibitory levels of antibiotics. We tested for synergism of these drugs with cefoxitin against Bacteroides spp. We found that difloxacin and A-56620 were as active as ciprofloxacin, inhibiting about 90% of B. fragilis (4 micrograms/ml) and other Bacteroides spp. (8 micrograms/ml), A-56620 be...

  8. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber...... membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high...

  9. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Kim, Mi-Sun; Kim, Jong-Oh; Kim, Young Mo; Park, Jong Moon

    2016-08-01

    In recent years, anaerobic co-digestion (AcoD) has been widely used to improve reactor performance, especially methane production. In this study, we applied two different operating temperatures (thermophilic and mesophilic) and gradually increased the load of food wastewater (FWW) to investigate the bacterial communities during the AcoD of waste activated sludge (WAS) and FWW. As the load of FWW was increased, methane production rate (MPR; L CH4/L d) and methane content (%) in both Thermophilic AcoD (TAcoD) and Mesophilic AcoD (MAcoD) increased significantly; the highest MPR and methane content in TAcoD (1.423 L CH4/L d and 68.24%) and MAcoD (1.233 L CH4/L d and 65.21%) were observed when the FWW mixing ratio was 75%. However, MPR and methane yield in both reactors decreased markedly and methane production in TAcoD ceased completely when only FWW was fed into the reactor, resulting from acidification of the reactor caused by accumulation of organic acids. Pyrosequencing analysis revealed a decrease in bacterial diversity in TAcoD and a markedly different composition of bacterial communities between TAcoD and MAcoD with an increase in FWW load. For example, Bacterial members belonging to two genera Petrotoga (assigned to phylum Thermotogae) and Petrimonas (assigned to phylum Bacteroidetes) became dominant in TAcoD and MAcoD with an increase in FWW load, respectively. In addition, quantitative real-time PCR (qPCR) results showed higher bacterial and archaeal populations (expressed as 16S rRNA gene concentration) in TAcoD than MAcoD with an increase in FWW load and showed maximum population when the FWW mixing ratio was 75% in both reactors. Collectively, this study demonstrated the dynamics of key bacterial communities in TAcoD and MAcoD, which were highly affected by the load of FWW. PMID:27155112

  10. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    OpenAIRE

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A.; Stott, Matthew B.; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y.; Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I; Rigden, Daniel J.

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, whic...

  11. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  12. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  13. Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus--a new method for rubber recycling.

    Science.gov (United States)

    Bredberg, K; Persson, J; Christiansson, M; Stenberg, B; Holst, O

    2001-01-01

    The anaerobic sulfur-reducing archaeon Pyrococcus furiosus was investigated regarding its capacity to desulfurize rubber material. The microorganism's sensitivity towards common rubber elastomers and additives was tested and several were shown to be toxic to P. furiosus. The microorganism was shown to utilize sulfur in vulcanized natural rubber and an increase in cell density was obtained when cultivated in the presence of spent tire rubber. Ethanol-leached cryo-ground tire rubber treated with P. furiosus for 10 days was vulcanized together with virgin rubber material (15% w/w) and the mechanical properties of the resulting material were determined. The increase in the stress at break value and the decrease in swell ratio and stress relaxation rate obtained for material containing microbially treated rubber (compared to untreated material) show the positive effects of microbial desulfurization on rubber. PMID:11234957

  14. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  15. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    Science.gov (United States)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  16. In vitro activity of pipecolic acid amide of clindamycin (U-57930E) on anaerobic bacteria compared with those of clindamycin, cefoxitin, and chloramphenicol.

    OpenAIRE

    Dhawan, V K; Bansal, M B; Thadepalli, H

    1982-01-01

    In vitro activity of pipecolic acid amide of clindamycin (U-57930E) against 265 isolates of anaerobic bacteria, including 66 strains of Bacteroides fragilis, was compared with those of clindamycin, chloramphenicol, and cefoxitin. At therapeutically achievable concentrations, the activities of all four antibiotics against anaerobic bacteria were similar.

  17. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  18. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    Directory of Open Access Journals (Sweden)

    A. Akhavan Sepahei ، V. Rashetnia

    2009-10-01

    Full Text Available Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3 is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp. were isolated from Sarcheshme copper mine(Kerman, Iran which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crystals. High-level-resistance was observed for Bacilli and cocci grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. Level of adsorption was determined by inductively coupled plasma and spectrophotometer (Diethyldithiocarbamate method. The level of tellurite concentration in the bacteria cell and the formation of tellurium nanocrystals were illuminated by transmission electron microscope and scanning electron microscope. The Te(0 crystals occur internally and each microorganism forms a distinctly different structure (for example Bacillus selenitreducens make tellurium nano rod. In this study it was found that microorganism can grow 3.in 1500mg/L-2000mg/L and higher tellurite concentrations. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. This study is important because native bacteria from Sarcheshme (Kerman, Iran that may show high-level-resistance to tellurite, were isolated.

  19. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    Science.gov (United States)

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  20. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    OpenAIRE

    Azhari S. Baharuddin; Mohamad N.A. Razak; Lim S. Hock; Mohd N. Ahmad; , Suraini Abd-Aziz,; Nor A.A. Rahman; Umi K.M Shah; Mohd A. Hassan; Kenji Sakai; Yoshihito Shirai

    2010-01-01

    Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB) and Palm Oil Mill Effluent (POME) as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile ...

  1. Susceptibility of anaerobic bacteria to metronidazole, ornidazole, and tinidazole and routine susceptibility testing by standardized methods.

    Science.gov (United States)

    Wust, J

    1977-04-01

    A total of 114 strains of anaerobic bacteria were examined for their susceptibility to metronidazole, ornidazole, and tinidazole by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration in different media. All strains, with the exception of the isolates of Propionibacterium acnes, were inhibited by 3.1 mug each and killed by 6.3 mug each of all three nitroimidazole compounds per ml. No significant differences in MIC values were found among metronidazole, ornidazole, and tinidazole. Only minor differences were detected by comparing MIC values obtained in brain heart infusion agar with and without sheep blood, brucella agar, and Mueller-Hinton agar (both containing blood). When the strains were tested by the modified broth-disk method proposed by the Anaerobe Laboratory of the Virginia Polytechnic Institute (VPI), there was good correlation with the MIC values (97.4% agreement for metronidazole and 94.7% for ornidazole and tinidazole). For routine testing, use of a 30-mug-class disk of either nitroimidazole derivative is proposed for the broth-disk method, resulting in a final concentration of 6 mug/ml in the test tubes, a concentration easily attainable in body fluids. In contrast to the broth-disk method, there was very poor correlation between inhibition zone diameters by the standardized VPI agar diffusion test and MIC values. PMID:856015

  2. Susceptibility of anaerobic bacteria to sulfamethoxazole/trimethoprim and routine susceptibility testing.

    Science.gov (United States)

    Wüst, J; Wilkins, T D

    1978-09-01

    The minimal inhibitory concentrations (MICs) of sulfamethoxazole and trimethoprim against 144 strains of obligately anaerobic bacteria were determined on Diagnostic Sensitivity Test agar (Oxoid) or in prereduced Diagnostic Sensitivity Test broth, both supplemented with sodium pyruvate (1 mg/ml), hemin (5 mug/ml), and vitamin K(1) (1 mug/ml). Fifty-eight percent of the strains were susceptible to sulfamethoxazole alone (MIC disk test proposed by Wilkins and Thiel, modified by using prereduced Diagnostic Sensitivity Test broth instead of brain heart infusion broth and by using a smaller inoculum, there was over 90% correlation with the MICs. Poor results were found when the broth-disk tests were performed in brain heart infusion broth. There was very poor correlation between inhibition zone diameters by an agar diffusion method and MICs. PMID:708016

  3. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa;

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times for...... identification were 1.5 days and 2.8 days, respectively....

  4. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  5. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    Science.gov (United States)

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  6. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  7. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  8. Effect of ph and temperature on the sorption of Np and Pa to mixed anaerobic bacteria

    International Nuclear Information System (INIS)

    While considering the geological disposal of radioactive wastes, the behaviour of the radionuclide Np and its daughter element Pa was investigated in the presence of a mixture of anaerobic bacteria (MAB). Originally, MAB were used for the treatment of pulp and paper wastewater. The interaction between radionuclides and bacteria was evaluated by determining distribution coefficients (Kd) over 10 days and at 5 deg. C and 35 deg. C. Kd for Np at 35 deg. C after 5 days had a low value around 10-2. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd at 5 deg. C was low (10-2) throughout, without any significant increase over time. The interaction between Pa and MAB was found to be stronger than that for Np, with Kd for Pa about 100 times higher. The Kd was controlled by some basic factors; the activity of MAB, the complexing capacity of MAB, and the chemical conditions in the solution such as pH and Eh

  9. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    International Nuclear Information System (INIS)

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets

  10. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Michael L.M., E-mail: mitchel.marques@yahoo.com.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Leão, Versiane A., E-mail: versiane@demet.em.ufop.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Gomes, Otavio [Centre for Mineral Technology – CETEM, Av Pedro Calmon, 900, 21941-908 Rio de Janeiro (Brazil); Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan [Mineral Processing and Recycling, University of Liege, SartTilman, 4000 Liege (Belgium)

    2015-07-15

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets.

  11. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  12. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  13. [A comparative study of various evaluation methods of the antibiotic sensitivity of strict anaerobic bacteria of the subgingival flora].

    Science.gov (United States)

    Kamagate, A; Kone, D; Coulibaly, N T; Brou, E; Sixou, M

    2001-09-01

    The study on the sensitiveness of slow-growing anaerobes bacteria to antibiotics is delicate when you consider the technical motives that make it difficult to transpose the standard methods frequently used in microbiological laboratories. The three main methods used to determine susceptibility to antibiotics are: disk-diffusion test, antibiotics containing microdilution plates and ATB ANA (bioMérieux). The aim of this study is to compare the effectiveness of each of these methods on severe anaerobes bacteria isolated in sub-gingival flora of patients suffering from developing periodontitis (rapidly progressive periodontitis, refractory periodontitis, active stage of adult chronic periodontitis). The observed bacteria are: Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus micros. Antibiotics used are: ampicilline, amoxicilline, tetracycline, erythromycine, metronidazole. The comparison of the minimal inhibitory concentrations (M.I.C) of each of these methods has permitted to show a strict correlation in the results observed with these three methods, if only the growth of the severe anaerobes bacteria on agar medium does not exceed 72 hours. PMID:11808376

  14. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  15. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  16. Biochemical Characterization and 16S rRNA Sequencing of Few Lipase-Producing Thermophilic Bacteria from Taptapani Hot Water Spring, Orissa, India

    Directory of Open Access Journals (Sweden)

    Satpal S. Bisht

    2011-01-01

    Full Text Available Three lipase-producing thermophilic bacteria (AK-P1, AK-P2, and AK-P3 were isolated from the Taptapani hot water spring in Orissa, India. The crude extra cellular lipases from cell-free culture supernatant were reacted in an olive oil mixture, and their lipolytic activities were compared. Identification of the bacteria was carried out using biochemical tests, 16SrRNA sequencing and sequences submitted to NCBI GenBank. Strain AK-P3, exhibited the highest lipolytic activity of 5.5 U/mL was identified as Porphyrobacter sp. The lipolytic activities of strains AK-P1 and AK-P 2 were 4.5 U/mL and 3.5 U/mL, respectively. Strains AK-P1 and AK-P2 were identified as Acinetobacter sp. and Brevibacillus spp. The GenBank accession numbers of the 16S rRNA gene sequences determined in this study for the strains AK-P1, AK-P2, and AK-P3 are HM359120, HM359119, and HM359118, respectively.

  17. Investigations concerning the process stability of methane fermentations exposed to transitory substrate disturbances and concerning the utilization of biogenic-organic solids through anaerobic thermophilic hydrolysis and acidification

    International Nuclear Information System (INIS)

    In the food industry, anaerobic methods are increasingly being used for the cleaning of waste water with a high organic pollution load and for the utilization of solid organic production residues. As a function of discontinuous production processes and often campaign-like production cycles, waste water from the food-processing industry varies in both quality and quantity. Such variations in waste water supplied to a methane reactor constitute a threat to the microbiological balance as the slowly growing acetogenous and methanogenous bacteria are sensitive to changes in their medium. In order, therefore, to investigate the process stability of methane fermentations, the first part of this work deals with the simulation of transitory, strong variations due to the supply of concentrated, acidified and non-acidified substrates. Parameters used to assess the influence of such strong variations were the conventional process parameters redox-potential, biogas production and composition, volatile fatty acids and dissolved organic carbon as well as, additionally, partial hydrogen pressure in biogas and the content of the coenzyme F420 in the biomass. (orig.)

  18. Stability of SM-7338, a new carbapenem in mediums recommended for the susceptibility testing of anaerobic bacteria and gonococci.

    Science.gov (United States)

    Jones, R N; Gardiner, R V

    1989-01-01

    The stability of SM-7338 was compared to that of imipenem in media used for susceptibility testing anaerobic bacteria and Neisseria gonorrhoeae. SM-7338 was more stable in all media than imipenem. For tests with anaerobic bacteria, the broth-disk elution (in thioglycolate) and other methods recommended by the National Committee for Clinical Laboratory Standards can be accurately used for SM-7338. However, the cysteine content of IsoVitaleX (25.9 g/L) supplement inactivates SM-7338 (20-fold reduction) in gonococcal susceptibility test systems with GC agar base. A cysteine-free supplement would be advised for tests with the carbapenems and clavulanic acid. The SM-7338 disk diffusion test (10 micrograms) results were not significantly influenced by the inactivating substances in the media. PMID:2507217

  19. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  20. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    Science.gov (United States)

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  1. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    Science.gov (United States)

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

  2. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  3. Distribution of secretory inhibitor of platelet microbiddal protein among anaerobic bacteria isolated from stool of children with diarrhea

    Institute of Scientific and Technical Information of China (English)

    Iuri B Ivanov; Viktor A Gritsenko

    2008-01-01

    AIM: To study the secretory inhibitor of platelet microbicidal protein (SIPHP) phenotypes of faecal anaerobic isolates from patients with diarrhea.METHODS: Faecal isolates of anaerobic bacteria(B.fragiliS,n=42; B.longum,n=70;A.israelii,n=21;E.lentum,n=12) from children with diarrhea were tested.SlPHP production was tested by inhibition of platelet microbicidal protein (PHP) bioactivity against B.subtilis and was expressed as percentage of inhibition of PMP bactericidal activity.RESULTS: Among anaerobic isolates 80% of B.Iongum strains,85.7% of A.israelii strains,50%of E.lentum strains and 92.86% of B.fragilis strains were SIPMP-positive.The isolated anaerobic organisms demonstrated SIPHP production at a mean level of 13.8%±0.7%,14.7%±1.8%,3.9%±0.9% (P<0.05) and 26.8%±7.5% (P<0.05) for bifidobacteria,A.israelii,E.lentum and B.fragilis,respectively.CONCLUSION: Data from the present study may have significant implications in understanding the pathogenesis of microecological disorders in the intestine,as well as for future improvement in the prevention and therapy of anaerobe-associated infections.

  4. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    Science.gov (United States)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  5. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil Dinâmica populacional e atividade de enzimas extracelulares de bactérias mesofílicas e termofílicas isoladas do solo do semi-árido nordestino

    OpenAIRE

    Krystyna Gorlach-Lira; Coutinho, Henrique D. M.

    2007-01-01

    The dynamics of mesophilic and thermophilic bacterial population was studied in the bulk soil and rhizosphere of the grass Aristida adscensionis L. in a caatinga of the semi-arid Brazilian Northeast. Mesophilic heterotrophic bacteria, sporeforming bacteria and actinomycetes were significantly more abundant than thermophiles, and their counts were 10(6) - 10(7) CFU g-1 dry soil, showing weak fluctuations over the one-year study period. Thermophiles were below 10(6) CFU g-1 dry soil and, in gen...

  6. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR.

    Science.gov (United States)

    Li, Qian; Li, Yu-You; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki

    2015-06-01

    This study was conducted to investigate the effects of sulfate on propionate degradation and higher organic loading rate (OLR) achievement in a thermophilic AnMBR for 373days using coffee grounds, milk and waste activated sludge (WAS) as the co-substrate. Without the addition of sulfate, the anaerobic system failed at an OLR of 14.6g-COD/L/d, with propionate accumulating to above 2.23g-COD/L, and recovery by an alkalinity supplement was not successful. After sulfate was added into substrates at a COD/SO4(2-) ratio of 200:1 to 350:1, biogas production increased proportionally with OLR increasing from 4.06 to 15.2g-COD/L/d. Propionic acid was maintained at less than 100mg-COD/L due to the effective conversion of propionic acid to methane after the sulfate supplement was added. The long-term stable performance of the AnMBR indicated that adding sulfate was beneficial for the degradation of propionate and achieving a higher OLR under the thermophilic condition. PMID:25791749

  7. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  8. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs. PMID:25994259

  9. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    Science.gov (United States)

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  10. [Antimicrobial susceptibility of clinical isolates of aerobic Gram-positive cocci and anaerobic bacteria in 2006].

    Science.gov (United States)

    Yamaguchi, Takahiro; Yoshida, Isamu; Itoh, Yoshihisa; Tachibana, Mineji; Takahashi, Choichiro; Kaku, Mitsuo; Kanemitsu, Keiji; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Baba, Hisashi; Matsuo, Shuji; Asari, Seishi; Toyokawa, Masahiro; Matsuoka, Kimiko; Kusano, Nobuchika; Nose, Motoko; Murase, Mitsuharu; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2010-12-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (26 species, 1022 strains) and anaerobic bacteria (23 species, 184 strains) isolated from clinical specimens in 2006 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 53.0% and 65.8%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 micrcog/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 87.6%. Ceftriaxone, cefpirome, cefepime, carbapenem antibiotics, VCM, teicoplanin, linezolid(LZD) and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 10.9% of E. faecalis strains or 3.5% of E. faecium strains showed intermediate or resistant to LZD. 24.4% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM were under 1 microg/mL, suggesting that VCM had excellent activity against C. difficile. Carbapenems showed good activity against Peptococcaceae, Bacteroides spp., and Prevotella spp. However since several strains of Bacteroides fragilis showed resistant to carbapenems and the susceptibility of this species should be well-focused in the future. PMID:21425596

  11. [Antimicrobial susceptibility of clinical isolates of aerobic gram-positive cocci and anaerobic bacteria in 2008].

    Science.gov (United States)

    Yoshida, Isamu; Yamaguchi, Takahiro; Kudo, Reiko; Fuji, Rieko; Takahashi, Choichiro; Oota, Reiko; Kaku, Mitsuo; Kunishima, Hiroyuki; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Fujita, Shinichi; Matsuo, Shuji; Kono, Hisashi; Asari, Seishi; Toyokawa, Masahiro; Kusano, Nobuchika; Nose, Motoko; Horii, Toshinobu; Tanimoto, Ayako; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2012-02-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (25 genus or species, 1029 strains) and anaerobic bacteria (21 genus or species, 187 strains) isolated from clinical specimens in 2008 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 59.6% and 81.2%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM), linezolid (LZD) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 microg/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 92.0% that was highest among our previous reports. Cefpirome, carbapenems, VCM, teicoplanin (TEIC), LZD and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 15.9% of E. faecalis strains and 1.2% of E. faecium strains showed intermediate to LZD. 17.1% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM was under 1 microg/mL, suggesting that VCM had excellent activity. Carbapenems showed good activity against Clostridiales, Bacteroides spp., and Prevotella spp., but one strain of Bacteroides fragilis showed resistant to carbapenems. And so, the susceptibility of this species should be well-focused in the future at detecting continuously. PMID:22808693

  12. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown. PMID:21491069

  13. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  14. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    OpenAIRE

    Asma Sattar; Chaudhry Arslan; Changying Ji; Sumiyya Sattar; Irshad Ali Mari; Haroon Rashid; Fariha Ilyas

    2016-01-01

    Three common pretreatments (mechanical, steam explosion and chemical) used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C) and thermophilic (55 °C) temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose) content and bio-hydrogen production from rice straw. The i...

  15. Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting.

    Science.gov (United States)

    Li, Rong; Li, Linzhi; Huang, Rong; Sun, Yifei; Mei, Xinlan; Shen, Biao; Shen, Qirong

    2014-06-01

    Composting is a process of stabilizing organic wastes through the degradation of biodegradable components by microbial communities under controlled conditions. In the present study, genera and species diversities, amylohydrolysis, protein and cellulose degradation abilities of culturable bacteria in the thermophilic phase of composting of cattle manure with plant ash and rice bran were investigated. The number of culturable thermophilic bacteria and actinomyces decreased with the increasing temperature. At the initiation and end of the thermophilic phase, genera and specie diversities and number of bacteria possessing degradation abilities were higher than during the middle phase. During the thermophilic composting phase, Bacillus, Geobacillus and Ureibacillus were the dominant genera, and Geobacillus thermodenitrificans was the dominant species. In later thermophilic phases, Geobacillus toebii and Ureibacillus terrenus were dominant. Bacillus, at the initiation, and Ureibacillus and Geobacillus, at the later phase, contributed the multiple degradation abilities. These data will facilitate the control of composting in the future. PMID:24415499

  16. Multilaboratory evaluation of an agar diffusion disk susceptibility test for rapidly growing anaerobic bacteria.

    Science.gov (United States)

    Barry, A L; Fuchs, P C; Gerlach, E H; Allen, S D; Acar, J F; Aldridge, K E; Bourgault, A M; Grimm, H; Hall, G S; Heizmann, W

    1990-01-01

    A multilaboratory collaborative study was undertaken to determine whether the anaerobic disk diffusion test of Horn et al. could be performed reproducibly and accurately. Tests with nine different antimicrobial disks were evaluated. Reproducibility of the agar diffusion disk method was similar to that of the reference agar dilution test procedure. The anaerobic disk diffusion procedure was found to be a potentially useful method for testing some antimicrobial agents against rapidly growing anaerobes belonging to the Bacteroides fragilis group. These promising results warrant further investigations and validations. PMID:2406872

  17. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  18. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities

    OpenAIRE

    Kellermann, M. Y.; Wegener, G.; Elvert, M; Yoshinaga, M. Y.; Lin, Y.-S.; Holler, T.; Mollar, X. P.; Knittel, K; Hinrichs, K.-U.

    2012-01-01

    The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing...

  19. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    OpenAIRE

    Miguez, Carlos B; Shen, Chun F; Bourque, Denis; Guiot, Serge R; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not...

  20. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  1. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on growth of anaerobic bacteria isolated from human feces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Aberdeen : Rowett Institute-INRA, 2010. s. 103-103. [7th joint symposium of Rowett-INRA:Gut Microbiology: new insight into gut microbial ecosystems. 23.06.2010-25.06.2010, Aberdeen] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerobic bacteria * human faces Subject RIV: EB - Genetics ; Molecular Biology http://www.rowett.ac.uk/Rowett-INRA2010/scientific-prog.html

  2. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  3. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  4. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  5. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.

    Science.gov (United States)

    André, S; Zuber, F; Remize, F

    2013-07-15

    Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or δ and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. PMID:23728430

  6. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  7. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  8. ANAEROBIC BIOREMEDIATION OF PAH-CONTAMINATED SOIL: ASSESSMENT OF THE DEGRADATION OF CONTAMINANTS AND BIOGAS PRODUCTION UNDER THERMOPHILIC AND MESOPHILIC CONDITIONS

    Czech Academy of Sciences Publication Activity Database

    Sayara, T.; Čvančarová, Monika; Cajthaml, Tomáš; Sarra, M.; Sánchez, A.

    2015-01-01

    Roč. 14, č. 1 (2015), s. 153-165. ISSN 1582-9596 R&D Projects: GA ČR GA525/09/1058 Institutional support: RVO:61388971 Keywords : anaerobic digestion * central composite design * PAH-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.065, year: 2014

  9. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Meulepas, R.J.W.; Stams, A.J.M.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The conversion routes of carbon monoxide (CO) at 55°C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population an

  10. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.

    Science.gov (United States)

    Mehta, Akshita; Kumar, Rakesh; Gupta, Reena

    2012-12-01

    Lipases catalyze the hydrolysis and the synthesis of esters formed from glycerol and long chain fatty acids. Lipases occur widely in nature, but only microbial lipases are commercially significant. In the present study, thirty-two bacterial strains, isolated from soil sample of a hot spring were screened for lipase production. The strain TS-4, which gave maximum activity, was identified as Geobacillus sp. at MTCC, IMTECH, Chandigarh. The isolated lipase producing bacteria were grown on minimal salt medium containing olive oil. Maximal quantities of lipase were produced when 30 h old inoculum was used at 10% (v/v) in production medium and incubated in shaking conditions (150 rpm) for 72 h. The optimal temperature and pH for the bacterial growth and lipase production were found to be 60°C and 9.5, respectively. Maximal enzyme production resulted when mustard oil was used as carbon source and yeast extract as sole nitrogen source at a concentration of 1% (v/v) and 0.15% (w/v), respectively. The different optimized reaction parameters were temperature 65°C, pH 8.5, incubation time 10 min and substrate p-nitrophenyl palmitate. The Km and Vmax values of enzyme were found to be 14 mM and 17.86 μmol ml-1min-1, respectively, with p-nitrophenyl palmitate as substrate. All metal ions studied (1 mM) increased the lipase activity. PMID:23195552

  11. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  12. [Sensitivity of clinical strains of facultatively anaerobic bacteria to antimicrobial drugs].

    Science.gov (United States)

    Bazhenov, L G; Iskhakova, Kh I

    1988-02-01

    Six hundred and sixty five samples of clinical materials from patients with various pyoinflammatory diseases were tested for obligatory anaerobes. Anaerobes were detected in 148 samples which amounted to 22.3 per cent of the total number of the samples and to 33.2 per cent of the samples with microbial growth. A total of 171 strains of obligatory anaerobes were isolated. Among them 58.5, 24.5, 16.4 and 0.6 per cent were nonsporulating gramnegative bacilli, grampositive cocci, grampositive bacilli and gramnegative cocci respectively. Sensitivity of the isolated anaerobes was tested with the disk diffusion method. The most active drugs against the tested strains were: nitroxoline, rifampicin, metronidasole, erythromycin, carbenicillin and cefotaxim (4.2, 4.5, 9.3, 10.6, 11.5 and 11.7 per cent of the resistant strains respectively). Gentamicin, polymyxin M, novobiocin and cefazoline were the least active drugs (94.6, 78.9, 65.4 and 50.0 per cent of the resistant strains respectively). Metronidasole, levomycetin, nitroxolin, rifampicin and furazolidone showed the highest activity against bacteroids of the fragilis group (0, 0, 0, 8 and 12.5 per cent of the resistant strains respectively) while gentamicin, polymyxin M, cefazolin, oxacillin, novobiocin and penicillin showed the lowest activity (100, 100, 100, 100, 87.0 and 66.7 per cent of the resistant strains respectively). PMID:3377601

  13. Inhibition of Salmonella Typhimurium by Anaerobic Cecal Bacteria in Media Supplemented with Lactate and Succinate

    Science.gov (United States)

    The ability of anaerobic cecal microflora of broilers to inhibit growth of Salmonella Typhimurium in media supplemented with lactate and succinate was examined. Cecal cultures were prepared by collecting ceca of processed broilers from a commercial processing facility, inoculating broth media with 1...

  14. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  15. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa;

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...... anaerobic bacteria....

  16. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria.

    OpenAIRE

    Chohnan, S; FURUKAWA, H.; Fujio, T; Nishihara, H.; Takamura, Y

    1997-01-01

    Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than...

  17. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge.

    OpenAIRE

    Harmsen, H. J. M.

    1996-01-01

    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. Sequence analysis of the 16S rRNA gave information on the phylogeny of the syntrophic bacteria, while specific oligonucleotide probes based on these sequences enabled quantification and detection of these bact...

  18. Effect of different proportions on the thermophilic anaerobic digestion of food waste%不同原料配比对餐饮废弃物高温厌氧发酵的影响

    Institute of Scientific and Technical Information of China (English)

    常国璋; 席新明; 郭康权; 杨秀生

    2012-01-01

    【Objective】The study explored the effect of different proportions of food waste on the thermophilic anaerobic digestion to determine optimal parameter for more utilization of food waste.【Method】The organic ingredients of food waste in Yangling of Shanxi were tested.According to the test,the experiment was conducted with self-manufactured anaerobic equipment from the northwest station of biogas products and equipment quality center of ministry of agriculture.Effect of different proportions of food waste on the thermophilic anaerobic digestion was studied through measuring CH4 content and biogas production.【Result】Characteristics of biogas production in each group were significant.On the 1-3 days of the anaerobic digestion,the accumulative biogas production of group 6(m(rice)∶m(napkin)∶m(meat)=3∶4∶3)was the highest(5 410 mL),while group 11 was the lowest(3 150 mL).The CH4 content of group 3(m(rice)∶m(napkin)∶m(meat)=2∶4∶4)was the highest(16.7%) and the group 29 was the lowest(1.3%).In all days of the anaerobic digestion,the total biogas production(8 400 mL),biogas production rate(140.94 mL/g) and CH4 content(49.9%) of group 10 were the maximum,so proportion of m(rice)∶m(napkin)∶m(meat)=4∶4∶2 is the best.【Conclusion】This study provided optimum parameters for thermophilic anaerobic digestion of food waste,and it demonstrated how to achieve more utilization of food waste.%【目的】探索不同原料配比对餐饮废弃物高温厌氧发酵的影响,为餐饮废弃物最大资源化利用提供理论依据。【方法】用环境监测布点法检测陕西杨凌餐饮废弃物的有机成分含量,根据检测结果,采用农业部西北沼气分中心自行设计的厌氧发酵装置,选取产气量和甲烷含量作为指标,于55℃下考察不同原料配比对餐饮废弃物厌氧发酵的影响。【结果】各处理组产气

  19. Comparative microbiological-hygienic studies in mesophilic and thermophilic fouling of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pohlig-Schmitt, M.; Philipp, W.; Wekerle, J.; Strauch, D.

    Investigations concerning the inactivation of microbial pathogens (bacteria, viruses and parasites) during anaerobic, alkaline dignestion of sludge are described. A thermophilic (54/sup 0/C) and a mesophilic (34/sup 0/C) operated biogas model plant were compared from the point of view of hygiene. Is was found that in the thermophilic process Salmonella senftenberg survived 13,5 h, Streptococcus faecium 55 h, Streptococcus faecalis 42 h and Klebsiella pneumoniae 0,5 h. Within 30 min eggs of Ascaris suum lost their infectivity Bovine Parvovirus was inactivated after 1 d to 2 d treatment. Survival times under mesophilic conditions of 13 d for Salmonella senftenberg and more than 8 mouth for Streptococcus faecium were found. Poliovirus Type 1 was inactivated in 8 d while Bovine Parvovirus survived no longer than 15 d. The results obtained in the thermophilic process were compared to those after heat treatment of the test microorganisms in ampules exposed in a wather-bath under defined conditions to 54/sup 0/C. It was found, that the bacteria survived only about half the time in this case. Poliovirus Type 1 was inactivated after 0,75 h and Bovine Parvovirus after 7 d exposure. (orig.RB)

  20. Temporal variation of microbial population in a thermophilic biofilter for SO2 removal.

    Science.gov (United States)

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2016-01-01

    The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes (PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10months of operation time, with a maximum elimination capacity of 48.29g/m(3)/hr. Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid (DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic-anoxic-aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4months of operation. PMID:26899638

  1. Exploring Anaerobic Bacteria for Industrial Biotechnology - Diversity Studies, Screening and Biorefinery Applications

    OpenAIRE

    Aragão Börner, Rosa

    2013-01-01

    Depletion of easily accessible fossil energy resources, threat of climate change and political priority to achieve energy self-sufficiency and sustainable solutions prioritize a conscious and smart use of renewable resources to generate a bio-based economy. Bio-based compounds can replace chemicals and fuels that are now mainly produced from crude oil. Efficient processes for the conversion of plant biomass into compounds of interest to the biorefinery industry occur naturally in anaerobic en...

  2. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    OpenAIRE

    N. S. Mechael

    2012-01-01

    Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. se...

  3. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  4. Synthesis and Antimicrobial Evaluation of Amixicile-Based Inhibitors of the Pyruvate-Ferredoxin Oxidoreductases of Anaerobic Bacteria and Epsilonproteobacteria.

    Science.gov (United States)

    Kennedy, Andrew J; Bruce, Alexandra M; Gineste, Catherine; Ballard, T Eric; Olekhnovich, Igor N; Macdonald, Timothy L; Hoffman, Paul S

    2016-07-01

    Amixicile is a promising derivative of nitazoxanide (an antiparasitic therapeutic) developed to treat systemic infections caused by anaerobic bacteria, anaerobic parasites, and members of the Epsilonproteobacteria (Campylobacter and Helicobacter). Amixicile selectively inhibits pyruvate-ferredoxin oxidoreductase (PFOR) and related enzymes by inhibiting the function of the vitamin B1 cofactor (thiamine pyrophosphate) by a novel mechanism. Here, we interrogate the amixicile scaffold, guided by docking simulations, direct PFOR inhibition assays, and MIC tests against Clostridium difficile, Campylobacter jejuni, and Helicobacter pylori Docking simulations revealed that the nitro group present in nitazoxanide interacts with the protonated N4'-aminopyrimidine of thiamine pyrophosphate (TPP). The ortho-propylamine on the benzene ring formed an electrostatic interaction with an aspartic acid moiety (B456) of PFOR that correlated with improved PFOR-inhibitory activity and potency by MIC tests. Aryl substitution with electron-withdrawing groups and substitutions of the propylamine with other alkyl amines or nitrogen-containing heterocycles both improved PFOR inhibition and, in many cases, biological activity against C. difficile Docking simulation results correlate well with mechanistic enzymology and nuclear magnetic resonance (NMR) studies that show members of this class of antimicrobials to be specific inhibitors of vitamin B1 function by proton abstraction, which is both novel and likely to limit mutation-based drug resistance. PMID:27090174

  5. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.

    Science.gov (United States)

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2013-08-01

    Purple non-sulfur bacteria (PNSB) were cultivated by food industry wastewater in the anaerobic membrane photo-bioreactor. Organic removal and biomass production and characteristics were accomplished via an explicit examination of the long term performance of the photo-bioreactor fed with real wastewater. With the support of infra-red light transmitting filter, PNSB could survive and maintain in the system even under the continual fluctuations of influent wastewater characteristics. The average BOD and COD removal efficiencies were found at the moderate range of 51% and 58%, respectively. Observed photosynthetic biomass yield was 0.6g dried solid/g BOD with crude protein content of 0.41 g/g dried solid. Denaturing gradient gel electrophoretic analysis (DGGE) and 16S rDNA sequencing revealed the presence of Rhodopseudomonas palustris and significant changes in the photosynthetic bacterial community within the system. PMID:23489563

  6. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. PMID:26970692

  7. In Vitro Activities of Cefminox against Anaerobic Bacteria Compared with Those of Nine Other Compounds

    OpenAIRE

    Hoellman, Dianne B.; Spangler, Sheila K.; Jacobs, Michael R.; Appelbaum, Peter C.

    1998-01-01

    The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0...

  8. Effect of the growth of anaerobic bacteria on the surface pH of solid media.

    OpenAIRE

    Watt, B; Brown, F V

    1985-01-01

    Changes in surface pH occurring after varying periods of anaerobic incubation were measured for a total of 23 test solid media. There was little change in the surface pH of uninoculated plates, but plates inoculated with Bacteriodes fragilis showed a striking fall in pH, to pH 5 in the case of some of the test media. The problems of controlling the surface pH of solid media are discussed and possible methods of control are considered.

  9. Microbiological studies of an anaerobic baffled reactor: microbial community characterisation and deactivation of health-related indicator bacteria.

    Science.gov (United States)

    Lalbahadur, T; Pillay, S; Rodda, N; Smith, M; Buckley, C; Holder, F; Bux, F; Foxon, K

    2005-01-01

    This WRC funded project has studied the appropriateness of the ABR (anaerobic baffled reactor) for on-site primary sanitation in low-income communities. A 3,000 L pilot reactor was located at the Kingsburgh wastewater treatment plant south of Durban, South Africa. Feed to the reactor was raw domestic wastewater containing a significant proportion of particulate organic matter. The compartments of the ABR were routinely monitored for pH, COD, and gas production, among other physical-chemical determinants. The microbial population in each compartment was analysed by fluorescent in situ hybridisation, using general oligonucleotide probes for eubacteria and archeae and a suite of 10 genera or family specific probes. Scanning electron microscopy was conducted on the sludge fraction of each compartment. Mixed fractions from each compartment were also analysed for health-related indicator bacteria (total coliforms and E. coli). Results indicated that methanogenesis was not occurring to the expected extent in the latter compartments, and that this was probably due to a hydraulic load limitation. This contrasted with earlier studies on industrial effluent, for which the organic load was exclusively in soluble form. Inactivation of health-related indicator bacteria was less than 1 log, indicating the need for an additional post-treatment of the effluent to protect community health. PMID:16104417

  10. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Wang, Ru; Li, Wei; Lu, Huifeng; Zhang, Jiqiang

    2014-12-01

    The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89 mg (g VSS d)−1, which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0 °C, 30.15 °C and 8.0 °C, respectively. PMID:25461924

  11. An antibacterial assay of aqueous extract of garlic against anaerobic/microaerophilic and aerobic bacteria

    OpenAIRE

    Elsom, Giles K.; Hide, Denis; Salmon, David M.

    2011-01-01

    Both the minimum inhibitory and minimum bactericidal concentration (expressed in terms of thiosulphinate concentration) of an aqueous extract of garlic was determined against nine species of bacteria. Helicobacter pylori proved to be extremely sensitive to garlic extract, whilst Bacteroides fragilis, Clostridium perfringens, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus all were moderately sensitive to the garlic extract treat...

  12. Thermophilic (55 - 65°C) and extreme thermophilic (70 - 80°C) sulfate reduction in methanol and formate-fed UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Camarero, E.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The feasibility of thermophilic (55-65 degreesC) and extreme thermophilic (70-80 degreesC) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular slu

  13. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling. PMID:27225476

  14. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82, 163.03 and 228.24 g NH3-N/L). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels compared to the hydrogenotrophic methanogens tested. Additionally...

  15. In vitro activities of cefminox against anaerobic bacteria compared with those of nine other compounds.

    Science.gov (United States)

    Hoellman, D B; Spangler, S K; Jacobs, M R; Appelbaum, P C

    1998-03-01

    The agar dilution MIC method was used to test the activity of cefminox, a beta-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active beta-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. Other beta-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 microg/ml for cefoxitin, 2.0 and 128.0 microg/ml for cefotetan, 2.0 and 64.0 microg/ml for moxalactam, 4.0 and > 128.0 microg/ml for ceftizoxime, 16.0 and > 128.0 microg/ml for cefotiam, 8.0 and >128.0 microg/ml for cefamandole, and 4.0 and 128.0 microg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 microg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 microg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 microg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 microg/ml), fusobacteria (MIC90, 1.0 microg/ml), peptostreptococci (MIC90, 2.0 microg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 microg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4x the MIC and cefoperazone at 8x the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2 x the MIC produced the most rapid effect, with 90% killing of all strains. PMID:9517922

  16. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion

    Directory of Open Access Journals (Sweden)

    Chaudhry Arslan

    2015-01-01

    Full Text Available The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW were studied under pH management intervals of 12 h (PM12 and 24 h (PM24 for temperature of 37±0.1°C and 55±0.1°C. The OFMSW or food waste (FW along with its two components, noodle waste (NW and rice waste (RW, was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.

  17. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion

    Science.gov (United States)

    Arslan, Chaudhry; Sattar, Asma; Changying, Ji; Nasir, Abdul; Ali Mari, Irshad; Zia Bakht, Muhammad

    2015-01-01

    The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste. PMID:26819952

  18. A thermophilic microbial fuel cell design

    Science.gov (United States)

    Carver, Sarah M.; Vuoriranta, Pertti; Tuovinen, Olli H.

    Microbial fuel cells (MFCs) are reactors able to generate electricity by capturing electrons from the anaerobic respiratory processes of microorganisms. While the majority of MFCs have been tested at ambient or mesophilic temperatures, thermophilic systems warrant evaluation because of the potential for increased microbial activity rates on the anode. MFC studies at elevated temperatures have been scattered, using designs that are already established, specifically air-cathode single chambers and two-chamber designs. This study was prompted by our previous attempts that showed an increased amount of evaporation in thermophilic MFCs, adding unnecessary technical difficulties and causing excessive maintenance. In this paper, we describe a thermophilic MFC design that prevents evaporation. The design was tested at 57 °C with an anaerobic, thermophilic consortium that respired with glucose to generate a power density of 375 mW m -2 after 590 h. Polarization and voltage data showed that the design works in the batch mode but the design allows for adoption to continuous operation.

  19. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    Science.gov (United States)

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  20. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  1. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    OpenAIRE

    Finegold, S M; Molitoris, D.; Väisänen, M.-L.

    2008-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam.

  2. In vitro activity of cefmetazole, cefotetan, amoxicillin-clavulanic acid, and other antimicrobial agents against anaerobic bacteria from endometrial cultures of women with pelvic infections.

    OpenAIRE

    Ohm-Smith, M J; Sweet, R. L.

    1987-01-01

    The MICs of the new antimicrobial agents cefmetazole, cefotetan, and amoxicillin-clauvulanic acid were compared with the MICs of other antimicrobial agents against anaerobic bacteria from endometrial cultures from women with pelvic inflammatory disease or endometritis. The activity of cefmetazole was similar to that of cefoxitin and generally greater than that of cefotetan. Amoxicillin-clavulanic acid was generally more active than all cephamycins tested.

  3. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    Science.gov (United States)

    Finegold, S. M.; Molitoris, D.; Väisänen, M.-L.

    2009-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam. PMID:18955526

  4. Solid-Phase Thermophilic Aerobic Reactor (STAR) Processing of Fecal, Food, and Plant Residues

    OpenAIRE

    2006-01-01

    A description of the Solid Waste Resource Recovery ALS-NSCORT projects: Solid Phase Thermophilic Aerobic Reactor (STAR), Nitrogen Cycling in Advanced Life Support Systems, and Plant-based Anaerobic-Aerobic Bioreactor Linked Operation (PAABLO). 26 pages.

  5. Fermentation of Rice Straw Uses Mix Inoculum of Anaerobe Facultative Bacteria Isolate from Buffalo Rumen

    International Nuclear Information System (INIS)

    Rice straw quality could be increased as feed by fermentation which has been mixed with bacteria inoculum from buffalo rumen. This experiment used rice straw from Atomita 4, four treatments and one control, i.e. A (rice straw, molasses 5 %, urea 5 %, and inoculum 10 %), B (rice straw, molasses 5 %, and urea 5 %), C (rice straw, molasses 5 %, and inoculum 10 %), D (rice straw and molasses 5 %), and K (control) have been used in this experiment. The parameters were digestibility of dry matter and organic matter, VFA, ammonia and in vitro gas production. The result, showed that the highest gas production, dry matter and organic matter digestibility occurred on A i.e. 17.48 ml/200 mg, 57.78%, and 52.39 %. The highest ammonia occurred on D (32.99 mg/100 ml) and the highest VFA occurred on C (12.36 mmol/100 ml). The concentration of ammonia and VFA of A significant to treatment of D and C). It may be concluded that the A treatment is the best and have potency to be develop. (author)

  6. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    Science.gov (United States)

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production. PMID:26129953

  7. Presence of thermophilic Campylobacter species in Broilers and pigs at certain abattoirs in Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2008-01-01

    Full Text Available Examinations were carried out during the period from January 2006 until March 2007 on a total of 449 samples of the cecum of broilers and the cecum and the colon of pigs. These samples included 251 samples originating from broilers and 198 samples of pig cecums and colons. All the listed samples were obtained by scraping the surface of these parts of the digestive system of broilers and pigs. At the site of sampling, the diluted material was sown on a medium (Karmali agar, in order to get individual colonies. After sowing, the bases were placed in anaerobic jars in which microaerophilic conditions were achieved using Campy Pak, BBL bags. On arrival at the laboratory, the jars containing the sown bases were placed in a thermostat, at a temperature of 42oC for 48 hours for the purpose of incubation. Following incubation, the grown colonies were examined macroscopically, and then microscopic preparations were made from them, which were stained with 2% carbol fuchsin after drying and fixation. Those isolates which were in the form of a comma, the letter S, or gull's wings in the microscopic preparations were considered Campylobacter species (Figures 1 and 2. The isolated thermophilic campylobacteria were identified using conventional and commercial biochemical tests API Campy, manufactured by Bio Mérieux, France. With the application of these microbiological methods, thermophilic Campylobacter species were isolated from 203 (80.88% of the 251 samples of broiler cecums. Furthermore, thermophilic campylobacteria were isolated from 153 (77.27% of the 198 samples from the cecum and colon of pigs taken within these investigations. The obtained results indicate that there is a somewhat greater prevalence of these bacteria among the broilers. However, such a high percentage of both broilers and pigs colonized by thermophilic Campylobacter species could pose a serious problem, in particular when it is known that infections of humans caused by the

  8. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria.

    Science.gov (United States)

    Stasik, Sebastian; Wick, Lukas Y; Wendt-Potthoff, Katrin

    2015-11-01

    The extraction of bitumen from oil sands in Alberta (Canada) produces volumes of tailings that are pumped into large anaerobic settling-basins. Beside bitumen, tailings comprise fractions of benzene, toluene, ethylbenzene and xylenes (BTEX) that derive from the application of industrial solvents. Due to their toxicity and volatility, BTEX pose a strong concern for gas- and water-phase environments in the vicinity of the ponds. The examination of two pond profiles showed that concentrations of indigenous BTEX decreased with depth, pointing at BTEX transformation in situ. With depth, the relative contribution of ethylbenzene and xylenes to total BTEX significantly decreased, while benzene increased relatively from 44% to 69%, indicating preferential hydrocarbon degradation. To predict BTEX turnover and residence time, we determined BTEX degradation rates in tailings of different depths in a 180-days microcosm study. In addition, we evaluated the impact of labile organic substrates (e.g. acetate) generally considered to stimulate hydrocarbon degradation and the contribution of sulfate-reducing bacteria (SRB) to BTEX turnover. In all depths, BTEX concentrations significantly decreased due to microbial activity, with degradation rates ranging between 4 and 9 μg kg(-1) d(-1). BTEX biodegradation decreased linearly in correlation with initial concentrations, suggesting a concentration-dependent BTEX transformation. SRB were not significantly involved in BTEX consumption, indicating the importance of methanogenic degradation. BTEX removal decreased to 70-90% in presence of organic substrates presumptively due to an accumulation of acetate that lowered BTEX turnover due to product inhibition. In those assays SRB slightly stimulated BTEX transformation by reducing inhibitory acetate levels. PMID:26066083

  9. Change in Microbial Numbers during Thermophilic Composting of Sewage Sludge with Reference to CO2 Evolution Rate

    OpenAIRE

    Nakasaki, Kiyohiko; Sasaki, Masayuki; Shoda, Makoto; Kubota, Hiroshi

    1985-01-01

    Dewatered sewage sludge was composted in a laboratory-scale autothermal reactor in which a constant temperature of 60°C was kept as long as possible by regulating the air feed rate. The change in CO2 evolution rate was measured continuously from the start up through the cessation of compositing. The succession of mesophilic bacteria, thermophilic bacteria, and thermophilic actinomycetes was also observed during the composting. Specific CO2 evolution rates of thermophilic bacteria and actinomy...

  10. Comparison and Selection Analysis of Heating System of Mesophilic and Thermophilic Anaerobic Fermentation by Ground-source Heat Pump%地源热泵式中、高温厌氧发酵加温系统比选分析

    Institute of Scientific and Technical Information of China (English)

    吕涛; 石惠娴; 朱洪光; 徐凯; 范旻; 马洁琼

    2013-01-01

    [目的]筛选沼气工程发酵系统.[方法]比较70 m3/d日产气量的中型沼气工程用的地源热泵式中温厌氧发酵加温系统(池容产气率1 m3/(m3· d))和地源热泵式高温厌氧发酵加温系统(池容产气率2.2 m3/(m3· d))2种加温方案,计算其沼气池理论加温负荷、系统初投资以及运行费用,并分析了2者的技术可行性和经济效益.[结果]高温厌氧发酵系统的初投资比中温厌氧发酵系统少8.3万元,年运行费用少2 711元,投资效益净现值为123 333元.[结论]分析表明在加温系统的生命周期内,高温厌氧发酵系统具有更好的投资效益.%[Objective] To screen biogas project fermentation system.[Method] Heating system of mesophilic (biogas productivity at 1 m3/(m3 · d) and thermophilic (biogas productivity at 2.2 m3/(m3 · d) anaerobic fermentation by ground-source heat pump were compared,based on 70 m3/d daily biogas production of medium-sized biogas projects.Theoretical heating load of fermentation tank,initial investment and operating costs were calculated,and the economic benefits and technical feasibility were analyzed.[Result] The initial investment of thermophilic fermentation is lower than that of mesophilic fermentation by 83 000 yuan and annual operating costs of the heat pump is lower than that of mesophilic fermentation by 2 711 yuan.Investment returns net present value of thermophilic anaerobic fermentation system is 123 333 yuan.[Conclusion] Thermophilic fermentation system has a better investment returns in the life cycle of the heating system.

  11. Isolation, identification and metabolic characterization of an anaerobic thermophilic bacterium%一嗜热厌氧杆菌的分离、鉴定及其代谢特征

    Institute of Scientific and Technical Information of China (English)

    兰贵红; 葛菊; 刘海昌; 唐全武; 张辉; 乔代容; 曹毅

    2012-01-01

    [Objective] To isolate, protect thermophilic microbial resources from petroleum reservoirs and analyze these main metabolic characterization. [Methods] The strain BF1 was isolated by Hungte anaerobic technique from Chenghai 1 Unit of Dagang oil field in China. Its taxonomic status determined by physiological, biochemical and 16S Rrna gene sequence analysis. Its effect of sulfur metabolism on the corrosion current was measured by electrochemical analysis. [Results] The strain BF1 was Gram-negative, strictly thermophilic anaerobic, top-sporulating, non-motile, rods, 0.42 μmx(l.6-5.4) μm, grew solitary, in pairs or in chains. Growth occurred at 45 °C-75 °C (optimum 60 °C), at Ph 4.5-8.5 (optimum 6.5). Specific growth rate (μm) was 0.99 h-1 and doubling time was 42 min. Substrates included glucose, melizitose, raffinose, mannose, lactose, fructose and ribose. The main products of glucose fermentation were CO2, H2, acetate and ethanol. The strain could reduce thiosulfate and sulfite to sulfide, and its tolerance limits were 75 mmol/L and 50 mmol/L, respectively. The electrochemical impedance reduced from 2 099 Ω/cm2 to 776 Ω/cm2 and the corrosion current increased from 9.936e-006 A to 3.25e-005 A after thiosulfate (50 mmol/L) was reduced. The fatty acids were mainly composed of saturated long chain fatty acids, with C15:0 the most, accounting for 70.6%. The G+C content of DNA was 34.0 mol%. The 16S Rrna gene sequence analysis indicated that the closest phylogenetic relatives were Thermoanaerobacter pseudethanolicus DSM2355T and T. Brockii subsp. Brockii DSM1457T, 98.3% and 98.0%, respectively. However, the strain BF1 was different with T. Pseudethanolicus DSM2355T and T. Brockii subsp. Brockii DSM1457T in doubling time, optimum temperature and substrates utilized, and different with T. Pseudethanolicus DSM 2355T in fatty acid profile. [Conclusion] The strain BF1 may be a new species of Thermoanaerobacter genus, the exact taxonomic status of it requires DNA

  12. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Hulshoff Pol, L.W.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    The effect of NaCl on thermophilic (55degreesC) methanol conversion in the presence of excess of sulfate (COD/SO42-=0.5) was investigated in two 6.5L lab-scale upflow anaerobic sludge bed reactors inoculated with granular sludge previously not adapted to NaCl
    The effect of NaCl on thermophilic (

  13. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    Science.gov (United States)

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

  14. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.; Jørgensen, BB

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into...... bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry. These...

  15. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    Science.gov (United States)

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. PMID:26101964

  16. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions such as...

  17. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.

    OpenAIRE

    Akin, D E

    1980-01-01

    Different morphological types of rumen bacteria which degraded cell walls of forage grasses with various in vitro digestibilities were evaluated with electron microscopy. The majority of these bacteria (i.e., about 70% or more) consisted of two distinct types: (i) encapsulated cocci and (ii) irregularly shaped bacteria, resembling major fiber digesters found in the rumen. Each type was capable of degrading structurally intact cell walls. Differences (P less than or equal to 0.02) in the perce...

  18. Aerobe and anaerobe facultative Gram-negative bacteria rod-shaped in the ruminal fluid of dairy cattle fed with different diets containing tropical forages

    Directory of Open Access Journals (Sweden)

    CES Freitas

    2014-01-01

    Full Text Available The aim of this work was to analyse the population of aerobe and anaerobe facultative Gram-negative rod-shaped in the ruminal fluid of dairy cattle and calves fed with different sources of tropical forage. Samples of ruminal fluid were collected from 30 cows fed with sorghum silage, 32 cows fed with Brachiaria brizantha pasture, 12 calves fed with sorghum silage, and 11 calves fed with sugarcane. Fifteen ml of ruminal fluid were collected by sterile catheter and syringe puncture to the rumen. After serial decimal dilutions, samples were inoculated in plates containing MacConkey agar and incubated at 37 °C for 72 h. Calves fed with sorghum silage showed higher detection rate and larger population of these bacteria (8.4 X 10(6 colony forming units CFU/ml when compared with adult cows fed with the same forage (1.4 X 10(5 CFU/ml. The most frequent genera identified in all groups were Enterobacter, Klebsiella, and Proteus. The most frequently identified bacteria in pasture-fed cows was Enterobacter spp., while Klebsiella spp. was the most frequently identified bacteria in cows fed with sorghum silage. Enterobacter spp. and Proteus spp. were more frequently observed in isolates from calves (P < 0.01. Future studies should clarify the differences between these populations.

  19. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  20. [Strict anaerobic bacteria: comparative study of various beta-lactam antibiotics in combination with tazobactam or sulbactam].

    Science.gov (United States)

    Dubreuil, L; Sedallian, A

    1991-05-01

    The minimal inhibitory concentrations of piperacillin (PIP) or cefotaxime (CTX) alone or in combination with tazobactam (TAZ) were determined against 168 anaerobes. All the strains were inhibited by PIP + TAZ, but certain strains resistant to CTX + TAZ were found among B. fragilis, Eubacterium and Peptostreptococcus. The second investigations included 30 strains of Bacteroides fragilis. Concentrations of 2, 4 and 8 mg/l of TAZ and sulbactam (SUL) were combined with piperacillin or cefotaxime. The two beta-lactamase-inhibitors had similar activities when used at 2 or 4 mg/l, but at 8 mg/l TAZ was more active than SUL. All B. fragilis strains were inhibited by PIP + TAZ or PIP + SUL, whereas resistance was observed with CTX + SUL or CTX + TAZ. On the same strains the activities of 6 beta-lactams (PIP, mezlocillin, ticarcillin (TIC), CTX, ceftriaxone and ceftazidime) were determined in combination with either SUL 4 mg/l or TAZ 8 mg/l. Only PIP or TIC + SUL or TAZ were able to inhibit at least 90% of tested strains. No resistance could be detected with PIP + TAZ combination. As conclusion, the two inhibitors when combined with PIP or TIC offered greater activity against both Gram positive or negative anaerobes and PIP + TAZ remained the more potent combination. PMID:1652729

  1. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  2. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  3. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China

    Science.gov (United States)

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems. PMID:26368535

  4. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr

  5. Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community

    OpenAIRE

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2014-01-01

    The addition of ferrihydrite to methanogenic microbial communities obtained from a thermophilic anaerobic digester suppressed methanogenesis in a dose-dependent manner. The amount of reducing equivalents consumed by the reduction of iron was significantly smaller than that expected from the decrease in the production of CH4, which suggested that competition between iron-reducing microorganisms and methanogens was not the most significant cause for the suppression of methanogenesis. Microbial ...

  6. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on anaerobic bacteria isolated from human faeces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Venice : Universita Politechnica, 2009. s. 142-143. [EUCHIS 2009. 23.05.2009-26.05.2009, San Servolo Island] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerbic bacteria * human faeces Subject RIV: EB - Genetics ; Molecular Biology

  7. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  8. [Comparative study, using 3 methods, of the sensitivity to metronidazole and ornidazole of anaerobic or related bacteria].

    Science.gov (United States)

    Gallusser, A

    1983-01-01

    A comparative study of the sensitivity to metronidazole and ornidazole of 127 anaerobic or microaerophilic strains isolated from various clinical samples showed that the activity of both products was similar: the distribution of sensitive and resistant strains was identical. However, the in vitro activity level of metronidazole was slightly higher. This difference, though statistically significant, had no incidence on therapeutic indications. The determination of sensitivity towards the two nitroimidazoles was carried out by three methods: broth dilution and agar diffusion for metronidazole; and broth dilution and disk-broth for ornidazole. Two of these methods, broth dilution and disk-broth, gave concordant results. Conversely, the limits of the agar diffusion technique were shown to be related to independent biological factors such as bacterial motility and slow growth rate. The poor accuracy of this method limits its use in detecting total resistance. PMID:6651124

  9. Aerobic Thermophilic Composting of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    D V Wadkar

    2013-03-01

    Full Text Available Composting is a natural process that turns organic material into a dark rich substance called compost. Aerobic Composting is the creation of compost that depends on bacteria that thrive in an oxygen rich environment. Aerobic bacteria manage the chemical process by converting the inputs (i.e. air, water and carbon and nitrogen rich materials into heat, carbon dioxide and ammonium. The ammonium is further converted by bacteria into plant nourishing nitrites and nitrates through the process of nitrification. Thermophilic Composting is breaking down biological waste with thermophilic (heat loving bacteria. A cylindrical reactor was made. Organic wasteincluded dry vegetable waste collected from MSW ramp, Koregaon park, Pune. The characteristics of compost like pH, moisture content, temperature, C/N ratio and volume reduction were studied for the period of maturation (42days. It can be concluded that the values are within the desired limits and compost is suitable for ornamental plants. The setup of reactor is affordable and thus the compost obtained is effective and economical.

  10. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.M.; Metselaar, K.I.; Boer, de P.; Roeselers, G.; Moezelaar, R.; Nierop Groot, M.N.; Montijn, R.C.; Abee, T.; Kort, R.

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon seque

  11. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.M.; Metselaar, K.I.; Boer, P. de; Roeselers, G.; Moezelaar, R.; Groot, M.N.; Montijn, R.C.; Abee, T.; Korta, R.

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon seque

  12. Aplicação conjunta de tratamento anaeróbio termofílico por lodo granular e de mediadores redox na remoção de cor de águas residuárias têxteis Applicability of both thermophilic treatment by anaerobic granular sludge and redox mediators on colour removal of textile wastewaters

    Directory of Open Access Journals (Sweden)

    André Bezerra dos Santos

    2005-09-01

    Full Text Available Investigou-se o efeito de diferentes mediadores redox na remoção de cor de corantes azo pelo uso de lodo granular anaeróbio sob condições mesofílicas (30ºC e termofílicas (55ºC. Adicionalmente, estudou-se em ambas temperaturas, o efeito de diferentes doadores de elétrons nos processos de descoloração. Comprovou-se em tais processos um impacto marcante da adição de concentrações catalíticas de mediadores redox, aumentando a cinética da reação em até 1 ordem de magnitude. Comparado com tratamento mesofílico, remoções de cor sob condições termofílicas foram extremamente aceleradas, além de o impacto dos mediadores redox ser consideravelmente diminuído à 55ºC. Por exemplo, em experimento de fluxo contínuo, eficiências de remoção em torno de 95% e 56% foram obtidas à 55ºC e 30ºC, respectivamente, na ausência de qualquer mediador redox. Hidrogênio se mostrou extremamente efetivo como doador de elétrons para o processo de descoloração redutiva de corantes azo quando comparado com glicose, formiato e acetato. Os resultados obtidos nesta investigação trazem boas perspectivas para o uso conjunto de reatores anaeróbios sob condições termofílicas e de mediadores redox no pré-tratamento das águas residuárias de indústrias têxteis.The use of different redox mediators on colour removal of azo dyes by anaerobic granular sludge was investigated under mesophilic (30ºC and thermophilic (55ºC conditions. Additionally, the use of different electron donors on the reductive decolourisation was studied in both temperatures. The addition of catalytic concentrations of redox mediators had an evident impact on the decolourisation process, enhancing the rates up to one order of magnitude. Compared to mesophilic conditions, colour removal under thermophilic conditions was extremely accelerated, and the impact of redox mediators on the decolourisation rates was considerably decreased at 55ºC. For instance, in a

  13. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    Science.gov (United States)

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  14. Biodegradation of poly(lactic acid), poly(hydroxybutyrate-co-hydroxyvalerate), poly(butylene succinate) and poly(butylene adipate-co-terephthalate) under anaerobic and oxygen limited thermophilic conditions

    OpenAIRE

    Jutakan Boonmee; Charnwit Kositanont; Thanawadee Leejarkpai

    2016-01-01

    In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid) (PLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), poly(butylene succinate) (PBS), and poly(butylene adipate-co-terephthalate) (PBAT) were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of b...

  15. Biodegradation of poly(lactic acid, poly(hydroxybutyrate-co-hydroxyvalerate, poly(butylene succinate and poly(butylene adipate-co-terephthalate under anaerobic and oxygen limited thermophilic conditions

    Directory of Open Access Journals (Sweden)

    Jutakan Boonmee

    2016-01-01

    Full Text Available In order to study the biodegradation behavior of biodegradable plastics in landfill conditions, four types of biodegradable plastics including poly(lactic acid (PLA, poly(hydroxybutyrate-co-hydroxyvalerate (PHBV, poly(butylene succinate (PBS, and poly(butylene adipate-co-terephthalate (PBAT were tested by burying in sludge mixed soil medium under anaerobic and oxygen limited conditions. The experiments were operated at 52 ± 2ºC in dark conditions according to ISO15985. The degree of biodegradation after 75 days was investigated by weight loss determination, visual examination, and surface appearance by scanning electronic microscopy (SEM. Under both anaerobic and oxygen limited conditions, the complete degradation (100% weight loss was found only in PHBV after 75 days. The plastic degradations were ranked in the order of PHBV> PLA> PBS> PBAT. The percentage of weight losses were significantly different at p ≤ 0.05. However, for all studied plastics, the degradation under anaerobic and oxygen limited conditions did not significantly different at 95% confidence.

  16. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    Science.gov (United States)

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  17. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.

    Science.gov (United States)

    Baesman, Shaun M; Bullen, Thomas D; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S; Beveridge, Terry J; Oremland, Ronald S

    2007-04-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  18. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  19. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.

    Science.gov (United States)

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  20. Biological hydrogen formation by thermophilic bacteria

    NARCIS (Netherlands)

    Bielen, A.A.M.

    2014-01-01

      Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production process,

  1. Biological hydrogen formation by thermophilic bacteria

    OpenAIRE

    Bielen, A.A.M.

    2014-01-01

      Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production process, known as dark-fermentation, fermentative microorganisms are able to generate H2 from renewable resources like carbohydrate-rich plant material or industrial waste streams. Because of their favourable biomass degrading capabilities...

  2. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium

    OpenAIRE

    Plugge, C. M.; Balk, M.; Stams, A.J.M.

    2002-01-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with Methanobacterium thermoautotrophicum Z245. The axenic culture was obtained by using pyruvate as the sole source of carbon and energy. The cells were straight rods with pointed ends and became lens-shaped ...

  3. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  4. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. PMID:27485281

  5. Molecular phylogenetical studies of the thermophilic spore-forming desulfotomaculum isolated from oil-field

    Institute of Scientific and Technical Information of China (English)

    Chen Wu; Li Chunyan; Xiang Fu; Yu Longjiang

    2005-01-01

    A novel thermophilic and heterotrophic sulfate-reducing bacteria, strain CW-03, was isolated from crude oil well whose depth was 3.2 kilometer. The bacterium was strictly anaerobic; it does not endure acid and itsmaximum surviving temperature was 70℃. Many short chain organic compounds can be utilized as electron donors, which were acetate, formate, lactate, propionate, pyruvate, butyrate, succinate, malate, fumarate,valerate, caproate, heptanoate, octanoate, decanoate, tridecanoate, pentadecanoate, palmitate, heptadecanoate or ethanol, while sulfate and sulfite were used as electron acceptors. The following substrates were not utilized: benzoate undecanoate, dodecanoate, tetradecane, propanol, butanol, H2+CO2 (80/20%; v/v) and acetate (1mM)+ H2. When lactate was used as electron donors, sulfite and thiosulfate, but not sulfer and nitrate, can be used as electron acceptors. Strain CW-03 was motile, curved rod, Gram-positive, pole flagellum and spore-forming. On the basis of 16S rRNA sequence alignment (accession numbers: AY703032), CW-03 should be included in the genus Desulfotomaculum with BIAST analysis on line. However, some of its physiology and multiple sequence alignments were different from other members of this genus. Therefore, CW-03 should be recognized as a new species, for which we propose the name Desulfotomaculum chinamiddle (Bacteria, Firmicutes, Clostridia, Clostridiales, Peptococcaceae).

  6. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (538C......) and mesophilic (388C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg- VS/(m3 day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (538C) while 270 L/kg-VS was obtained under mesophilic conditions (388C). For loading rates higher than 5 kg-VS/(m3 day) the methane yields...... were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VSdiss) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content...

  7. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  8. Metabolic characteristics of anaerobic ammonium oxidizing bacteria with organic matters%有机物作用的厌氧氨氧化菌代谢特性研究进展

    Institute of Scientific and Technical Information of China (English)

    孙佳晶; 张蕾; 张超; 陈晓波

    2012-01-01

    厌氧氨氧化(Anammox)工艺是近年来废水生物脱氮领域的新技术,非常适合于处理含有机物的废水。本文介绍了厌氧氨氧化工艺的特点,详细介绍了有机物对厌氧氨氧化菌的抑制和促进机制。有机物对厌氧氨氧化菌的抑制主要来自两个方面:一是有机物促进异养菌反硝化菌的大量繁殖形成基质竞争抑制;二是废水中的醇类、抗生素等有毒有害有机物会对厌氧氨氧化菌产生毒性抑制。有机物对厌氧氨氧化菌代谢的促进作用也有两种:一是特定的有机物可作为能源被厌氧氨氧化菌利用,促进厌氧氨氧化菌的代谢;二是通过控制废水处理系统中的碳氮比,使厌氧氨氧化菌和反硝化菌在废水处理系统中协同互生。最后指出开发有毒有机废水预处理、驯化厌氧氨氧化污泥、菌种流加等是解决问题的途径。%Anaerobic ammonium oxidation(Anammox),a new biological nitrogen removal process in wastewater treatment,is very suitable for the treatment of wastewater containing organic matters.This paper introduces the characteristics of anaerobic ammonium oxidation process,especially the inhibitive and stimulative mechanisms of organic matters to the bacteria.Two mechanisms are attributed to organic matters induced inhibition,one is heterotrophic denitrifying bacteria promoted by organic matters can compete with anammox bacteria for substrates;the other one is that alcohols,antibiotics and other toxic organics in wastewater leads to toxic inhibition to anaerobic ammonium oxidation bacteria.The stimulation of organic matters to anaerobic ammonium oxidation bacteria also can be explained in two aspects:one is that certain organic matters can be used by anaerobic ammonium oxidation bacteria as energy source,and thus enhance their metabolism;the other is anaerobic ammonium oxidation bacteria and denitrifying bacteria can form symbiote with proper C:N ratio.The pretreatment of

  9. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total...

  10. Techniques for anaerobic susceptibility testing.

    Science.gov (United States)

    Thornsberry, C

    1977-03-01

    Minimal inhibitory concentrations (MICs) of antimicrobial agents for anaerobic bacteria can be determined by agar dilution and broth dilution (including microdilution) techniques. If MICs are not determined routinely, the disk broth or category methods are recommended for routine use. The Bauer-Kirby disk diffusion method and its interpretative standards should not be used for anaerobes. PMID:850089

  11. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  12. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment

    Science.gov (United States)

    Caspers, Martien P. M.; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  13. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  14. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  15. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio.

    Science.gov (United States)

    Palaniappan, Krishna; Meier-Kolthoff, Jan P; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883(T), the type strain of T. acidaminovorans, stain Z-9701(T) is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501645

  16. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia. PMID:26490622

  17. Prevalence of Thermophiles and Mesophiles in Raw and UHT Milk

    OpenAIRE

    Abdul-Hadi A. Abd; Nadia I. AbdulA’Al; Aysar S. Abood

    2014-01-01

    The objective of the study was to evaluate the contamination level of cow’s raw milk and different brands of UHT milk in Baghdad local market for thermophilic and mesophilic bacteria. The numbers of colony counts in milk samples were determined by the culture method according to bacteriological standards methods. Investigations were carried out for seven weeks in college of veterinary dairy farms from March 2013 to May 2013. Six (29%) positive samples out of 21 samples were tested for thermop...

  18. Anaerobic, solvent-producing bacteria

    OpenAIRE

    Montoya Castaño, Dolly

    2005-01-01

    This work’s main goal was to study strategies for the molecular and enzymatic characterisation of new solvent-producing mesophylic Clostridium isolates from Colombia and ascertain their solvent producing biotechnological potential by using a cheap agro-industrial waste as carbon source. Molecular characterisation of the native strains using 16S rRNA, PFGE and DNA- DNA hybridisation shown that the native strains are closely related to each other and not belong to Clostridium butyricum and sugg...

  19. Reductive dehalogenation by anaerobic bacteria.

    OpenAIRE

    Holliger, C.

    1992-01-01

    The understanding of the fate of synthetic halogenated hydrocarbons became a matter of major interest over the last two decades. Halogenated compounds may threaten ecosystems due to their biocide properties. The degradability of halocompounds determines whether they will accumulate in a certain environment or whether they will be transformed to harmless products. A whole range of anthropogenic organohalogen compounds was detected in soils, sediments, surface and subsurface waters, and the atm...

  20. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  1. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    Science.gov (United States)

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  2. Inhibitory effects on anaerobic digestion of swine manure

    International Nuclear Information System (INIS)

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  3. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    Science.gov (United States)

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  4. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan;

    2005-01-01

    In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated....... The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic...... matter and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same...

  5. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  6. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    Science.gov (United States)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  7. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor

    NARCIS (Netherlands)

    Sipma, J.; Osuna, M.B.; Lettinga, G.; Stams, A.J.M.; Lens, P.N.L.

    2007-01-01

    Thermophilic hydrogenogenic carbon monoxide (CO) converting microorganisms present in anaerobic sludge play a crucial role in the application of CO as electron donor for sulfate reduction. Hydrogenogenic CO conversion was investigated in a gas lift reactor (55 °C) at different hydraulic retention ti

  8. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities

    DEFF Research Database (Denmark)

    Symsaris, Evangelos C.; Fotidis, Ioannis; Stasinakis, Athanasios S.;

    2015-01-01

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion...

  9. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  10. The isolation and characterization of new C. thermocellum strains and the evaluation of multiple anaerobic digestion systems

    Science.gov (United States)

    Lv, Wen

    The overall objective of my research was to improve the efficiencies of bioconversions that produce renewable energy from lignocellulosic biomass. To this end, my studies addressed issues important to two promising strategies: consolidated bioprocessing (CBP) and anaerobic digestion (AD). CBP achieves saccharolytic enzyme production, hydrolysis, and fermentation in a single step and is considered to be the most cost-effective model. Anaerobic bacteria that can be used in CBP are highly desirable. To that end, two thermophilic and cellulolytic bacterial strains were isolated and characterized (Chapter 3). Based on 16S rRNA gene sequence analysis, both strains CS7 and CS8 are closely related to Clostridium thermocellum ATCC 27405. However, they had significantly higher specific cellulase activities and ethanol/acetate ratios than C. thermocellum ATCC 27405. As a result, CS7 and CS8 are two new highly cellulolytic and ethanologenic C. thermocellum strains, with application potentials in research and development of CBP. As some of the most promising AD processes, two temperature-phased AD (TPAD) systems, in comparison with a thermophilic single-stage AD (TSAD) system and a mesophilic two-stage AD (MTAD) system, were studied in treating high-strength dairy cattle manure. The TPAD systems, with the thermophilic digesters acidified (AT-TPAD, Chapter 4) or operated at neutral pH (NT-TPAD, Chapter 5), were optimized at the thermophilic temperature of 50°C and a volume ratio between the thermophilic and the mesophilic digesters of 1:2. Despite similar methane productions, the NT-TPAD system achieved significantly higher volatile solid (VS) removal than the AT-TPAD system and needed no external pH adjustments (Chapter 6). At the same overall OLR, the TSAD system achieved the highest performance, followed by the NT-TPAD and the MTAD systems (Chapter 7). Each digester harbored distinct yet dynamic microbial populations, some of which were significantly correlated or associated

  11. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  12. Enzymatic Screening and Molecular Characterization of Thermophilic Bacterial Strains Isolated from Hotspring of Tatopani, Bhurung, Nepal

    Directory of Open Access Journals (Sweden)

    Hriush Adhikari

    2015-09-01

    Full Text Available Background and Aim: In Nepal not much of study of Thermophilic area and Thermophiles have been done. Thermophilic bacteria are less studied but are important group of microorganisms due to their ability to produce industrially important enzymes. Methods: In this study, thermophilic bacteria were isolated from hot spring of Bhurung, Nepal. Wide range of bacteria that could grow at high temperatures and tolerate extreme temperature were characterized by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. The isolates were screened for production of extracellular enzymes like protease, amylase, lipase, cellulase, caseinase, pectinase and xylanase activity. Phylogenetic tree construction and G+C content evaluation of the isolate was also studied. Results: 15 isolates with ability to tolerate high temperatures were identified as Bacillus sp. by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. BLAST search analysis of the sequence was performed and result showed maximum identity (99% similarity with Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Isolated strains exhibited considerable amount of extracellular exozymes activity. Phylogenetic analysis of the isolates revealed the relatedness among the species. The G+C content of each species was also evaluated and was found to be in range of 54.87 to 55.54%. Conclusion: The study of isolates confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of various thermostable exozymes which can be exploited for pharmaceutical and industrials applications. Much detailed study of the isolates can

  13. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  14. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  15. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    Science.gov (United States)

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. PMID:26140749

  16. Effect of ammonia on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N/L) and...... free ammonia levels (Mesophilic: 3.31, 38.2, 63.68 and 89.15 g NH3-N/L. Thermophilic: 8.48, 97.82,163.03 and 228.24 g NH3-N/L)(Westerholm, et al., 2011; Satoshi, et al., 2000; Jacob, et al., 1997). The results indicated that both T. acetatoxydans and T. phaeum were more sensitive to high ammonia levels...

  17. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  18. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel

    2010-01-01

    A thermophilic anaerobic bacterium was isolated from a sublacustrine hydrothermal vent site in Lake Tanganyika (East Africa) with recorded fluid temperatures of 66–103 °C and pH values of 7.7–8.9. The bacterium (strain TR10) was rod-shaped, about 1 by 5 μm in size, and readily formed distal...... organism to exploit the temporarily fluctuating growth conditions in the hydrothermal vent environments of Lake Tanganyika...

  19. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  20. Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Paropkari, A.L.; Fernandes, C.E.G.; LokaBharathi, P.A.; KrishnaKumari, L.; Fernando, V.; Nampoothiri, G.

    show that OMZ from these ‘oligotrophic’ regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC sub (anaero)) and other...

  1. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    Science.gov (United States)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  2. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.

    Science.gov (United States)

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L

    2013-07-01

    Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

  3. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    OpenAIRE

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  4. In vitro anaerobic incubation of Salmonella enterica serotype Typhimurium and laying hen cecal bacteria in poultry feed substrates and a fructooligosaccharide prebiotic.

    Science.gov (United States)

    Donalson, L M; Kim, Woo-Kyun; Chalova, V I; Herrera, P; Woodward, C L; McReynolds, J L; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-01-01

    The objective of this study was to investigate the effect of combining a prebiotic with poultry feeds on the growth of Salmonella enterica serotype Typhimurium (ST) in an in vitro cecal fermentation system. Cecal contents from three laying hens were pooled and diluted to a 1:3000 concentration in an anaerobic dilution solution. The cecal dilution was added to sterile test tubes filled with alfalfa and layer ration with and without fructooligosaccharide (FOS). Two controls containing cecal dilutions and anaerobic dilution solution were used. The samples were processed in the anaerobic hood and incubated at 37 degrees C. Samples were inoculated with Salmonella at 0 and 24h after in vitro cecal fermentation and plated at 0 and 24h after inoculation with ST. Plates were incubated for 24h and colony forming units (CFU) enumerated. The samples immediately inoculated with ST without prior cecal fermentation did not significantly lower ST counts 24h later. However, samples pre-incubated for 24h with cecal microflora prior to ST inoculation exhibited reduced ST CFU by approximately 2 logarithms, with the most dramatic decreases seen in alfalfa and layer ration combined with FOS. The addition of FOS to feed substrate diets in combination with cecal contents acted in a synergistic manner to decrease ST growth only after ST was introduced to 24h cecal incubations. PMID:17588782

  5. Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, Marie

    2015-01-01

    Roč. 111, Jan (2015), s. 176-184. ISSN 0141-3910 Institutional support: RVO:61388963 Keywords : poly(ethylene terephthalate) * copolymers * sludge * biodegradation * hydrolysis * waste Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.163, year: 2014

  6. Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report

    Science.gov (United States)

    Zinder, Stephen H.

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

  7. Solar Thermophilic Anaerobic Reactor (STAR) for Renewable Energy Production

    NARCIS (Netherlands)

    Mashad, El H.

    2003-01-01

    Liquid and solid cattle manures are major waste streams inEgypt. The main objective of

  8. Parameter identification of thermophilic anaerobic degradation of valerate

    DEFF Research Database (Denmark)

    Flotats, X; Ahring, Birgitte Kiær; Angelidaki, Irini

    Mathematical model of the decomposition of valerate presents 3 unknown kinetic parameters, 2 unknown stoichiometric coefficients and 3 unknown initial concentrations for biomass. Applying a structural identifiability study, it is concluded that it is necessary to perform simultaneous batch experi...

  9. Parameter identification of thermophilic anaerobic degradation of valerate

    DEFF Research Database (Denmark)

    Flotats, X.; Ahring, Birgitte Kiær; Angelidaki, Irini

    The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform si...

  10. Parameter identification of thermophilic anaerobic degradation of valerate

    DEFF Research Database (Denmark)

    Flotats, X; Ahring, Birgitte Kiær; Angelidaki, Irini

    2002-01-01

    Mathematical model of the decomposition of valerate presents 3 unknown kinetic parameters, 2 unknown stoichiometric coefficients and 3 unknown initial concentrations for biomass. Applying a structural identifiability study, it is concluded that it is necessary to perform simultaneous batch experi...

  11. Thermophilic anaerobic acetate-utilizing methanogens and their metabolism

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana

    , utilizing the substrates acetate, methanol and methylamines but not hydrogen/carbon dioxide. Strain Methanosarcina sp. SO-2P was able to grow mixotrophically on methanol and hydrogen/carbon dioxide with methane formation from hydrogen and carbon dioxide occurring after methanol depletion. All six...

  12. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    Directory of Open Access Journals (Sweden)

    Kathleen D Cusick

    Full Text Available The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1 aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2 anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3 aerobic growth with different heating methods: gyrA, gap, gyrB; (4 all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute

  13. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  14. Anaerobic Infections in Children with Neurological Impairments.

    Science.gov (United States)

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  15. Production, purification and characterization of xylanase using alkalo-thermophilic Bacillus halodurans KR-1

    OpenAIRE

    Krityanand Kumar Mahatman; Neha Garg; Ranjeeta Chauhan; Anil Kumar

    2010-01-01

    Xylanase (EC. 3.2.1.8) has been isolated from an alkalo-thermophilic bacteria, Bacillus halodurans strain KR-1 isolated from the soil near river bed at Indore. The bacteria secreted xylanase in the growth medium in the presence of xylan. The production of the enzyme was induced in the presence of glucose, mannose, lactose and maltose whereas presence of starch, cellulose and sucrose retarded in enzyme production. The presence of casein, peptone, sodium nitrate and potassium nitrate as nitroge...

  16. Report: antibiotic production by thermophilic Bacillus specie SAT-4.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmad, Safia; Hameed, Abdul

    2009-07-01

    Production of antimicrobial compounds seems to be a general phenomenon for most bacteria. The prevalence of antimicrobial resistance among key microbial pathogens is increasing at an alarming rate worldwide. Current solutions involve development of a more rationale approach to antibiotic use and discover of new antimicrobials. Bacillus species produce a large number of biological compounds active against bacteria, fungi, protozoa and viruses. The process of production usually involves screening of wide range of microorganisms, testing and modification. Production is carried out using fermentation. Thermophilic spore-forming, gram positive, motile rod bacterial strains were isolated from the Thar Desserts, Sindh Province, Pakistan. These strains were screened and checked for antibacterial activity. The best activity was observed by SAT4 against Micrococcus luteus, Staphylococcus aureus and Pseudomonas aeroginosa. The activity was only observed against gram positive bacteria and no activity was seen against Pseudomonas aeroginosa. Thermophilic Bacillus specie SAT4 was found to be active in the fermentation process to produce the antimicrobial agents. Further optimizations of different conditions (time of incubation, media, pH, glucose concentrations, nitrogen concentrations, and temperature) for antimicrobial production by the selected bacterial strain was performed. Agar diffusion assay was performed to evaluate the antibacterial activity. Optimum conditions for the production of antimicrobials by selected isolate were observed to be 48 hour, pH 5, temperature 55 degrees C, 2% glucose and 1.5% nitrogen concentration. This newly isolated bacterial strain has great potential for antimicrobial production at industrial scale. PMID:19553186

  17. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  18. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  19. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  20. Evaluation of surface contamination of bacteria in various dental clinics with special reference to obligate and facultative anaerobic spore bearing bacilli

    Directory of Open Access Journals (Sweden)

    Kannan I, Jessica Yolanda Jeevitha, Sambandam Cecilia, Jayalakshmi M, Premavathy RK and Shantha S

    2014-07-01

    Full Text Available Introduction: The occupational health and safety is an important prerequisite in dental clinic setup for well being of both the doctor and patient. Both the patient and dentist are always at the risk of infections. Aim and objectives: There is no proper literature on the survey of bacterial spores, especially of Clostridium species in dental clinics. Hence an attempt has been made in the present pilot study to evaluate the surface contamination with special reference to bacterial spores. Materials and methods: Various dental clinics from Chennai city, India were selected for the present study. Samples were collected from two clinics each from endodontic, prosthodontic, orthodontic, and periodontic. In each clinic important places were selected for sampling. The samples were collected in the form of swabs. The swabs thus obtained were inoculated into Robertson Cooked Meat Medium and was incubated in anaerobic condition at 370C for 7 days. Each day the tubes were examined for turbidity and colour change and were noted. At the end of 7th day the smear was prepared from each tube and gram staining was performed. The gram stained slides were examined microscopically for the presence of spore bearing bacilli especially with special reference to terminal spore bearing bacilli. Results and conclusion: From the present study it is clear that the dental clinics invariably posses a lot of aerobic and anaerobic spores irrespective of stringent disinfection procedures. Hence it is mandatory for the dental clinics to undergo periodical microbiological surveillance and to take proper steps in the control of bacterial spores.

  1. Cultivable Anaerobic Microbiota of Infected Root Canals

    Directory of Open Access Journals (Sweden)

    Takuichi Sato

    2012-01-01

    Full Text Available Objective. Periapical periodontitis is an infectious and inflammatory disease of the periapical tissues caused by oral bacteria invading the root canal. In the present study, profiling of the microbiota in infected root canals was performed using anaerobic culture and molecular biological techniques for bacterial identification. Methods. Informed consent was obtained from all subjects (age ranges, 34–71 years. Nine infected root canals with periapical lesions from 7 subjects were included. Samples from infected root canals were collected, followed by anaerobic culture on CDC blood agar plates. After 7 days, colony forming units (CFU were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Results. The mean bacterial count (CFU in root canals was (0.5±1.1×106 (range 8.0×101–3.1×106, and anaerobic bacteria were predominant (89.8%. The predominant isolates were Olsenella (25.4%, Mogibacterium (17.7%, Pseudoramibacter (17.7%, Propionibacterium (11.9% and Parvimonas (5.9%. Conclusion. The combination of anaerobic culture and molecular biological techniques makes it possible to analyze rapidly the microbiota in infected root canals. The overwhelming majority of the isolates from infected root canals were found to be anaerobic bacteria, suggesting that the environment in root canals is anaerobic and therefore support the growth of anaerobes.

  2. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  3. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  4. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.

    Science.gov (United States)

    Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2013-09-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  5. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

    Science.gov (United States)

    Fu, Shan-Fei; He, Shuai; Shi, Xiao-Shuang; Katukuri, Naveen Reddy; Dai, Meng; Guo, Rong-Bo

    2015-12-01

    Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw. PMID:26433149

  6. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  7. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  8. 血清IgG抗体含量与口腔厌氧菌致牙髓感染的关系%Relationship between contents of serum IgG antibody and pulp infections caused by oral anaerobic bacteria

    Institute of Scientific and Technical Information of China (English)

    吕朋君; 马珅; 刘晓斌

    2015-01-01

    OBJECTIVE To observe the relationship between the level of serum IgG antibody and the pulp infections caused by oral anaerobic bacteria by referring to the characteristics of specific response between antigen and anti‐body so as to reduce the infection rate .METHODS The patients with pulp diseases who were treated in the hospi‐tal from Jan 2013 to Jan 2014 were enrolled in the study and divided into the group B ,C ,and D ,with 10 cases in each ;meanwhile 10 healthy subjects were chosen as the group A .The IgG antibody contents in the 10 internation‐al standard anaerobic bacteria strains isolated from the serum of the patients with infections and the healthy sub‐jects were determined by using ELISA method ,the relationship between the pulp infections and the oral anaerobic bacteria was specifically analyzed ,and the statistical analysis of data was performed with the use of SPSS 17 .0 software .RESULTS The average level of serum antibody in Prevotella intermedia was significantly lower in the group A than in the group B ,C ,and D (P<0 .05) .As compared with the group A ,the OD values of other three groups were more than 2 .1 ,and all were positive .There was significant difference in the average level of serum antibody in Porphyromonas gingivalis among the healthy subjects ,the patients with pulp infections ,and the pa‐tients with pulp‐periodontal diseases (P<0 .05) ,as compared with the patients with periodontal disease ,howev‐er ,the difference was not significant .There was no significant difference in the OD value of serum antibody in the anaerobic bacteria among the four groups .CONCLUSION The ELISA ,as is applied for the analysis of the anaero‐bic bacteria causing the pulp infections ,may contribute to considerably higher isolation rate and accuracy than the traditional microbial culture ,and it can be used as a conventional method for the detection of pathogenic bacteria causing pulp infections .%目的:利用抗原与抗体特异反应的

  9. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge

    OpenAIRE

    Nakashimada, Yutaka; Ohshima, Yasutaka; Minami, Hisao; Yabu, Hironori; Namba,Yuzaburo; Nishio, Naomichi

    2008-01-01

    In repeated batch-wise thermophilic anaerobic digestion of dehydrated waste-activated sludge with 80% (w/w) water content (DWAS), although methane production reached 30 % of total organic carbon in DWAS in the first run of 15d, it gradually decreased and finally stopped in the subsequent runs together with an increase in ammonia concentration. When the loading of DWAS on anaerobic digestion was investigated, methane production at 30d significantly decreased with the increase in the amount of ...

  10. Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst.

    Science.gov (United States)

    Bosma, Elleke F; van de Weijer, Antonius H P; Daas, Martinus J A; van der Oost, John; de Vos, Willem M; van Kranenburg, Richard

    2015-03-01

    Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216(T) and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 10(3) colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals. PMID:25556192

  11. Anaerobic Codigestion of Sludge: Addition of Butcher's Fat Waste as a Cosubstrate for Increasing Biogas Production.

    Science.gov (United States)

    Martínez, E J; Gil, M V; Fernandez, C; Rosas, J G; Gómez, X

    2016-01-01

    Fat waste discarded from butcheries was used as a cosubstrate in the anaerobic codigestion of sewage sludge (SS). The process was evaluated under mesophilic and thermophilic conditions. The codigestion was successfully attained despite some inhibitory stages initially present that had their origin in the accumulation of volatile fatty acids (VFA) and adsorption of long-chain fatty acids (LCFA). The addition of a fat waste improved digestion stability and increased biogas yields thanks to the higher organic loading rate (OLR) applied to the reactors. However, thermophilic digestion was characterized by an effluent of poor quality and high VFA content. Results from spectroscopic analysis suggested the adsorption of lipid components onto the anaerobic biomass, thus disturbing the complete degradation of substrate during the treatment. The formation of fatty aggregates in the thermophilic reactor prevented process failure by avoiding the exposure of biomass to the toxic effect of high LCFA concentrations. PMID:27071074

  12. Influence of mode of storage and drying of fodder on thermophilic actinomycete aerocontamination in dairy farms of the Doubs region of France.

    OpenAIRE

    Dalphin, J.C.; Pernet, D; Reboux, G; Martinez, J.; Dubiez, A.; Barale, T; Depierre, A

    1991-01-01

    Airborne contamination by thermophilic actinomycetes, micromycetes and Gram negative bacteria was determined on 34 dairy farms and related to fodder drying and storage methods. Eighteen farms had a barn drying system, eight with additional heating; the remaining 16 had traditional fodder storage methods. Three air samples were obtained for each farm with a six stage Andersen sampler. The thermophilic actinomycetes were identified as Streptomyces and the dominant micromycetes as Aspergillus sp...

  13. Investigation of Poultry Waste for Anaerobic Digestion: A Case Study

    Science.gov (United States)

    Salam, Christopher R.

    Anaerobic Digestion (AD) is a biological conversion technology which is being used to produce bioenergy all over the world. This energy is created from biological feedstocks, and can often use waste products from various food and agricultural processors. Biogas from AD can be used as a fuel for heating or for co-generation of electricity and heat and is a renewable substitute to using fossil fuels. Nutrient recycling and waste reduction are additional benefits, creating a final product that can be used as a fertilizer in addition to energy benefits. This project was conducted to investigate the viability of three turkey production wastes as AD feedstock: two turkey litters and a material separated from the turkey processing wastewater using dissolved air flotation (DAF) process. The DAF waste contained greases, oils and other non-commodity portions of the turkey. Using a variety of different process methods, types of bacteria, loading rates and food-to-microorganism ratios, optimal loading rates for the digestion of these three materials were obtained. In addition, the co-digestion of these materials revealed additional energy benefits. In this study, batch digestion tests were carried out to treat these three feedstocks, using mesophilic and thermophilic bacteria, using loading rates of 3 and 6 gVS/L They were tested separately and also as a mixture for co-digestion. The batch reactor used in this study had total and working volumes of 1130 mL and 500 mL, respectively. The initial organic loading was set to be 3 gVS/L, and the food to microorganism ratio was either 0.6 or 1.0 for different treatments based on the characteristics of each material. Only thermophilic (50 +/- 2ºC) temperatures were tested for the litter and DAF wastes in continuous digestion, but mesophilic and thermophilic batch digestion experiments were conducted. The optimum digestion time for all experiments was 14 days. The biogas yields of top litter, mixed litter, and DAF waste under

  14. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  15. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  16. Thermophilic biohydrogen production: how far are we?

    OpenAIRE

    Pawar, Sudhanshu S; van Niel, Ed W. J.

    2013-01-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen producti...

  17. Consolidated bioprocessing method using thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  18. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  19. THERMOPHILE ENDOSPORES HAVE RESPONSIVE EXOSPORIUM FOR ATTACHMENT

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.T.; WARREN,J.; SABATINI,R.

    1999-08-01

    Recently studies examining the colonization of Clostridial pathogens on agar and human tissue culture cells, demonstrated that (C. sporogenes ATCC 3584, C. difficile ATCC 43594 [patient isolate], C. difficile ATCC 9689 [non-clinical], C. clostridioforme [patient isolate]) bacterial spores (endospores) of the genus Clostridia have an outer membrane that becomes responsive at activation and exhibits extensions of the exosporial membrane that facilitate and maintain spore attachment to a nutritive substrate during germination and initial outgrowth of the newly developed bacterial cell. Therefore this attachment phenomenon plays an important role in insuring bacterial colonization of a surface and the initial stages of the infective process. To see if other non-clinical members of this genus also have this ability to attach to a substrate or food-source during spore germination, and how this attachment process in environmental thermophiles compares to the clinical paradigm (in relation to time sequence, exosporial membrane structure, type of attachment structures, composition of the membrane etc...), sediment samples were collected in sterile transport containers at 4 geothermal sites at Yellowstone National Park in Wyoming. Because spore forming bacteria will produce spores when conditions are unfavorable for growth, the samples were sealed and stored at 4 C. After 8 months the samples were screened for the presence of spores by light microscope examination using malachite green/safranin, and traditional endospores were identified in significant quantities from the Terrace Spring site (a 46 C lake with bacterial mats and a rapidly moving run-off channel leading to a traditional hot spring). The highest spore population was found in the top sediment and benthic water of the run-off channel, pH 8.1.

  20. Cloning, Expression and Characterization of a Novel Thermophilic Polygalacturonase from Caldicellulosiruptor bescii DSM 6725

    OpenAIRE

    Yanyan Chen; Dejun Sun; Yulai Zhou; Liping Liu; Weiwei Han; Baisong Zheng; Zhi Wang; Zuoming Zhang

    2014-01-01

    We cloned the gene ACM61449 from anaerobic, thermophilic Caldicellulosiruptor bescii, and expressed it in Escherichia coli origami (DE3). After purification through thermal treatment and Ni-NTA agarose column extraction, we characterized the properties of the recombinant protein (CbPelA). The optimal temperature and pH of the protein were 72 °C and 5.2, respectively. CbPelA demonstrated high thermal-stability, with a half-life of 14 h at 70 °C. CbPelA also showed very high activity for polyga...