WorldWideScience

Sample records for anaerobic sulfate-reducing bacteria

  1. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  2. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  3. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  4. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  5. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Drazenka; Jobelius, Carsten; Meckenstock, Rainer U

    2009-06-01

    Despite its high chemical stability, benzene is known to be biodegradable with various electron acceptors under anaerobic conditions. However, our understanding of the initial activation reaction and the responsible prokaryotes is limited. In the present study, we enriched a bacterial culture that oxidizes benzene to carbon dioxide under sulfate-reducing conditions. Community analysis using terminal restriction fragment length polymorphism, 16S rRNA gene sequencing and FISH revealed 95% dominance of one phylotype that is affiliated to the Gram-positive bacterial genus Pelotomaculum showing that sulfate-reducing Gram-positive bacteria are involved in anaerobic benzene degradation. In order to get indications of the initial activation mechanism, we tested the substrate utilization, performed cometabolism tests and screened for putative metabolites. Phenol, toluene, and benzoate could not be utilized as alternative carbon sources by the benzene-degrading culture. Cometabolic degradation experiments resulted in retarded rates of benzene degradation in the presence of phenol whereas toluene had no effect on benzene metabolism. Phenol, 2-hydroxybenzoate, 4-hydroxybenzoate, and benzoate were identified as putative metabolites in the enrichment culture. However, hydroxylated aromatics were shown to be formed abiotically. Thus, the finding of benzoate as an intermediate compound supports a direct carboxylation of benzene as the initial activation mechanism but additional reactions leading to its formation cannot be excluded definitely.

  6. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  7. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  8. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor.

    Science.gov (United States)

    Timmers, Peer H A; Gieteling, Jarno; Widjaja-Greefkes, H C Aura; Plugge, Caroline M; Stams, Alfons J M; Lens, Piet N L; Meulepas, Roel J W

    2015-02-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure.

  9. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  10. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  11. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  12. Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion.

    Science.gov (United States)

    Dai, Xiaohu; Hu, Chongliang; Zhang, Dong; Dai, Lingling; Duan, Nina

    2017-12-01

    A novel strategy for acclimation to ammonia stress was implemented by stimulating a high ammonia-ammonium-pH environment in a high-solid anaerobic digestion (AD) system in this study. Three semi-continuously stirred anaerobic reactors performed well over the whole study period under mesophilic conditions, especially in experimental group (R-2) when accommodated from acclimation period which the maximum total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) increased to 4921 and 2996mg/L, respectively. Moreover, when it accommodated the high ammonia-ammonium-pH system, the daily biogas production and methane content were similar to those in R-1 (the blank control to R-2), but the hydrogen sulfide (H 2 S) content lower than the blank control. Moreover, mechanistic studies showed that high ammonia stress enhanced the activity of coenzyme F 420 . The results of real-time fluorescent quantitative polymerase chain reaction (PCR) showed that ammonia stress decreased the abundance of sulfate-reducing bacteria and increased the abundance of methane-producing archaea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    Science.gov (United States)

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  14. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    Science.gov (United States)

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  15. Desulfurization of Mexican heavy oil by sulfate-reducing bacteria.

    Science.gov (United States)

    Aragon, Perla E; Romero, Jorge; Negrete, Pilar; Sharma, Virender K

    2005-01-01

    Twenty-five mixed cultures of sulfate reducing bacteria (SRB) were isolated from sediment and anaerobic digestors samples, collected at southeast Gulf of Mexico, Pacific Ocean, and wastewater treatment plant, Mexico. The isolated SRB mixed cultures were tested for desulfurization of Mexican heavy oil. Desulfurization activity of SRB was not affected by high level of vanadium in heavy oil. Sediment samples gave better sulfur removal performance than anaerobic digestors samples. The difference in removal efficiency of the two samples is possibly related to the different quantity of SRB strains causing degradation of organic sulfur in heavy oil.

  16. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  17. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  18. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  19. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio

    NARCIS (Netherlands)

    Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G.

    2008-01-01

    The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis.

  20. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis.

    LENUS (Irish Health Repository)

    Duffy, M

    2012-02-03

    PURPOSE: Ileal pouch-anal anastomosis remains the "gold standard" in surgical treatment of ulcerative colitis and familial adenomatous polyposis. Pouchitis occurs mainly in patients with a background of ulcerative colitis, although the reasons for this are unknown. The aim of this study was to characterize differences in pouch bacterial populations between ulcerative colitis and familial adenomatous pouches. METHODS: After ethical approval was obtained, fresh stool samples were collected from patients with ulcerative colitis pouches (n = 10), familial adenomatous polyposis (n = 7) pouches, and ulcerative colitis ileostomies (n = 8). Quantitative measurements of aerobic and anaerobic bacteria were performed. RESULTS: Sulfate-reducing bacteria were isolated from 80 percent (n = 8) of ulcerative colitis pouches. Sulfate-reducing bacteria were absent from familial adenomatous polyposis pouches and also from ulcerative colitis ileostomy effluent. Pouch Lactobacilli, Bifidobacterium, Bacteroides sp, and Clostridium perfringens counts were increased relative to ileostomy counts in patients with ulcerative colitis. Total pouch enterococci and coliform counts were also increased relative to ileostomy levels. There were no significant quantitative or qualitative differences between pouch types when these bacteria were evaluated. CONCLUSIONS: Sulfate-reducing bacteria are exclusive to patients with a background of ulcerative colitis. Not all ulcerative colitis pouches harbor sulfate-reducing bacteria because two ulcerative colitis pouches in this study were free of the latter. They are not present in familial adenomatous polyposis pouches or in ileostomy effluent collected from patients with ulcerative colitis. Total bacterial counts increase in ulcerative colitis pouches after stoma closure. Levels of Lactobacilli, Bifidobacterium, Bacteroides sp, Clostridium perfringens, enterococci, and coliforms were similar in both pouch groups. Because sulfate-reducing bacteria are

  1. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  2. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  3. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Harithsa, S.; Kerkar, S.; LokaBharathi, P.A.

    -sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl sub(2) and Pb(NO sub(3)) sub(2...

  4. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (

  5. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  6. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  7. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium.

  8. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  9. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  10. Degree of sulfate-reducing activities on COD removal in various reactor configurations in anaerobic glucose and acetate-fed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Erdirencelebi, Dilek [Environmental Engineering Department, Selcuk University (Turkey); Ozturk, Izzet; Ubay Cokgor, Emine [Environmental Engineering Department, Istanbul Technical University, Istanbul (Turkey); Ubay Tonuk, Gulseren [City and Regional Planing, Gazi University, Ankara (Turkey)

    2007-04-15

    Sulfate-reduction data from various anaerobic reactor configurations, e. g., upflow anaerobic sludge blanket reactor (UASBR), completely stirred tank reactor (CSTR), and batch reactor (BR) with synthetic wastewaters, having glucose and acetate as the substrates and different levels of sulfate, were evaluated to determine the level of sulfate-reducing activity by sulfate-reducing bacteria coupled to organic matter removal. Anaerobic reactors were observed for the degree of competition between sulfate-reducing sulfidogens and methane producing bacteria during the degradation of glucose and acetate. Low sulfate-reducing activity was obtained with a maximum of 20% of organic matter degradation with glucose-fed upflow anaerobic sludge bed reactors (UASBRs), while a minimum of 2% was observed with acetate-fed batch reactors. The highest sulfate removal performance (72-89%) was obtained from glucose fed-UASB reactors, with the best results observed with increasing COD/SO{sub 4} ratios. UASB reactors produced the highest level of sulfidogenic activity, with the highest sulfate removal and without a performance loss. Hence, this was shown to be the optimum reactor configuration. Dissolved sulfide produced as a result of sulfate reduction reached 325 mg/L and 390 mg/L in CST and UASB reactors, respectively, and these levels were tolerated. The sulfate removal rate was higher at lower COD/SO{sub 4} ratios, but the degree of sulfate removal improved with increasing COD/SO{sub 4} ratios. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  12. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  13. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia).

    Science.gov (United States)

    Zouch, Hana; Karray, Fatma; Armougom, Fabrice; Chifflet, Sandrine; Hirschler-Réa, Agnès; Kharrat, Hanen; Kamoun, Lotfi; Ben Hania, Wajdi; Ollivier, Bernard; Sayadi, Sami; Quéméneur, Marianne

    2017-01-01

    Anaerobic biotechnology using sulfate-reducing bacteria (SRB) is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG), an acidic (pH ~3) by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate) and sulfate sources (i.e., sodium sulfate or PG) as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia). Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria . When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures) was associated with an increase in the population of Firmicutes . These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  14. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Hana Zouch

    2017-08-01

    Full Text Available Anaerobic biotechnology using sulfate-reducing bacteria (SRB is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG, an acidic (pH ~3 by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate and sulfate sources (i.e., sodium sulfate or PG as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia. Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  15. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  16. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  17. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  18. Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments

    NARCIS (Netherlands)

    Sanchez-Andrea, I.; Stams, A.J.M.; Amils, R.; Sanz, J.L.

    2013-01-01

    Although some acidophilic and alkaliphilic species have been described recently, most of the known sulfate-reducing bacteria (SRB) grow optimally at neutral pH. In this study, sulfate reduction was studied with sediment samples from the extremely acidic Tinto River basin. Stable enrichments of SRB

  19. Diversity, activity, and abundance of sulfate-reducing bacteria in saline nad hypersaline soda lakes

    NARCIS (Netherlands)

    Foti, M.; Sorokin, D.Y.; Lomans, B.P.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G.

    2007-01-01

    Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in

  20. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen, sulfur, phosphorous,

  1. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  2. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  3. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  4. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  5. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-07-01

    Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H(2) S, and scavenge of 'cathodic' H(2) from chemical reaction of Fe(0) with H(2) O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe(0) year(-1) ), while conventional H(2) -scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO(3) , Mg/CaCO(3) ) deposited on the corroding metal exhibited electrical conductivity (50 S m(-1) ). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe(0)  → 4Fe(2+)  + 8e(-) ) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e(-)  + SO(4) (2-)  + 9H(+)  → HS(-)  + 4H(2) O). Hence, anaerobic microbial iron corrosion obviously bypasses H(2) rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  7. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

  8. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  9. Mo enrichment in black shale and reduction of molybdate by sulfate-reducing bacteria (SRB) (Invited)

    Science.gov (United States)

    Xu, H.; Barton, L. L.

    2010-12-01

    The Lower Cambrian Black shale in Zunyi area of Guizhou Province, Southern China contains significant amount of Mo, As, and sulfide minerals. Additionally, Mo and sulfides are closely associated with organic matter of kerogen. Transmission electron microscopy (TEM) results show pyrite micro-crystals and Mo-As-S-bearing carbon (kerogen). High-resolution TEM image shows that Mo-rich areas are Mo-sulfide (molybdenite) layers that form poorly crystalline structures in organic carbon matrix. X-ray energy-dispersive spectra (EDS) indicate composition from the pyrite and the Mo-rich area. The black shale is very unique because of its high Mo concentration. One possible mechanism for enriching Mo from paleo-seawater is the involvement of SRB. Molybdate is an essential trace element required by biological systems including the anaerobic sulfate-reducing bacteria (SRB); however, detrimental consequences may occur if molybdate is present in high concentrations in the environment. We followed the growth of Desulfovibrio gigas ATCC 19364, D. vulgaris Hildenborough, D. desulfuricans DSM 642, and D. desulfuricans DSM 27774 in media containing sub-lethal levels of molybdate and observed a red-brown color in the culture fluid. Spectral analysis of the culture fluid revealed absorption peaks at 467 nm, 395 nm and 314 nm and this color is proposed to be a molybdate-sulfide complex. Reduction of molybdate with the formation of molybdate disulfide occurs in the periplasm D. gigas and D. desulfuricans DSM 642. From these results we suggest that the occurrence of poorly crystalline Mo-sulfides in black shale may be a result from SRB reduction and selective enrichment of Mo in paleo-seawater. We suggest that similar SRB mechanism could cause the Mo enrichment in a ~ 2.5 billion years old late Archean McRae Shale, which is related to the great oxidation event of early earth atmosphere.

  10. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.

    Science.gov (United States)

    Silva, A J; Hirasawa, J S; Varesche, M B; Foresti, E; Zaiat, M

    2006-04-01

    This paper reports on the adhesion of sulfate-reducing bacteria (SRB) and methanogenic archaea on polyurethane foam (PU), vegetal carbon (VC), low-density polyethylene (PE) and alumina-based ceramics (CE). Anaerobic differential reactors fed with a sulfate-rich synthetic wastewater were used to evaluate the formation of a biofilm. The PU presented the highest specific biomass concentration throughout the experiment, achieving 872 mg TVS/g support, while 84 mg TVS/g support was the maximum value obtained for the other materials. FISH results showed that bacterial cells rather than archaeal cells were predominant on the biofilms. These cells, detected with EUB338 probe, accounted for 76.2% (+/-1.6%), 79.7% (+/-1.3%), 84.4% (+/-1.4%) and 60.2% (+/-1.0%) in PU, VC, PE and CE, respectively, of the 4'6-diamidino-2-phenylindole (DAPI)-stained cells. From these percentages, 44.8% (+/-2.1%), 55.4% (+/-1.2%), 32.7% (+/-1.4%) and 18.1% (+/-1.1%), respectively, represented the SRB group. Archaeal cells, detected with ARC915 probe, accounted for 33.1% (+/-1.6%), 25.4% (+/-1.3%), 22.6% (+/-1.1%) and 41.9% (+/-1.0%) in PU, VC, PE and CE, respectively, of the DAPI-stained cells. Sulfate reduction efficiencies of 39% and 45% and mean chemical oxygen demand (COD) removal efficiencies of 86% and 90% were achieved for PU and VC, respectively. The other two supports, PE and CE, provided mean COD removal efficiencies of 84% and 86%, respectively. However, no sulfate reduction was observed with these supports.

  11. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  12. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  13. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  14. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  15. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    DEFF Research Database (Denmark)

    Teske, A.; Ramsing, NB; Habicht, K.

    1998-01-01

    in variable densities of 10(4) to 106 cells ml(-1). A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration......, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO2 from sulfate reduction in the upper 5 mm...

  16. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  17. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  18. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  19. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  20. Styrene N-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against Sulfate Reducing Bacteria.

    Science.gov (United States)

    Fathy, M; Badawi, A; Mazrouaa, A M; Mansour, N A; Ghazy, E A; Elsabee, M Z

    2013-10-01

    Copolymer of styrene, and vinylpyrrolidone was prepared by various techniques. Different nanometals and nanometal oxides were added into the copolymer as antimicrobial agents against Sulfate Reducing Bacteria (SRB). The nanocomposite chemical structure was confirmed by using FTIR, (1)H NMR spectroscopy and thermogravimetric analysis (TGA). The biocidal action of these nanocomposites against the SRB was detected using sulfide determination method in Postgate medium B. The data indicated that the nanocomposites had an inhibitory effect on the growth of SRB and reduced the bacterial corrosion rate of mild steel coupons. The prepared nanocomposites have high inhibition efficiency when applied as coatings and show less efficiency when applied as solids or solution into SRB medium. The copolymer and its nanocomposites effectively reduced the total corrosion rate as determined by total weight loss method. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Sulfate reducing bacteria as secondary and necessary pathogens in black band disease of corals

    Directory of Open Access Journals (Sweden)

    Abigael C. Brownell

    2014-09-01

    Full Text Available Black band disease (BBD is a complex, polymicrobial disease that consists of cyanobacteria, sulfide-oxidizing and sulfate-reducing bacteria (SRB, and heterotrophic bacteria. The cyanobacterium Roseofilum reptotaenium has been implicated as the primary pathogen of BBD, but other consortium members may be secondary pathogens that are necessary to the development of the disease. It is known that populations of the sulfate-reducing bacterium Desulfovibrio are present in BBD and that these populations generate sulfide within the band as a byproduct of dissimilatory sulfate reduction. It is also known that exposure of healthy corals to sulfide leads to cell lysis and coral tissue death. Previous work showed that when freshly collected BBD, which easily infects healthy corals, is exposed to sodium molybdate, a specific inhibitor of sulfate reduction, infection does not occur. In this study we examined the effect of sodium molybdate on infection of corals by a unialgal culture of R. reptotaenium. Coral fragments of Montastraea cavernosa and Siderastrea siderea were transferred into two experimental aquaria, one a control with only artificial seawater (ASW and the second containing ASW and 2mM sodium molybdate. Small mats of cultured R. reptotaenium were inoculated onto the surface of experimental coral fragments. Both M. cavernosa (n = 6 and S. siderea (n=4 became infected and developed BBD-like infections in the control tank, while there were temporary attachments to, but no successful infection of M. cavernosa (n=3 or S. siderea (n=2 in the experimental tank containing sodium molybdate. The results of this study reveal that a secondary pathogen is essential to the infection process and development of BBD in scleractinian corals. Specifically, SRB such as Desulfovibrio are required for the development of BBD on the coral host. This is the first step in understanding the roles of secondary pathogens in a complex, polymicrobial coral disease.

  2. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  3. Anaerobic Biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions

    Science.gov (United States)

    Biotransformation of soybean biodiesel and its biodiesel/petrodiesel blends were investigated under sulfate-reducing conditions. Three blends of biodiesel, B100, B50, and B0, were treated using microbial cultures pre-acclimated to B100 (biodiesel only) and B80 (80% biodiesel and ...

  4. Sulfate-reducing anaerobic ammonium oxidation as a potential treatment method for high nitrogen-content wastewater.

    Science.gov (United States)

    Rikmann, Ergo; Zekker, Ivar; Tomingas, Martin; Tenno, Taavo; Menert, Anne; Loorits, Liis; Tenno, Toomas

    2012-07-01

    After sulfate-reducing ammonium oxidation (SRAO) was first assumed in 2001, several works have been published describing this process in laboratory-scale bioreactors or occurring in the nature. In this paper, the SRAO process was performed using reject water as a substrate for microorganisms and a source of NH(4) (+), with SO(4) (2-) being added as an electron acceptor. At a moderate temperature of 20°C in a moving bed biofilm reactor (MBBR) sulfate reduction along with ammonium oxidation were established. In an upflow anaerobic sludge blanket reactor (UASBR) the SRAO process took place at 36°C. Average volumetric TN removal rates of 0.03 kg-N/m³/day in the MBBR and 0.04 kg-N/m³/day in the UASBR were achieved, with long-term moderate average removal efficiencies, respectively. Uncultured bacteria clone P4 and uncultured planctomycete clone Amx-PAn30 were detected from the biofilm of the MBBR, from sludge of the UASBR uncultured Verrucomicrobiales bacterium clone De2102 and Uncultured bacterium clone ATB-KS-1929 were found also. The stoichiometrical ratio of NH(4) (+) removal was significantly higher than could be expected from the extent of SO(4) (2-) reduction. This phenomenon can primarily be attributed to complex interactions between nitrogen and sulfur compounds and organic matter present in the wastewater. The high NH(4) (+) removal ratio can be attributed to sulfur-utilizing denitrification/denitritation providing the evidence that SRAO is occurring independently and is not a result of sulfate reduction and anammox. HCO(3) (-) concentrations exceeding 1,000 mg/l were found to have an inhibiting effect on the SRAO process. Small amounts of hydrazine were naturally present in the reaction medium, indicating occurrence of the anammox process. Injections of anammox intermediates, hydrazine and hydroxylamine, had a positive effect on SRAO process performance, particularly in the case of the UASBR.

  5. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  6. Isolation and identification of sulfate reducing bacteria (SRB) from the sediment pond after a coal mine in Samarinda, East Kalimantan

    Science.gov (United States)

    Kusumawati, Eko; Sudrajat, Putri, Junita Susilaning

    2017-02-01

    Title isolation and identification of sulfate reducing bacteria (SRB) of sediment pond former coal mine in Samarinda, East Kalimantan. Sulfate reducing bacteria (SRB) is a group of microbes that can be used to improve the quality of sediment former coal mine. In the metabolic activities, the SRB can reduce sulfate to H2S which immediately binds to metals that are widely available on mined lands and precipitated in the form of metal sulfides reductive. Isolation and identification of sulfate reducing bacteria carried out in the Laboratory of Microbiology and Molecular Genetics, Faculty of Mathematics and Natural Sciences, University of Mulawarman, Samarinda. Postgate B is a liquid medium used for isolation through serial dilution. Physiological and biochemical characterization was done by Bergey's Manual of Determinative Bacteriology. Six isolates of sulfate reducing bacteria were isolated from the sediment pond former coal mine in Samarinda. Several groups of bacteria can grow at 14 days of incubation, however, another group of bacteria which takes 21 days to grow. The identification results showed that two isolates belong to the genus Desulfotomaculum sp., and each of the other isolates belong to the genus Desulfococcus sp., Desulfobacter sp., Desulfobulbus sp. and Desulfobacterium sp.

  7. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora

    Energy Technology Data Exchange (ETDEWEB)

    Hines, M.E. [Univ. of Alaska, Anchorage, AK (United States). Dept. of Biological Sciences; Evans, R.S.; Willis, S.G.; Rooney-Varga, J.N. [Univ. of New Hampshire, Durham, NH (United States). Inst. for the Study of Earth, Oceans and Space; Genthner, B.R.S. [Univ. of West Florida, Pensacola, FL (United States). Center for Environmental Diagnostics and Bioremediation; Friedman, S.; Devereux, R. [Environmental Protection Agency, Gulf Breeze, FL (United States). National Health and Environmental Effects Research Lab.

    1999-05-01

    The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO{sub 4}{sup 2{minus}} reduction rates and geochemical parameters. So{sub 4}{sup 2{minus}} reduction was rapid in marsh sediments with rates up to 3.5 {micro}mol ml{sup {minus}1} day{sup {minus}1}. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO{sub 4}{sup 2{minus}} reduction activity. However, the RA of root-associated SRB did increase from < 10 to > 30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from < 1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at > 10{sup 7} ml{sup {minus}1}. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.

  8. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    Science.gov (United States)

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522

  9. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    Science.gov (United States)

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor.

  10. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  11. Comparison of electrochemical techniques during the corrosion of X52 pipeline steel in the presence of sulfate reducing bacteria (SRB)

    Energy Technology Data Exchange (ETDEWEB)

    Galvan-Martinez, R.; Genesca, J. [Universidad Nacional Autonoma de Mexico (UNAM), Facultad de Quimica, Depto. de Ingenieria Metalurgica, Ciudad Universitaria. Mexico DF, CP 04510 (Mexico); Garcia-Caloca, G.; Duran-Romero, R.; Mendoza-Flores, J. [Instituto Mexicano del Petroleo, Direccion Ejecutiva de Exploracion y Produccion, Corrosion, Eje Central Lazaro Cardenas 152, Mexico D.F., 07730 (Mexico); Torres-Sanchez, R. [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones, Metalurgicas. Edificio ' ' U' ' , C.U. Morelia, Michoacan (Mexico)

    2005-10-01

    This work compares three electrochemical techniques, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN), used in the study of corrosion of X52 steel samples in an environment containing a culture of sulfate reducing bacteria (SRB). The study emphasizes the different electrochemical information obtained when using these techniques in microbiologically influenced corrosion (MIC) studies. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  13. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.

    Science.gov (United States)

    Traore, A S; Hatchikian, C E; Belaich, J P; Le Gall, J

    1981-01-01

    The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end products revealed that D. vulgaris produced, in addition to normal end products (acetic acid, carbon dioxide, hydrogen sulfide) and molecular hydrogen, 2 and 5% of ethanol per mol of lactate and pyruvate, respectively. Power-time curves of growth of D. vulgaris on lactate and pyruvate were obtained, by the microcalorimetric Tian-Calvet apparatus. The enthalpies (delta Hmet) associated with the oxidation of these substrates and calculated from growth thermograms were -36.36 +/- 5 and -70.22 +/- 3 kJ/mol of lactate and pyruvate, respectively. These experimental values were in agreement with the homologous values assessed from the theoretical equations of D. vulgaris metabolism of both lactate and pyruvate. The hydrogen production by this sulfate reducer constitutes an efficient regulatory system of electrons, from energy source through the pathway of sulfate reduction. This hydrogen value may thus facilitate interactions between this strain and other environmental microflora, especially metagenic bacteria.

  14. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.

    Science.gov (United States)

    Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

    2013-08-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.

  15. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

    2011-06-01

    Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

  16. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  17. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The Role of Dissolved Organic Matter in Environmental Mercury Methylation by Sulfate- Reducing Bacteria

    Science.gov (United States)

    Moreau, J. W.; Roden, E. E.; Gerbig, C.; Kim, C. S.; Aiken, G. R.; Dewild, J. F.; Krabbenhoft, D. P.

    2007-12-01

    Methylmercury (MeHg) production in the environment is controlled by many factors, including biogeochemical controls on mercury bioavailability. Strong focus has been placed on the role of sulfide concentration in determining mercury speciation and cellular uptake. However, in natural waters, dissolved organic matter (DOM) is both ubiquitous and important in influencing mercury speciation and bioavailability. We revisit this issue with experimental results from methylation assays of sulfate-reducing bacteria with a pure culture, and through synchrotron-based characterization of mercury in simulated natural waters. Pure cultures of Desulfobulbus propionicus, a sulfate-reducing bacterium (SRB) capable of fermentative growth, were allowed to methylate a mercury isotopic tracer present at growth conditions allowed control over ambient sulfide concentrations to favor the predicted dominance of dissolved HgS0. The DOM used was a hydrophobic fraction isolated from Florida Everglades surface water. Results showed that 5-10% of the mercury isotopic tracer was methylated in both DOM-amended and DOM-free cultures. In DOM-amended cultures, 10-20% greater cell growth was observed, suggesting an apparent slower rate of methylation in DOM-free cultures and a beneficial contribution of DOM to cell growth. We note that as much as ~10% of ambient mercury associated with DOM was also methylated, possibly explaining the observed difference in methylation rates in terms of dilution of the total bioavailable mercury pool for DOM-amended cultures. Our observations suggest that, in some cases, DOM- partitioned mercury is subject to microbial methylation at environmentally significant rates. The nature of mercury- sulfide-DOM interaction was investigated in separate experiments. No precipitation was observed in solutions containing DOM and equimolar Hg2+ and aqueous sulfide at concentrations supersaturated with respect to metacinnabar. The equilibrated Hg-S-DOM solution was loaded on

  19. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  20. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  1. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the

  2. CHROMIUM(VI REDUCTION BY A MIXED CULTURE OF SULFATE REDUCING BACTERIA DEVELOPED IN COLUMN REACTOR

    Directory of Open Access Journals (Sweden)

    Cynthia Henny

    2008-03-01

    Full Text Available A lactate enriched mixed sulfate reducing bacteria (SRB culture was examined for the reduction of Cr(VI in a continuous flow system. The influent was mineral salts media added with lactate and sulfate with amounts of 8 and 6 mM respectively as electron donor and electron acceptor. The SRB culture was allowed to stabilize in the column before adding the Cr(VI to the influent. Chromium and sulfate reduction and lactate oxidation were examined by measuring the concentrations of Cr(Vl, sulfate and lactate in the influent and the effluent over time. The experiment was discontinued when Cr(VI concentration in the effiuent was breakthrough. In the absence of Cr(VI, sulfate was not completely reduced in the column, although lactate was completely oxidized and acetate as an intermediate product was not often detected. Almost all of Cr(VI loaded was reduced in the column seeded with the SRB culture at influent Cr(VI concentrations of 192,385 and769 mM. There was no significant Cr(VI loss in the control column, indicating that Cr(VI removal was due to the reduction of Cr(VI to Cr (lll by the SRB culture. The instantaneous Cr(VI removal decreased to a minimum of 32%, 24 days after the influent Cr(VI concentration was increased to 1540 mM, ancl sulfate removal efficiency decreased to a minimum of 17%. The SRB population in the column decreased 100 days after C(VI was added to the column. The total mass of Cr(VI reduced was approximately 878 mmol out of 881 mmol of Cr(Vl loaded in 116 days. The results clearly show that our developed SRB culture could reduced Cr(Vl considerably.

  3. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  4. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Alawi, Mashal; Lerm, Stephanie; Wuerdemann, Hilke [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Internationales Geothermiezentrum, Potsdam (Germany); Vetter, Alexandra [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Organische Geochemie, Potsdam (Germany); Wolfgramm, Markus [Geothermie Neubrandenburg GmbH (GTN), Neubrandenburg (Germany); Seibt, Andrea [BWG Geochemische Beratung GbR, Neubrandenburg (Germany)

    2011-06-15

    Abstract Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61 C to 103 C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems. (orig.) [German] Die Verbesserung des Prozessverstaendnisses ist eine grundlegende Voraussetzung fuer eine Optimierung der Betriebssicherheit und der Oekonomie geothermischer Anlagen in Bezug auf die Partikelbildung und Korrosion. Daher wurden Prozessfluide einer Anlage im Molassebecken unter mikrobiologischen, geochemischen und mineralogischen Gesichtspunkten untersucht. Die Fluidtemperatur der vor und nach dem Waermetauscher entnommenen Fluide betrug zwischen 103 C und 61 C. Die Salinitaet variierte zwischen 600 und 900 mg/l und der geloeste organische Kohlenstoff (DOC) lag zwischen 6,4 und 19,3 mg C/l. Die mikrobielle Lebensgemeinschaft in der Anlage wurde mithilfe einer genetischen Fingerprinting-Methode charakterisiert. Hierzu wurde das 16S rRNA Gen sowie die fuer sulfatreduzierende Bakterien (SRB) spezifische dissimilatorische Sulfitreduktase untersucht. In allen

  5. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  6. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  7. Enzymatic catalysis of mercury methylation by planktonic and biofilm cultures of sulfate- reducing bacteria

    Science.gov (United States)

    Lin, C.; Kampalath, R.; Jay, J.

    2007-12-01

    While biofilms are now known to be the predominant form of microbial growth in nature, little is known about their role in environmental mercury (Hg) methylation. Due to its long-range atmospheric transport, Hg contamination of food chains is a worldwide problem, impacting even pristine areas. Among different forms of mercury species, methylmercury (MeHg) is an extremely neurotoxic and biomagnification-prone compound that can lead to severely adverse health effects on wildlife and humans. Considerable studies have shown that in the aquatic environment the external supply of MeHg is not sufficient to account for MeHg accumulation in biota and in situ biological MeHg formation plays a critical role in determining the amount of MeHg in food webs; moreover, sulfate-reducing bacteria (SRB) has been identified as the principal Hg-methylating organisms in nature. In a wide range of aquatic systems wetlands are considered important sites for Hg methylation mostly because of the environmental factors that promote microbial activity within, and biofilms are especially important in wetland ecosystems due to large amount of submerged surfaces. Although recent work has focused on the environmental factors that control MeHg production and the conditions that affect the availability of inorganic Hg to SRB, much remains to be understood about the biochemical mechanism of the Hg methylation process in SRB, especially in the biofilm-growth of these microbes. Data from our previous study with SRB strains isolated from a coastal wetland suggested that the specific Hg methylation rate found was approximately an order of magnitude higher in biofilm cells than in planktonic cells. In order to investigate possible reasons for this observed difference, and to test if this phenomenon is observed in other strains, we conducted chloroform, fluroacetate and molybdate inhibition assays in both complete and incomplete-oxidizing SRB species (Desulfovibrio desulfuricans M8, Desulfococcus sp

  8. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Janssen, Sarah E; Schaefer, Jeffra K; Barkay, Tamar; Reinfelder, John R

    2016-08-02

    The biological production of monomethylmercury (MeHg) in soils and sediments is an important factor controlling mercury (Hg) accumulation in aquatic and terrestrial food webs. In this study we examined the fractionation of Hg stable isotopes during Hg methylation in nongrowing cultures of the anaerobic bacteria Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Both organisms showed mass-dependent, but no mass-independent fractionation of Hg stable isotopes during Hg methylation. Despite differences in methylation rates, the two bacteria had similar Hg fractionation factors (αr/p = 1.0009 and 1.0011, respectively). Unexpectedly, δ(202)Hg values of MeHg for both organisms were 0.4‰ higher than the value of initial inorganic Hg after about 35% of inorganic Hg had been methylated. These results indicate that a (202)Hg-enriched pool of inorganic Hg was preferentially utilized as a substrate for methylation by these organisms, but that multiple intra- and/or extracellular pools supplied inorganic Hg for biological methylation. Understanding the controls of the Hg stable isotopic composition of microbially produced MeHg is important to identifying bioavailable Hg in natural systems and the interpretation of Hg stable isotopes in aquatic food webs.

  9. Sulfate-reducing bacteria from the Arabian Sea - their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    -reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42: 5-11. Van Es, F. B. and L.-A. Meyer-Rei!. 1982. Biomass and metabolic activity ofheterotrophic marine bacteria. Pages [11-[ 70 in K. C. Marshal[, ed. Advances in microbial ecology, Vol. 6... at Delaware Inlet, New Zealand. The infor mation available about these forms in Indian waters has been restricted to es tuarine ecosystems (Loka Bharathi and Chandramohan, 1985; Saxena et aI., 1988). We describe here their distribution in marine sediments...

  10. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes......-to-bottom approach we aimed to further resolve the composition of this large group of SRB by using probes for cultivated genera. While this approach failed, directed cloning of probe-targeted genes encoding 16S rRNA was successful and resulted in sequences which were all affiliated with the Desulfosarcina...

  11. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach

    DEFF Research Database (Denmark)

    Llobet-Brossa, Enrique; Rabus, Ralf; Böttcher, Michael E.

    2002-01-01

    The community structure of sulfate-reducing bacteria (SRB) in an intertidal mud flat of the German Wadden Sea (Site Dangast, Jade Bay) was studied and related to sedimentary biogeochemical gradients and processes. Below the penetration depths of oxygen (~3 mm) and nitrate (~4 mm), the presence...... and counting viable cells with the most probable number technique. Phylogenetic groups of SRB identified with these techniques were almost evenly distributed throughout the top 20 cm of the sediment. Application of fluorescence in situ hybridization, however, demonstrated a maximum of active members...

  12. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  13. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite

    Science.gov (United States)

    Picard, Aude; Gartman, Amy; Clarke, David R.; Girguis, Peter R.

    2018-01-01

    Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth's atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite

  14. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synergy in Sulfur Cycle: The Biogeochemical Significance of Sulfate Reducing Bacteria in Syntrophic Associations

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    ). The first oxidation product of sulfide, elemental sulphur appears outside the cells of green sulfur bacteria and can therefore be oxidized further to sulfate or reduced by sulphur reducing bacteria. In defined syntrophic cocultures of acetate... carrying capacity of an environment in question. Sytrophic associations between suphate reducing and sulfur oxidizing bacteria could be gainfully used in the bioremediation of oil wells polluted by sulfide production (Loka Bharathi et al., 1997). While...

  16. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    Science.gov (United States)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  17. Expansion of Phragmites australis alters methane dynamics and methanogen, methanotroph, and sulfate reducing bacteria communities in tidal marsh in Korea

    Science.gov (United States)

    Kim, J.; Lee, J.; Kim, H.; Gauhar, M.; Kang, H.

    2016-12-01

    Plant invasion is known to change substantially methane dynamics in tidal marshes. However, the exact mechanisms related to methane dynamics change due to plant invasion have not been fully understood. In Suncheon Bay, South Korea, Phragmites australis has invaded the habitat of native species, Suaeda japonica, and becomes dominant vegetation in this area. We measured methane fluxes, soil biogeochemistry, and microbial communities from both vegetation sites throughout a growing season and conducted a chronosequence analysis in order to illustrate the effect of plant invasion on methane dynamics and microbial communities. For analyzing microbial communities, we collected 1m intact soil cores and conducted functional gene-targeted real-time qPCR, T-RFLP, and PLFA. P. australis invasion significantly increased methane emission in a summer season, accompanied by greater dissolved organic carbon and soil water content. Methanogen, methanotroph, and sulfate reducing bacterial communities were gradually changed along with the invasion periods. In particular, abundances ratio of mcrA/pmoA and mcrA/dsrA had a positive correlation with methane emission, which indicates that P. australis invasion reduces methane oxidation by methanotroph, and competitive inhibition between methanogen and sulfate reducing bacteria. In conclusion, P. australis invasion on S. japonica significantly increased methane emission in tidal marsh by altering the microbial communities in a way that C decomposition would be dominated by methanogenesis.

  18. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2016-12-15

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  19. Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina.

    Science.gov (United States)

    Watanabe, Miho; Higashioka, Yuriko; Kojima, Hisaya; Fukui, Manabu

    2017-08-01

    In previous studies, two hydrocarbon-degrading sulfate-reducing bacteria, strains PP31T and PL12T, were obtained from oil-polluted marine sediments of Shuaiba, Kuwait. They had been reported as organisms capable of anaerobic degradation of p-xylene and n-alkanes, respectively. The 16S rRNA gene sequence of strain PP31T showed 98.8 % sequence similarities to that of Desulfosarcina variabilis'Montpellier'T. Strains PL12T had 97.8 % of sequence similarity to Desulfosarcina ovata oXys1T. They both have been partially characterized, but not been validly published as new species of the genus Desulfosarcina. In this study, additional characterizations of these strains were made to describe them as two new species of the genus Desulfosarcina. Major cellular fatty acids of strain PP31T were C15 : 0 (25.9 %) and anteiso-C15 : 0 (22.3 %), whereas those of strain PL12T were C15 : 0 (21.3 %), C16 : 0 (17.8 %) and anteiso-15 : 0 (11.6 %). The phylogenetic tree based on 16S rRNA gene revealed that these isolates should not be classified as any of the known species in the genus Desulfosarcina. On the basis of phenotypic and phylogenetic analyses, these two sulfate reducers are proposed to form two novel species of the genus Desulfosarcina : Desulfosarcina widdelii sp. nov. (PP31T=JCM 31729T=DSM 103921T) and Desulfosarcina alkanivorans sp. nov. (PL12T=JCM 31728T=DSM 103901T). In addition, emended description of the genus Desulfosarcina is presented in this study.

  20. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  1. Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste

    Energy Technology Data Exchange (ETDEWEB)

    Holowenko, F. M.; Fedorak, P. M. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; MacKinnon, M. D. [Syncrude Canada Ltd, Edmonton, AB (Canada)

    2000-10-01

    In addition to adding to greenhouse gas emissions, the production of methane in the fine tailings zone of Syncrude Canada's lease near Fort McMurray, Alberta, threatens to affect the performance of the settling basin and impact on reclamation plans. Methanogenic as well as sulfur reducing bacteria have been found within the fine tailings zone of various oil sands waste settling basins. This paper presents a description of the methanogenic population in the fine tailings and evaluates the effects of sulfate additions and prolonged sample storage on methanogenesis with serum bottle microcosms. Methane yield values were determined from total methane produced in batch microcosms monitored for over a year. Results showed that at present two to five per cent of the fine tailings volume is present as methane. Methanogenesis was found to be inhibited by sulfate addition which stimulated bacterial competition for available substrate. 47 refs., 3 tabs., 4 figs.

  2. [Effect of sulfate-reducing bacteria on steel corrosion in the presence of inhibitors].

    Science.gov (United States)

    Purish, L M; Pogrebova, I S; Kozlova, I A

    2002-01-01

    Steel 08KP corrosion was studied as affected by inhibitors in presence of sulphate-reducing bacteria (SRB). Organic compounds, containing functional groups with nitrogen, oxygen and sulphur atoms, were investigated as corrosion inhibitors. It is shown that the studied inhibitors may be divided into three groups as to the mechanism of protective action. It has been established that cation-active nitrogen-containing surfactants ([symbol: see text] X, [symbol: see text]-1, [symbol: see text]-1M, catapin M, [symbol: see text]-2M) are the most efficient steel corrosion inhibitors. Such inhibitors, when adsorbed on metal surface, can affect the process of hydrogen precipitation on its surface, and thus inhibit catalytic function of SRB as the depolarizer of cathode process.

  3. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  4. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  5. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    Science.gov (United States)

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  6. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  7. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.

    Science.gov (United States)

    Mohd Ali, Muhammad Khairool Fahmy Bin; Abu Bakar, Akrima; Md Noor, Norhazilan; Yahaya, Nordin; Ismail, Mardhiah; Rashid, Ahmad Safuan

    2017-10-01

    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.

  8. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  9. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  10. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    International Nuclear Information System (INIS)

    Li, Xin; Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo; Zhou, Chen; Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming

    2017-01-01

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  11. Molecular Scale Dissolved Organic Matter Interactions Impact Mercury Bioavailability for Uptake and Methylation by Sulfate-Reducing Bacteria

    Science.gov (United States)

    Moreau, J. W.; Krabbenhoft, D. P.

    2008-12-01

    Biogeochemical factors such as dissolved natural organic matter (DOM) type and abundance may play a major role in governing the bioavailability of aqueous Hg(II) for uptake and methylation by sulfate-reducing bacteria (SRB). MeHg production correlates in some cases with predicted dominance of hydrophobic, neutrally-charged, aqueous HgS. This species is thought to interact strongly with DOM via hydrophobic attractions. Field and laboratory observations suggest that DOM promotes methylation. We therefore hypothesized that DOM isolates of differing (well-characterized) functional compositions (e.g., hydrophobic versus hydrophilic) could variably enhance bacterial methylation. Methylation assays using Desulfobulbus propionicus 1pr3 in fermentative growth were performed using a mercury isotope tracer applied at concentrations of roughly 100 ng/L. The tracer was pre-equilibrated with 5-10 uM aqueous sulfide and approximately 40 mg/L of either hydrophobic or hydrophilic DOM prior to inoculation. Results showed roughly 1-3% tracer methylation in both hydrophobic DOM+ and DOM- cultures. However, a similar amount of non- tracer (background) mercury associated with the hydrophobic DOM fraction was also methylated. Preliminary results suggested that pre-equilibration of the isotope tracer for up to one month with hydrophobic-fraction humic acids resulted in a roughly 2-3X increase in the quantity and rate of methylation, indicating an important role for aging on DOM in Hg bioavailability. Mercury-sulfide-DOM equilibration products were investigated with synchrotron-based x-ray fluorescence spectroscopy (EXAFS) at liquid nitrogen temperatures. Hg L(III)-edge spectra from resin-concentrated Hg-S-DOM equilibration products exhibited high similarity to a metacinnabar-like conformation. Culturing and EXAFS results, taken together, suggest that nanophase metacinnabar, "packaged" in DOM, could have been the bioavailable form of Hg(II) in culturing experiments. Further experiments

  12. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  13. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system.

    Science.gov (United States)

    Miran, Waheed; Nawaz, Mohsin; Jang, Jiseon; Lee, Dae Sung

    2017-06-15

    Wastewaters are increasingly being considered as renewable resources for the sustainable production of electricity, fuels, and chemicals. In recent years, bioelectrochemical treatment has come to light as a prospective technology for the production of energy from wastewaters. In this study, a bioelectrochemical system (BES) enriched with sulfate-reducing bacteria (SRB) in the anodic chamber was proposed and evaluated for the biodegradation of recalcitrant chlorinated phenol, electricity generation (in the microbial fuel cell (MFC)), and production of hydrogen peroxide (H 2 O 2 ) (in the microbial electrolysis cell (MEC)), which is a very strong oxidizing agent and often used for the degradation of complex organics. Maximum power generation of 253.5 mW/m 2 , corresponding to a current density of 712.0 mA/m 2 , was achieved in the presence of a chlorinated phenol pollutant (4-chlorophenol (4-CP) at 100 mg/L (0.78 mM)) and lactate (COD of 500 mg/L). In the anodic chamber, biodegradation of 4-CP was not limited to dechlorination, and further degradation of one of its metabolic products (phenol) was observed. In MEC operation mode, external voltage (0.2, 0.4, or 0.6 V) was added via a power supply, with 0.4 V producing the highest concentration of H 2 O 2 (13.3 g/L-m 2 or 974 μM) in the cathodic chamber after 6 h of operation. Consequently, SRB-based bioelectrochemical technology can be applied for chlorinated pollutant biodegradation in the anodic chamber and either net current or H 2 O 2 production in the cathodic chamber by applying an optimum external voltage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    . Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled......The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  15. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  16. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    Science.gov (United States)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  17. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  18. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  19. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea.

    Science.gov (United States)

    Guan, Yue; Hikmawan, Tyas; Antunes, André; Ngugi, David; Stingl, Ulrich

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  1. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-09-01

    If it is widely accepted that the presence of sulfate-reducing bacteria can increase the aqueous corrosion of steels, the induced mechanisms are still not definitively established. The aim of this work is to specify the roles, for corrosion, of the presence of bacteria (D. Vulgaris) in one part and of chemical parameters as the composition of the material and the accumulation of sulfides in another part. The use of experimental techniques coming from microbiology, electrochemistry or chemical analysis has revealed the interdependence which exists between the bacteria and the material, and the importance of the steel composition towards the adhesion of microorganisms and the generalized corrosion. The bacteria and the dissolved sulfides do not seem to influence remarkably the generalized corrosion. Nevertheless, the alterations of the surface state they induce could be the cause of localized corrosion phenomena. (O.M.)

  2. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2003-06-01

    Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

  3. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  4. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Stams, A.J.M.; Hedrich, S.; Nancucheo, I.; Johnson, D.B.

    2015-01-01

    Three strains of sulfate-reducing bacteria (M1T, D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and

  6. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  7. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate......-reducing bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies (Ea) showed that increasing temperatures had an initial negative impact on sulfate reduction...

  8. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Rene, Eldon R; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2018-07-01

    This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  10. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Directory of Open Access Journals (Sweden)

    Lilia Montoya

    2011-01-01

    Full Text Available Our goal was to examine the composition of methanogenic archaea (MA and sulfate-reducing (SRP and sulfur-oxidizing (SOP prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain. Thus, adenosine-5′-phosphosulfate (APS reductase α (aprA and methyl coenzyme M reductase α (mcrA gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

  11. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Science.gov (United States)

    Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma

    2011-01-01

    Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180

  12. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  13. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    Energy Technology Data Exchange (ETDEWEB)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R. (Univ. of Calgary, Alberta (Canada)); Fedorak, P.M.; Westlake, D.W.S. (Univ. of Alberta, Edmonton (Canada))

    1991-11-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples.

  14. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  15. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea.

    Science.gov (United States)

    Zhang, Yu; Wang, Xungong; Zhen, Yu; Mi, Tiezhu; He, Hui; Yu, Zhigang

    2017-01-01

    Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99%) and revealed the high diversity, richness, and operational taxonomic unit (OTU) numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB , and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA) clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.

  16. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-11-01

    Full Text Available Sulfate-reducing bacteria (SRB and sulfur-oxidizing bacteria (SOB have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99% and revealed the high diversity, richness, and operational taxonomic unit (OTU numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB, and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.

  17. Simultaneous degradation of waste phosphogypsum and liquid manure from industrial pig farm by a mixed community of sulfate-reducing bacteria.

    Science.gov (United States)

    Rzeczycka, Marzenna; Miernik, Antoni; Markiewicz, Zdzislaw

    2010-01-01

    The utilization of pig manure as a source of nutrients for the dissimilatory reduction of sulfates present in phosphogypsum was investigated. In both types of media used (synthetic medium and raw pig manure) increased utilization of sulfates with growing COD/SO4(2-)ratio in the medium was observed. The percent of sulfate reduction obtained in synthetic medium was from 18 to 99%, whereas the value for cultures set up in raw liquid manure was from 12% (at COD/SO4(2-) of 0.3) up to as high as 98% (at COD/SO4(2-) equal 3.80). Even with almost complete reduction of sulfates the percent of COD reduction did not exceed 55%. Based on the results obtained it was concluded that the effectiveness of removal of sulfates and organic matter by sulfate-reducing bacteria (SRB) depends to a considerable degree on the proportion between organic matter and sulfates in the purified wastewaters. The optimal COD/SO4(2-)ratio for the removal oforganic matter was between 0.6 and 1.2 whereas the optimal ratio for the removal of sulfates was between 2.4 and 4.8.

  18. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    Science.gov (United States)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  19. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  20. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    Directory of Open Access Journals (Sweden)

    Axel eSchippers

    2011-12-01

    Full Text Available A quantitative, real-time PCR (Q-PCR assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA of sulfate-reducing bacteria (SRB was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf and the Black Sea (0 – 6 mbsf. Clone libraries of aprA show that all isolated sequences originate from SRB showing a close relationship to aprA of characterised species or form a new cluster with only distant relation to aprA of isolated SRB. Below 40 mbsf no aprA genes could be amplified. This finding corresponds with results of the applied new Q-PCR assay for aprA. In contrast to the aprA the dsrA gene could be amplified up to sediment depths of 121 mbsf. Even in such an extreme environment a high diversity of this gene was detected. The 16S rRNA gene copy numbers of total Bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRB to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5 - 1 % of the 16S rRNA gene copy numbers of total Bacteria in the sediments up to a depth of ca. 40 mbsf. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 108 / g sediment close to the sediment surface to less than 105 / g sediment at 5 mbsf. In the zone without detectable sulfate in the pore water from ca. 40 – 121 mbsf (Peru margin ODP site 1227, only dsrA (but not aprA was detected with copy numbers of less than 104 / g sediment, comprising ca. 14 % of the 16S rRNA gene copy numbers of total Bacteria. In this zone sulfate might be provided for SRB by anaerobic sulfide oxidation.

  1. ISOLATION OF OBLIGATELY ANAEROBIC PSYCHROPHILIC BACTERIA.

    Science.gov (United States)

    SINCLAIR, N A; STOKES, J L

    1964-03-01

    Sinclair, N. A. (Washington State University, Pullman), and J. L. Stokes. Isolation of obligately anaerobic psychrophilic bacteria. J. Bacteriol. 87:562-565. 1964.-A total of 11 strains of strictly anaerobic psychrophilic bacteria have been isolated from soil, mud, and sewage. The organisms grow well at 0 C in liquid and on solid media, and grow only in the complete absence of oxygen. On the basis of shape, sporulation, flagellation, and strictly anaerobic growth, all of the organisms were classified as strains of Clostridium. Some of the biochemical properties of the strains and the effect of temperature on growth are described.

  2. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria.

    Science.gov (United States)

    Pedersen, K

    2010-03-01

    To investigate the relationships between sulfate-reducing bacteria (SRB), growth conditions, bentonite densities and copper sulfide generation under circumstances relevant to underground, high-level radioactive waste repositories. Experiments took place 450 m underground, connected under in situ pressure to groundwater containing SRB. The microbial reduction of sulfate to sulfide and subsequent corrosion of copper test plates buried in compacted bentonite were analysed using radioactive sulfur (35SO4(2-)) as tracer. Mass distribution of copper sulfide on the plates indicated a diffusive process. The relationship between average diffusion coefficients (Ds) and tested density (rho) was linear. Ds (m2 s(-1))=-0.004xrho (kg m(-3))+8.2, decreasing by 0.2 Ds units per 50 kg m(-3) increase in density, from 1.2x10(-11) m2 s(-1) at 1750 kg m(-3) to 0.2x10(-11) m2 s(-1) at 2000 kg m(-3). It is possible that sulfide corrosion of waste canisters in future radioactive waste repositories depends mainly on sulfide concentration at the boundary between groundwater and the buffer, which in turn depends on SRB growth conditions (e.g., sulfate accessibility, carbon availability and electron donors) and geochemical parameters (e.g., presence of ferrous iron, which immobilizes sulfide). Maintaining high bentonite density is also important in mitigating canister corrosion. The sulfide diffusion coefficients can be used in safety calculations regarding waste canister corrosion. The work supports findings that microbial activity in compacted bentonite will be restricted. The study emphasizes the importance of growth conditions for sulfate reduction at the groundwater boundary of the bentonite buffer and linked sulfide production.

  3. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  4. Anaerobic bacteria, the colon and colitis.

    Science.gov (United States)

    Roediger, W E

    1980-02-01

    Anaerobic bacteria constitute more than 90% of the bacteria in the colon. An anaerobic environment is needed to maintain their growth and the production of short-chain fatty acids by these bacteria from carbohydrates. Short-chain fatty acids are rapidly absorbed and essential for metabolic as well as functional welfare of the colonic mucosa. The importance of these acids in water absorption and in the patogenesis of colitis is discussed in relation to the concept of "energy deficiency diseases" of the colonic mucosa.

  5. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    OpenAIRE

    Sousa, Diana Z.; Visser, Michael; Gelder, Van, Antonie H.; Boeren, Sjef; Pieterse, Mervin M.; Pinkse, Martijn W.H.; Verhaert, Peter D.E.M.; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J.M.

    2018-01-01

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain ...

  6. Anaerobic benzene degradation by bacteria.

    Science.gov (United States)

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans-Hermann

    2011-11-01

    Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen-dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene-degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the 'key players' of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. © 2011 The Authors; Journal compilation © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Anaerobic benzene degradation by bacteria

    Science.gov (United States)

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  8. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins

    OpenAIRE

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-01-01

    Background The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. Results In this study, a draft genome sequence of D. biacutus ...

  9. Acetone utilization by sulfate-reducing bacteria: draft genome sequence of Desulfococcus biacutus and a proteomic survey of acetone-inducible proteins.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Schleheck, David; Schink, Bernhard

    2014-07-11

    The sulfate-reducing bacterium Desulfococcus biacutus is able to utilize acetone for growth by an inducible degradation pathway that involves a novel activation reaction for acetone with CO as a co-substrate. The mechanism, enzyme(s) and gene(s) involved in this acetone activation reaction are of great interest because they represent a novel and yet undefined type of activation reaction under strictly anoxic conditions. In this study, a draft genome sequence of D. biacutus was established. Sequencing, assembly and annotation resulted in 159 contigs with 5,242,029 base pairs and 4773 predicted genes; 4708 were predicted protein-encoding genes, and 3520 of these had a functional prediction. Proteins and genes were identified that are specifically induced during growth with acetone. A thiamine diphosphate-requiring enzyme appeared to be highly induced during growth with acetone and is probably involved in the activation reaction. Moreover, a coenzyme B12- dependent enzyme and proteins that are involved in redox reactions were also induced during growth with acetone. We present for the first time the genome of a sulfate reducer that is able to grow with acetone. The genome information of this organism represents an important tool for the elucidation of a novel reaction mechanism that is employed by a sulfate reducer in acetone activation.

  10. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    OpenAIRE

    Axel eSchippers; Anna eBlazejak

    2011-01-01

    A quantitative, real-time PCR (Q-PCR) assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA) of sulfate-reducing bacteria (SRB) was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA) and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf)) and the Black Sea (0 – 6 mbsf). Clone libraries of aprA show that all isolated sequences originate from SRB...

  11. Investigation of isotopic and biomolecular approaches as new bio-indicators for long term natural attenuation of monoaromatic compounds in deep terrestrial aquifers by gram-positive sporulated sulfate-reducing bacteria of the genus Desulfotomaculum.

    Directory of Open Access Journals (Sweden)

    Thomas eAüllo

    2016-02-01

    Full Text Available Deep subsurface aquifers despite difficult access, represent important water resources and, at the same time, are key locations for subsurface engineering activities for the oil and gas industries, geothermal energy and CO2 or energy storage. Formation water originating from a 760 meter-deep geological gas storage aquifer was sampled and microcosms were set up to test the biodegradation potential of BTEX by indigenous microorganisms. After a long incubation period, with several subcultures, a sulfate-reducing consortium composed of only two Desulfotomaculum populations was observed able to degrade benzene, toluene and ethylbenzene, extending the number of hydrocarbonoclastic–related species among the Desulfotomaculum genus. Furthermore, we were able to couple specific carbon and hydrogen isotopic fractionation during benzene removal and the results obtained by dual compound specific isotope analysis (εC = -2.4 ‰ ± 0.3 ‰; εH = -57 ‰ ± 0.98 ‰; AKIEC: 1.0146 ± 0.0009 and AKIEH: 1.5184 ± 0.0283 were close to those obtained previously in sulfate-reducing conditions: this finding could confirm the existence of a common enzymatic reaction involving sulfate-reducers to activate benzene anaerobically. Although we cannot assign the role of each population of Desulfotomaculum in the mono-aromatic hydrocarbon degradation, this study suggests an important role of the genus Desulfotomaculum as potential biodegrader among indigenous populations in subsurface habitats. This community represents the simplest model of benzene-degrading anaerobes originating from the deepest subterranean settings ever described. As Desulfotomaculum species are often encountered in subsurface environments, this study provides some interesting results for assessing the natural response of these specific hydrologic systems in response to BTEX contamination during remediation projects.

  12. Inhibition experiments on anaerobic methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Alperin, M.J.; Reeburgh, W.S.

    1985-10-01

    Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.

  13. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  14. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...

  15. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic ...

  16. Draft Genome Sequence of a Novel Desulfobacteraceae Member from a Sulfate-Reducing Bioreactor Metagenome

    OpenAIRE

    Almstrand, Robert; Pinto, Ameet J.; Figueroa, Linda A.; Sharp, Jonathan O.

    2016-01-01

    Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal? and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

  17. In vitro activity of mecillinam against anaerobic bacteria.

    OpenAIRE

    Steinkraus, G E; McCarthy, L R

    1980-01-01

    A microtiter broth dilution method was employed to determine the in vitro activity of mecillinam against 201 recent clinical isolates of anaerobic bacteria. Both the anerobic gram-positive and anaerobic gram-negative bacilli displayed a wide range of minimal inhibitory concentrations of mecillinam; most strains were resistant to the antibiotic. The anaerobic cocci exhibited a narrower range of minimal inhibitory concentrations than were observed with other anaerobes, but also exhibited mecill...

  18. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  19. Methane fermentation process as anaerobic digestion of biomass ...

    African Journals Online (AJOL)

    Anaerobic decomposition of organic compounds is conducted in close cooperation of specialized bacteria of different types, including mostly hydrolyzing, digestive, acetogenic, homoacetogenic, sulfate-reducing (VI) and methanogenic bacteria. A great interest in the anaerobic digestion process results mainly from its ...

  20. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  1. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  3. Oxygen sensitivity of various anaerobic bacteria.

    Science.gov (United States)

    Loesche, W J

    1969-11-01

    Anaerobes differ in their sensitivity to oxygen, as two patterns were recognizable in the organisms included in this study. Strict anaerobes were species incapable of agar surface growth at pO(2) levels greater than 0.5%. Species that were found to be strict anaerobes were Treponema macrodentium, Treponema denticola, Treponema oralis n. sp., Clostridium haemolyticum, Selenomonas ruminatium, Butyrivibrio fibrisolvens, Succinivibrio dextrinosolvens, and Lachnospira multiparus. Moderate anaerobes would include those species capable of growth in the presence of oxygen levels as high as 2 to 8%. The moderate anaerobes could be exposed to room atmosphere for 60 to 90 min without appreciable loss of viability. Species considered as moderate anaerobes were Bacteroides fragilis, B. melaninogenicus, B. oralis, Fusobacteria nucleatum, Clostridium novyi type A, and Peptostreptococcus elsdenii. The recognition of at least two general types of anaerobes would seem to have practical import in regard to the primary isolation of anaerobes from source material.

  4. Aerobic and facultative anaerobic bacteria from gut of red palm ...

    African Journals Online (AJOL)

    Pure cultures were obtained after incubating the plates at different atmospheric conditions (aerobic, and strictly anaerobic). The majority of isolated microbiota observed were aerobes and facultative anaerobes (Bacillus sp., Salmonella sp., Enterococcus sp., and Xanthomonas sp.). These qualitative differences of bacteria, ...

  5. Characterization of sulfate-reducing granular sludge in the SANI(®) process.

    Science.gov (United States)

    Hao, Tianwei; Wei, Li; Lu, Hui; Chui, Hokwong; Mackey, Hamish R; van Loosdrecht, Mark C M; Chen, Guanghao

    2013-12-01

    Hong Kong practices seawater toilet flushing covering 80% of the population. A sulfur cycle-based biological nitrogen removal process, the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process, had been developed to close the loop between the hybrid water supply and saline sewage treatment. To enhance this novel process, granulation of a Sulfate-Reducing Up-flow Sludge Bed (SRUSB) reactor has recently been conducted for organic removal and provision of electron donors (sulfide) for subsequent autotrophic denitrification, with a view to minimizing footprint and maximizing operation resilience. This further study was focused on the biological and physicochemical characteristics of the granular sulfate-reducing sludge. A lab-scale SRUSB reactor seeded with anaerobic digester sludge was operated with synthetic saline sewage for 368 days. At 1 h nominal hydraulic retention time (HRT) and 6.4 kg COD/m(3)-d organic loading rate, the SRUSB reactor achieved 90% COD and 75% sulfate removal efficiencies. Granular sludge was observed within 30 days, and became stable after 4 months of operation with diameters of 400-500 μm, SVI5 of 30 ml/g, and extracellular polymeric substances of 23 mg carbohydrate/g VSS. Fluorescence in situ hybridization (FISH) analysis revealed that the granules were enriched with abundant sulfate-reducing bacteria (SRB) as compared with the seeding sludge. Pyrosequencing analysis of the 16S rRNA gene in the sulfate-reducing granules on day 90 indicated that the microbial community consisted of a diverse SRB genera, namely Desulfobulbus (18.1%), Desulfobacter (13.6%), Desulfomicrobium (5.6%), Desulfosarcina (0.73%) and Desulfovibrio (0.6%), accounting for 38.6% of total operational taxonomic units at genera level, with no methanogens detected. The microbial population and physicochemical properties of the granules well explained the excellent performance of the granular SRUSB reactor. Copyright © 2013 Elsevier

  6. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  7. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.

    1995-01-01


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  8. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria

    Science.gov (United States)

    Schaefer, Jeffra K.; Rocks, Sara S.; Zheng, Wang; Liang, Liyuan; Gu, Baohua; Morel, François M. M.

    2011-01-01

    The formation of methylmercury (MeHg), which is biomagnified in aquatic food chains and poses a risk to human health, is effected by some iron- and sulfate-reducing bacteria (FeRB and SRB) in anaerobic environments. However, very little is known regarding the mechanism of uptake of inorganic Hg by these organisms, in part because of the inherent difficulty in measuring the intracellular Hg concentration. By using the FeRB Geobacter sulfurreducens and the SRB Desulfovibrio desulfuricans ND132 as model organisms, we demonstrate that Hg(II) uptake occurs by active transport. We also establish that Hg(II) uptake by G. sulfurreducens is highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium, with some thiols promoting uptake and methylation and others inhibiting both. The Hg(II) uptake system of D. desulfuricans has a higher affinity than that of G. sulfurreducens and promotes Hg methylation in the presence of stronger complexing thiols. We observed a tight coupling between Hg methylation and MeHg export from the cell, suggesting that these two processes may serve to avoid the build up and toxicity of cellular Hg. Our results bring up the question of whether cellular Hg uptake is specific for Hg(II) or accidental, occurring via some essential metal importer. Our data also point at Hg(II) complexation by thiols as an important factor controlling Hg methylation in anaerobic environments. PMID:21555571

  9. The identification of anaerobic bacteria using MALDI-TOF MS

    NARCIS (Netherlands)

    Veloo, A. C. M.; Welling, G. W.; Degener, J. E.

    Matrix Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has gained more and more popularity for the identification of bacteria. Several studies show that bacterial diagnosticis is being revolutionized by the application of MALDI-TOF MS. For anaerobic bacteria,

  10. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).

    Science.gov (United States)

    Anderson, Iain; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.

    Science.gov (United States)

    Brondino, Carlos D; Passeggi, Mario C G; Caldeira, Jorge; Almendra, Maria J; Feio, Maria J; Moura, Jose J G; Moura, Isabel

    2004-03-01

    We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126+/-2 kDa composed of two subunits, alpha=93+/-3 kDa and beta=32+/-2 kDa, which contains 6+/-1 Fe/molecule, 0.4+/-0.1 Mo/molecule, 0.3+/-0.1 W/molecule, and 1.3+/-0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5-40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d(1) configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.

  13. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  14. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens

  15. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  16. Identification of Anaerobic Bacteria in Iranian patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Shahb Shafeian

    2013-11-01

    Full Text Available Please cite this article as: Shafeian SH, Bandehpour M, Mirzaahmadi S, Tofighi A. Identification of Anaerobic Bacteria in patients with Rheumatoid Arthritis. . Novel Biomed 2013;1(2:39-42.Background: There is a report about the 2-5% prevalence for septic arthritis by anaerobic bacteria. The relevance between synivitis and intestinal microbial flora has been a hypothesis for ten years. The PCR with sensitivity and specificity 99% for microorganism detection in acute, chronic and relapse form of septic arthritis is helpful.Methods: In this research we designed to diagnosis intestinal anaerobic bacteria which are able to occur bacteremia or septicemia. So amplification of the 16srRNA and narG genes in this type of bacteria is the best way for detection of them and followed by the treatment of the patients.Results: 100 patients with septic arthritis incidences were studied here. From these numbers 61% were bacterial arthritis and 18% were infected by anaerobic bacteria. Conclusion: On the base of coding of nitrate reductase, the positive samples were identified Enterobacter cloacae and Methylovorus sp. O157   Escherichia coli and Borrelia garinii.

  17. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.

    Science.gov (United States)

    Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M

    2018-01-16

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.

  18. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  19. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  20. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations

    NARCIS (Netherlands)

    Saad, S.; Bhatnagar, S.; Tegetmeyer, H.E.; Geelhoed, J.S.; Strous, M.; Ruff, S.E.

    2017-01-01

    SummaryFor the anaerobic remineralization of organic matter inmarine sediments, sulfate reduction coupled to fer-mentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidalsediments under defined conditions in continuousculture. We transiently exposed

  1. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  2. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Kubota, Takumi; Sasaki, Takayuki; Kudo, Akira

    2002-01-01

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, β α was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, K d , was measured. K d of humic acid can be evaluated from β α . The large value of β α and K d means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of β α of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the K d value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  3. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05).

  4. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  6. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  7. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haiyan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chinese Academy of Sciences (CAS), Beijing (China); Lin, Hui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zheng, Wang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tomanicek, Stephen J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johs, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Xinbin [Chinese Academy of Sciences (CAS), Beijing (China); Elias, Dwayne A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liang, Liyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

  8. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea

    Science.gov (United States)

    Kuypers, Marcel M. M.; Sliekers, A. Olav; Lavik, Gaute; Schmid, Markus; Jørgensen, Bo Barker; Kuenen, J. Gijs; Sinninghe Damsté, Jaap S.; Strous, Marc; Jetten, Mike S. M.

    2003-04-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean. Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N2 in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors. Nutrient profiles, fluorescently labelled RNA probes, 15N tracer experiments and the distribution of specific `ladderane' membrane lipids indicate that ammonium diffusing upwards from the anoxic deep water is consumed by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings indicates that anammox might be important in the oceanic nitrogen cycle.

  9. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    Science.gov (United States)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant

  10. Localized corrosion of carbon steels due to sulfate-reducing bacteria. Development of a specific sensor; Corrosion localisee des aciers au carbone induite par des bacteries sulfato-reductrices. Developpement d'un capteur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Monfort Moros, N.

    2001-11-01

    This work concerns the microbiologically influenced corrosion of carbon steels in saline anaerobic media (3% of NaCl) containing sulfato-reducing bacteria (Desulfovibrio gabonensis, DSM 10636). In these media, extreme localised corrosion occurs by pitting under the bio-film covering the metallic substrate. A sensor with concentric electrodes was designed to initiate the phenomenon of bio-corrosion, recreating the favourable conditions for growth of a corrosion pit, and then measuring the corrosion current maintained by bacterial activity. The pit initiation was achieved through either of two methods. The electrochemical conditioning involved driving the potential difference between inner and outer electrodes to values corresponding to a galvanic corrosion that can be maintained by the bacterial metabolism. The mechanical process involved removal of a portion of the bio-film by scratching, yielding galvanic potential differences equivalent to that found by the conditioning technique. This protocol was found to be applicable to a bio-corrosion study on industrial site for the monitoring of the metallic structures deterioration (patent EN 00/06114, May 2000). Thereafter, a fundamental application uses the bio-corrosion sensor for Electrochemical Impedance Spectroscopy (EIS), Electrochemical Noise Analysis (ENA) and current density cartography by the means of micro-electrodes. Thus, the EIS technique reveals the importance of the FeS corrosion products for initiation of bio-corrosion start on carbon steel. In addition, depending on the method used to create a pit, the ENA gives rise to supplementary processes (gaseous release) disturbing the bio-corrosion detection. The beginning of a bio-corrosion process on a clean surface surrounded with bio-film was confirmed by the current density cartography. These different results establish the sensor with concentric electrodes as an indispensable tool for bio-corrosion studies, both in the laboratory and on industrial sites

  11. Activity of endodontic antibacterial agents against selected anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Ferreira Cláudio Maniglia

    2002-01-01

    Full Text Available The antimicrobial activity of substances used as antibacterial agents (solutions of 10% calcium hydroxide, camphorated paramonochlorophenol - PMCC, 2% chlorhexidine digluconate and 10% castor oil plant detergent on anaerobic bacteria (Fusobacterium nucleatum ATCC 25586, Prevotella nigrescens ATCC 33563, Clostridium perfringens ATCC 13124 and Bacteroides fragilis ATCC 25285, using a broth dilution technique, was evaluated in vitro. For determination of minimum inhibitory and minimum bactericide concentrations (MIC and MBC, two culture broths, Reinforced Clostridial Medium (RCM and supplemented Brucella, standardized inoculum and serially diluted solutions were used. All antibacterial agents presented antimicrobial activity that varied for different bacteria. There were no differences in the performance of the two broths. Chlorhexidine digluconate was the most effective, with the lowest MICs, followed by castor oil detergent, PMCC and calcium hydroxide. C. perfringens and B. fragilis were the most resistant bacteria to all agents.

  12. Biogeography of anaerobic ammonia-oxidizing (anammox bacteria

    Directory of Open Access Journals (Sweden)

    Puntipar eSonthiphand

    2014-08-01

    Full Text Available Anaerobic ammonia-oxidizing (anammox bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP, anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, but broad scale anammox bacterial distributions, based on available data, have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6,000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. A co-occurrence network analysis indicated that Ca. Scalindua strongly correlated with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.

  13. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  14. Oral Anaerobic Bacteria in the Etiology of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Mesut Öğrendik

    2017-06-01

    Full Text Available Ankylosing spondylitis (AS is associated with periodontitis. Anti– Porphyromonas gingivalis and anti– Prevotella intermedia antibody titers were higher in patients with spondyloarthritis than in healthy people. Sulfasalazine is an effective antibiotic treatment for AS. Moxifloxacin and rifamycin were also found to be significantly effective. The etiology hypothesis suggests that oral anaerobic bacteria such as Porphyromonas spp and Prevotella spp contribute to the disease. These bacteria have been identified in AS, and we will discuss their pathogenic properties with respect to our knowledge of the disease. Periodontal pathogens are likely to be responsible for the development of AS in genetically susceptible individuals. This finding should guide the development of more comprehensive and efficacious treatment strategies for AS.

  15. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate......-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types...

  16. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianzheng; Zhu, Gefu; Ren, Nanqi; Bo, Lixin; He, Junguo [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering; Li, Baikun [University of Connecticut, Storrs, CT (United States). Department of Civil and Environmental Engineering

    2007-10-15

    Hydrogen production from diluted molasses by anaerobic fermentation bacteria was investigated in a three-compartment anaerobic baffled reactor (ABR) with an effective volume of 27.48 L. After being inoculated with aerobic activated sludge and operated at chemical oxygen demand (COD) of 5000 mg/L and temperature of 35 C for 26 days, the ABR achieved stable ethanol-type fermentation. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1254, 2053, and 2761 mg/L in the three compartments, respectively. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.3-4.4, -241 to -249mV, and 306-334mgCaCO{sub 3}/L, respectively. The hydrogen yield of the ABR was 32.51 L/d at the stable operation status, specific hydrogen production rate of anaerobic activated sludge was 0.13 L/g MLVSS d, and the substrate conversion rate was 0.13 L/g COD. Hydrogen yields, fermentation types, and acclimatization durations varied in each compartment, with the 1st compartment having lowest hydrogen yield but longest acclimatization duration and the 2nd and 3rd compartments having higher hydrogen yields but shorter acclimatization durations. The study found that the individual compartment configuration in the ABR system provided a favorable environment for different types of anaerobic bacteria. Compared with complete stirring tank reactor (CSTR), the ABR system had a better operation stability and microbial activity, which led to higher substrate conversion rate and hydrogen production ability. (author)

  17. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  18. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    Full Text Available ABSTRACT Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  19. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Michiko; Miyahara, Makoto [National Inst. of Health Sciences, Tokyo (Japan)

    2002-10-01

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D{sub 10}) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  20. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria.

    Science.gov (United States)

    Miyahara, Michiko; Miyahara, Makoto

    2002-01-01

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the D10 value of B. cereus at 4 degrees C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 degrees C. The gamma irradiation of the bacteria without incubation at 4 degrees C before irradiation was more effective than that of the bacteria with incubation overnight at 4 degrees C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 degrees C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation.

  1. Physiologically anaerobic microorganisms of the deep subsurface. Progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  2. The production of anaerobic bacteria and biogas from dairy cattle waste in various growth mediums

    Science.gov (United States)

    Hidayati, Y. A.; Kurnani, T. B. A.; Marlina, E. T.; Rahmah, K. N.; Harlia, E.; Joni, I. M.

    2018-02-01

    The growth of anaerobic bacteria except the ruminal fluid quailty is strongly influenced by the media formulations. Previous researchers have set a standard media formulation for anaerobic bacteria from rumen, however the use of standard media formulations require chemicals with high cost. Moreover, other constraint of using standard media formulations is requires large quantities of media for anaerobic bacteria to grow. Therefore, it is necessary to find media with a new culture media formulation. Media used in this research were minimalist media consist of Nutrient Agar (NA), Lactose broth and rumen fluid; enriched media Rumen Fluid-Glucose-Agar (RGCA); and enriched media 98-5. The dairy cattle waste is utilized as source of anaerobic bacteria. The obtained data was analyzed by descriptive approach. The results showed that minimalist media produced anaerobic bacteria 2148 × 104 cfu/ml and biogas production: 1.06% CH4, 9.893% CO2; enriched media Rumen Fluid-Glucose-Agar (RGCA) produced anaerobic bacteria 1848 × 104 cfu/ml and biogas production 4.644% CH4, 9.5356% CO2; enriched media 98-5 produced anaerobic bacteria growth 15400 × 104 cfu/ml and biogas production 0.83% of CH4, 42.2% of CO2. It is conclude that the minimalist media was showed the best performance for the dairy cattle waste as source of anaerobic bacteria.

  3. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  4. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.

    OpenAIRE

    Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

    1996-01-01

    A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of tolu...

  5. Can oral anaerobic bacteria cause adverse pregnancy outcomes?

    Science.gov (United States)

    Andonova, I; Iliev, V; Živković, N; Sušič, E; Bego, I; Kotevska, V

    2015-01-01

    Maternal periodontal infection has been recognized as a risk factor for premature and low birthweight infants. It is suspected that pathogens causing periodontal disease may translocate to the amniotic cavity and so contribute to triggering an adverse pregnancy outcome. The aim of this study was to evaluate whether the presence of specific periodontal pathogens may influence the incidence of preterm labor and premature birth. This study was designed as a hospital-based case-control study. A total of 70 pregnant women, aged 18-40 with single live pregnancy were recruited from the Departement of Gynecolgy and Obstetrics at a General hospital in Sibenik, Croatia, between March 2013 to March 2014. The case group: 30 pregnant women who were hospitalised with signs of premature labor. 40 patients with normal pregnancy post-delivery up to 48 hrs, who had given birth at term, and the baby had a weight of more than 2500 gr. These women had undergone microbiological examination at the time of recruitment, microbial samples, paper point subgingival swabs were obtained in both groups and processed by anaerobic culturing. Standard procedures were used for culture and identification of bacteria. Information was collected on demographics, health behaviors, and obstetric and systemic diseases that may have influence the premature delivery. The levels of periodontal pathogens tended to be higher in the premature (case group) labor compared to the term deliveries (control group). Levels of Porphyromonas gingivalis, Fuscobacterium nucleatum, Actinomyces actinomycetecomitans were statistically significantly higher in premature births as compared to term deliveries, adjusting for baseline levels. The joint effects of red and orange microbial clusters were significantly higher in the premature group compared to the term group. The study shows a significant association betwen periodontal anaerobic infection and adverse pregnancy outcome. High levels of periodontal pathogens during

  6. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients.

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-07-01

    Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics.

  7. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    2011-07-01

    Full Text Available Carbon monoxide (CO, well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH, the protein complex that enables anaerobic CO utilization has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extroraordinarily resistant to high CO concentrations, thiriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/Acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: One clade (CooA-1 is found in the majority of CooA containing bacteria, whereas the other clade (CooA-2 is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of

  8. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    Science.gov (United States)

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  9. Anaerobic hydrocarbon and fatty acid metabolism by syntrophic bacteria and their impact on carbon steel corrosion

    Directory of Open Access Journals (Sweden)

    Christopher Neil Lyles

    2014-04-01

    Full Text Available The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11 or a methanogen (M. hungatei. The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

  10. Sulfate reducing potential in an estuarine beach

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.

    . g/1) of SRB in these depths was 1.27 x 10 super(2), 2.01 x 10 super(2) and 2.36 x 10 super(2) respectively. The averages of ratio of aerobic flora to SRB were 87.6, 61.4 and 27.6 and the anaerobic to the SRB were 3.1, 1.7 and 0.92 at 1, 3 and 5 cm...

  11. Destruction by Anaerobic Mesophilic and Thermophilic Digestion of Viruses and Indicator Bacteria Indigenous to Domestic Sludges

    OpenAIRE

    Berg, Gerald; Berman, Donald

    1980-01-01

    In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria were poor quantitative reflectors of the numbers of the viruses detected. Mesophilic and thermophilic digestion of anaerobic sludges destroyed all three indicator bacteria more rapidly than such digestion destroyed the viruses. The relative...

  12. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.

    Science.gov (United States)

    Pavlekovic, Marko; Schmid, Markus C; Schmider-Poignee, Nadja; Spring, Stefan; Pilhofer, Martin; Gaul, Tobias; Fiandaca, Mark; Löffler, Frank E; Jetten, Mike; Schleifer, K-H; Lee, Natuschka M

    2009-08-01

    Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2

  13. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling.

    Science.gov (United States)

    Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; Reardon, Kenneth F; Pruden, Amy

    2012-10-01

    Sulfate-reducing permeable reactive zones (SR-PRZs) depend upon a complex microbial community to utilize a lignocellulosic substrate and produce sulfides, which remediate mine drainage by binding heavy metals. To gain insight into the impact of the microbial community composition on the startup time and pseudo-steady-state performance, functional genes corresponding to cellulose-degrading (CD), fermentative, sulfate-reducing, and methanogenic microorganisms were characterized in columns simulating SR-PRZs using quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE). Duplicate columns were bioaugmented with sulfate-reducing or CD bacteria or biostimulated with ethanol or carboxymethyl cellulose and compared with baseline dairy manure inoculum and uninoculated controls. Sulfate removal began after ~ 15 days for all columns and pseudo-steady state was achieved by Day 30. Despite similar performance, DGGE profiles of 16S rRNA gene and functional genes at pseudo-steady state were distinct among the column treatments, suggesting the potential to control ultimate microbial community composition via bioaugmentation and biostimulation. qPCR revealed enrichment of functional genes in all columns between the initial and pseudo-steady-state time points. This is the first functional gene-based study of CD, fermentative and sulfate-reducing bacteria and methanogenic archaea in a lignocellulose-based environment and provides new qualitative and quantitative insight into startup of a complex microbial system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    Science.gov (United States)

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-06

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Copyright © 2015, American Association for the Advancement of Science.

  15. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. METABOLISM OF SULFATE-REDUCING PROKARYOTES

    NARCIS (Netherlands)

    HANSEN, TA

    1994-01-01

    Dissimilatory sulfate reduction is carried out by a heterogeneous group of bacteria and archaea that occur in environments with temperatures up to 105 degrees C. As a group together they have the capacity to metabolize a wide variety of compounds ranging from hydrogen via typical organic

  17. DIRECT FLOW-CYTOMETRY OF ANAEROBIC-BACTERIA IN HUMAN FECES

    NARCIS (Netherlands)

    VANDERWAAIJ, LA; MESANDER, G; LIMBURG, PC; VANDERWAAIJ, D

    1994-01-01

    We describe a flow cytometry method for analysis of noncultured anaerobic bacteria present in human fecal suspensions. Nonbacterial fecal compounds, bacterial fragments, and large aggregates could be discriminated from bacteria by staining with propidium iodide (PI) and setting a discriminator on PI

  18. Anaerobic Bacteria in Clinical Specimens – Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital

    Science.gov (United States)

    Shenoy, Padmaja Ananth; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-01-01

    Introduction Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. Aim To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. Materials and Methods A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Results Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Conclusion Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections. PMID:28892897

  19. Anaerobic Bacteria in Clinical Specimens - Frequent, But a Neglected Lot: A Five Year Experience at a Tertiary Care Hospital.

    Science.gov (United States)

    Shenoy, Padmaja Ananth; Vishwanath, Shashidhar; Gawda, Ashwini; Shetty, Seema; Anegundi, Renuka; Varma, Muralidhar; Mukhopadhyay, Chiranjay; Chawla, Kiran

    2017-07-01

    Anaerobic bacteria which constitute a significant proportion of the normal microbiota also cause variety of infections involving various anatomic sites. Considering the tedious culture techniques with longer turnaround time, anaerobic cultures are usually neglected by clinicians and microbiologists. To study the frequency of isolation of different anaerobic bacteria from various clinical specimens. A retrospective study to analyse the frequency of isolation of different anaerobic bacteria, was conducted over a period of five years from 2011 to 2015 including various clinical specimens submitted to anaerobic division of Microbiology laboratory. Anaerobic bacteria were isolated and identified following standard bacteriological techniques. Pathogenic anaerobes (n=336) were isolated from 278 (12.48%) of overall 2227 specimens processed with an average yield of 1.2 isolates. Anaerobes were isolated as polymicrobial flora with or without aerobic bacterial pathogens in 159 (57.2%) patients. Anaerobic Gram-negative bacilli (140, 41.7%) were the predominant isolates. B. fragilis group (67, 19.9%) were the most commonly isolated anaerobic pathogens. Anaerobes were predominantly isolated from deep seated abscess (23.9%). Pathogenic anaerobes were isolated from various infection sites. Unless culture and susceptibility tests are performed as a routine, true magnitude of antimicrobial resistance among anaerobic pathogens will not be known. Knowledge of the distribution of these organisms may assist in the selection of appropriate empirical therapy for anaerobic infections.

  20. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  1. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  2. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents are to be ex...

  3. Isolation and identification of intestinal bacteria from Japanese tree frog (Hlya japonica) with the special reference to anaerobic bacteria.

    Science.gov (United States)

    Benno, Y; Izumi-Kurotani, A; Yamashita, M

    1992-08-01

    The bacteria in the large intestines of eight Japanese tree frogs (Hlya japonica) were enumerated by using an anaerobic culture system. The microorganisms at approximately 3.1 x 10(9) bacteria per g (wet weight) of intestinal contents were present in the intestine of all the frogs tested. No difference of the total bacteria in the frog intestine was observed between two different incubation-temperatures (room temperature and 37 degrees C). Eleven genera and 16 species were isolated from the frog intestine. In most frogs, Bacteroides (B.) caccae and B. vulgatus were detected as the predominant organisms. Escherichia coli was also present in greater numbers in the intestine. Other bacteria isolated at high dilutions were strict anaerobes, including Fusobacterium and Clostridium. Enterococcus faecalis was frequently isolated from the frog intestine. However, four genera of Bifidobacterium, Eubacterium, Peptostreptococcus, and Lactobacillus were not isolated from the frog intestine.

  4. Present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations

    Science.gov (United States)

    Oremland, R.S.

    1989-01-01

    If the primordial atmosphere was reducing, then the first microbial ecosystem was probably composed of anaerobic bacteria. However, despite the presence of an oxygen-rich atmosphere, anaerobic habitats are important, commonplace components of the Earth's present biosphere. The geochemical activities displayed by these anaerobes impact the global cycling of certain elements (e.g., C, N, S, Fe, Mn, etc.). Methane provides an obvious example of how human-enhanced activities on a global scale can influence the content of a "radiative" (i.e., infrared absorbing) trace gas in the atmosphere. Methane can be oxidized by anaerobic bacteria, but this does not appear to support their growth. Acetylene, however, does support such growth. This may form the basis for future exobiological investigations of the atmospheres of anoxic, hydrocarbon-rich planets like Jupiter and Saturn, as well as the latter's satellite Titan. ?? 1989.

  5. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Adler, H.I.; Crow, W.D.; Hadden, C.T.; Hall, J.; Machanoff, R.

    1983-01-01

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  6. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012.

    Science.gov (United States)

    Lee, Yangsoon; Park, Yeon Joon; Kim, Mi Na; Uh, Young; Kim, Myung Sook; Lee, Kyungwon

    2015-09-01

    Periodic monitoring of regional or institutional resistance trends of clinically important anaerobic bacteria is recommended, because the resistance of anaerobic pathogens to antimicrobial drugs and inappropriate therapy are associated with poor clinical outcomes. There has been no multicenter study of clinical anaerobic isolates in Korea. We aimed to determine the antimicrobial resistance patterns of clinically important anaerobes at multiple centers in Korea. A total of 268 non-duplicated clinical isolates of anaerobic bacteria were collected from four large medical centers in Korea in 2012. Antimicrobial susceptibility was tested by the agar dilution method according to the CLSI guidelines. The following antimicrobials were tested: piperacillin, piperacillin-tazobactam, cefoxitin, cefotetan, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, metronidazole, and tigecycline. Organisms of the Bacteroides fragilis group were highly susceptible to piperacillin-tazobactam, imipenem, and meropenem, as their resistance rates to these three antimicrobials were lower than 6%. For B. fragilis group isolates and anaerobic gram-positive cocci, the resistance rates to moxifloxacin were 12-25% and 11-13%, respectively. Among B. fragilis group organisms, the resistance rates to tigecycline were 16-17%. Two isolates of Finegoldia magna were non-susceptible to chloramphenicol (minimum inhibitory concentrations of 16-32 mg/L). Resistance patterns were different among the different hospitals. Piperacillin-tazobactam, cefoxitin, and carbapemems are highly active beta-lactam agents against most of the anaerobes. The resistance rates to moxifloxacin and tigecycline are slightly higher than those in the previous study.

  7. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  9. Study of hydrogen producing bacteria in anaerobic digester

    Energy Technology Data Exchange (ETDEWEB)

    Kexin, L.; Jieguan, X.; Duoqun, L.; Guochao, S.; Tingjie, S.

    1980-01-01

    Hydrogen was produced vigorously by adding tuber mill of Dioscorea zingiberensis to enrich a culture of biogas sludge. Hydrogen-producig bacteria were able to be enriched in this way and twenty-four strains of hydrogen-producing bacteria were isolated. The amount of hydrogen produced varied with the species of bacteria and the media used. These bacteria were identified as Enterobacter cloacae, Escherichia coli, Serratia marcescens, Citrobacter freudii, Hafina alvei and Clostridium acetobutylicum. E. cloacae may be the major component. Its relative number was about 58.3% of the total number of bacteria isolated, and S. marcescens, about 16.7% and C. acetobutylicum, about 12.5%. The methane content in the biogas was greatly increased by adding a mixed culture of hydrogen-producing bacteria to an enriched culture of biogas sludge. The carbon dioxide content in it was obviously reduced. 8 references.

  10. Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin.

    Science.gov (United States)

    Mayorga, Melissa; Rodríguez-Cavallini, Evelyn; López-Ureña, Diana; Barquero-Calvo, Elías; Quesada-Gómez, Carlos

    2015-12-01

    The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the

  11. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...... by anammox bacteria below the oxic zone. This is the first time that anammox bacteria have been identified and directly linked to the removal of fixed inorganic nitrogen in the environment. The widespread occurrence of ammonium consumption in suboxic marine settings(5-7) indicates that anammox might...

  12. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    .0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2....... Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect...

  13. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  14. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011.

    Science.gov (United States)

    Marchand-Austin, Alex; Rawte, Prasad; Toye, Baldwin; Jamieson, Frances B; Farrell, David J; Patel, Samir N

    2014-08-01

    The local epidemiology of antimicrobial susceptibility patterns in anaerobic bacteria is important in guiding the empiric treatment of infections. However, susceptibility data are very limited on anaerobic organisms, particularly among non-Bacteroides organisms. To determine susceptibility profiles of clinically-significant anaerobic bacteria in Ontario Canada, anaerobic isolates from sterile sites submitted to Public Health Ontario Laboratory (PHOL) for identification and susceptibility testing were included in this study. Using the E-test method, isolates were tested for various antimicrobials including, penicillin, cefoxitin, clindamycin, meropenem, piperacillin-tazobactam and metronidazole. The MIC results were interpreted based on guidelines published by Clinical and Laboratory Standards Institute. Of 2527 anaerobic isolates submitted to PHOL, 1412 were either from sterile sites or bronchial lavage, and underwent susceptibility testing. Among Bacteroides fragilis, 98.2%, 24.7%, 1.6%, and 1.2% were resistant to penicillin, clindamycin, piperacillin-tazobactam, and metronidazole, respectively. Clostridium perfringens was universally susceptible to penicillin, piperacillin-tazobactam, and meropenem, whereas 14.2% of other Clostridium spp. were resistant to penicillin. Among Gram-positive anaerobes, Actinomyces spp., Parvimonas micra and Propionibacterium spp. were universally susceptible to β-lactams. Eggerthella spp., Collinsella spp., and Eubacterium spp. showed variable resistance to penicillin. Among Gram-negative anaerobes, Fusobacterium spp., Prevotella spp., and Veillonella spp. showed high resistance to penicillin but were universally susceptible to meropenem and piperacillin-tazobactam. The detection of metronidazole resistant B. fragilis is concerning as occurrence of these isolates is extremely rare. These data highlight the importance of ongoing surveillance to provide clinically relevant information to clinicians for empiric management of

  15. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  16. In vivo IgA coating of anaerobic bacteria in human faeces

    NARCIS (Netherlands)

    vanderWaaij, LA; Limburg, PC; Mesander, G; vanderWaaij, D

    The bacterial flora in the human colon, although extremely diverse, has a relatively stable composition and non-infectious anaerobic bacteria are dominant. The flora forms a pool of numerous different antigens separated from mucosal immunocompetent cells by just a single layer of epithelial cells.

  17. Aerobic and facultative anaerobic bacteria from gut of red palm weevil

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... in the intestinal termite gut play key physiological functions. These functions are: cellulose and ... facultative anaerobic bacteria isolated from termite's intestine including Burkholderia sp. and Citrobacter sp. .... The diversity of intestinal microbiota signifies the need for special requirements for cultivation.

  18. Anaerobic degradation of nonylphenol in sludge.

    Science.gov (United States)

    Chang, B V; Chiang, F; Yuan, S Y

    2005-06-01

    We investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in sludge. NP (5 mg/l) anaerobic degradation rate constants were 0.029 1/day for sewage sludge and 0.019l/day for petrochemical sludge, and half-lives were 23.9 days and 36.5 days respectively. The optimal pH for NP degradation in sludge was 7 and the degradation rate was enhanced when the temperature was increased. The addition of yeast extract (5 mg/l) or surfactants such as brij 30 or brij 35 (55 or 91 microM) also enhanced the NP degradation rate. The addition of aluminum sulfate (200 mg/l) inhibited the NP degradation rate within 84 days of incubation. The high-to-low order of degradation rates was: sulfate-reducing conditions>methanogenic conditions>nitrate-reducing conditions. Sulfate-reducing bacteria, methanogen, and eubacteria are involved in the degradation of NP, sulfate-reducing bacteria being a major component of sludge.

  19. Extensive evaluation of fastidious anaerobic bacteria recovery from the Copan eSwab® transport system.

    Science.gov (United States)

    Demuyser, Thomas; De Geyter, Deborah; Van Dorpe, Daisy; Vandoorslaer, Kristof; Wybo, Ingrid

    2018-01-01

    Anaerobic infections are difficult to diagnose and treat, because of the often slow in vitro growth, the polymicrobial nature and the increasing antimicrobial resistance. Furthermore because of their fastidiousness, anaerobic bacteria often stay unrecognized in clinical practice. Clinical specimens potentially harboring these species require special handling to permit satisfactory recovery of these potential important pathogens. In a clinical setting, temporary storage and transportation to the laboratory are unavoidable before these specimens can be cultured. In the current study we expand the knowledge about the recovery of a wide range of clinically relevant anaerobic bacteria from an eSwab® container after different storage durations and temperatures. Our findings support the use of the eSwab® container as a relative short-term storage unit for anaerobic species. When stored at 2-4°C immediately after inoculation, all anaerobic species (except for Clostridium clostridioforme) can be recovered from the liquid Amies medium until 1day post-specimen collection. Because most samples in the clinical setting are processed in this time span, the eSwab® container is sufficiently capable of retaining viability in daily routine. However; because of inevitable centralization of clinical laboratories, adequate storage of these specimens for an extended period of time will be essential in the future. Therefore in certain cases, when viability is desired for longer periods (>1day), storage of the containers at 2-4°C is certainly advisable. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-01-01

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria. PMID:29112122

  1. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-11-07

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

  2. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  3. Biogeography of sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.; Loy, A.; Antheunisse, A.M.; Loeb, R.; Bodelier, P.L.E.; Laanbroek, R.

    2008-01-01

    In this study, a large-scale field survey was conducted to describe the biogeography of sulfate-reducing prokaryotes (SRPs) in river floodplains. Fingerprints obtained with three methods, i.e. 16S rRNA gene-based oligonucleotide microarray, dsrB-based denaturing gradient gel electrophoresis (DGGE)

  4. Immobilization of anaerobic bacteria on rubberized-coir for psychrophilic digestion of night soil.

    Science.gov (United States)

    Dhaked, Ram Kumar; Ramana, Karna Venkat; Tomar, Arvind; Waghmare, Chandrakant; Kamboj, Dev Vrat; Singh, Lokendra

    2005-08-01

    Low-ambient temperatures, biodigesters due to low-growth rate of the constituent bacterial consortium. Immobilization of anaerobic bacteria has been attempted in the biodigester operating at 10 degrees C. Various matrices were screened and evaluated for the immobilization of bacteria in digesters. Anaerobic digestion of night soil was carried out with hydraulic retention time in the range of 9-18 days. Among the tested matrices, rubberized-coir was found to be the most useful at 10 degrees C with optimum hydraulic retention time of 15 days. Optimum amount of coir was found as 25 g/L of the working volume of biodigesters. Immobilization of bacteria on the coir was observed by scanning electron microscopy and fluorescent microscopy. The study indicates that rubberized-coir can be utilized to increase biodegradation of night soil at higher organic loading. Another advantage of using this matrix is that it is renewable and easily available in comparison to other synthetic polymeric matrices.

  5. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  6. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria

    NARCIS (Netherlands)

    Paulo, A.; Plugge, C.M.; Garcia Encina, P.A.; Stams, A.J.M.

    2013-01-01

    Two denitrifying bacteria were isolated using sodium dodecyl sulfate (SDS) as substrate. Strains SN1 and SN2 were isolated from an activated sludge reactor of a wastewater treatment plant (WWTP) with Anaerobic–Anoxic–Oxic (A2/O) steps. Based on 16S rRNA gene analysis strain SN1 is 99% similar to

  7. Immunochemical Investigations of Cell Surface Antigens of Anaerobic Bacteria.

    Science.gov (United States)

    1976-01-15

    has also been visulalized . With use of a radioactive anti’qen bindinq assay, antibody to this capsularpolysaccharide has been demonstrated in anti- sera...With many bacteria, serogrouning is based on cansular oolysaccharide antigens. Serogrouping has led to much valuable epidemiologic information

  8. Bacteremia due to anaerobic bacteria: epidemiology in a northern Bari Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Distasi

    2015-06-01

    Full Text Available Background. Anaerobic bacteria are part of the commensal bacterial flora of skin and mucosae. Iatrogenic and pathological conditions altering this commensal relationship cause life-threatening diseases. Materials and Methods. We analysed the blood cultures sent to the microbiology of our hospital between 2008 and the first quarter of 2013 to measure the frequency of bacteraemia caused by anaerobia. We examined 3138 vials of blood cultures for anaerobia, inoculated following in-house standard procedures. The colonies grown in absence of air were subjected to biochemical analysis. The MICs of metronidazole for 23 of the 26 organisms was tested. Results. Twelve bacteria of the Bacteroides genus were identified, 9 Propionibacterium acnes, 1 Peptosctreptococcus micros, 1 Lactobacillus acidophilus, 1 Clostridium perfringens, 1 Prevotella oralis, 1 Eubacterium lentum. Conclusions. The analysis of the results suggests that the incidence of cultures positive to anaerobia was constant across the years. We note that advanced age, altered mucocutaneous tropism, alterations to the oral and intestinal bacterial flora intensify the risk of anaerobial pathogenicity. The analysis of the metronidazole-determined MIC suggests that the intestinal anaerobic flora responds well to therapy and prophylaxis with Metronidazole, while the anaerobic bacteria residing on skin and other mucosae are resistant. It is however hard to determine the clinical impact of anaerobic bacteremiae and their effect on the outcome of the patient, due to the scarcity of available clinical data.

  9. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria.

    Science.gov (United States)

    Boyanova, Lyudmila

    2017-04-01

    Microbial endocrinology is a relatively new research area that already encompasses the anaerobes. Stress hormones, epinephrine and norepinephrine, can affect the growth of anaerobic bacteria such as Fusobacterium nucleatum, Prevotella spp., Porhyromonas spp., Tanerella forsythia and Propionibacterium acnes and can increase virulence gene expression, iron acquisition and many virulence factors of some anaerobic species such as Clostridium perfringens, Porphyromonas gingivalis and Brachyspira pilosicoli. Epinephrine and norepinephrine effects can lead to a growth increase or decrease, or no effect on the growth of the anaerobes. The effects are species-specific and perhaps strain-specific. Discrepancies in the results of some studies can be due to the different methods and media used, catecholamine concentrations, measurement techniques and the low number of strains tested. Biological effects of the stress hormones on the anaerobes may range from halitosis and a worsening of periodontal diseases to tissue damages and atherosclerotic plaque ruptures. Optimizations of the research methods and a detailed assessment of the catecholamine effects in conditions mimicking those in affected organs and tissues, as well as the effects on the quorum sensing and virulence of the anaerobes and the full spectrum of biological consequences of the effects are interesting topics for further evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  11. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot.

    Science.gov (United States)

    Lorenzo, María; García, Nuria; Ayala, Juan Alfonso; Vadillo, Santiago; Píriz, Segundo; Quesada, Alberto

    2012-05-25

    Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Relationship between nitrogen-fixing sulfate reducers and fermenters in salt marsh sediments and roots of Spartina alterniflora.

    OpenAIRE

    Gandy, E L; Yoch, D C

    1988-01-01

    A combination of inhibitors and carbon substrates was used to determine the relative contribution of sulfate-reducing bacteria (SRB) and fermenting bacteria to nitrogen fixation in a salt marsh sediment and on the roots of Spartina alterniflora. Because a lag period precedes acetylene-reducing activity (ARA) in amended sediments, an extensive analysis was done to be sure that this activity was due to the activation of dormant cells, not simply to cell proliferation. Since ARA was not affected...

  13. Incidence of anaerobic bacteria in patients with suspected pneumonia in surgical Intensive Care Unit.

    Science.gov (United States)

    Clavier, T; Gouin, P; Frebourg, N; Rey, N; Royon, V; Bergis, A; Hobeika, S; Dureuil, B; Veber, B

    2014-10-01

    Few studies have investigated the incidence of pulmonary anaerobes in a specific population in surgical Intensive Care Unit (ICU). The objective of this work was to determine the incidence of anaerobes in surgical ICU patients with suspected pneumonia. This was a prospective observational, single-center study. Analysis was based on data collected over 30 months from the surgical ICU of a tertiary care hospital (Rouen University Hospital), including data on risk factors for anaerobes in the lungs. Patients with suspected pneumonia (community-acquired or nosocomial) were included. Bacteriological sampling was performed by protected distal bronchial sampling (PDBS) with minilavage under bronchoscopy. Aerobic and anaerobic cultures were performed for each sample. Clinicians were only aware of aerobic results. Univariate and multivariate statistical analysis compared groups with and without anaerobes. A total of 134 samples were obtained from 117 patients. Surgery was performed on 74 patients (63.2%), within 24 hours of admission. Fifty-four patients (46.2%) had a chest trauma and 20 patients (17.1%) were admitted for a digestive pathology. Average age was 53.6±20.9 years and sex ratio was 5.9 (100 men/17 women). Average SAPS II was 41.6±15.1, median length of ICU stay was 23 days (25th percentile=13, 75th percentile=33), and median duration of mechanical ventilation was 21 days (25th percentile=11, 75th percentile=28). Mortality rate in ICU was 14.5%. After sampling, diagnosis of pneumonia was confirmed in 70 cases (52.2%). Anaerobe cultures were positive in 11 samples taken from 11 different patients (overall incidence 8.2%). Aerobic bacteria were also involved in 9 patients (81.8%). In univariate analysis, enteral feeding (P=0.02) and absence of catecholamines at time of sampling (P=0.003) were significantly associated with the presence of anaerobes in PDBS. Enteral nutrition was also found to be a risk factor in multivariate analysis (OR=11.8, 95% CI [1.36 to 102

  14. In-vitro activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota.

    Science.gov (United States)

    Weintraub, Andrej; Rashid, Mamun-Ur; Nord, Carl Erik

    2016-12-01

    Solithromycin is a novel fluoroketolide with high activity against bacteria associated with community-acquired respiratory tract infections as well as gonorrhea. However, data on the activity of solithromycin against anaerobic bacteria from the normal intestinal microbiota are scarce. In this study, 1024 Gram-positive and Gram-negative anaerobic isolates from the normal intestinal microbiota were analyzed for in-vitro susceptibility against solithromycin and compared to azithromycin, amoxicillin/clavulanic acid, ceftriaxone, metronidazole and levofloxacin by determining the minimum inhibitory concentration (MIC). Solithromycin was active against Bifidobacteria (MIC 50 , 0.008 mg/L) and Lactobacilli (MIC 50 , 0.008 mg/L). The MIC 50 for Clostridia, Bacteroides, Prevotella and Veillonella were 0.5, 0.5, 0.125 and 0.016 mg/L, respectively. Gram-positive anaerobes were more susceptible to solithromycin as compared to the other antimicrobials tested. The activity of solithromycin against Gram-negative anaerobes was equal or higher as compared to other tested agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Schouten, Stefan; Strous, Marc; Kuypers, Marcel M M; Rijpstra, W Irene C; Baas, Marianne; Schubert, Carsten J; Jetten, Mike S M; Sinninghe Damsté, Jaap S

    2004-06-01

    Isotopic analyses of Candidatus "Brocadia anammoxidans," a chemolithoautotrophic bacterium that anaerobically oxidizes ammonium (anammox), show that it strongly fractionates against (13)C; i.e., lipids are depleted by up to 47 per thousand versus CO(2). Similar results were obtained for the anammox bacterium Candidatus "Scalindua sorokinii," which thrives in the anoxic water column of the Black Sea, suggesting that different anammox bacteria use identical carbon fixation pathways, which may be either the Calvin cycle or the acetyl coenzyme A pathway.

  16. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria

    OpenAIRE

    Li, Meng; Gu, Ji-Dong

    2011-01-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochem...

  17. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria

    Czech Academy of Sciences Publication Activity Database

    Čermák, P.; Olšovská, J.; Mikyška, A.; Dušek, M.; Kadlečková, Z.; Vaníček, J.; Nyč, O.; Sigler, Karel; Bostíková, V.; Bostík, P.

    2017-01-01

    Roč. 125, č. 11 (2017), s. 1033-1038 ISSN 0903-4641 Institutional support: RVO:61388971 Keywords : Xanthohumol * gut * anaerobic bacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.795, year: 2016

  18. [Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria].

    Science.gov (United States)

    Vasilian, A; Trchunian, A

    2008-01-01

    Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.

  19. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  20. Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxide nanoparticles.

    Science.gov (United States)

    Alasvand Zarasvand, Kiana; Rai, V Ravishankar

    2016-06-01

    To control the severe problem of microbiologically influenced corrosion, industries require highly potent antibacterial agent which can inhibit the growth of bacteria on man-made surfaces. This need drove the research towards the synthesis of nanoscale antimicrobial compounds. We, therefore, screened several bacteria for the biosynthesis of copper/copper compound nanoparticles which could inhibit the growth of Desulfovibrio marinisediminis, a sulfate reducing bacterium. Supernatant of thirty bacteria isolated from the biofilm formed on ship hull was mixed with 1 mM CuCl 2 solution at room temperature. Eight bacterial strains, whose mixtures exhibited colour change, were selected for antimicrobial test. One nanoparticle which has been biosynthesized by Shewanella indica inhibited the growth of D. marinisediminis. Characterization of this particle by UV-visible spectrophotometer, XRD, TEM, DLS and FTIR showed that the particle is polydisperse CuO nanoparticle with average size of 400 nm.

  1. [Isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity].

    Science.gov (United States)

    Lu, Wenxin; Wu, Fanzi; Zhou, Xinxuan; Wu, Lan; Li, Mingyun; Ren, Biao; Guo, Qiang; Huang, Ruijie; Li, Jiyao; Xiao, Liying; Li, Yan

    2015-12-01

    To establish a systematic method for isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity. Samples of the saliva, dental plaque and periapical granulation tissue were collected from 20 subjects with healthy oral condition and from 8 patients with different oral diseases. The bacteria in the samples were identified by morphological identification, VITEK automatic microorganism identification and 16s rRNA gene sequencing. VITEK automatic microorganism identification and 16s rRNA gene sequencing showed an agreement rate of 22.39% in identifying the bacteria in the samples. We identified altogether 63 bacterial genus (175 species), among which Streptococcus, Actinomyces and Staphylococcus were the most common bacterial genus, and Streptococcus anginosus, Actinomyces oris, Streptococcus mutans and Streptococcus mitis were the most common species. Streptococcus anginosus was commonly found in patients with chronic periapical periodontitis. Streptococcus intermedius and Staphylococcus aureus were common in patients with radiation caries, and in patients with rampant caries, Streptococcus mutans was found at considerably higher rate than other species. Aerobic and facultative anaerobic bacteria are commonly found in the oral cavity, and most of them are gram-positive. 16s rRNA gene sequencing is more accurate than VITEK automatic microorganism identification in identifying the bacteria.

  2. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.

    Science.gov (United States)

    Mohamed, Naglaa M; Saito, Keiko; Tal, Yossi; Hill, Russell T

    2010-01-01

    Aerobic ammonia-oxidizing bacteria (AAOB) are known to have an important function in the marine nitrogen cycle. Anaerobic ammonium oxidation (anammox) carried out by some members of Planctomycetales is also an important process in marine ecosystems. Ammonia-monooxygenase gene (amoA) fragments were amplified to investigate the potential for nitrification and the diversity of the AAOB in two marine sponges Ircinia strobilina and Mycale laxissima. All of the AmoA sequences obtained from the two sponges clustered with the AmoA sequences of the Betaproteobacteria Nitrosospira spp. To investigate the anaerobic ammonia-oxidizing bacteria (AnAOB) in sponges, 16S rRNA gene fragments of Planctomycetales and anammox bacteria were also amplified with specific primers, and clone libraries were constructed. The Planctomycetales diversity detected in the two sponges was different. The Planctomycetales community in M. laxissima was affiliated with Pirellula, Planctomyces and anammox bacteria, while all of the I. strobilina Planctomycetales clones were solely affiliated with the candidate phylum 'Poribacteria'. Interestingly, sequences related to anammox genera were recovered only from M. laxissima. This is the first report of anammox bacteria in marine sponges. It is intriguing to find AAOB and AnAOB in M. laxissima, but the nature of their interaction with the sponge host and with each other remains unclear. This work further supports the potential of sponge-associated microorganisms for nitrification and sheds light on anammox as a new aspect of the nitrogen cycle in marine sponges.

  3. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Mi-Sun Kim; You-Kwan Oh; Young-Su Yun; Dong-Yeol Lee

    2006-01-01

    Continuous H 2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H 2 -producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H 2 production rate increased but the H 2 production yield to glucose decreased gradually. The H 2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH 4 was detected during the operation. The maximal volumetric H 2 production rate and H 2 yield to glucose were 1714 mmol H 2 /L.d and 1.1 mol H 2 /mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H 2 production. (authors)

  4. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Kampman, Christel; Hendrickx, Tim L.G.; Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M.; Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy

    2012-01-01

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO 2 − -N/L d (using synthetic medium) and 37.8 mg NO 2 − -N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  5. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  6. [Markers of antimicrobial drug resistance in the most common bacteria of normal facultative anaerobic intestinal flora].

    Science.gov (United States)

    Plavsić, Teodora

    2011-01-01

    Bacteria of normal intestinal flora are frequent carriers of markers of antimicrobial drug resistance. Resistance genes may be exchanged with other bacteria of normal flora as well as with pathogenic bacteria. The increase in the number of markers of resistance is one of the major global health problems, which induces the emergence of multi-resistant strains. The aim of this study is to confirm the presence of markers of resistance in bacteria of normal facultative anaerobic intestinal flora in our region. The experiment included a hundred fecal specimens obtained from a hundred healthy donors. A hundred bacterial strains were isolated (the most numerous representatives of the normal facultative-anaerobic intestinal flora) by standard bacteriological methods. The bacteria were cultivated on Endo agar and SS agar for 24 hours at 37 degrees C. Having been incubated, the selected characteristic colonies were submitted to the biochemical analysis. The susceptibility to antimicrobial drugs was tested by standard disc diffusion method, and the results were interpreted according to the Standard of Clinical and Laboratory Standards Institute 2010. The marker of resistance were found in 42% of the isolated bacteria. The resistance was the most common to ampicillin (42% of isolates), amoxicillin with clavulanic acid (14% of isolates), cephalexin (14%) and cotrimoxazole (8%). The finding of 12 multiresistant strains (12% of isolates) and resistance to ciprofloxacin were significant. The frequency of resistance markers was statistically higher in Klebsiella pneumoniae compared to Escherichia coli of normal flora. The finding of a large number of markers of antimicrobial drug resistance among bacteria of normal intestinal flora shows that it is necessary to begin with systematic monitoring of their antimicrobial resistance because it is an indicator of resistance in the population.

  7. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    Science.gov (United States)

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  8. Anaerobic bacteria and antibiotics: What kind of unexpected resistance could I find in my laboratory tomorrow?

    Science.gov (United States)

    Dubreuil, L; Odou, M F

    2010-12-01

    The purpose of this article is to set out some important considerations on the main emerging antibiotic resistance patterns among anaerobic bacteria. The first point concerns the Bacteroides fragilis group and its resistance to the combination of β-lactam+β-lactamase inhibitor. When there is overproduction of cephalosporinase, it results in increased resistance to the β-lactams while maintaining susceptibility to β-lactams/β-lactamase inhibitor combinations. However, if another resistance mechanism is added, such as a loss of porin, resistances to β-lactam+β-lactamase inhibitor combinations may occur. The second point is resistance to metronidazole occurring due to nim genes. PCR detection of nim genes alone is not sufficient for predicting resistance to metronidazole; actual MIC determinations are required. Therefore, it can be assumed that other resistance mechanisms can also be involved. Although metronidazole resistance remains rare for the B. fragilis group, it has nevertheless been detected worldwide and also been observed spreading to other species. In some cases where there is only a decreased susceptibility, clinical failures may occur. The last point concerns resistance of Clostridium species to glycopeptides and lipopeptides. Low levels of resistance have been detected with these antibiotics. Van genes have been detected not only in clostridia but also in other species. In conclusion, antibiotic resistance involves different mechanisms and affects many anaerobic species and is spreading worldwide. This demonstrates the need to continue with antibiotic resistance testing and surveys in anaerobic bacteria. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Science.gov (United States)

    Yamasaki, Kei; Kawanami, Toshinori; Yatera, Kazuhiro; Fukuda, Kazumasa; Noguchi, Shingo; Nagata, Shuya; Nishida, Chinatsu; Kido, Takashi; Ishimoto, Hiroshi; Taniguchi, Hatsumi; Mukae, Hiroshi

    2013-01-01

    Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%), Haemophilus influenzae (18.8%), Mycoplasma pneumoniae (17.2%)], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6%) and oral bacteria (15.6%) than previous reports. Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  10. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  11. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  12. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  13. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria

    NARCIS (Netherlands)

    Veloo, A. C. M.; Elgersma, P. E.; Friedrich, A. W.; Nagy, E.; van Winkelhoff, A. J.

    2014-01-01

    With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the

  14. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria....... The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a sudden lack of oxygen. In contrast, nitrate-respiring, fermenting bacteria, e.g., Bacillus and Escherichia...... spp, formed microcolonies under anaerobic conditions with or without the presence of nitrate and irrespective of aerobic or anaerobic preculture conditions....

  15. Validation of a for anaerobic bacteria optimized MALDI-TOF MS biotyper database: The ENRIA project.

    Science.gov (United States)

    Veloo, A C M; Jean-Pierre, H; Justesen, U S; Morris, T; Urban, E; Wybo, I; Kostrzewa, M; Friedrich, A W

    2018-03-12

    relevance of these less common anaerobic bacteria. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions.

    OpenAIRE

    Højberg, O; Binnerup, S J; Sørensen, J

    1997-01-01

    A technique was developed to study microcolony formation by silicone-immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The technique was used to demonstrate that preinduction of nitrate reductase under low-oxygen conditions was necessary for nonfermenting, nitrate-respiring bacteria, e.g., Pseudomonas spp., to cope with a...

  17. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  18. Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge.

    Science.gov (United States)

    Alves, Joana I; Stams, Alfons J M; Plugge, Caroline M; Alves, M Madalena; Sousa, Diana Z

    2013-12-01

    Thermophilic (55 °C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 , and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO partial pressures from 0.09 to 0.88 bar. Culture T-Syn, after 4 successive transfers with syngas, was also incubated with CO and subsequently transferred (9 transfers) with solely this substrate - cultures T-Syn-CO. Incubation with syngas and CO caused a rapid decrease in the microbial diversity of the anaerobic consortium. T-Syn and T-Syn-CO showed identical microbial composition and were dominated by Desulfotomaculum and Caloribacterium species. Incubation initiated with CO resulted in the enrichment of bacteria from the genera Thermincola and Thermoanaerobacter. Methane was detected in the first two to three transfers of T-Syn, but production ceased afterward. Acetate was the main product formed by T-Syn and T-Syn-CO. Enriched T-CO cultures showed a two-phase conversion, in which H2 was formed first and then converted to acetate. This research provides insight into how thermophilic anaerobic communities develop using syngas/CO as sole energy and carbon source can be steered for specific end products and subsequent microbial synthesis of chemicals. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    Science.gov (United States)

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  20. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)

    Science.gov (United States)

    Dittmar, Thorsten; Lara, Rubén José

    2001-05-01

    - Molecular lignin analyses have become a powerful quantitative approach for estimating flux and fate of vascular plant organic matter in coastal and marine environments. The use of a specific molecular biomarker requires detailed knowledge of its decomposition rates relative to the associated organic matter and its structural diagenetic changes. To gain insight into the poorly known processes of anaerobic lignin diagenesis, molecular analyses were performed in the sulfate-reducing sediment of a north Brazilian mangrove. Organic matter in samples representing different diagenetic stages (i.e., fresh litter, a sediment core, and percolating water) was characterized by alkaline CuO oxidation for lignin composition, element (C, N), and stable carbon isotope analyses. On the basis of these results and on a balance model, long-term in situ decomposition rates of lignin in sulfate-reducing sediments were estimated for the first time. The half-life ( T1/2) of lignin derived from mangrove leaf litter (mainly Rhizophora mangle) was ˜150 yr in the upper 1.5 m of the sediment. Associated organic carbon from leaf tissue was depleted to ˜75% within weeks, followed by a slow mineralization in the sediment ( T1/2 ≈ 300 yr). Unlike the known pathways of lignin diagenesis, even highly degraded lignin did not show any alterations of the propyl or methoxyl side chains, as evident from stable acid to aldehyde ratios and the proportion of methoxylated phenols (vanillyl and syringyl phenols). Aromatic ring cleavage is probably the principal mechanism for lignin decay in the studied environment. Cinnamyl phenols were highly abundant in mangrove leaves and were rapidly depleted during early diagenesis. Thus, the cinnamyl to vanillyl ratio could be used as a tracer for early diagenesis even under the sulfate-reducing conditions. Syringyl phenols were removed from dissolved organic matter in interstitial water, probably by sorption onto the sediment. Suspended organic matter in a

  1. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.

    Science.gov (United States)

    Beller, H R; Spormann, A M; Sharma, P K; Cole, J R; Reinhard, M

    1996-01-01

    A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment. PMID:8919780

  2. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    Leven, Lotta; Nyberg, Karin; Korkea-aho, Lena; Schnuerer, Anna

    2006-01-01

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC 5 = 26 μg phenols g -1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC 5 = 43-110 μg g -1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  3. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    Rambler, M.B.

    1980-01-01

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  4. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  6. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Bethencourt, M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain)]. E-mail: manuel.bethencourt@uca.es; Botana, F.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Cano, M.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Sanchez-Amaya, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Corzo, A. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Garcia de Lomas, J. [Departamento de Biologia, CASEM, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real (Spain); Fardeau, M.L. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France); Ollivier, B. [IRD, Institut de Recherche pour le Developement, Universites de Provence et de la Mediterranee, ESIL Case 925, 163 Avenue de Luminy, F-13288 Marseille, Cedex 09 (France)

    2006-09-15

    The hydrogenotrophic sulfate-reducing bacterium (SRB) Desulfovibrio capillatus (DSM14982{sup T}) was isolated from an oil field separator with serious corrosion problems; this is the study of its role in the corrosion of carbon steels under anaerobic conditions. Immersion tests with two steel alloys, St-35.8 (typical carbon steel employed in European naval industry), and API-5XL52 (weathering alloy steel employed in Mexican oil industries) were performed. Total exposure was 45 days and different concentrations of thiosulfate as electron acceptor for bacterial growth were employed. The samples immersed in media with SRB undergo fast activation and numerous active sites form on the surface. Microscopic observations were made by environmental scanning electron microscopy (ESEM). Weight loss and electrochemical testing included open circuit potential (E {sub corr}), polarization resistance (R {sub p}), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were measured with and without bacteria in the culture medium in order to determine corrosion rates and mechanisms. All electrochemical techniques have shown that after the end of the exponential phase the corrosion activity notably increased due to the high concentration of bacterial metabolites. Finally, the corrosion behavior of API-5XL52 was worse than St-35.8.

  7. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.

    Science.gov (United States)

    Michaelis, Walter; Seifert, Richard; Nauhaus, Katja; Treude, Tina; Thiel, Volker; Blumenberg, Martin; Knittel, Katrin; Gieseke, Armin; Peterknecht, Katharina; Pape, Thomas; Boetius, Antje; Amann, Rudolf; Jørgensen, Bo Barker; Widdel, Friedrich; Peckmann, Jörn; Pimenov, Nikolai V; Gulin, Maksim B

    2002-08-09

    Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.

  8. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane

    Science.gov (United States)

    Michaelis, Walter; Seifert, Richard; Nauhaus, Katja; Treude, Tina; Thiel, Volker; Blumenberg, Martin; Knittel, Katrin; Gieseke, Armin; Peterknecht, Katharina; Pape, Thomas; Boetius, Antje; Amann, Rudolf; Jørgensen, Bo Barker; Widdel, Friedrich; Peckmann, Jörn; Pimenov, Nikolai V.; Gulin, Maksim B.

    2002-08-01

    Massive microbial mats covering up to 4-meter-high carbonate buildups prosper at methane seeps in anoxic waters of the northwestern Black Sea shelf. Strong 13C depletions indicate an incorporation of methane carbon into carbonates, bulk biomass, and specific lipids. The mats mainly consist of densely aggregated archaea (phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate precipitation and substantial biomass accumulation, which has implications for our understanding of carbon cycling during earlier periods of Earth's history.

  9. Regional differences within the dentition for plaque, gingivitis, and anaerobic bacteria.

    Science.gov (United States)

    Sreenivasan, P K; DeVizio, W; Prasad, K V V; Patil, S; Chhabra, K G; Rajesh, G; Javali, S B; Kulkarni, R D

    2010-01-01

    This investigation assessed regional differences in dental plaque and gingivitis within the human dentition in conjunction with microbiological analyses of dental plaque. Forty-one adults (23 males and 18 females; age range 19-44 years) were enrolled, and a calibrated dental examiner completed whole mouth examinations for dental plaque (PI) and gingivitis (GI) using the Turesky modification of the Quigley-Hein Index (TMQH) and the L6e-Silness (LS) Index, respectively. Dental plaque samples were collected from the anterior surfaces and posterior teeth to determine viable anaerobic bacteria. During this visit, subjects underwent a whole mouth dental prophylaxis and were provided a marketed fluoride dentifrice for twice-daily oral hygiene. Subjects were recalled on day 15 and day 30 for whole mouth assessments of PI and GI, followed by the collection of dental plaque from the anterior and posterior teeth for microbiological analyses during these visits. Low plaque and gingival scores were common on anterior surfaces, in contrast to greater frequencies of higher PI and GI scores on the posterior regions or the entire dentition. Correspondingly, mean scores for PI and GI were significantly lower among the anterior surfaces in comparison to all other regions of the mouth (posterior, Ramfjord surfaces, or the entire dentition) over each phase of the study (p gingival scores maintained broad reductions, with anterior scores consistently lower than the corresponding posterior regions (p gingival inflammation levels were also correlated with increased plaque deposits associated with posterior teeth. Microbiological analyses confirm clinical observations with significantly higher numbers of viable bacteria in the dental plaque collected from the posterior regions. The human dentition demonstrates significant regional differences in the prevalence of dental plaque, gingivitis, and corresponding anaerobic bacteria, with posterior surfaces consistently reporting higher scores

  10. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  11. Factors Governing the Germination of Sulfate-Reducing Desulfotomaculum Endospores Involved in Oil Reservoir Souring.

    Science.gov (United States)

    Sherry, A.; Bell, E.; Cueto, G.; Suarez-Suarez, A.; Pilloni, G.; Hubert, C. R.

    2015-12-01

    Reservoir souring is caused by the activity of sulfate-reducing microorganisms (SRM) in subsurface oil reservoirs, and is often induced by seawater injection during secondary oil recovery. Souring can potentially contribute to corrosion of infrastructure, health and safety hazards to the workforce, and reduction in value by increasing refining costs associated with producing the oil resource. Souring causes annual losses in the billions of dollars to the oil industry. Endospore-forming SRM, such as Desulfotomaculum spp., are often suspected culprits in reservoir souring. Endospores can survive unfavourable conditions for long periods, yet remain poised to germinate and become active if conditions become more favourable. Factors governing endospore germination are poorly understood, but are thought to include availability of nutrients, possibly metabolic by products of other anaerobic bioprocesses, and/or variations in temperature. Most research has focused on aerobic Bacillus spp., with very few studies dedicated to spore germination among anaerobes (order Clostridiales) including the sulfate-reducing Desulfotomaculum found in anoxic subsurface petroleum reservoirs. For Desulfotomaculum spores in deep hot oil reservoirs, cold seawater introduction during secondary oil recovery may create thermal viability zones for sulfate reduction near the injection wellbore. To evaluate these processes, sulfate-containing microcosms were prepared with different marine sediments as a source of spores, and amended with organic substrates in the presence or absence of oil. Incubation at 80°C for six days was followed by a down-shift in temperature to 60°C to mimic cold seawater injection into a hot reservoir. Souring did not occur at 80°C, but commenced within hours at 60°C. Microcosms were monitored for sulfate reduction and organic acids in combination with next generation sequencing of 16S rRNA genes (Ion Torrent, Illumina MiSeq). Through a combination of high

  12. Linking Microbial Ecology to Geochemistry in Sulfate Reducing Systems

    Science.gov (United States)

    Drennan, D. M.; Lee, I.; Landkamer, L.; Almstrand, R.; Figueroa, L. A.; Sharp, J. H.

    2013-12-01

    Sulfate reducing bioreactors (SRBRs) can serve as passive treatment systems for mining influenced waters (MIW). An enhanced understanding of the biogeochemistry and efficacy of SRBRs can be achieved by combining molecular biological and geochemical techniques in both field and column settings. To this end, a spatial and temporal sequence of eight pilot-scale columns were analyzed employing a multidisciplinary approach using ICP-AES, next-generation sequencing, and SEM-EDX to explore the effects of variable substrate on community structure and performance (measured by Zn removal). All pilot scale reactors contained 30% limestone by mass, 7 of the 8 had variable amounts of woodchips, sawdust, and alfalfa hay, and an 8th column where the only carbon source was walnut shells. High throughput sequencing of DNA extracted from liquid in pilot-scale columns reveals, similarly to an analogous field system in Arizona, a dominance of Proteobacteria. However, after the first pore volume, performance differences between substrate permutations emerged, where columns containing exclusively walnut shells or sawdust exhibited a more effective startup and metal removal than did columns containing exclusively woodchips or alfalfa hay. SEM-EDX analysis revealed the initial formation of gypsum (CaSO4) precipitates regardless of substrate. Zn was observed in the presence of Ca, S, and O in some column samples, suggesting there was co-precipitation of Zn and CaSO4. This is congruent with micro-XAS analysis of field data suggesting iron sulfides were co-precipitating with gypsum. A SEM-EDX analysis from a subsequent sampling event (8 months into operation) indicated that precipitation may be shifting to ZnS and ZnCO3. Biplots employing Canonical Correspondence Analysis (CCA) describe how diversity scales with performance and substrate selection, and how community shifts may result in differential performance and precipitation in response to selective pressure of bioreactor material on

  13. Desulfonatronovibrio halophilus sp. nov., a novel moderately halophilic sulfate-reducing bacterium from hypersaline chloride-sulfate lakes in Central Asia

    NARCIS (Netherlands)

    Sorokin, D.Y.; Tourova, T.P.; Abbas, B.; Suhacheva, M.V.; Muyzer, G.

    2012-01-01

    Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride-sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related

  14. Characterisation of community structure of bacteria in parallel mesophilic and thermophilic pilot scale anaerobe sludge digesters.

    Science.gov (United States)

    Tauber, T; Berta, Brigitta; Székely, Anna J; Gyarmati, I; Kékesi, Katalin; Márialigeti, K; Tóth, Erika M

    2007-03-01

    The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.

  15. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    Science.gov (United States)

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

    Science.gov (United States)

    Yang, Jian; Jiang, Hongchen; Wu, Geng; Hou, Weiguo; Sun, Yongjuan; Lai, Zhongping; Dong, Hailiang

    2012-12-01

    Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

  17. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    OpenAIRE

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) versus their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp.) and thermophilic (Iso T10- a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts ...

  18. An in Vitro Experimental Study on the Antimicrobial Activity of Silicone Oil against Anaerobic Bacteria.

    Science.gov (United States)

    Arici, Ceyhun; Aras, Cengiz; Tokman, Hrisi Bahar; Torun, Muzeyyen Mamal

    2016-01-01

    To investigate the in vitro antimicrobial activity of silicone oil against anaerobic agents, specifically Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium. A 0.5 McFarland turbidity of Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium was prepared, and 0.1 mL was inoculated into 0.9 mL of silicone oil. Control inoculations were performed in anaerobic blood agar and fluid thioglycollate medium without silicone oil. Propionibacterium acnes retained their viability on the 3rd day in the presence of silicone oil. In total, 9.7 × 10(6) colonies were enumerated from 1 mL of silicone oil. After a prolonged incubation of 7 days, the number of colonies observed was 9.2 × 10(6). The other bacteria disappeared after the 3rd day of incubation in silicone oil. Propionibacterium acnes, which is the most common chronic postoperative endophthalmitis agent, is thought to be resistant to silicone oil.

  19. The Mechanism of Anaerobic (Microbial) Corrosion.

    Science.gov (United States)

    1982-12-01

    preliminary communication we report on the production ofvolatile organosulfur compounds by sulfate-reducing bacteria. Two strains of sulfate-reducing...the physiological basis for production of volatile organosulfur compounds by these bacteria is continuing. REFERENCES S1. Allred, R.C., J.C. Sudbury

  20. Candidatus "Scalindua brodaea", spec. nov., Candidatus "Scalindua wagneri", spec. nov., two new species of anaerobic ammonium oxidizing bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schmid, M.; Walsh, K.; Webb, R.; Rijpstra, W.I.C.; Pas-Schoonen, K. van de; Verbruggen, M.J.; Hill, T.; Moffett, B.; Fuerst, J.; Schouten, S.; Harris, James; Shaw, P.; Jetten, M.S.M.; Strous, M.

    2003-01-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply

  1. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Madrid, de M.P.; Bok, de F.A.M.; Stams, A.J.M.; Lier, van J.B.

    2006-01-01

    The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium was studied. Additionally, the effects of different electron-donating substrates and the redox mediator riboflavin on dye reduction were assessed by using either a

  2. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  3. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.

    2007-01-01

    The Black Sea, with its highly sulfidic water column, is the largest anoxic basin in the world. Within its sediments, the mineralization of organic matter occurs essentially through sulfate reduction and methanogenesis. In this study, the sulfate-reducing community was investigated in order...... to understand how these microorganisms are distributed relative to the chemical zonation: in the upper sulfate zone, at the sulfate-methane transition zone, and deeply within the methane zone. Total bacteria were quantified by real-time PCR of 16S rRNA genes whereas sulfate-reducing microorganisms (SRM) were...... quantified by targeting their metabolic key gene, the dissimilatory (bi)sulfite reductase (dsrA). Sulfate-reducing microorganisms were predominant in the sulfate zone but occurred also in the methane zone, relative proportion was maximal around the sulfate-methane transition, c. 30%, and equally high...

  4. My Lifelong Passion for Biochemistry and Anaerobic Microorganisms.

    Science.gov (United States)

    Thauer, Rudolf Kurt

    2015-01-01

    Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.

  5. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  6. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.

    Science.gov (United States)

    Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

    2012-06-01

    The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.

  7. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    International Nuclear Information System (INIS)

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1986-01-01

    Investigations into the biochemistry and physiology of the four major groups of microorganisms (primary, ancillary, secondary and methane bacteria) involved in the anaerobic conversion of cellulose to methane and carbon dioxide are presented. The investigations of the ancillary bacteria emphasize the isolation of new strains and increasing ethanol production with T. ethanolicus. These studies involve genetic modifications, enzymological studies on the regulation of appropriate enzymes and a study of the effect of inorganic pyrophosphate on growth and fermentation patterns. The acetogenic bacteria forming acetate from carbon dioxide were studied from the aspects of the enzymology of acetate from the standpoint from one carbon compound, bioenergetics emphasizing hydrogen metabolism and energy coupling H 2 cycling and the structure and function of electron transfer components. Research on secondary bacteria emphasizes the sulfate reducing bacteria from the aspects of H 2 cycling, specificities of electron transfer proteins and enzymes, the mechanism of bisulfite reductase and the enzymology and physiology of new genera of sulfate reducing bacteria. The biochemistry and physiology of both H 2 -utilizing and acetate utilizing methanogenic are reported. The studies with H 2 -utilizing methanogens stress the hydrogenase and the effect of inorganic pyrophosphate on growth. The research on the acetate-utilizing methanogens involve the bioenergetics of sulfite reduction and the mechanism of acetate formation induced by pyrophosphate. 143 refs., 15 figs., 10 tabs

  8. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  9. Prevalence and antimicrobial susceptibilities of anaerobic bacteria isolated from perforated corneal ulcers by culture and multiplex PCR: an evaluation in cases with keratitis and endophthalmitis.

    Science.gov (United States)

    Tokman, Hrisi Bahar; İskeleli, Güzin; Dalar, Zeynep Güngördü; Kangaba, Achille Aime; Demirci, Mehmet; Akay, Hatice K; Borsa, Bariş Ata; Algingil, Reyhan Çalişkan; Kocazeybek, Bekir S; Torun, Müzeyyen Mamal; Kiraz, Nuri

    2014-01-01

    Anaerobic bacteria play an important role in eye infections; however, there is limited epidemiologic data based on the the role of these bacteria in the etiology of keratitis and endophthalmitis. The aim of this re- search is to determine the prevalence of anaerobic bacteria in perforated corneal ulcers of patients with keratitis and endophthalmitis and to evaluate their antimicrobial susceptibilities. Corneal scrapings were taken by the ophthalmologist using sterile needles. For the isolation of anaerobic bacteria, samples were inoculated on specific media and were incubated under anaerobic conditions obtained with Anaero-Gen (Oxoid & Mitsubishi Gas Company) in anaerobic jars (Oxoid USA, Inc. Columbia, MD, USA). The molecular identification of anaerobic bacteria was performed by multiplex PCR and the susceptibilities of an- aerobic bacteria to penicillin, chloramphenicol, and clindamycin were determined with the E test (bioMerieux). 51 strains of anaerobic bacteria belonging to four different genuses were detected by multiplex PCR and only 46 strains were isolated by culture. All of them were found susceptible to chloramphenicol whereas penicillin resistance was found in 13.3% of P.anaerobius strains, clindamycin resistance was found in 34.8% of P.acnes and 13.3% of P. anaerobius strains. Additionnaly, one strain of P. granulosum was found resistant to clindamycin, one strain of B. fragilis and one strain of P.melaninogenica were found resistant to penicillin and clindamycin. Routine analyses of anaerobes in perforated corneal ulcers is inevitable and usage of appropriate molecular methods, for the detection of bacteria responsible from severe infections which might not be deter- mined by cultivation, may serve for the early decision of the appropriate treatment. Taking into account the in- creasing antimicrobial resistance of anaerobic bacteria, alternative eye specific antibiotics effective against anaer- obes are needed to achieve a successful treatment.

  10. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    Science.gov (United States)

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. Long-term effects of increasing acidity on low-pH sulfate-reducing bioprocess and bacterial community.

    Science.gov (United States)

    Zhao, Jing; Fang, Di; Zhang, Pengfei; Zhou, Lixiang

    2017-02-01

    An ethanol-fed, sulfate-reducing anaerobic baffled reactor was operated over a period of 260 days to assess the effects of sequentially more acidic conditions (pH 4.5-2.5) on sulfate reduction and bacterial community. Results showed that the reactor could reduce sulfate and generate alkalinity at progressively lower pH values of 4.5, 3.5, and 2.5 in a synthetic wastewater containing 2500 mg/L sulfate. About 93.9% of the influent sulfate was removed at a rate of 4691 mg/L/day, and the effluent pH was increased to 6.8 even when challenged with influent pH as low as 2.5. Illumina MiSeq sequencing revealed that a step decrease in influent pH from 4.5 to 2.5 resulted in noticeable decrease in the biodiversity inside the sulfidogenic reactor. Additionally, complete and incomplete organic oxidizers Desulfobacter and Desulfovibrio were observed to be the most dominant sulfate reducers at pH 2.5, sustaining the low-pH, high-rate sulfate removal and alkalinity generation.

  12. Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites

  13. A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS

    DEFF Research Database (Denmark)

    Veloo, A; Jean-Pierre, H; Justesen, U S

    2017-01-01

    Inter-laboratory reproducibility of Matrix Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of anaerobic bacteria has not been shown before. Therefore, ten anonymized anaerobic strains were sent to seven participating laboratories, an initiative of the European Network...... for the Rapid Identification of Anaerobes (ENRIA). On arrival the strains were cultured and identified using MALDI-TOF MS. The spectra derived were compared with two different Biotyper MALDI-TOF MS databases, the db5627 and the db6903. The results obtained using the db5627 shows a reasonable variation between...... the different laboratories. However, when a more optimized database is used, the variation is less pronounced. In this study we show that an optimized database not only results in a higher number of strains which can be identified using MALDI-TOF MS, but also corrects for differences in performance between...

  14. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  15. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure.

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia Lúcia; de Oliveira, Tamara Lopes Rocha; de Oliveira Fortunato, Samuel; da Costa Carneiro, Jailton; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2014-02-01

    Anaerobic digestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. Persistence of potentially pathogenic and drug-resistant bacteria during anaerobic digestion of cattle manure was evaluated. Selective cultures were performed for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC). Antimicrobial susceptibility patterns were determined and a decay of all bacterial groups was observed after 60days. Multidrug-resistant bacteria were detected both the influent and effluent. GPC, the most prevalent group was highly resistant against penicillin and levofloxacin, whereas resistance to ampicillin, ampicillin-sulbactam and chloramphenicol was frequently observed in the ENT and NFR groups. The data point out the need of discussions to better address management of biodigesters and the implementation of sanitary and microbiological safe treatments of animal manures to avoid consequences to human, animal and environmental health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. High prevalence and resistance rates to antibiotics in anaerobic bacteria in specimens from patients with chronic balanitis.

    Science.gov (United States)

    Boyanova, Lyudmila; Mitev, Angel; Gergova, Galina; Mateev, Grisha; Mitov, Ivan

    2012-08-01

    Aim of the study was to assess both prevalence and antibiotic resistance in anaerobic bacteria from glans penis skin of 70 adults. Strain susceptibility was determined by breakpoint susceptibility test or E test. In 9 asymptomatic, 48 untreated and 13 treated symptomatic patients, anaerobes were found in 22.2%, 70.8% and 53.3%, respectively. Gram-positive strains (GPAs) were 2.2-fold more common than Gram-negative ones. Prevalent Gram-negative (GNAs) and GPAs were Prevotella spp. and anaerobic cocci, respectively. Clostridium difficile strain was found in an untreated patient. In GNAs, resistance rates to amoxicillin, metronidazole, clindamycin, tetracycline, levofloxacin, and amoxicillin/clavulanate were 42.1, 0, 52.6, 53.3, 86.7 and 5.2%, respectively. In GPAs, the resistance rates to metronidazole, clindamycin, tetracycline, levofloxacin and amoxicillin/clavulanate were 18.2, 34.1, 52.6, 36.8 and 0%, respectively. In conclusion, anaerobes were 1.6-fold more frequent in untreated symptomatic patients compared with other patients, suggesting their participation in development of chronic balanitis. GPAs were more common than GNAs. The resistance rates to amoxicillin, clindamycin, tetracycline, and levofloxacin were high. Most active agents were metronidazole and amoxicillin/clavulanate. Resistance in anaerobes varies according to sites of specimens and years of study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Metabolic interactions in methanogenic and sulfate-reducing bioreactors

    NARCIS (Netherlands)

    Stams, A.J.M.; Plugge, C.M.; Bok, de F.A.M.; Houten, van B.H.G.W.; Lens, P.N.L.; Dijkman, H.; Weijma, J.

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea.

  18. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    Science.gov (United States)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  19. Effect of MAP and Multi-layer Flexible Films on the Growth of Anaerobic Bacteria of Fresh Ostrich Meat

    Directory of Open Access Journals (Sweden)

    Nazanin Zand

    2016-11-01

    Full Text Available The usage of different concentrations of two gas mixture (Carbon dioxide, Nitrogen, and also vacuum conditions and the effect of flexible multi-layer pouches has been studied on the growth of anaerobic bacteria in fresh ostrich meat at refrigerator (T=4 0C. Ordinary condition as a control packaging was compared with three types of modified atmosphere packaging: {(N270% + CO230%, (N230% + CO270%} and vacuum conditions in this project. Ostrich fresh meat were packaged into 3 kinds of polymeric flexible pouch” 4-layers with thickness 131μ, {PET (12 / AL (7 / PET (12 / LLD (100}, 3-layer with thickness 124μ {PET (12 / AL (12 / LLD (100 and 3- layer with thickness 119 μ {PET (12 / AL (7 / LLD (100}. Samples were performed microbial tests (Total count of anaerobic bacteria, in different times with 12 treatment ,3 run, statistical analysis and comparison of data, were done by software SAS (Ver:9/1 and Duncan’s new multiple range test, with confidence level of 95% (P <0.05. The usage of MAP was not adequate for controlling spoilage, but the spoilage process was delayed. Anaerobic bacteria population of ostrich meat under (% 30 CO2 +% 70 N2 and also vacuum conditions in this container were more than 104 (not acceptable.However, the best condition belonged to ( N2 30% + CO2 70% ,and was acceptable till15 days. Maximum anaerobic bacteria s which were grown in these meat samples was related to % 30 CO2 conditions in 3-layer Al(7 μ, and the lowest growth belonged to treatment under % 70 CO2 in 4-layer. The Characteristic of this multi-layer flexible pouch (4-layers with less water vapor and oxygen permeability and also increasing more percentage of CO2 due to antibacterial properties of carbon dioxide gas, caused to control microbial growth in samples, so could be extended shelf life of fresh ostrich meat.

  20. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments

    OpenAIRE

    Chen, Jing; Dick, Richard; Lin, Jih-Gaw; Gu, Ji-Dong

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichmen...

  1. Role of anaerobic spore-forming bacteria in the acidogenesis of glucose: changes induced by discontinuous or low-rate feed supply

    NARCIS (Netherlands)

    Cohen, A.; Distel, B.; van Deursen, A.; Breure, A. M.; van Andel, J. G.

    1985-01-01

    A mineral salts medium containing 1% (w/v) glucose providing carbon-limited growth conditions was subjected to anaerobic acidogenesis by mixed populations of bacteria in chemostat cultures. The formation of butyrate was shown to be dependent on the presence of saccharolytic anaerobic sporeformers in

  2. Adaptation of Bacteria of Anaerobic Digestion to Higher Salinity for the Application to Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Ivanova, Yanina; Spirov, Pavel

    For this study, bacteria of anaerobic digestion from Ribe Biogas plant, Denmark, were chosen. The volume of the produced gas from the bacteria was measured in a water displacement setup every day. After the gas production ceased in the second day, the maximum produced gas was measured at 70 and 90...... digestion can be an attractive candidate for MEOR implementation due to their ability to withstand high temperature and salinity, and produce gas in a large volume. Economical comparison between MEOR and foam injection revealed that MEOR is a cheaper and more sustainable method....

  3. The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2014-10-01

    Full Text Available Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13 is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1 is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.

  4. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change

    Directory of Open Access Journals (Sweden)

    Michael ePester

    2012-02-01

    Full Text Available Freshwater wetlands are a major source of the greenhouse gas methane but at the same time can function as carbon sink. Their response to global warming and environmental pollution is one of the largest unknowns in the upcoming decades to centuries. In this review, we highlight the role of sulfate-reducing microorganisms (SRM in the intertwined element cycles of wetlands. Although regarded primarily as methanogenic environments, biogeochemical studies have revealed a previously hidden sulfur cycle in wetlands that can sustain rapid renewal of the small standing pools of sulfate. Thus, dissimilatory sulfate reduction, which frequently occurs at rates comparable to marine surface sediments, can contribute up to 36–50% to anaerobic carbon mineralization in these ecosystems. Since sulfate reduction is thermodynamically favored relative to fermentative processes and methanogenesis, it effectively decreases gross methane production thereby mitigating the flux of methane to the atmosphere. However, very little is known about wetland SRM. Molecular analyses using dsrAB [encoding subunit A and B of the dissimilatory (bisulfite reductase] as marker genes demonstrated that members of novel phylogenetic lineages, which are unrelated to recognized SRM, dominate dsrAB richness and, if tested, are also abundant among the dsrAB-containing wetland microbiota. These discoveries point towards the existence of so far unknown SRM that are an important part of the autochthonous wetland microbiota. In addition to these numerically dominant microorganisms, a recent stable isotope probing study of SRM in a German peatland indicated that rare biosphere members might be highly active in situ and have a considerable stake in wetland sulfate reduction. The hidden sulfur cycle in wetlands and the fact that wetland SRM are not well represented by described SRM species explains their so far neglected role as important actors in carbon cycling and climate change.

  5. Metabolic potential of a Novel Gram-Negative, Spore-forming, and Putatively Sulfate-Reducing Bacterium in the Continental Subsurface

    Science.gov (United States)

    Lau, C. Y. M.; Becraft, E. D.; Cason, E. D.; Borgonie, G.; Kieft, T. L.; Li, L.; van Heerden, E.; Jarett, J.; Woyke, T.; Stepanauskas, R.; Onstott, T. C.

    2017-12-01

    Anaerobic sulfate reduction is among the most thermodynamically favorable biochemical reactions in the deep subsurface environments. Phylogenetically and functionally diverse sulfate-reducing bacteria (SRB) within Deltaproteobacteria and Firmicutes have been reported. However, only few of them have been isolated in pure cultures for detailed physiological characterization. Previous studies showed that fracture fluid samples from the 1 km-deep borehole DR5IPC (Driefontein gold mine, South Africa) harbored novel SRB, as indicated by the low percentages (84% and 90%) of identity of the 16S ribosomal RNA clone sequences to known SRB. To overcome the challenge of low cultivability, we employed next-generation sequencing to unveil the metabolic potential of these novel SRB. Metagenomic assembly and binning yielded seven >50% complete genomes including a methylotrophic SRB belonging to Deltaproteobacteria (DR5_3) and two draft genomes representing an uncultivated phylum, tentatively "Driefonteinae" (DR5_4 and DR5_5). They accounted for 3%, 2% and 18% of all metagenomic reads. Three single-cell assembled genomes (SAGs) sharing 99% of average nucleotide identity (ANI) with DR5_5 were obtained. Analysis of the protein-coding genes in DR5_5 and related SAGs indicated that "Driefonteinae" possesses dissimilatory sulfite reductase genes (dsrAB), suggesting that sulfate would be the terminal electron acceptor. Whereas it may use diverse electron acceptors such as carbon monoxide, acetate, lactate and formate. A near-complete collection of genes for Wood-Ljungdahl pathway and genes for partial pentose phosphate pathway, glycolysis and tricarboxylic acid cycle further showed that "Driefonteinae" may live a mixotrophic life style. It is evident that archaeal genes related to methanogens were acquired through horizontal gene transfer. Phenotypically, "Driefonteinae" has a Gram-negative cell wall and flagella. The ability of forming spores would enable this microorganism to endure

  6. Biochemical identification and determination of antimicrobial resistance in clinical isolates of anaerobic bacteria obtained from the Hospital San Juan de Dios in the period 2009 to 2011

    International Nuclear Information System (INIS)

    Meza Pena, Maria Daniela

    2014-01-01

    Clinical isolates of 81 anaerobic bacteria isolated are identified to patients of the Hospital San Juan de Dios, between 2009 to 2011; by algorithms that have employed biochemical methods of reference chemical samples. Antimicrobial resistance is determined. The miniaturized methods and biochemical algorithms proposed were compared to identify differences between methods. The minimum inhibitory concentration of metronidazole, clindamycin, amoxicillin, tetracycline and cefotaxime are determined to 81 anaerobic bacteria isolated from the Hospital mentioned [es

  7. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    Science.gov (United States)

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  8. Genetic identification and antimicrobial susceptibility of clinically isolated anaerobic bacteria: A prospective multicenter surveillance study in Japan.

    Science.gov (United States)

    Yunoki, Tomoyuki; Matsumura, Yasufumi; Yamamoto, Masaki; Tanaka, Michio; Hamano, Kyoko; Nakano, Satoshi; Noguchi, Taro; Nagao, Miki; Ichiyama, Satoshi

    2017-12-01

    This prospective multicenter surveillance study was designed to provide antimicrobial susceptibility profiles of clinical anaerobic bacteria with genetic species identification in Japan. In 2014, a total of 526 non-duplicate clinical anaerobic isolates were collected from 11 acute-care hospitals in the Kyoto and Shiga regions of Japan. Genetic identification was performed using 16S rRNA sequencing. Minimum inhibitory concentrations were determined in the central laboratory and were interpreted using the CLSI criteria. Genetic analysis provided species-level identification for 496 isolates (83 species in 40 genera) and genus-level identification for 21 isolates (13 genera). Among these 517 isolates, the most frequent anaerobes were Bacteroides spp. (n = 207), Prevotella spp. (n = 43), Clostridium spp. (n = 40), and Peptoniphilus spp. (n = 40). B. fragilis was the most common species (n = 107) and showed 91.6%-97.2% susceptibility to β-lactam/β-lactamase inhibitor combinations (BLBLIs; ampicillin-sulbactam, amoxicillin-clavulanate, and piperacillin-tazobactam) and carbapenems (imipenem and meropenem) as well as 100% susceptibility to metronidazole. Gram-negative anaerobes were highly susceptible to metronidazole (99.0%) followed by BLBLIs and carbapenems (>90% each). BLBLIs or carbapenems also retained activity against Gram-positive anaerobes (99.5%-100%) except Clostridioides difficile. All isolates were susceptible to combinations of metronidazole with BLBLIs or carbapenems. Thus, BLBLIs or carbapenems are first choices for empirical therapy of anaerobic infections in Japan, and these antimicrobials in combination with metronidazole should be reserved for very severe infections and targeted therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    Energy Technology Data Exchange (ETDEWEB)

    Miletto, M.; Williams, K.H.; N' Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  10. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  11. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown.

  12. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    NARCIS (Netherlands)

    Kampman, C.; Hendrickx, T.L.G.; Luesken, F.; Alen, T.A.; Jetten, M.S.M.; Camp, op den H.J.M.; Zeeman, G.; Buisman, C.J.N.; Temmink, B.G.

    2012-01-01

    Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and

  13. Anaerobic halo- alkaliphilic bacterial community of athalassic, hypersaline Mono lake and Owens Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Detkova, Ekaterina N.; Bej, Asim K.; Marsic, Damien; Hoover, Richard B.

    2003-02-01

    The bacterial diversity of microbial extremophiles from the meromictic, hypersaline Mono Lake and a small evaporite pool in Owens Lake of California was studied. In spite of these regions had differing mineral background and different concentrations of NaCl in water they contain the same halo- alkaliphiles anaerobic bacterial community. Three new species of bacteria were detected in this community: primary anaerobe, dissipotrophic saccharolytic spirochete Spirochaeta americana strain AspG1T, primary anaerobe which is proteolytic Tindallia californiensis strain APOT, and secondary anaerobe, hydrogen using Desulfonatronum thiodismutans strain MLF1T, which is sulfate- reducer with chemo-litho-autotrophic metabolism. All of these bacteria are obligate alkaliphiles and dependent upon Na+ ions and CO32- ions in growth mediums. It is interesting that closest relationships for two of these species were isolates from samples of equatorial African soda Magadi lake: Spirochaeta americana AspG1T has 99.4% similarity on 16S rDNA- analyses with Spirochaeta alkalica Z- 7491T, and Tindallia californiensis APOT has 99.1% similarity with Tindallia magadiensis Z-7934T. But result of DNA-DNA- hybridization demonstrated less then 50% similarity between Spirochaeta americana AspG1T and Spirochaeta alkalica Z-7491T. Percent of homology between Tindallia californiensis APOT and Tindallia magadiensis Z-7934T is only 55%. The sulfate-reducer from the alkalic anaerobic community of Magadi lake Desulfonatronovibrio hydrogenovorans Z-7935T was phylogenetically distant from this sulfate-reducer in Mono lake, but genetically closer (99.7% similarity) to the sulfate-reducer, isolated from Central Asian alkalic lake Khadyn in Siberia Desulfonatronum lacustre Z-7951T. The study of key enzymes (hydrogenase and CO- hydrogenase) in Tindallia californiensis APOT and Desulfonatronum thiodismutans MLF1T showed the presence of high activity of both the enzymes in first and only hydrogenase in second

  14. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  15. Characteristics of aerobic and anaerobic ammonium-oxidizing bacteria in the hyporheic zone of a contaminated river.

    Science.gov (United States)

    Wang, Ziyuan; Qi, Yun; Wang, Jun; Pei, Yuansheng

    2012-09-01

    Both β-proteobacterial aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (ANAMMOX) bacteria were investigated in the hyporheic zone of a contaminated river in China containing high ammonium levels and low chemical oxygen demand. Fluorescence in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and cloning-sequencing were employed in this study. FISH analysis illustrated that AOB (average population of 3.5 %) coexisted with ANAMMOX bacteria (0.7 %). The DGGE profile revealed a high abundance and diversity of bacteria at the water-air-soil interface rather than at the water-soil interface. The redundancy analysis correlated analysis showed that the diversity of ANAMMOX bacteria was positively related to the redox potential. The newly detected sequences of ANAMMOX organisms principally belonged to the genus Candidatus "Brocadia", while most ammonia monooxygenase subunit-A gene amoA sequences were affiliated with Nitrosospira and Nitrosomonas. These results suggest that the water-air-soil interface performs an important function in the nitrogen removal process and that the bioresources of AOB and ANAMMOX bacteria can potentially be utilized for the eutrophication of rivers.

  16. Megasphaera indica sp. nov., an obligate anaerobic bacteria isolated from human faeces.

    Science.gov (United States)

    Lanjekar, V B; Marathe, N P; Ramana, V Venkata; Shouche, Y S; Ranade, D R

    2014-07-01

    Two coccoid, non-motile, obligately anaerobic, Gram-stain-negative bacteria, occurring singly or in pairs, or as short chains, with a mean size of 1.4-2.5 µm were isolated from the faeces of two healthy human volunteers, aged 26 and 56 years, and were designated NMBHI-10(T) and BLPYG-7, respectively. Both the strains were affiliated to the sub-branch Sporomusa of the class Clostridia as revealed by 16S rRNA gene sequence analysis. The isolates NMBHI-10(T) and BLPYG-7 showed 99.1 and 99.2% 16S rRNA gene sequence similarity, respectively, with Megasphaera elsdenii JCM 1772(T). DNA-DNA hybridization and phenotypic analysis showed that both the strains were distinct from their closest relative, M. elsdenii JCM 1772(T) (42 and 53% DNA-DNA relatedness with NMBHI-10(T) and BLPYG-7, respectively), but belong to the same species (DNA-DNA relatedness of 80.9 % between the isolates). According to DNA-DNA hybridization results, the coccoid strains belong to the same genospecies, and neither is related to any of the recognized species of the genus Megasphaera. Strains NMBHI-10(T) and BLPYG-7 grew in PYG broth at temperatures of between 15 and 40 °C (optimum 37 °C), but not at 45 °C. The strains utilized a range of carbohydrates as sources of carbon and energy including glucose, lactose, cellobiose, rhamnose, galactose and sucrose. Glucose fermentation resulted in the formation of volatile fatty acids, mainly caproic acid and organic acids such as succinic acid. Phylogenetic analysis, specific phenotypic characteristics and/or DNA G+C content also differentiated the strains from each other and from their closest relatives. The DNA G+C contents of strains NMBHI-10(T) and BLPYG-7 are 57.7 and 54.9 mol%, respectively. The major fatty acids were 12 : 0 FAME and 17 : 0 CYC FAME. On the basis of these data, we conclude that strains NMBHI-10(T) and BLPYG-7 should be classified as representing a novel species of the genus Megasphaera, for which the name Megsphaera indica sp. nov

  17. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria.

    Science.gov (United States)

    Schmid, Markus; Walsh, Kerry; Webb, Rick; Rijpstra, W Irene C; van de Pas-Schoonen, Katinka; Verbruggen, Mark Jan; Hill, Thomas; Moffett, Bruce; Fuerst, John; Schouten, Stefan; Damsté, Jaap S Sinninghe; Harris, James; Shaw, Phil; Jetten, Mike; Strous, Marc

    2003-11-01

    Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus "Scalindua brodae" and "Scalindua wagneri" considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus "Scalindua sorokinii", was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.

  18. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor

    OpenAIRE

    Fadhlaoui, K.; Ben Hania, W.; Armougom, Fabrice; Bartoli, M.; Fardeau, Marie-Laure; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; Dolla, A.; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspeci...

  19. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability.

    Science.gov (United States)

    Lee, Joonyeob; Shin, Seung Gu; Han, Gyuseong; Koo, Taewoan; Hwang, Seokhwan

    2017-12-01

    In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na + , and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A preliminary study of anaerobic thiosulfate-oxidising bacteria as denitrifiers in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.; Nair, S.

    Bacteria which oxidize thiosulfate and reduce nitrate (TONRB) and bacteria which oxidize thiosulfate and denitrify (TODB) sampled at 5-, 100-, 200-and 300-m depths were enumerated in agar shake cultures by colony counting and by applying MPN...

  1. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  2. Relating BTEX degradation to the biogeochemistry of an anaerobic aquifer

    International Nuclear Information System (INIS)

    Toze, S.G.; Power, T.R.; Davis, G.B.

    1995-01-01

    Trends in chemical and microbiological parameters in a petroleum hydrocarbon plume within anaerobic groundwater have been studied. Previously, microbial degradation of the hydrocarbon compounds had been substantiated by the use of deuterated hydrocarbons to determine natural (intrinsic) degradation rates within the contaminant plume. Here, sulfate concentration decreases, Eh decreases, and hydrogen sulfide and bicarbonate concentration increases are shown to be associated with the contaminant plume. These trends indicate microbial degradation of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by sulfate-reducing bacteria. Stoichiometry indicates that other consortia of bacteria play a role in the degradation of the hydrocarbons. Total microbial cell numbers were higher within the plume than in the uncontaminated groundwater. There is, however, no direct correlation between total microbial cell numbers, and BTEX, sulfate, bicarbonate, and hydrogen sulfide concentrations within the plume

  3. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    Science.gov (United States)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21

  4. Evaluation of the routine antimicrobial susceptibility testing results of clinically significant anaerobic bacteria in a Slovenian tertiary-care hospital in 2015.

    Science.gov (United States)

    Jeverica, Samo; Kolenc, Urša; Mueller-Premru, Manica; Papst, Lea

    2017-10-01

    The aim of our study was to determined antimicrobial susceptibility profiles of 2673 clinically significant anaerobic bacteria belonging to the major genera, isolated in 2015 in a large tertiary-care hospital in Slovenia. The species identification was performed by MALDI-TOF mass spectrometry. Antimicrobial susceptibility was determined immediately at the isolation of the strains against: penicillin, co-amoxiclav, imipenem, clindamycin and metronidazole, using gradient diffusion methodology and EUCAST breakpoints. The most frequent anaerobes were Bacteroides fragilis group with 31% (n = 817), Gram positive anaerobic cocci (GPACs) with 22% (n = 589), Prevotella with 14% (n = 313) and Propionibacterium with 8% (n = 225). Metronidazole has retained full activity (100%) against all groups of anaerobic bacteria intrinsically susceptible to it. Co-amoxiclav and imipenem were active against most tested anaerobes with zero or low resistance rates. However, observed resistance to co-amoxiclav (8%) and imipenem (1%) is worrying especially among B. fragilis group isolates. High overall resistance (23%) to clindamycin was detected in our study and was highest among the genera Prevotella, Bacteroides, Parabacteroides, GPACs and Clostridium. Routine testing of antimicrobial susceptibility of clinically relevant anaerobic bacteria is feasible and provides good surveillance data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  6. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  7. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...

  8. Cefoperazone and cefoperazone-sulbactam susceptibility tests with anaerobic bacteria by the thioglycolate disk elution method.

    OpenAIRE

    Barry, A L; Packer, R R; Jones, R N

    1985-01-01

    Tests were performed with 104 anaerobic microorganisms to evaluate the thioglycolate disk elution technique for the detection of resistance to cefoperazone and cefoperazone-sulbactam. An unacceptably high false-resistance rate and a poor reproducibility record make the disk elution procedure unsatisfactory for routine testing of this drug or combination of drugs.

  9. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.

    Science.gov (United States)

    Brondino, Carlos D; Rivas, María G; Romão, Maria J; Moura, José J G; Moura, Isabel

    2006-10-01

    Molybdenum and tungsten are found in biological systems in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen-atom-transfer reactions. The metal atom (Mo or W) is coordinated to one or two pyranopterin molecules and to a variable number of ligands such as oxygen (oxo, hydroxo, water, serine, aspartic acid), sulfur (cysteines), and selenium (selenocysteines) atoms. In addition, these proteins contain redox cofactors such as iron-sulfur clusters and heme groups. All of these metal cofactors are along an electron-transfer pathway that mediates the electron exchange between substrate and an external electron acceptor (for oxidative reactions) or donor (for reductive reactions). We describe in this Account a combination of structural and electronic paramagnetic resonance studies that were used to reveal distinct aspects of these enzymes.

  10. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.

    OpenAIRE

    Traore, A S; Hatchikian, C E; Belaich, J P; Le Gall, J

    1981-01-01

    The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end prod...

  11. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    Science.gov (United States)

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  12. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    determined. NRB and SRB were observed throughout these depths and did not relate to HB numbers. HB and NRB were recorded at 3 orders per ml and SRB at 2. High numbers of reducers were encountered in shallow depths as frequently as in deeper waters and did...

  13. Sulfate-reducing bacteria from mangrove swamps. 2. Their ecology and physiology

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Oak, S.; Chandramohan, D.

    , D. acetoxidans, Desulfosarcina variabilis, Desulfococcus multivorans, and Desulfovibrio sapovorons. It is suggested that sulfate-reduction in these mangrove swamps may not only be mediated through hydrogen, lactate and acetate but also through...

  14. Are Sulfate Reducing Bacteria Important to the Corrosion of Stainless Steels?

    Science.gov (United States)

    2009-01-01

    solutions for studying corrosion of aluminum alloys in seawater," in The Use of Synthetic Environments for Corrosion Testing, Vol. STP 970, eds. P. E...Philadelphia, PA: ASTM, 1994), p. 28-41. 14. R. C. Salvarezza, M. F. L. de Mele, H. A. Videla, "Mechanisms of the microbial corrosion of aluminum alloys ...S) Jason S. Lee, Richard I. Ray, Brenda J. Little 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 73- 5052 -18-5 7. PERFORMING

  15. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  16. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections.

    Science.gov (United States)

    Tran, Chau Minh; Tanaka, Kaori; Watanabe, Kunitomo

    2013-04-01

    Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes.

  17. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  18. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Directory of Open Access Journals (Sweden)

    Fayyaz Ali Shah

    2014-01-01

    Full Text Available Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  19. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    Science.gov (United States)

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  20. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community. PMID:27014196

  1. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCRs) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be...

  2. Response And Recovery Of Sulfate-Reducing Biochemical Reactors From Aerobic Stress Events (Presentation)

    Science.gov (United States)

    Microbially-mediated treatment of mining-influenced water (MIW) through the implementation of sulfate-reducing biochemical reactors (BCR) is an attractive option for passive, in situ remediation with low operating costs and reduced maintenance requirements. However, BCRs can be ...

  3. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  4. Temperature-dependent variations in sulfate-reducing communities associated with a terrestrial hydrocarbon seep.

    Science.gov (United States)

    Cheng, Ting-Wen; Lin, Li-Hung; Lin, Yue-Ting; Song, Sheng-Rong; Wang, Pei-Ling

    2014-01-01

    Terrestrial hydrocarbon seeps are an important source of naturally emitted methane over geological time. The exact community compositions responsible for carbon cycling beneath these surface features remain obscure. As sulfate reduction represents an essential process for anoxic organic mineralization, this study collected muddy fluids from a high-temperature hydrocarbon seep in Taiwan and analyzed community structures of sulfate-supplemented sediment slurries incubated anoxically at elevated temperatures. The results obtained demonstrated that sulfate consumption occurred between 40°C and 80°C. Dominant potential sulfate reducers included Desulfovibrio spp., Desulfonatronum spp., Desulforhabdus spp., and Desulfotomaculum spp. at 40°C, Thermodesulfovibrio spp. at 50°C, Thermodesulfovibrio spp. and Thermacetogenium spp. at 60°C, Thermacetogenium spp. and Archaeoglobus spp. at 70°C, and Archaeoglobus spp. at 80°C. None of these potential sulfate reducers exceeded 7% of the community in the untreated sample. Since no exogenous electron donor was provided during incubation, these sulfate reducers appeared to rely on the degradation of organic matter inherited from porewater and sediments. Aqueous chemistry indicated that fluids discharged in the region represented a mixture of saline formation water and low-salinity surface water; therefore, these lines of evidence suggest that deeply-sourced, thermophilic and surface-input, mesophilic sulfate-reducing populations entrapped along the subsurface fluid transport could respond rapidly once the ambient temperature is adjusted to a range close to their individual optima.

  5. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    Science.gov (United States)

    Mining-influenced water (MIW) is the main environmental challenge associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of wh...

  6. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  7. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  8. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.

    Science.gov (United States)

    Johnson, Jamie M; Wawrik, Boris; Isom, Catherine; Boling, Wilford B; Callaghan, Amy V

    2015-02-01

    Based on the transient exposure of Chesapeake Bay sediments to hydrocarbons and the metabolic versatility of known anaerobic alkane-degrading microorganisms, it was hypothesized that distinct Bay sediment communities, governed by geochemical gradients, would have intrinsic alkane-utilizing potential under sulfate-reducing and/or methanogenic conditions. Sediment cores were collected along a transect of the Bay. Community DNA was interrogated via pyrosequencing of 16S rRNA genes, PCR of anaerobic hydrocarbon activation genes, and qPCR of 16S rRNA genes and genes involved in sulfate reduction/methanogenesis. Site sediments were used to establish microcosms amended with n-hexadecane under sulfate-reducing and methanogenic conditions. Sequencing of 16S rRNA genes indicated that sediments associated with hypoxic water columns contained significantly greater proportions of Bacteria and Archaea consistent with syntrophic degradation of organic matter and methanogenesis compared to less reduced sediments. Microbial taxa frequently associated with hydrocarbon-degrading communities were found throughout the Bay, and the genetic potential for hydrocarbon metabolism was demonstrated via the detection of benzyl-(bssA) and alkylsuccinate synthase (assA) genes. Although microcosm studies did not indicate sulfidogenic alkane degradation, the data suggested that methanogenic conversion of alkanes was occurring. These findings highlight the potential role that anaerobic microorganisms could play in the bioremediation of hydrocarbons in the Bay. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    Directory of Open Access Journals (Sweden)

    Man Jae Kwon

    Full Text Available Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown. The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface

  10. Examining Deep Subsurface Sulfate Reducing Bacterial Diversity to Test Spatial and Temporal Biogeography

    Science.gov (United States)

    Mills, H. J.; Reese, B. K.

    2013-12-01

    In this study, we take advantage of the isolation and scale of the deep marine subsurface to examine microbial biogeography. Unlike other environments, deep marine subsurface provides a unique opportunity to study biogeography across four dimensions. These samples are not only isolated by linear space on a global scale, but they are also temporally isolated by, in some cases, tens of millions of years. Through the support of multiple Integrated Ocean Drilling Program expeditions, we characterized the metabolically active fraction of the subsurface microbial community by targeting and sequencing 16S rRNA gene transcripts (RNA-based analysis). By characterizing the metabolically active fraction, we described lineages that were currently under selective environmental pressure and not relic lineages that may have become dormant or dead at some point in the past. This study was narrowed from the total diversity obtained to provide a detailed examination of the distribution and diversity of sulfate reducing bacteria (SRB); a functional group highly important to and ubiquitous in marine systems. The biogeochemical importance of this functional group, compounded with defined clades makes it a valuable and feasible target for a global biogeography study. SRB lineages from the deep subsurface were compared to contemporary lineages collected from multiple shallow sediment sites that had been extracted and sequenced using the same techniques. The SRB sequences acquired from our databases were clustered using 97% sequence similarity and analyzed using a suite of diversity and statistical tools. The geochemical conditions of the sediments sampled were considered when analyzing the resulting dendrograms and datasets. As hypothesized, lineages from the deep subsurface phylogenetically grouped together. However, similarities were detected to lineages from the shallow modern sediments, suggesting novel lineages may have evolved at a slow rate due to predicted lengthened life cycles

  11. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    KAUST Repository

    Gonzalez-Gil, Graciela

    2012-12-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4gCODl reactor -1d -1) and sulfate at different COD/SO 4 2- ratios. During the start-up of such acidogenic systems, an initial leaching of trace elements from the inoculum sludge occurred regardless of trace elements supplementation in the reactor influent. The granular sludge maintained the physical structure despite high Fe leaching. After start-up and nonetheless the acidic conditions, Co, Ni, Cu, Zn, Mo and Se were retained or accumulated by the sludge when added. Particularly, Ni and Co accumulated in the carbonates and exchangeable fractions ensuring potential bioavailability. Otherwise, the initial stock in the inoculum sludge sufficed to operate the process for nearly 1year without supplementation of trace elements and no significant sludge wash-out occurred. © 2012 Elsevier Ltd.

  12. Comparison of Schaedler agar and trypticase soy-yeast extract agar for the cultivation of anaerobic bacteria.

    Science.gov (United States)

    Starr, S E; Killgore, G E; Dowell, V R

    1971-10-01

    Schaedler agar (SA) and Trypticase soy-yeast extract agar (TSYEA), both supplemented with rabbit blood (5%, v/v) and menadione (0.5 mg/liter), were compared with respect to quantitative recovery, quality of growth, and rapidity of growth of selected anaerobic bacteria. The media were stored for 2 to 4 days prior to use in an anaerobic glove box, where all subsequent bacteriological procedures were performed. After 24 hr of incubation, colonies of Clostridium cadaveris (C. capitovale), C. haemolyticum, C. novyi A, and C. perfringens were larger on SA than on TSYEA, and the appearance of C. novyi B colonies on SA at 24 hr antedated their appearance on TSYEA. Quantitative recovery of C. novyi B was improved on SA; recovery of the other clostridia tested was comparable on the two media (inconclusive results were obtained with C. novyi A). Rough colonial types of some of the clostridia emerged on SA. No appreciable differences in results with the two media were noted for Bacteroides fragilis, B. melaninogenicus, or Fusobacterium fusiforme.

  13. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans

    Science.gov (United States)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to

  15. Salt-tolerant and high-pH-resistant hydrogenase from the haloalkaliphilic, sulfate-reducing bacterium Desulfonatronum thiodismutans

    Science.gov (United States)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, catalyzing the converse reaction of hydrogen oxidation and responsible for the consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins, most of which contain either nickel and iron or iron alone in their active center. Hydrogenases have been found in many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, sulfate-reducing, photosynthetic bacteria, and algae that use the hydrogen as an energy source or as an electron sink. Hydrogenases are the subject of wide physiological, biochemical, physico-chemical and genetic studies due to their abilities to produce molecular hydrogen as an alternative source of energy. Despite the large quantity of work dealing with the intracellular and extracellular enzymes of halophilic bacteria, the data about the response of hydrogenases to salts are practically absent. The study of hydrogenase in cell-free extracts of the extremely halophilic eubacterium Acetohalobium arabaticum showed a dramatic increase in the activity of the enzyme at high concentrations of NaCl and KCl (near saturated solutions). Here we present data about hydrogenase in a free-cell extract from the new halo-alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grows on a highly mineralized carbonate-bicarbonate medium in the salinity range from 1 to 7 % NaCl and at pH 8.0-10.0. The studied enzyme was active in concentration range from 0.0 to 4.3 M NaCl with the optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme expressed 20 % additional activity, with NaCl concentration changing from 2.1 M to 3.4 M, and then the activity decreased and reached a constant level. Although sodium bicarbonate decreases the hydrogenase activity, the enzyme still showed activity at 60 % of the maximum level at concentration in a near saturated solution (1.2 M NaHCO3). The maximum enzyme activity was observed at pH 9.5 with limits of 7.5 and 11.5, which is practically

  16. Anaerobic ammonium oxidation by marine and fresh water planctomycete-like bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jetten, M.S.M.; Sliekers, O.; Kuypers, M.; Dalsgaard, T.; Niftrik, L. van; Cirpus, I.; Pas-Schoonen, K. van de; Lavik, G.; Thamdrup, B.; Le Paslier, D.; Camp, S. op den; Hulth, S.; Nielen, L.P.; Abma, W.; Third, K.; Engström, P.; Kuenen, J.G.; Jørgensen, B.B.; Canfield, D.E.; Revsbech, N.P.; Fuerst, J.; Weissenbach, J.; Wagner, M.; Schmidt, I.; Schmid, M.; Strous, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea, and

  17. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin

    Science.gov (United States)

    Maltby, J.; Sommer, S.; Dale, A. W.; Treude, T.

    2016-01-01

    We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor) at six stations (70, 145, 253, 407, 990 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cm b.s.f. of multiple cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cm b.s.f., 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis.Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cm b.s.f., were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates - i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decrease of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m).Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production

  18. Electron microscopic characterization of the sulfate reducer Desulfovibrio vulgaris: biofilms and clumps

    Science.gov (United States)

    Auer, M.; Remis, J.; Jorgens, D.; Zemla, M.; Singer, M.; Schmitt, J.; Gorby, Y.; Hazen, T.; Wall, J.; Elias, D.; Torok, T.

    2008-12-01

    Numerous studies have helped characterize the stress response of the anaerobic sulfate reducer Desulfovibrio vulgaris Hildenborough (DvH). Yet all of these techniques represent bulk analyses of cells grown mostly under liquid culture conditions in large reactors. Such results represent an average over a large variety of individual cellular responses, hence assuming a homogeneous distribution of physiological traits. Moreover, only recently are those techniques applied to the environmentally more relevant condition of microbial communities (biofilms). What is missing is a detailed ultrastructural analysis of such biofilms in order to determine biofilm organization and its extracellular metal deposition distribution. Using sophisticated sample cryo-preparation approaches such as high-pressure freezing, freeze-substitution or microwave- assisted processing, followed serial section TEM imaging, we have found a large heterogeneity with respect to metal precipitation with some cells being surrounded by metal precipitates whereas neighboring cells, being genetically identical and seeing virtually the exact same microenvironment, completely lack extracellular metal deposits. Interestingly, apart from metal deposits near cell surfaces, we also found string- and sheet- like metal deposits in between neighboring cells that in mature biofilms can extend for hundreds of micrometers. In mature DvH biofilms such deposits were predominantly associated with areas of intact cells in biofilms, with areas devoid of such metal deposits displayed predominantly cell debris, suggesting a role of such deposits for cell survival, which may be of high significance to biofilms at DOE sites. Upon tomographic imaging we found that extracellular metal deposits were often associated with thin filaments and vesicle-like features. To complement our serial section 2D analysis of resin-embedded samples and the resulting limitation of sampling 3D biofilm as thin sections of arbitrary orientation, we

  19. Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria

    NARCIS (Netherlands)

    Veloo, A. C. M.; Knoester, M.; Degener, J. E.; Kuijper, E. J.

    2011-01-01

    Two commercially available MALDI-TOF MS systems, Bruker MS and Shimadzu MS, were compared for the identification of clinically relevant anaerobic bacteria. A selection of 79 clinical isolates, representing 19 different genera, were tested and compared with identification obtained by 16S rRNA gene

  20. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    Science.gov (United States)

    Miguez, Carlos B.; Shen, Chun F.; Bourque, Denis; Guiot, Serge R.; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants. PMID:9925557

  1. Potential of biohydrogen production from effluents of citrus processing industry using anaerobic bacteria from sewage sludge.

    Science.gov (United States)

    Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I

    2017-01-01

    Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Single-molecule imaging can be achieved in live obligate anaerobic bacteria

    Science.gov (United States)

    Karunatilaka, Krishanthi S.; Coupland, Ben R.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole K.; Biteen, Julie S.

    2013-02-01

    Single-molecule fluorescence (SMF) permits imaging with nanometer-scale resolution. This technique is particularly useful for cellular imaging as it provides a non-invasive, minimally perturbative means to examine macromolecular localization and dynamics, even in live cells. Here, we demonstrate that nanometer-scale SMF imaging can be extended to a new category of experiments: intracellular imaging of live, obligate anaerobic cells on the benchtop. We investigate the starch-utilization system (Sus) proteins in the gut symbiont Bacteroides thetaiotaomicron and discuss three different labels that we implemented to detect these proteins: fluorescent proteins, the tetracysteine-based FlAsH tag, and the enzymatic HaloTag.

  3. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  4. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    Science.gov (United States)

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions.

    Science.gov (United States)

    Vogt, Carsten; Gödeke, Stefan; Treutler, Hanns-Christian; Weiss, Holger; Schirmer, Mario; Richnow, Hans-Hermann

    2007-10-01

    The oxidation of benzene under sulfate-reducing conditions was examined in column and batch experiments under close to in situ conditions. Mass balances and degradation rates for benzene oxidation were determined in four sand and four lava granules filled columns percolated with groundwater from an anoxic benzene-contaminated aquifer. The stoichiometry of oxidized benzene, produced hydrogen carbonate and reduced sulfate correlated well with the theoretical equation for mineralization of benzene with sulfate as electron acceptor. Mean retention times of water in four columns were determined using radon ((222)Rn) as tracer. The retention times were used to calculate average benzene oxidation rates of 8-36 microM benzene day(-1). Benzene-degrading, sulfide-producing microcosms were successfully established from sand material of all sand filled columns, strongly indicating that the columns were colonized by anoxic benzene-degrading microorganisms. In general, these data indicate a high potential for Natural Attenuation of benzene under sulfate-reducing conditions at the field site Zeitz. In spite of this existing potential to degrade benzene with sulfate as electron acceptor, the benzene plume at the field site is much longer than expected if benzene would be degraded at the rates observed in the column experiment, indicating that benzene oxidation under sulfate-reducing conditions is limited in situ.

  6. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  7. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters

    Directory of Open Access Journals (Sweden)

    Jennifer Hafer Miller

    2016-03-01

    Full Text Available Understanding fate of antibiotic resistant bacteria (ARB versus their antibiotic resistance genes (ARGs during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1- a Pseudomonas sp. and thermophilic (Iso T10- a Bacillus sp. anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic or 1-log above baseline (mesophilic while levels of the ARG present in the spiked isolate (tet(G remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O, tet(W, and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457 to 0.829, P<0.05 with the raw feed sludge. There was no correlation in tet(O or tet(W ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130 to 0.486, P = 0.075 to 0.612. However, in the thermophilic digester, the tet(O and tet(W ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  8. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria.

    Science.gov (United States)

    Jetten, M S M; Sliekers, O; Kuypers, M; Dalsgaard, T; van Niftrik, L; Cirpus, I; van de Pas-Schoonen, K; Lavik, G; Thamdrup, B; Le Paslier, D; Op den Camp, H J M; Hulth, S; Nielsen, L P; Abma, W; Third, K; Engström, P; Kuenen, J G; Jørgensen, B B; Canfield, D E; Sinninghe Damsté, J S; Revsbech, N P; Fuerst, J; Weissenbach, J; Wagner, M; Schmidt, I; Schmid, M; Strous, M

    2003-12-01

    Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.

  9. Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor.

    Science.gov (United States)

    Jopia, Paz; Ruiz-Tagle, Nathaly; Villagrán, Marcelo; Sossa, Katherine; Pantoja, Silvio; Rueda, Luis; Urrutia-Briones, Homero

    2010-02-01

    Industrial fishing effluents are characterized by high loads of protein and sulfate that stimulate the activity of proteolytic and sulfate reducing bacteria during anaerobic digestion. Their metabolic products (NH3 and H2S respectively) have a well-known detrimental effect on the activity of methanogens. Since methylamine is a carbon source used by methylaminotrophic methane producing archaea (mMPA) but not by sulfate reducing bacteria (SRB), enriched mMPA anaerobic biofilms have been developed on ceramics. We propose that methylated amines could be produced in the biofilm by using betaine, a known precursor of methylamine, as a carbon and energy source. We isolated an anaerobic betainotrophic methylaminogenic bacterial strain (bMB) from an anaerobic bioreactor, using betaine as the only carbon and energy source. This strain was identified by a standard biochemical test (API 20NE), cloning, and 16S rDNA sequencing. bMB biofilm structure and biofilm growth kinetic parameters were determined by means of scanning electron microscopy (SEM), and the Gompertz growth model, respectively. Monomethylamine production was determined by infrared spectroscopy and by high pressure liquid chromatography. The isolated bMB strain was determined as Stappia stellulata (Proteobacteria phylum). It was able to form biofilm on ceramics and its kinetic growth parameters resulted in: maximum biofilm bacterial count (A) of 6.25 x 10(8) UFC/cm(2) and maximum specific growth rate (mu(m)) of 0.0221/h. Production of monomethylamine was about 4.027 atogram/cell/day (at/cell/day) after 15 days of incubation in biofilms. This study confirms the adhesion capacity of this bMB strain on ceramic supports, assuring that monomethylamine production in biofilms could be enriched with mMPA that use monomethylamine. 2009 Elsevier Ltd. All rights reserved.

  10. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  11. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  12. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  13. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Direct observation and quantification of extracellular long-range electron flow in anaerobic bacteria

    Science.gov (United States)

    Malvankar, Nikhil; Yalcin, Sibel; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2013-03-01

    Some anaerobic microorganisms are capable of transporting electrons outside their cell to distant electron acceptors such as metals, minerals or partner species. Previous studies have focused primarily on transport over short distances ( 10 μm) using pili filaments that show organic metal-like conductivity. Pili also enable direct exchange of electrons among syntrophic Geobacter co-cultures. In order to establish the physical principles underlying this remarkable electron transport, we have employed a novel scanning probe microscopy-based method to perform quantitative measurements of electron flow at a single cell level under physiological conditions. Using this nanoscopic approach, we have directly observed the propagation and distribution of injected electrons in individual native bacterial extracellular proteins. Our direct measurements demonstrate unambiguously for the first time that the pili of G. sulfurreducens are a novel class of electronically functional proteins that can sustain electron flow in a surprising manner that has not been observed previously in any other natural protein. Funded by Office of Naval Research, DOE Genomic Sciences and NSF-NSEC Center for Hierarchical Manufacturing grant no. CMMI-1025020.

  16. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose....... Of five different thermophilic bacteria used in this study only two strains produced ethanol with xylan as substrate, one of them being the strain A3 isolated from an Icelandic hot-spring. Probably other degradation products formed in the presence of oxygen might act as inhibitors. Adaptation...

  17. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  18. TEM investigation of U6+ and Re7+ reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium

    International Nuclear Information System (INIS)

    XU, HUIFANG; BARTON, LARRY L.; CHOUDHURY, KEKA; ZHANG, PENGCHU; WANG, YIFENG

    2000-01-01

    Uranium and its fission product Tc in aerobic environment will be in the forms of UO 2 2+ and TcO 4 - . Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re 7+ by cells of Desulfovibrio desulfuricans is fast in media containing H 2 an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re 7+ is (a chemical analogue for Tc 7+ ) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO 2 2+ and TcO 4 -

  19. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea.

    Science.gov (United States)

    Blazejak, Anna; Schippers, Axel

    2011-01-01

    Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5'-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 10(8)/g sediment close to the sediment surface to less than 10(5)/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5-1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40-121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 10(4)/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.

  20. The optimal ecological factors and the denitrification populationof a denitrifying process for sulfate reducing bacteriainhibition

    Science.gov (United States)

    Li, Chunying

    2018-02-01

    SRB have great negative impacts on the oil production in Daqing Oil field. A continuous-flow anaerobic baffled reactors (ABR) are applied to investigate the feasibility and optimal ecological factors for the inhibition of SRB by denitrifying bacteria (DNB). The results showed that the SO42- to NO3- concentration ratio (SO42-/NO3-) are the most important ecological factor. The input of NO3- and lower COD can enhance the inhibition of S2-production effectively. The effective time of sulfate reduction is 6 h. Complete inhibition of SRB is obtained when the influent COD concentration is 600 mg/L, the SO42-/NO3- is 1/1 (600 mg/L for each), N is added simultaneously in the 2# and the 5# ABR chambers. By extracting the total DNA of wastewater from the effective chamber, 16SrDNA clones of a bacterium had been constructed. It is showed that the Proteobacteria accounted for eighty- four percent of the total clones. The dominant species was the Neisseria. Sixteen percent of the total clones were the Bacilli of Frimicutes. It indicated that DNB was effective and feasible for SRB inhibition.

  1. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water...... share similar physicochemical characteristics. At both sites, Archaea and Archaeoglobus-related SRP dominated the total prokaryotic and the sulfate-reducing community, respectively. It was however indicated from clone libraries and the quantification of 16S rRNA and dsrAB gene copies that Archaeoglobus......-related SRP were less prominent at the nitrate-treated site than at the untreated site. In return, thermophilic bacterial SRP appeared to be more abundant (2 and 8 % of all SRP, respectively). They were related to members of the genera Desulfacinum and Desulfoglaeba (system without nitrate...

  2. Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes.

    Science.gov (United States)

    Cheng, Hong; Hong, Pei-Ying

    2017-11-07

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, bla NDM-1 -positive Escherichia coli PI-7, bla CTX-M-15 -positive Klebsiella pneumoniae L7, and bla OXA-48 -positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  3. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes

    KAUST Repository

    Cheng, Hong

    2017-09-28

    An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, blaNDM-1-positive Escherichia coli PI-7, blaCTX-M-15-positive Klebsiella pneumoniae L7, and blaOXA-48-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal.

  4. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters...... of a nitrate-treated and a non-treated system. Comparative analyses of clone libraries indicated that troublesome prokaryotes were enriched at the non-treated site represented by both sulfate- and sulfur-reducing prokaryotes within the Bacteria (Deltaproteobacteria, Desulfotomaculum spp.) and Archaea...... (Archaeoglobus spp., Thermococcus spp.). In contrast, they were less frequently detected at the nitrate-treated site, whereas the abundance of potential nitrate reducers (Deferribacterales, Sulfurospirillum spp., Clostridia) and methanogens appeared to be stimulated. The presence of active SRP at the non...

  5. Interface-mediated synthesis of monodisperse ZnS nanoparticles with sulfate-reducing bacterium culture.

    Science.gov (United States)

    Liang, Zhanguo; Mu, Jun; Mu, Ying; Shi, Jiaming; Hao, Wenjing; Dong, Xuewei; Yu, Hongquan

    2013-12-01

    We have created a new method of ZnS nanospheres synthesis. By interface-mediated precipitation method (IMPM), monodisperse ZnS nanoparticles was synthesized on the particle surface of sulfate-reducing bacterium nutritious agar culture. Sulfate-reducing bacterium (SRB) was used as a sulfide producer because of its dissimilatory sulfate reduction capability, meanwhile produced a variety of amino acids acting as templates for nanomaterials synthesis. Then zinc acetate was dispersed into nutritious agar plate. Subsequently agar plate was broken into particles bearing much external surface, which successfully mediated the synthesis of monodisperse ZnS nanoparticles. The morphology of monodisperse ZnS nanospheres and SRB were examined by scanning electron microscopy (SEM), and the microstructure was investigated by X-ray diffraction (XRD). The thermostability of ZnS nanoparticles was determined by thermo gravimetric-differential thermo gravimetric (TG-DTG). The maximum absorption wavelengh was analysed with an ultraviolet-visible spectrophotometer within a range of 199-700 nm. As a result, monodisperse ZnS nanoparticles were successfully synthesized, with an average diameter of 80 nm. Maximum absorption wavelengh was 228 nm, and heat decomposed temperature of monodisperse ZnS nanoparticles was 596°C. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Activity of Telithromycin (HMR 3647) against Anaerobic Bacteria Compared to Those of Eight Other Agents by Time-Kill Methodology†

    Science.gov (United States)

    Credito, Kim L.; Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.

    1999-01-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO2. Macrolide-azalide-ketolide MICs were 0.004 to 32.0 μg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC ≤ 2.0 μg/ml) against all anaerobes except Peptostreptococcus magnus and Bacteroides thetaiotaomicron, while pristinamycin MICs were 0.06 to 4.0 μg/ml. Amoxicillin-clavulanate had MICs of ≤1.0 μg/ml, while metronidazole was active (MICs, 0.03 to 2.0 μg/ml) against all except Propionibacterium acnes. After 48 h at twice the MIC, telithromycin was bactericidal (≥99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred. PMID:10428930

  7. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  8. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    Science.gov (United States)

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production.

  9. Comparative study in the induced corrosion by sulfate reducing microorganisms, in a stainless steel 304L sensitized and a carbon steel API X65

    International Nuclear Information System (INIS)

    Diaz S, A.; Gonzalez F, E.; Arganis J, C.; Luna C, P.; Carapia M, L.

    2004-01-01

    In spite of the operational experience related with the presence of the phenomenon of microbiological corrosion (MIC) in industrial components, it was not but until the decade of the 80 s when the nuclear industry recognized its influence in some systems of Nuclear Generating Power plants. At the moment, diverse studies that have tried to explain the generation mechanism of this phenomenon exist; however, they are even important queries that to solve, especially those related with the particularities of the affected metallic substrates. Presently work, the electrochemical behavior of samples of stainless steel AISI 304L sensitized is evaluated and the carbon steel APIX65, before the action of sulfate reducing microorganisms low the same experimental conditions; found that for the APIX65 the presence of this type of bacteria promoted the formation of a stable biofilm that allowed the maintenance of the microorganisms that damaged the material in isolated places where stings were generated; while in the AISI 304L, it was not detected damage associated to the inoculated media. The techniques of Resistance to the Polarization and Tafel Extrapolation, allowed the calculation of the speed of uniform corrosion, parameter that doesn't seem to be influenced by the presence of the microorganisms; while that noise electrochemical it distinguished in real time, the effect of the sulfate reducing in the steel APIX65. (Author)

  10. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology.

    Science.gov (United States)

    Credito, K L; Ednie, L M; Jacobs, M R; Appelbaum, P C

    1999-08-01

    Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO(2). Macrolide-azalide-ketolide MICs were 0.004 to 32.0 microg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC /=99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.

  11. Distribution, community assembly and metabolic potential of sulfate-reducing microorganisms in marine sediments

    DEFF Research Database (Denmark)

    Jochum, Lara

    2017-01-01

    could identify that the SRM community structure and size is most heavily influenced by bioturbation and the associated changes in the availability of organic carbon. Sulfate concentrations had less if any impact on the SRM community structure and therefore it was concluded that marine SRM can thrive......The marine sulfur and carbon cycles are coupled closely together by the activity of sulfate reducing microorganisms (SRM) in marine subsurface sediments. Here, they are responsible for oxidizing up to 50 % of the organic carbon contained in marine sediments. Marine sediments are characterized...... by decreasing availability of organic matter and sulfate with sediment depth. SRM are a taxonomically and metabolically diverse group and populate both surface and subsurface marine sediments. Large subgroups of environmental SRM are uncultured, particularly in marine subsurface sediments, and their physiology...

  12. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, D.M.; Gossett, J.M. (Cornell Univ., Ithaca, NY (USA))

    1990-08-01

    Tetrachloroethene, also known as perchloroethylene, was reductively dechlorinated to trichloroethene and cis-1,2-dichloroethene by laboratory sulfate-reducing enrichment cultures. The causative organism or group was not identified. However, tetrachloroethene was dechlorinated to trichloroethene in 50 mM bromoethane-sulfonate-inhibited enrichments and to trichloroethene and cis-1,2-dichloroethene in 3 mM fluoroacetate-inhibited enrichments. Overall transformation varied from 92% tetrachloroethene removal in 13 days to 22% removal in 65 days, depending on conditions of the inoculum, inhibitor used, and auxilliary substrate used. Neither lactate, acetate, methanol, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, succinic acid, nor hydrogen appeared directly to support tetrachloroethene dechlorination, although lactate-fed inocula demonstrated longer-term dechlorinating capability.

  13. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  14. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  15. Efektivitas penggunaan tongue scraper terhadap penurunan indeks tongue coating dan jumlah koloni bakteri anaerob lidah Effectivity of tongue scraper on reducing tongue coating and anaerobic bacteria colony count

    OpenAIRE

    Hamdini Hamid; Rabia’tul Aulia; Rasmidar Samad

    2011-01-01

    Many microorganisms have been found colonizing the dorsum of tongue. To prevent infection and development of other pathologies in oral cavity, tongue cleaning has been advocated to reduce the amount of coating and microorganism loading in the mouth. The aim of this study is to find out the impact of tongue cleaning using tongue scraper against tongue coating index and anaerobic bacterial colony count on tongue dorsum. This study was carried out on 24 male and 16 female participant...

  16. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells.

    Science.gov (United States)

    Pozo, Guillermo; Lu, Yang; Pongy, Sebastien; Keller, Jürg; Ledezma, Pablo; Freguia, Stefano

    2017-12-01

    Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO 4 -S/m 2 /d. Although MWCNT-RVC achieved a current density of 57±11A/m 2 , greater than the 32±9A/m 2 observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO 4 -S/m 2 /d while 110±13gSO 4 -S/m 2 /d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.

    Science.gov (United States)

    Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

    2012-03-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. © 2011 Blackwell Publishing Ltd.

  18. A comparative evaluation of antibacterial effectiveness of sodium hypochlorite, Curcuma longa, and Camellia sinensis as irrigating solutions on isolated anaerobic bacteria from infected primary teeth.

    Science.gov (United States)

    Dhariwal, Neha Shashikant; Hugar, Shivayogi M; Harakuni, Sheetal; Sogi, Suma; Assudani, Harsha G; Mistry, Laresh Naresh

    2016-01-01

    In endodontics, most of the commercial intra-canal medicaments have cytotoxic reactions and because of their inability to eliminate bacteria from dentinal tubules, recent medicine has turned its attention to the usage of biologic medication prepared from natural plants. The literature to testify the efficacy of natural alternatives in primary teeth is meagre and its effects as irrigating solutions need to be evaluated. To evaluate the antibacterial effectiveness of sodium hypochlorite, ethanolic extracts of Curcuma longa (turmeric) and Camellia sinensis (green tea) as irrigating solutions against the anaerobic bacteria isolated from the root canals of infected primary teeth. Thirty patients were selected based on the selected inclusion and exclusion criteria. Preoperative radiographs were taken. Rubber dam isolation and working length estimation were done, following which thirty samples were taken from the root canals of infected primary teeth using sterile absorbent paper points and transferred to tubes containing thioglycolate transport medium. The bacteria were then isolated using standard microbiological protocols and were subjected to antibiotic sensitivity testing using the three test irrigants. SPSS 18 software using Chi-square test was used for statistical analysis. The most commonly isolated bacteria included Porphyromonas sp., Bacteroides fragilis, Peptostreptococcus, and Staphylococcus aureus. Sodium hypochlorite and C. longa (turmeric) showed good antibacterial effect and were effective against most of the isolated bacteria. There was statistically significant difference in the antibacterial effect among the three tested groups (P < 0.001). The least effective was C. sinensis (green tea). The infected primary teeth almost always present with a polymicrobial structure with a wide variety of anaerobic bacteria. The chemo-mechanical preparation plays an important role in eradicating the population of predominant micro-organisms in treating these teeth with

  19. A comparative evaluation of antibacterial effectiveness of sodium hypochlorite, Curcuma longa, and Camellia sinensis as irrigating solutions on isolated anaerobic bacteria from infected primary teeth

    Directory of Open Access Journals (Sweden)

    Neha Shashikant Dhariwal

    2016-01-01

    Full Text Available Context: In endodontics, most of the commercial intra-canal medicaments have cytotoxic reactions and because of their inability to eliminate bacteria from dentinal tubules, recent medicine has turned its attention to the usage of biologic medication prepared from natural plants. The literature to testify the efficacy of natural alternatives in primary teeth is meagre and its effects as irrigating solutions need to be evaluated. Aim: To evaluate the antibacterial effectiveness of sodium hypochlorite, ethanolic extracts of Curcuma longa (turmeric and Camellia sinensis (green tea as irrigating solutions against the anaerobic bacteria isolated from the root canals of infected primary teeth. Materials and Methods: Thirty patients were selected based on the selected inclusion and exclusion criteria. Preoperative radiographs were taken. Rubber dam isolation and working length estimation were done, following which thirty samples were taken from the root canals of infected primary teeth using sterile absorbent paper points and transferred to tubes containing thioglycolate transport medium. The bacteria were then isolated using standard microbiological protocols and were subjected to antibiotic sensitivity testing using the three test irrigants. Statistical Analysis: SPSS 18 software using Chi-square test was used for statistical analysis. Results: The most commonly isolated bacteria included Porphyromonas sp., Bacteroides fragilis, Peptostreptococcus, and Staphylococcus aureus. Sodium hypochlorite and C. longa (turmeric showed good antibacterial effect and were effective against most of the isolated bacteria. There was statistically significant difference in the antibacterial effect among the three tested groups (P < 0.001. The least effective was C. sinensis (green tea. Conclusion: The infected primary teeth almost always present with a polymicrobial structure with a wide variety of anaerobic bacteria. The chemo-mechanical preparation plays an important

  20. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways

    NARCIS (Netherlands)

    Sousa, Diana Z.; Visser, Michael; Gelder, Van Antonie H.; Boeren, Sjef; Pieterse, Mervin M.; Pinkse, Martijn W.H.; Verhaert, Peter D.E.M.; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J.M.

    2018-01-01

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in

  1. Anaerobic and aerobic acetylene hydratase

    Indian Academy of Sciences (India)

    Administrator

    Acetaldehyde is the first metabolite produced during acetylene degradation by bacteria either aerobically or anaerobically. Conversion of acetylene into acetaldehyde, ethanol, acetate, and biomass occurs in anaerobic cultures of Palobacter acetylinicus or aerobically with Mycobacterium lacticola, Nocardia rhodochrous, ...

  2. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    Directory of Open Access Journals (Sweden)

    Zhen Hu

    2016-12-01

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH ${}_{4}^{+}$ 4 + and high NO ${}_{2}^{-}$ 2 − content were suitable for the growth of M. oxyfera bacteria.

  3. Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol.

    Science.gov (United States)

    Khan, Mohammad Danish; Khan, Nishat; Nizami, Abdul-Sattar; Rehan, Mohammad; Sabir, Suhail; Khan, Mohammad Zain

    2017-08-01

    This study aims to examine the effect of different co-substrates on the anaerobic degradation of pentachlorophenol (PCP) with simultaneous production of biogas. Acetate and glucose were added as co-substrates to monitor and compare the methanogenic reaction during PCP degradation. During the experiment, a chemical oxygen demand (COD) removal efficiency of 80% was achieved. Methane (CH 4 ) production was higher in glucose-fed anaerobic reactors with the highest amount of CH 4 (303.3µL) produced at 200ppm of PCP. Scanning electron microscopy (SEM) demonstrates the high porous structure of anaerobic sludge with uniform channels confirming better mass transfer and high PCP removal. Quantitative real-time PCR (qPCR) revealed that methanogens were the dominating species while some sulfate reducing bacteria (SRBs) were also found in the reactors. The study shows that strategic operation of the anaerobic reactor can be a feasible option for efficient degradation of complex substrates like PCP along with the production of biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  5. Investigation of Sulfate concentration influence on Anaerobic Lagoon performance: Birjand Wastewater Treatment plant: A Case study

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-05-01

    Full Text Available Background and Aim: In the present study the influence of the different sulfate concentration on the anaerobic lagoon stabilization was investigated. Materials and Methods: The present study is an experimental research carried out on anaerobic stabilization pond pilot for 7 months in Birjand wastewater treatment plant. After making sure of a steady state sulfate with different concentrations of 200, 300 and 400 mg/L were injected into the pilot. Then parameters including pH, organic nitrogen, ammonia nitrogen, BOD5, COD and nitrate were measured. All of the experiments were carried out according to the methods presented in the book "Standard Method" for the examination of water and wastewater (2005. Results: It was found that by increasing sulfate concentration from 200 to 300 mg/L all of parameters  except BOD5 (10% reduction had no significant changes., but by increasing the sulfate concentration from 200 to 400 mg/L the removal efficiency of the parameters such as BOD5, COD, Organic nitrogen, total kjeldahl nitrogen, nitrate and sulfate reduced to 11, 8, 12, 26, 6 and 10 percent, respectively. PH in the first stage was alkaline and then changed to acidic. Conclusion: Anaerobic stabilization ponds have different capacities for removal of organic compounds at different sulfate concentrations; so that; in sulfate concentration of 200 mg/L, the proper operation was seen and in concentration of 300 mg/L, sulfate-reducing bacteria get dominant and therefore odor is produced..  Alternatively, by increasing the concentration of sulphate to 400 mg/L, ammonia nitrogen increased 2.5 times (150% in the effluent.

  6. Modelling phosphorus (P), sulphur (S) and iron (Fe) interactions during the simulation of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi-Mbamba, Christian

    2015-01-01

    This paper examines the effects of different model formulations when describing sludge stabilization processes in wastewater treatment plants by the Anaerobic Digestion Model No. 1 (ADM1). The proposed model extensions describe the interactions amongst phosphorus (P), sulfur (S), iron (Fe...... production of sulfide (SH2S) by means of Sulfate-Reducing Bacteria (XSRB). This approach also considers potential SH2S inhibition effect on biomass and mass transfer phenomena (aqueous-gas). The third evaluated model (A3) considers chemical iron (III) (SFe+3) reduction to iron (II) (SFe+2) using hydrogen (SH....... Models A3 and A4 reduce the free SH2S (and consequently inhibition) plus cationic load and soluble P availability due to ion pair formation and metallic carbonate/phosphate precipitation. The final version of the manuscript will provide a deeper analysis of the different model assumptions, the effect...

  7. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Cruz, Ulises [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico); Celis, Lourdes B. [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a. Seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Poggi, Hector [Department of Biotechnology and Bioengineering, CINVESTAV, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 D.F. (Mexico); Meraz, Monica, E-mail: meraz@xanum.uam.mx [Department of Biotechnology, Environmental Science and Technology, Universidad Autonoma Metropolitana-Iztapalapa, Ave. San Rafael Atlixco 186, Vicentina, 09340 D.F. (Mexico)

    2010-07-15

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC{sub 50} values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC{sub 50} values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  8. Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate.

    Science.gov (United States)

    Schink, Bernhard; Thiemann, Volker; Laue, Heike; Friedrich, Michael W

    2002-05-01

    A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.

  9. Inhibitory concentrations of 2,4D and its possible intermediates in sulfate reducing biofilms

    International Nuclear Information System (INIS)

    Garcia-Cruz, Ulises; Celis, Lourdes B.; Poggi, Hector; Meraz, Monica

    2010-01-01

    Different concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4D) and its possible intermediates such as 2,4-dichlorophenol (2,4DCP), 4-chlorophenol (4CP), 2-chlorophenol (2CP) and phenol, were assayed to evaluate the inhibitory effect on sulfate and ethanol utilization in a sulfate reducing biofilm. Increasing concentrations of the chlorophenolic compounds showed an adverse effect on sulfate reduction rate and ethanol conversion to acetate, being the intermediate 2,4DCP most toxic than the herbicide. The monochlorophenol 4CP (600 ppm) caused the complete cessation of sulfate reduction and ethanol conversion. The ratio of the electron acceptor to the electron donor utilized as well as the sulfate utilization volumetric rates, diminished when chlorophenols and phenol concentrations were increased, pointing out to the inhibition of the respiratory process and electrons transfer. The difference found in the IC 50 values obtained was due to the chemical structure complexity of the phenolic compounds, the number of chlorine atoms as much as the chlorine atom position in the phenol ring. The IC 50 values (ppm) indicated that the acute inhibition on the biofilm was caused by 2,4DCP (17.4) followed by 2,4D (29.0), 2CP (99.8), 4CP (108.0) and phenol (143.8).

  10. The antimicrobial peptide Ci-MAM-A24 is highly active against multidrug-resistant and anaerobic bacteria pathogenic for humans.

    Science.gov (United States)

    Fedders, Henning; Podschun, Rainer; Leippe, Matthias

    2010-09-01

    Ci-MAM-A24, a synthetic antimicrobial peptide derived from a peptide precursor from immune cells of the marine invertebrate Ciona intestinalis, has been shown to be potently active against representatives of Gram-positive and Gram-negative bacteria by permeabilising their cytoplasmic membrane. In the present study, the activity of Ci-MAM-A24 against different bacterial pathogens frequently causing therapeutic problems was tested. In particular, the killing capacity of Ci-MAM-A24 against clinically important anaerobic bacteria as well as multiresistant aerobic strains such as meticillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producers and multiple-resistant Pseudomonas aeruginosa strains was monitored. Virtually all strains proved to be highly susceptible to Ci-MAM-A24 at low concentrations [minimum bactericidal concentration (MBC)<10 microg/mL]. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. Ceftaroline plus Avibactam Demonstrates Bactericidal Activity against Pathogenic Anaerobic Bacteria in a One-Compartment In Vitro Pharmacokinetic/Pharmacodynamic Model

    Science.gov (United States)

    Werth, Brian J.

    2014-01-01

    Anaerobic pathogens are often associated with polymicrobial infections, such as diabetic foot infections. Patients with these infections are often treated with broad-spectrum, multidrug therapies targeting resistant Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus, as well as Gram-negative bacteria and anaerobes. The broad-spectrum, non-beta-lactam, beta-lactamase inhibitor avibactam has been combined with ceftaroline and may provide a single-product alternative for complicated polymicrobial infections. We compared the activity of ceftaroline-avibactam (CPA) to that of ertapenem (ERT) against common anaerobic pathogens in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model. Simulations of doses of ceftaroline-fosamil at 600 mg every 8 h (q8h) (maximum free drug concentration [fCmax], 17.04 mg/liter, and half-life [t1/2], 2.66 h) plus avibactam at 600 mg q8h (fCmax, 11.72 mg/liter, and t1/2, 1.8 h) and of ertapenem at 1 g q24h (fCmax, 13 mg/liter, and t1/2, 4 h) were evaluated against two strains of Bacteroides fragilis, one strain of Prevotella bivia, and one strain of Finegoldia magna in an anaerobic one-compartment in vitro PK/PD model over 72 h with a starting inoculum of ∼8 log10 CFU/ml. Bactericidal activity was defined as a reduction of ≥3 log10 CFU/ml from the starting inoculum. Both CPA and ERT were bactericidal against all four strains. CPA demonstrated improved activity against Bacteroides strains compared to that of ERT but had similar activity against Finegoldia magna and P. bivia, although modest regrowth was observed with CPA against P. bivia. No resistance emerged from any of the models. The pharmacokinetics achieved were 92 to 105% of the targets. CPA has potent in vitro activity against common anaerobic pathogens at clinically relevant drug exposures and may be a suitable single product for the management of complicated polymicrobial infections. PMID:24217692

  12. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite

    Science.gov (United States)

    Donald, Ravin; Southam, Gordon

    1999-07-01

    In vitro enrichment cultures of dissimilatory sulfate-reducing bacteria precipitated FeS and catalyzed its transformation into FeS 2 at ambient temperature and pressure under anaerobic conditions. When compared to purely abiotic processes, the bacterially mediated transformation was shown to be more efficient in transforming FeS into FeS 2. This occurred due to the large, reactive surface area available for bacterially catalyzed diagenesis, where the biogenic FeS precursor was immobilized as a thin film (˜25 nm thick) on the μm-scale bacteria. The bacteria also contained the source(s) of sulfur for diagenesis to occur. Using a radiolabeled organic-sulfur tracer study, sulfur was released during cell autolysis and was immobilized at the bacterial cell surface forming FeS 2. The formation of FeS 2 occurred on both the inner and outer surfaces of the cell envelope and represented the first step of bacterial mineral diagenesis. Pyrite crystals, having linear dimensions of ˜1 μm, grew outward from the bacterial cell surfaces. These minerals were several orders of magnitude larger in volume than those originating abiotically.

  13. In vitro efficacy of cefovecin against anaerobic bacteria isolated from subgingival plaque of dogs and cats with periodontal disease.

    Science.gov (United States)

    Khazandi, Manouchehr; Bird, Philip S; Owens, Jane; Wilson, Gary; Meyer, James N; Trott, Darren J

    2014-08-01

    Periodontal disease is a common disease of dogs and cats often requiring antimicrobial treatment as an adjunct to mechanical debridement. However, correct compliance with oral antimicrobial therapy in companion animals is often difficult. Cefovecin is a recently introduced veterinary cephalosporin that has demonstrated prolonged concentrations in extracellular fluid, allowing for dosing intervals of up to 14 days. Subgingival samples were collected from the oral cavity of 29 dogs and eight cats exhibiting grade 2 or grade 3 periodontal disease. Samples were cultivated on Wilkin Chalgrens agar and incubated in an anaerobic chamber for seven days. Selected anaerobic bacteria were isolated and identified to species level using 16S rRNA gene sequence analysis. Minimum inhibitory concentrations were determined for cefovecin and six additional antimicrobials using the agar dilution methodology recommended by the Clinical and Laboratory Standards Institute. The 65 clinical isolates were identified as Porphyromonas gulae (n = 45), Porphyromonas crevioricanis (n = 12), Porphyromonas macacae (n = 1), Porphyromonas cangingivalis (n = 1) Fusobacterium nucleatum (n = 2), Fusobacterium russii (n = 1) and Solobacterium moorei (n = 3). This is the first report of S. moorei being isolated from companion animals with periodontal disease. All isolates were highly susceptible to cefovecin, with a MIC90 of ≤0.125 μg/ml. Conversely, different resistance rates to ampicillin, amoxicillin and erythromycin between isolates were detected. Cefovecin is thus shown to be effective in vitro against anaerobic bacteria isolated from dogs and cats with periodontal disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Homology modeling of dissimilatory APS reductases (AprBA of sulfur-oxidizing and sulfate-reducing prokaryotes.

    Directory of Open Access Journals (Sweden)

    Birte Meyer

    Full Text Available BACKGROUND: The dissimilatory adenosine-5'-phosphosulfate (APS reductase (cofactors flavin adenine dinucleotide, FAD, and two [4Fe-4S] centers catalyzes the transformation of APS to sulfite and AMP in sulfate-reducing prokaryotes (SRP; in sulfur-oxidizing bacteria (SOB it has been suggested to operate in the reverse direction. Recently, the three-dimensional structure of the Archaeoglobus fulgidus enzyme has been determined in different catalytically relevant states providing insights into its reaction cycle. METHODOLOGY/PRINCIPAL FINDINGS: Full-length AprBA sequences from 20 phylogenetically distinct SRP and SOB species were used for homology modeling. In general, the average accuracy of the calculated models was sufficiently good to allow a structural and functional comparison between the beta- and alpha-subunit structures (78.8-99.3% and 89.5-96.8% of the AprB and AprA main chain atoms, respectively, had root mean square deviations below 1 A with respect to the template structures. Besides their overall conformity, the SRP- and SOB-derived models revealed the existence of individual adaptations at the electron-transferring AprB protein surface presumably resulting from docking to different electron donor/acceptor proteins. These structural alterations correlated with the protein phylogeny (three major phylogenetic lineages: (1 SRP including LGT-affected Archaeoglobi and SOB of Apr lineage II, (2 crenarchaeal SRP Caldivirga and Pyrobaculum, and (3 SOB of the distinct Apr lineage I and the presence of potential APS reductase-interacting redox complexes. The almost identical protein matrices surrounding both [4Fe-4S] clusters, the FAD cofactor, the active site channel and center within the AprB/A models of SRP and SOB point to a highly similar catalytic process of APS reduction/sulfite oxidation independent of the metabolism type the APS reductase is involved in and the species it has been originated from. CONCLUSIONS: Based on the comparative

  15. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  16. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  17. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  18. Changing Microspatial Patterns of Sulfate-Reducing Microorganisms (SRM during Cycling of Marine Stromatolite Mats

    Directory of Open Access Journals (Sweden)

    Alexandru I. Petrisor

    2014-01-01

    Full Text Available Microspatial arrangements of sulfate-reducing microorganisms (SRM in surface microbial mats (~1.5 mm forming open marine stromatolites were investigated. Previous research revealed three different mat types associated with these stromatolites, each with a unique petrographic signature. Here we focused on comparing “non-lithifying” (Type-1 and “lithifying” (Type-2 mats. Our results revealed three major trends: (1 Molecular typing using the dsrA probe revealed a shift in the SRM community composition between Type-1 and Type-2 mats. Fluorescence in-situ hybridization (FISH coupled to confocal scanning-laser microscopy (CSLM-based image analyses, and 35SO42−-silver foil patterns showed that SRM were present in surfaces of both mat types, but in significantly (p < 0.05 higher abundances in Type-2 mats. Over 85% of SRM cells in the top 0.5 mm of Type-2 mats were contained in a dense 130 µm thick horizontal layer comprised of clusters of varying sizes; (2 Microspatial mapping revealed that locations of SRM and CaCO3 precipitation were significantly correlated (p < 0.05; (3 Extracts from Type-2 mats contained acylhomoserine-lactones (C4- ,C6- ,oxo-C6,C7- ,C8- ,C10- ,C12- , C14-AHLs involved in cell-cell communication. Similar AHLs were produced by SRM mat-isolates. These trends suggest that development of a microspatially-organized SRM community is closely-associated with the hallmark transition of stromatolite surface mats from a non-lithifying to a lithifying state.

  19. Sulfur isotopic and proteomic profiles of sulfate reducers grown under differential steady-states

    Science.gov (United States)

    Leavitt, W.; Venceslau, S.; Waldbauer, J.; Smith, D. A.; Boidi, F. J.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The product sulfide is depleted in the heavier isotopes of sulfur, relative to the reactant sulfate, consistent with a normal kinetic isotope effect. However, the magnitude of the net fractionation during MSR can range over a range of 70 permil, consistent with a multi-step set of reactions. This range in MSR fractionation has been shown to mainly depend on: i) the cell-specific sulfate reduction rate (csSRR), and ii) the ambient sulfate concentration. However, the fractionation under identical conditions differs among strains (Bradley et al. 2016. Geobio), and so must also be mediated by strain-specific processes, such as the nature and quantity of individual proteins involved in sulfate reduction, electron transport, and growth. In recent work we have examined the influence of electron donor, electron acceptor, and co-limitation under controlled steady-state culture conditions in order better inform models of MSR isotope fractionation, and the physiological and isotopic response to differential environmental forcings (e.g. Leavitt et al. (2013) PNAS). Recent models of the fractionation response to MSR rate (c.f. Bradley 2016; Wing & Halevy, 2016) make specific predictions for the responses of the cellular metabolome and proteome. Here we compare the steady-state S-isotopic fractionation and proteome of `fast' versus `slow' grown D. vulgaris, using replicate chemostats under electron donor limitation. We observe clear and statistically robust changes in some key central MSR and C-metabolism enzymes, though a host of the critical energy-transfer enzymes show no statistically discernable change. We discuss these results in light of recent theoretical advances and their relevance to modern and ancient

  20. Isolation of a sulfate reducing bacterium and its application in sulfate ...

    African Journals Online (AJOL)

    The results show that the effect of C. freundii in removing sulfate was best when the temperature was 32°C, pH was 7.0, COD/SO42- was 5.0 and the initial SO42- concentration was 1500 mg/L. Also, the SRB was inoculated onto an up-flow anaerobic sludge bed (UASB) to remove sulfate in actual tannery wastewater.

  1. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di; Trincao, J.; Pickering, I.J.; George, G.N.; Calvete, J.J.; Brondino, C.; Pereira, A.S.; Lampreia, J.; Tavares, P.; Moura, J.J.G.; Moura, I.

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  2. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774.

    Science.gov (United States)

    Gavel, Olga Yu; Bursakov, Sergey A; Di Rocco, Giulia; Trincão, José; Pickering, Ingrid J; George, Graham N; Calvete, Juan J; Shnyrov, Valery L; Brondino, Carlos D; Pereira, Alice S; Lampreia, Jorge; Tavares, Pedro; Moura, José J G; Moura, Isabel

    2008-01-01

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.

  3. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    Science.gov (United States)

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  4. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    Directory of Open Access Journals (Sweden)

    John W Moreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  5. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet; Mukhopadhyay, Aindrila; Hazen, Terry C.

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences are essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.

  6. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    Science.gov (United States)

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  7. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing

    International Nuclear Information System (INIS)

    Zhou, Jiemin; Zhou, Xuemei; Li, Yuguang; Xing, Jianmin

    2015-01-01

    Highlights: • Bacterial communities of haloalkaliphilic bioreactors were investigated. • MiSeq was first used in analysis of communities of haloalkaliphilic bioreactors. • Electron donors had significant effect on bacterial communities. - Abstract: Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities

  8. The Effect of Bamboo Leaf Extract Solution and Sodium Copper Chlorophyllin Solution on Growth and Volatile Sulfur Compounds Production of Oral Malodor Associated Some Anaerobic Periodontal Bacteria.

    Science.gov (United States)

    Majbauddin, Abir; Kodani, Isamu; Ryoke, Kazuo

    2015-09-01

    Bamboo leaf extract solution (BLES) and sodium copper chlorophyllin solution (SCCS) are known for their anti-oxidant activities. Oral malodor is often related with periodontal pathogens. The present study was undertaken to investigate the anti-bacterial effect of both BLES and SCCS on anaerobic periodontal bacteria producing oral malodorous volatile sulfur compounds (VSC). Porphyromonas gingivalis W83 (PG), Prevotella intermidai TDC19B (PI), Fusobacterium nucleatum ATCC25586 (FN) and Prevotella nigrescence ATCC33563 (PN) were investigated as oral isolated bacteria. VSC production ability of the oral strains was investigated by gas chromatography. With serial dilution of BLES or SCCS, the strains PG, PI, FN or PN were cultured anaerobically with AnaeroPack at 37 ℃ for 3 days. For the determination of anti-bacterial action of BLES or SCCS, the inoculum was cultured with original concentrations of BLES 0.16% (w/v) or SCCS 0.25% (w/v). Gas chromatography exhibited that all strains, PG, PI, FN and PN were responsible for producing a high range of H2S and a moderate range of CH3SH. Anti-bacterial effect of BLES or SCCS on the strains was observed. Inhibition of BLES or SCCS on the strains was revealed as concentration dependent. BLES or SCCS inhibited bacterial proliferation at higher concentrations (PG; 0.04% BLES or 0.03% SCCS, PI; 0.002% BLES or 0.03% SCCS, FN; 0.005% BLES or 0.01% SCCS, PN; 0.01% BLES or 0.015% SCCS). No viable bacterial colony observed at original concentration of BLES 0.16% or SCCS 0.25%. Strain growth was eliminated from inhibition at lower concentrations (PG; 0.02% BLES or 0.015% SCCS, PI; 0.001% BLES or 0.015% SCCS, FN; 0.002% BLES or 0.007% SCCS, PN; 0.005% BLES or 0.007% SCCS). High concentrations of both BLES (0.16%) and SCCS (0.25%) show superior inhibiting capability on all four oral malodor associated periodontal anaerobes during testing, suggesting that these compounds might have a beneficial effect on oral health care.

  9. Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel

    Czech Academy of Sciences Publication Activity Database

    Sørensen, K.; Řeháková, Klára; Zapomělová, Eliška; Oren, A.

    2009-01-01

    Roč. 56, 2-3 (2009), s. 275-284 ISSN 0948-3055. [GAP workshop /8./. Eilat, 30.03.2008-08.04.2008] R&D Projects: GA ČR(CZ) GA206/06/0462; GA AV ČR(CZ) KJB600960703; GA AV ČR(CZ) 1QS600170504 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : salterns * microbial community * molecular ecology * phototrohs * sulfate reducers * methanogens Subject RIV: EH - Ecology, Behaviour Impact factor: 1.743, year: 2009

  10. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility.

    Science.gov (United States)

    Tommasi, T; Sassi, G; Ruggeri, B

    2008-01-01

    The present study is aimed to test the effectiveness and the reproducibility of the acid pre-treatment of sewage sludge to suppress the methanogenic bacteria activity, in order to increase the hydrogen forming bacteria activity, mainly Clostridium species. The treated sludge has been tested on glucose reach medium under mesophilic conditions (35 degrees C), in batch mode to quantify the biological fermentative hydrogen production. In the whole series of experiments, the main components of biogas are hydrogen (52-60%) and carbon dioxide (40-48%); no methane and hydrogen sulphide were present in it. The rate of biogas production reached a maximum of 75 ml/lh. An overall mean hydrogen conversion efficiency was 11.20% on the assumption of maximum of 3 mol H2/mol glucose. Clostridium spp. multiplied ten times after 10 h of fermentation and over that thousand times at the end of fermentation. IWA Publishing 2008.

  11. Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions.

    Science.gov (United States)

    Muri, Petra; Marinšek-Logar, Romana; Djinović, Petar; Pintar, Albin

    2018-04-01

    This study assesses the impact of different support materials (Mutag BioChip™, expanded clay and activated carbon) on microbial hydrogen production in an anaerobic packed-bed reactor (APBR) treating synthetic waste water containing glucose as the main carbon source at low pH value. The APBRs were inoculated with acid pretreated anaerobic sludge and operated at pH value of 4±0.2 and hydraulic retention time (HRT) of 3h. The maximum hydrogen yield of 1.80mol H 2 /mol glucose was achieved for the APBR packed with Mutag BioChip™ (R1), followed by expanded clay (R2, 1.74mol H 2 /mol glucose) and activated carbon (R3, 1.46mol H 2 /mol glucose). It was observed that the investigated support materials influenced the immobilization of hydrogen producing bacteria and consequently hydrogen production performance as well as composition of soluble metabolites. The main metabolic products were acetic acid and butyric acid accompanied with a smaller content of ethanol. The data indicated that in reactors with higher hydrogen yield (R1 and R2), acetate/butyrate (HAc/HBu) ratios were 1.7 and 1.6, respectively, while in the reactor with the lowest hydrogen yield (R3) the obtained HAc/HBu ratio was 4.8. Finally, stable hydrogen and organic acids production throughout the steady-state operation period at low pH values was achieved in all reactors. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor.

    Science.gov (United States)

    Goberna, M; Insam, H; Franke-Whittle, I H

    2009-04-01

    Prokaryotic diversity was investigated near the inlet and outlet of a plug-flow reactor. After analyzing 800 clones, 50 bacterial and 3 archaeal phylogenetic groups were defined. Clostridia (>92%) dominated among bacteria and Methanoculleus (>90%) among archaea. Significant changes in pH and volatile fatty acids did not invoke a major shift in the phylogenetic groups. We suggest that the environmental filter imposed by the saline conditions (20 g liter(-1)) selected a stable community of halotolerant and halophilic prokaryotes.

  13. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    KH2PO4). These bottles also received 15 μM tetrathiomolybdate as a copper chelator ( Medici and Sturniolo, 2008) for the reason described in Treatment 4...addition, two different copper chelators (tetrathiomolybdate and allylthioyurea; Yu et al., 2009; Medici and Sturniolo, 2008) were used in order to...1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ. Sci. Technol. 40:5435-5442. Medici V., and G.C. Sturniolo. 2008

  14. Methods and Techniques of Sampling, Culturing and Identifying of Subsurface Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-11-01

    This report described sampling, culturing and identifying of KURT underground bacteria, which existed as iron-, manganese-, and sulfate-reducing bacteria. The methods of culturing and media preparation were different by bacteria species affecting bacteria growth-rates. It will be possible for the cultured bacteria to be used for various applied experiments and researches in the future

  15. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    Science.gov (United States)

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  17. [Cultivation of ANAMMOX bacteria and the ammonium anaerobic oxidation technology in the plug flow bio-reactor].

    Science.gov (United States)

    Liu, Yin; Du, Bing; Si, Ya-an; Sun, Yan-ling; Shen, Li-xian

    2005-03-01

    It is feasible that the ANAMMOX bacteria can be enriched and cultivated to red granular in plug flow immobilized floc bioreactor. Average ammonium and nitrite removal rate are more than 98 %, and average total nitrogen removal rate is 86% combined with 14% nitrate production; the removal volumetric total nitrogen load is 2.56kg/(m3 x d). The influence of the influent substrate ratio of ammonium to nitrite on reactor's performance has been studied. The granule structure has been observed by the scan electro-microscope.

  18. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Maltby

    2018-01-01

    Full Text Available Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis was investigated in sediments (0–30 cm below seafloor, cm b.s.f. of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1 unaltered sediment batch incubations (net methanogenesis, (2 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis, (3 manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor, 2-bromoethanesulfonate (methanogen inhibitor, or methanol (noncompetitive substrate, potential methanogenesis, and (4 the addition of 13C-labeled methanol (potential methylotrophic methanogenesis. After incubation with

  19. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea

    Science.gov (United States)

    Maltby, Johanna; Steinle, Lea; Löscher, Carolin R.; Bange, Hermann W.; Fischer, Martin A.; Schmidt, Mark; Treude, Tina

    2018-01-01

    Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0-30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area Boknis Eck quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular

  20. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Zeikus, J.G.; Shen, Gwo-Jenn.

    1988-01-01

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H 2 consumption was linked to the inhibition of CO 2 production and an increase in the propionate/acetate rate; whereas, H 2 consumption was linked to a stimulation of CO 2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H 2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  2. Developing an optimized treatment strategy for anaerobic waste water cleaning; Entwicklung einer optimierten Behandlungstrategie fuer die anaerobe Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.; Manz, W.; Szewzyk, U.; Kozariszczuk, M.; Kraume, M. [Technische Univ. Berlin (Germany)

    1999-07-01

    The paper looks into the opportunities for and limitations of using oligonucleotide probes for in-situ hybridisation in anaerobic systems. As is demonstrated, a large part of the populations can be detected using this method and different physiological groups like sulfate reducers and methanogens can be verified with a high resolution. The technique permits assessing the physiological activity of these groups so that inferences to reactor performance can be drawn. Various physiological groups such as fermenters and homoacetogenous bacteria so far can be detected with inadequate resolution only. Ongoing work with a view to amending this is described. (orig.) [German] Dieser Beitrag beschaeftigt sich mit den Moeglichkeiten und Limitierungen des Einsatzes von Oligonukleotidsonden zur in situ Hybridisierung in anaeroben Systemen. Es wird gezeigt, dass ein grosser Teil der Population mit Hilfe dieser Methode erfasst werden kann und verschiedene physiologische Gruppen wie die Sulfatreduzierer und die Methanogenen mit hoher Aufloesung nachgewiesen werden koennen. Die physiologische Aktivitaet dieser Gruppen kann abgeschaetzt werden und damit sind Rueckschluesse auf die Reaktorleistung moeglich. Verschiedene physiologische Gruppen wie die Gaerer und die homoacetogenen Bakterien werden bisher nur in unzureichender Aufloesung erfasst. Die derzeit laufenden Arbeiten zur Loesung dieser Probleme werden beschrieben. (orig.)

  3. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  4. Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions

    NARCIS (Netherlands)

    Drzyzga, O; EL Mamouni, R; Agathos, SN; Gottschal, JC

    2002-01-01

    A sediment column study was carried out to demonstrate the bioremediation of chloroethene- and nickel-contaminated sediment in a single anaerobic step under sulfate-reducing conditions. Four columns (one untreated control column and three experimental columns) with sediment from a chloroethene- and

  5. Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment

    NARCIS (Netherlands)

    Scholten, J.C.M.; Stams, A.J.M.

    2000-01-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was

  6. Anaerobic biodegradation of gasoline oxygenates. Extrapolation of information to multiple sites and redox conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mormile, M.R.; Liu, S.; Suflita, J.M. (Univ. of Oklahoma, Norman, OK (United States))

    1994-09-01

    A series of alcohol, ketone, ester, and ether oxygenates were tested for their susceptibility to anaerobic decay in samples from four chronically contaminated sedimentary environments. The effect of various electron acceptors on oxygenate biodegradation was also evaluated with a single inoculum source. In addition, two acetogenic bacteria were tested for their ability to metabolize selected oxygenate compounds. The susceptibility of the test oxygenates to anaerobic decay could be related to their chemical structure. That is, compounds other than the ethers that possessed primary or secondary substituted carbon atoms were readily degraded under all conditions tested while compounds that had tertiary substituted carbon atoms resisted biodegradation. The ether oxygenates were generally not degraded when incubated with various inocula, regardless of the electron acceptor status. The exceptions included methyl butyl ether, which was depleted in both sulfate-reducing and methanogenic incubations, and the partial transformation of methyl tert-butyl ether to tert-butanol after a 152-day acclimation period in a single replicate from a river sediment chronically contaminated with fuel. Heat-inactivated control incubations suggested that the latter transformation was biologically catalyzed. 47 refs., 1 fig., 3 tabs.

  7. Actividad “in vitro” de 10 antimicrobianos frente a bacterias anaerobias: Estudio multicéntrico, 1999-2002 “In vitro” activity of ten antimicrobial agents against anaerobic bacteria. A collaborative study, 1999-2002

    Directory of Open Access Journals (Sweden)

    M. Litterio

    2004-09-01

    Full Text Available Se evaluó la actividad de ampicilina, ampicilina-sulbactama, cefoxitina, ceftriaxona, imipenem, piperacilina, piperacilina-tazobactama, clindamicina, metronidazol y azitromicina frente a 166 cepas de bacterias anaerobias aisladas en 8 hospitales de Buenos Aires. Se estudiaron: Bacteroides grupo fragilis (65, Fusobacterium spp. (26, Prevotella spp. (21, Porphyromonas spp. (10, Clostridium difficile (10, otros clostridios (12 y cocos gram-positivos (22. Las CIMs se determinaron usando el método patrón de dilución en agar recomendado por el NCCLS, documento M11-A5. Los antibióticos más activos fueron metronidazol y piperacilina-tazobactama que exhibieron valores de CIM90£ 2 µg/ml y £ 4 µg/ml frente a los microorganismos gram-negativos y £ 2 µg/ml y £ 8 µg/ml frente a los microorganismos gram-positivos, respectivamente. Entre los b-lactámicos el orden de actividad frente a bacilos gram-negativos fue: imipenem > piperacilina > cefoxitina > ceftriaxona > ampicilina. En gram-positivos la actividad decreciente fue: piperacilina> imipenem > cefoxitina > ceftriaxona > ampicilina. La mayoría de las especies estudiadas mostraron distintos niveles de resistencia con clindamicina y azitromicina. Sin embargo, el 90% de las cepas de Fusobacterium nucleatum y Por-phyromonas spp. fue inhibido por una concentración de 0,125 µg/ml de clindamicina y azitromicina, respectivamente.The antimicrobial activity of ampicillin, ampicillin-sulbactam, cefoxitin, ceftriaxone, imipenem, piperacillin, piperacillin-tazobactam, clindamycin, metronidazole, and azitromycin was assesed against 166 strains of anaerobic bacteria recovered from eight hospitals in Buenos Aires. The strains studied were Bacteroidesfragilis group (65, Fusobacterium spp. (26, Prevotella spp. (21, Porphyromonas spp. (10, Clostridium difficile (10, other clostridia (12, and gram-positive cocci (22. The MICs were determined by the agar dilution method according to NCCLS document M11-A5

  8. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  9. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007-2009 to 2010-2012 based on the CLSI methodology.

    Science.gov (United States)

    Hastey, Christine J; Boyd, Halsey; Schuetz, Audrey N; Anderson, Karen; Citron, Diane M; Dzink-Fox, Jody; Hackel, Meredith; Hecht, David W; Jacobus, Nilda V; Jenkins, Stephen G; Karlsson, Maria; Knapp, Cynthia C; Koeth, Laura M; Wexler, Hannah; Roe-Carpenter, Darcie E

    2016-12-01

    Antimicrobial susceptibility testing of anaerobic isolates was conducted at four independent sites from 2010 to 2012 and compared to results from three sites during the period of 2007-2009. This data comparison shows significant changes in antimicrobial resistance in some anaerobic groups. Therefore, we continue to recommend institutions regularly perform susceptibility testing when anaerobes are cultured from pertinent sites. Annual generation of an institutional-specific antibiogram is recommended for tracking of resistance trends over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A performance study of simultaneous microbial removal of no and SO2 in a biotrickling-filter under anaerobic condition

    Directory of Open Access Journals (Sweden)

    Yaqiong Han

    2011-06-01

    Full Text Available The behaviors of simultaneous removal of NO and SO2 using the coculture of anaerobic denitrifying bacteria and sulfate reducing bacteria was investigated in a bench-scale biotrickling-filter. When the combined NO/SO2 removal biotrickling-filter was operated at an empty bed residence time of 76 s with NO and SO2 feed concentrations of 2 and 2 g/m3, respectively, the SO2 removal efficiency was always above 95%, while NO removal exhibited an evident periodicity of 5-6 days for the initial 60 days after the attachment phase. A steady-state NO-removal efficiency of around 90% was obtained after 130 days of continuous operation. Experimental results indicated that the coculture in the combined NO/SO2 removal biotrickling-filter showed a higher resistance to shock NO-loadings and a better tolerance to starvation than the single denitrifying bacteria in the NO removal biotrickling-filter.

  11. Biotransformation potential of phytosterols under anoxic and anaerobic conditions.

    Science.gov (United States)

    Dykstra, C M; Giles, H D; Banerjee, S; Pavlostathis, S G

    2014-01-01

    The biotransformation potential of three phytosterols (campesterol, stigmasterol and β-sitosterol) under denitrifying, sulfate-reducing and fermentative/methanogenic conditions was assessed. Using a group contribution method, the standard Gibbs free energy of phytosterols was calculated and used to perform theoretical energetic calculations. The oxidation of phytosterols under aerobic, nitrate-reducing, sulfate-reducing and methanogenic conditions was determined to be energetically feasible. However, using semi-continuously fed cultures maintained at 20-22 °C over 16 weekly feeding cycles (112 days; retention time, 21 days), phytosterol removal was observed under nitrate-reducing and sulfate-reducing conditions, but not under fermentative/methanogenic conditions. Under sulfate-reducing conditions, stigmast-4-en-3-one was identified as an intermediate of phytosterol biotransformation, a reaction more likely carried out by dehydrogenases/isomerases, previously reported to act on cholesterol under both oxic and anoxic (denitrifying) conditions. Further study of the biotransformation of phytosterols under anoxic/anaerobic conditions is necessary to delineate the factors and conditions leading to enhanced phytosterol biodegradation and the development of effective biological treatment systems for the removal of phytosterols from pulp and paper wastewaters and other phytosterol-bearing waste streams.

  12. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic