WorldWideScience

Sample records for anaerobic stirred sequencing-batch

  1. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  2. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D I [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R L [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  3. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  4. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  5. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    Science.gov (United States)

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  6. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    Science.gov (United States)

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  8. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  9. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  10. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  11. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor

    International Nuclear Information System (INIS)

    Wang Zhijun; Wang Wei; Zhang Xihui; Zhang Guangming

    2009-01-01

    Laboratory experiments were conducted to investigate the performance of an anaerobic sequencing batch reactor (ASBR) for the digestion of thermally hydrolyzed sewage sludge. Both mesophilic ASBR and continuous-flow stirred tank reactors (CSTR) were evaluated with an equivalent loading rate of 2.71 kg COD/m 3 day at 20-day hydraulic retention time (HRT) and 5.42 kg COD/m 3 day at 10-day HRT. The average total chemical oxygen demand (TCOD) removals of the ASBR at the 20-day and 10-day HRT were 67.71% and 61.66%, respectively. These were 12.38% and 27.92% higher than those obtained by CSTR. As a result, the average daily gas production of ASBR was 15% higher than that of the CSTR at 20-day HRT, and 31% higher than that of the CSTR at 10-day HRT. Solids in thermally hydrolyzed sludge accumulated within ASBR were able to reach a high steady state with solid content of 65-80 g/L. This resulted in a relatively high solid retention time (SRT) of 34-40 days in the ASBR at 10-day HRT. However, too much solid accumulation resulted in the unsteadiness of the ASBR, making regular discharge of digested sludge from the bottom of the ASBR necessary to keep the reactor stable. The evolution of the gas production, soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFAs) in an operation cycle of ASBR also showed that the ASBR was steady and feasible for the treatment of thermally hydrolyzed sludge

  12. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Kang, Seok-Tae; Kim, Dong-Hoon; Jung, Kyung-Won; Shin, Hang-Sik

    2012-04-01

    Extracellular enzymes offer active catalysis for hydrolysis of organic solid wastes in anaerobic digestion. To evidence the quantitative significance of hydrolytic enzyme activities for major waste components, track studies of thermophilic and mesophilic anaerobic sequencing-batch reactors (TASBR and MASBR) were conducted using a co-substrate of real organic wastes. During 1day batch cycle, TASBR showed higher amylase activity for carbohydrate (46%), protease activity for proteins (270%), and lipase activity for lipids (19%) than MASBR. In particular, the track study of protease identified that thermophilic anaerobes degraded protein polymers much more rapidly. Results revealed that differences in enzyme activities eventually affected acidogenic and methanogenic performances. It was demonstrated that the superior nature of enzymatic capability at thermophilic condition led to successive high-rate acidogenesis and 32% higher CH(4) recovery. Consequently, these results evidence that the coupling thermophilic digestion with sequencing-batch operation is a viable option to promote enzymatic hydrolysis of organic particulates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of impeller type and stirring frequency on the behavior of an AnSBBR in the treatment of low-strength wastewater.

    Science.gov (United States)

    Cubas, Selma A; Foresti, Eugenio; Rodrigues, José Alberto D; Ratusznei, Suzana M; Zaiat, Marcelo

    2011-01-01

    The influence of impeller type and stirring frequency on the performance of a mechanically stirred anaerobic sequencing batch reactor containing immobilized biomass on an inert support (AnSBBR--Anaerobic Sequencing Batch Biofilm Reactor) was evaluated. The biomass was immobilized on polyurethane foam cubes placed in a stainless-steel basket inside a glass cylinder. Each 8-h batch run consisted of three stages: feed (10 min), reaction (460 min) and discharge (10 min) at 30 °C. Experiments were performed with four impeller types, i.e., helical, flat-blade, inclined-blade and curved-blade turbines, at stirring frequencies ranging from 100 to 1100 rpm. Synthetic wastewater was used in all experiments with an organic-matter concentration of 530±37 mg/L measured as chemical oxygen demand (COD). The reactor achieved an organic-matter removal efficiency of around 87% under all investigated conditions. Analysis of the four impeller types and the investigated stirring frequencies showed that mass transfer in the liquid phase was affected not only by the applied stirring frequency but also by the agitation mode imposed by each impeller type. The best reactor performance at all stirring frequencies was obtained when agitation was provided by the flat-blade turbine impeller. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    International Nuclear Information System (INIS)

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-01-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations

  15. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  16. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates

    Institute of Scientific and Technical Information of China (English)

    Soon-An Ong; Eiichi Toorisaka; Makoto Hirata; Tadashi Hano

    2012-01-01

    We investigated the decolorization of Orange Ⅱ with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR).The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange H-containing wastewater enhanced color removal from 27% to 81% to 89%,respectively.In the absence of co-substrates and nutrients,more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange Ⅱ.The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR,which was important for the reduction of the Orange Ⅱ azo bond that caused decolorization.The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.

  17. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  18. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  19. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    Science.gov (United States)

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  20. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  1. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    Science.gov (United States)

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  2. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  3. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste.

    Science.gov (United States)

    Angenent, Largus T; Sung, Shihwu; Raskin, Lutgarde

    2002-11-01

    Changes in methanogenic population levels were followed during startup of a full-scale, farm-based anaerobic sequencing batch reactor (ASBR) and these changes were linked to operational and performance data. The ASBR was inoculated with anaerobic digester sludge from a municipal wastewater treatment facility. During an acclimation period of approximately 3 months, the ASBR content was diluted to maintain a total ammonia-N level of approximately 2000mg l(-1). After this acclimation period, the volatile solids loading rate was increased to its design value of 1.7g l(-1) day(-1) with a 15-day hydraulic retention time, which increased the total ammonia-N level in the ASBR to approximately 3,600 mg l(-1). The 16S ribosomal RNA (rRNA) levels of the acetate-utilizing methanogens of the genus Methanosarcina decreased from 3.8% to 1.2% (expressed as a percentage of the total 16S rRNA levels) during this period, while the 16S rRNA levels of Methanosaeta concilii remained low (below 2.2%). Methane production and reactor performance were not affected as the 16S rRNA levels of the hydrogen-utilizing methanogens of the order Methanomicrobiales increased from 2.3% to 7.0%. Hence, it is likely that during operation with high ammonia levels, the major route of methane production is through a syntrophic relationship between acetate-oxidizing bacteria and hydrogen-utilizing methanogens. Anaerobic digestion at total ammonia-N levels exceeding 3500mg l(-1) was sustainable apparently due to the acclimation of hydrogen-utilizing methanogens to high ammonia levels.

  4. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  5. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  6. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge

    DEFF Research Database (Denmark)

    Fountoulakis, M.S.; Stamatelatou, K.; Batstone, Damien J.

    2006-01-01

    -limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic......" against biodegradation. The model, fitted to the batch experimental data, was able to predict DEHP removal in the CSTR operated at various HRTs....

  7. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  8. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    Science.gov (United States)

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Volatile fatty acid formation and utilization in anaerobic sulphidogenic batch reactors

    CSIR Research Space (South Africa)

    Greben, HA

    2006-05-01

    Full Text Available four stirred batch-test reactors (2 l) were operated, fed with artificial SO4 rich (1700 mg/l) feed water and tap water (controls). The reactors received sulphate reducing bacteria, compost bacteria and grass cuttings. The experimental period was 25...

  10. Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goebloes, Sz.; Portoero, P.; Bordas, D.; Kalman, M.; Kiss, I. [Institute for Biotechnology, Bay Zoltan Foundation for Applied Research, H-6726 Szeged (Hungary)

    2008-05-15

    The performances of anaerobic sequencing batch reactors fed with two different substrates were studied. The substrates were raw acid whey and acid whey fermented with Kluyveromyces lactis in order to investigate the suitability of ethanol for biogas production. The organic loading rates (OLRs) during the experiment ranged from 1.6 to 12.8 g COD dm{sup -3} d{sup -1} and the corresponding decreasing hydraulic retention times from 40 to 5 days for both reactor systems. The efficiency of each system depended on the OLR: the highest COD removal rate was observed at the lowest OLR applied (about 100% in both systems), and at maximum OLR the COD removal efficiency was 68% for the reactors fed with the raw whey and 80% for those fed with the pre-fermented whey. Under the same high OLR conditions the methane yield was 0.122 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for the anaerobic digesters fed with the untreated whey, and 0.197 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for those fed with the pre-fermented whey. The digesters functioned without pH control. At the maximum OLR the pH in the reactors fed with the raw acid whey was 5.1, while in those fed with the pre-fermented whey it was 7.15. The results demonstrate that the use of the pre-fermented acid whey as substrate for anaerobic digestion without pH control is feasible, especially at high OLR levels. This substrate is preferable to the raw acid whey, because of the ethanol formed as a non-acidic fermentation product of the yeast. (author)

  11. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  12. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Triangular fibrocartilage lesions: comparison STIR sequence versus arthroscopy findings

    International Nuclear Information System (INIS)

    Wang Zhi; Meng; Xianghong; Wang Linsen; Suo Yongmei

    2013-01-01

    Objective: To explore the diagnostic value of short TI inversion recovery (STIR) sequence in evaluating triangular fibrocartilage (TFC) lesions, and to compare the findings with the arthroscopy findings. Materials and Methods: Wrist joint MR examination using STIR sequence and arthroscopy were performed in 56 patients with TFC lesions. The parameters of STIR sequence were: TR: 1164 ms, TE: 16 ms, and TI: 90 ms. The sensibility, specificity, positive predictive value, negative predictive value, and accuracy in the diagnosis of TFC lesions with STIR sequence were calculated, using arthroscopy as the standard. Results: (1) STIR manifested 10 patients with normal TFC; 6 with small edema or mucous degeneration in the body portion but not involving joint surface edge; 6 with horizontal avulsion in the body portion, but not involving joint surface edge; 6 with avulsion involving joint surface edge; 11 with perforation in central portion; 6 with avulsion in radial attached end; 5 with avulsion in ulnar attached end; 3 with avulsion in both radial and ulnar attached ends; 3 with irregular shape and thin on the whole TFC. (2) Arthroscopy manifested 21 patients with normal TFC; 8 with avulsion involving joint surface edge; 10 with perforation in central portion; 7 with avulsion in radial attached end; 5 with avulsion in ulnar attached end; 2 with avulsion in both radial and ulnar attached ends; 3 with irregular shape on the whole TFC. Using STIR sequence, the sensibility, specificity, positive predictive value, negative predictive value. and accuracy were 85.7%, 23.8%, 65.2%, 50%, and 62.5%, respectively, in detection of TFC lesions, with arthroscopy as the standard. Conclusion: STIR sequence has high diagnostic value in detection of TFC lesions. (authors)

  14. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    Science.gov (United States)

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  15. Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR).

    Science.gov (United States)

    Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin

    2016-12-01

    This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  17. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  18. Decolourisations and biodegradations of model azo dye solutions using a sequence batch reactor, followed by ultrafiltration

    DEFF Research Database (Denmark)

    Korenak, J.; Ploder, J.; Trček, J.

    2018-01-01

    RNA gene and ITS1-5.8S rDNA-ITS2 sequence analysis, respectively. Serratia marcescens and Klebsiella oxytoca were the most common bacteria with the highest number present during the aerobic and anaerobic phases of the bioprocess. In addition, a high number of Elizabethkingia miricola, Morganella morganii......, Comamonas testosteroni, Trichosporon sp. and Galactomyces sp. were detected. Taken together, our results demonstrated that the sequencing batch reactor system combined with ultrafiltration is an efficient technique for treatment of wastewater containing azo dye. Moreover, the ultrafiltration effectively...

  19. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  20. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  2. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  3. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1989-01-01

    The integrated anaerobic-aerobic biological treatment system consisted of an anaerobic rotating biological reactor and an aerobic sequencing batch reactor. Three sequencing batch reactors were used in the aerobic process. A mixture of cheese whey and dairy manure was successfully digested in an anaerobic rotating biological contactor which served as a first step in the waste treatment process. The methane production rate, which is dependent on the organic loading rate, ranged between 1.43 and 3.74 litres methane per litre reactor per day. As the organic loading rate increased, total methane production also increased. In the anaerobic digestion step, over 46% of chemical oxygen demand was removed. The potential pollutants were further destroyed by the aerobic treatment. More than 93% of the remaining chemical oxygen demand was removed in the sequencing batch reactors operated at 22/sup 0/C. The treatment efficiency was lower for the aerobic reactor operated at a lower temperature (10/sup 0/C). (author).

  4. Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds.

    Science.gov (United States)

    Di Maria, Francesco; Barratta, Martino; Bianconi, Francesco; Placidi, Pisana; Passeri, Daniele

    2017-01-01

    Solid anaerobic digestion batch (SADB) with liquid digestate recirculation and wet anaerobic digestion of organic waste were experimentally investigated. SADB was operated at an organic loading rate (OLR) of 4.55kgVS/m 3 day, generating about 252NL CH 4 /kgVS, whereas the wet digester was operated at an OLR of 0.9kgVS/m 3 day, generating about 320NL CH 4 /kgVS. The initial total volatile fatty acids concentrations for SADB and wet digestion were about 12,500mg/L and 4500mg/L, respectively. There were higher concentrations of ammonium and COD for the SADB compared to the wet one. The genomic analysis performed by high throughput sequencing returned a number of sequences for each sample ranging from 110,619 to 373,307. More than 93% were assigned to the Bacteria domain. Seven and nine major phyla were sequenced for the SADB and wet digestion, respectively, with Bacteroidetes, Firmicutes and Proteobacteria being the dominant phyla in both digesters. Taxonomic profiles suggested a methanogenic pathway characterized by a relevant syntrophic acetate-oxidizing metabolism mainly in the liquid digestate of the SADB. This result also confirms the benefits of liquid digestate recirculation for improving the efficiency of AD performed with high solids (>30%w/w) content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  6. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  7. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  8. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  9. Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data

    International Nuclear Information System (INIS)

    Koch, Konrad; Drewes, Jörg E.

    2014-01-01

    Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between k h and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate k h without the need for data fitting. • Hydrolysis constant k h can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known

  10. The role of the STIR sequence in magnetic resonance imaging examination of bone tumours

    International Nuclear Information System (INIS)

    Golfieri, R.; Baddeley, H.; Pringle, J.S.; Souhami, R.

    1990-01-01

    Sixty patients with primary bone tumours were evaluated with magnetic resonance imaging (MRI) at 0.5 T with both conventional spin-echo (SE) and short inversion time inversion recovery (STIR) sequences. The STIR sequence with T 1 of 120-130 ms in all cases suppressed the high signal from fatty bone marrow, giving a clear depiction of tumour extent, in both its intramedullary and soft-tissue components, and is superior to conventional SE images. The high sensitivity (100% of our cases) of this technique is counterbalanced by its lack of specificity: on STIR sequences both tumour and peritumorous oedema give an increase of signal intensity, limiting assessment of tumour extent. Peritumoral oedema, only present in this series in malignant neoplasms, may however be differentiated on the basis of the configuration of the abnormal areas, and by comparing STIR images with short repetition time/echo time sequence results. (author)

  11. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  12. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter

    International Nuclear Information System (INIS)

    Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M.

    2009-01-01

    The hydrolysis pretreatment of abattoir wastewaters (AW), rich in organic suspended solids (fats and protein) was studied in static and stirred batch reactors without aeration in the presence of natural microbial population acclimated in a storage tank of AW. Microbial analysis showed that the major populations which contribute to the pretreatment of AW belong to the genera Bacillus. Contrary to the static pretreatment, the stirred conditions favoured the hydrolysis and solubilization of 80% of suspended matter into soluble pollution. The pretreated AW, in continuous stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 2 days, was fed to an upflow anaerobic filter (UAF) at an HRT of 2 days. The performance of anaerobic digestion of biologically pretreated AW was examined under mesophilic (37 deg. C) and thermophilic (55 deg. C) conditions. The shifting from a mesophilic to a thermophilic environment in the UAF was carried out with a short start-up of thermophilic condition. The UAF ran at organic loading rates (OLRs) ranging from 0.9 to 6 g COD/L d in mesophilic conditions and at OLRs from 0.9 to 9 g COD/L d in thermophilic conditions. COD removal efficiencies of 80-90% were achieved for OLRs up to 4.5 g COD/L d in mesophilic conditions, while the highest OLRs i.e. 9 g COD/L d led to efficiencies of 70-72% in thermophilic conditions. The biogas yield in thermophilic conditions was about 0.32-0.45 L biogas/g of COD removed for OLRs up to 4.5 g COD/L d. For similar OLR, the UAF in mesophilic conditions showed lower percentage of methanization. Mesophilic anaerobic digestion has been shown to destroy pathogens partially, whereas the thermophilic process was more efficient in the removal of indicator microorganisms and pathogenic bacteria at different organic loading rates.

  13. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.

    Science.gov (United States)

    Shoener, B D; Bradley, I M; Cusick, R D; Guest, J S

    2014-05-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m(-3) of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m(-3) of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13 000 kJ m(-3) (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and

  14. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies

    KAUST Repository

    Shoener, B. D.

    2014-01-01

    The negative energy balance of wastewater treatment could be reversed if anaerobic technologies were implemented for organic carbon oxidation and phototrophic technologies were utilized for nutrient recovery. To characterize the potential for energy positive wastewater treatment by anaerobic and phototrophic biotechnologies we performed a comprehensive literature review and analysis, focusing on energy production (as kJ per capita per day and as kJ m-3 of wastewater treated), energy consumption, and treatment efficacy. Anaerobic technologies included in this review were the anaerobic baffled reactor (ABR), anaerobic membrane bioreactor (AnMBR), anaerobic fluidized bed reactor (AFB), upflow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), microbial electrolysis cell (MEC), and microbial fuel cell (MFC). Phototrophic technologies included were the high rate algal pond (HRAP), photobioreactor (PBR), stirred tank reactor, waste stabilization pond (WSP), and algal turf scrubber (ATS). Average energy recovery efficiencies for anaerobic technologies ranged from 1.6% (MFC) to 47.5% (ABR). When including typical percent chemical oxygen demand (COD) removals by each technology, this range would equate to roughly 40-1200 kJ per capita per day or 110-3300 kJ m-3 of treated wastewater. The average bioenergy feedstock production by phototrophic technologies ranged from 1200-4700 kJ per capita per day or 3400-13000 kJ m-3 (exceeding anaerobic technologies and, at times, the energetic content of the influent organic carbon), with usable energy production dependent upon downstream conversion to fuels. Energy consumption analysis showed that energy positive anaerobic wastewater treatment by emerging technologies would require significant reductions of parasitic losses from mechanical mixing and gas sparging. Technology targets and critical barriers for energy-producing technologies are identified, and the role of integrated anaerobic and phototrophic

  15. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    Science.gov (United States)

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  16. Integration of ozonation and an anaerobic sequencing batch reactor (AnSBR) for the treatment of cherry stillage.

    Science.gov (United States)

    Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M

    2005-01-01

    Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.

  17. The value of fat-suppressed T2 or STIR sequences in distinguishing lipoma from well-differentiated liposarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Galant, J. [Servicio de Radiodiagnostico, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain); Resonancia Magnetica del Sureste, Murcia (Spain); Marti-Bonmati, L. [Department of Radiology, Hospital Universitario Dr. Peset, Valencia (Spain); Saez, F. [Department of Radiology, Hospital Cruces de Baracaldo, Vizcaya (Spain); Soler, R. [Department of Radiology, Hospital Juan Canalejo, A Coruna (Spain); Alcala-Santaella, R. [Department of Traumatology, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain); Navarro, M. [Servicio de Radiodiagnostico, Hospital Universitario San Juan de Alicante, Ctra. Nacional 332 Alicante-Valencia s/n, 03550 San Juan de Alicante (Spain)

    2003-02-01

    The objective of this study was to evaluate the diagnostic value of fat-suppressed T2-weighted (FS-T2) images or short tau inversion recovery (STIR) imaging in distinguishing lipoma from lipoma-like subtype of well-differentiated liposarcoma. Spin-echo T1-weighted and STIR or fat-suppression T2-weighted sequences were performed in 60 lipomas and 32 lipoma-like well-differentiated liposarcomas, histologically proven, looking for thick septa or nodules in T1-weighted images and linear, nodular, or amorphous hyperintensities on FS-T2/STIR sequences. Fourteen lipomas (23.3%) showed thick septa and/or nodules on T1, whereas on FS-T2 or STIR sequences only seven (11.7%) displayed hyperintense nodules and/or septa. All well-differentiated liposarcomas contained these signs on FS-T2 or STIR sequences. The presence of hyperintense septa or nodules in a predominantly lipomatous tumor on FS-T2/STIR sequences helps to differentiate malignant tumors from lipomas. Employing the presence of hyperintense nodules and/or septa as criteria of malignancy specificity was 76.6% and sensitivity 100%. Overdiagnoses of well-differentiated liposarcoma can occur due to the presence of non-lipomatous areas within lipomas. (orig.)

  18. The value of fat-suppressed T2 or STIR sequences in distinguishing lipoma from well-differentiated liposarcoma

    International Nuclear Information System (INIS)

    Galant, J.; Marti-Bonmati, L.; Saez, F.; Soler, R.; Alcala-Santaella, R.; Navarro, M.

    2003-01-01

    The objective of this study was to evaluate the diagnostic value of fat-suppressed T2-weighted (FS-T2) images or short tau inversion recovery (STIR) imaging in distinguishing lipoma from lipoma-like subtype of well-differentiated liposarcoma. Spin-echo T1-weighted and STIR or fat-suppression T2-weighted sequences were performed in 60 lipomas and 32 lipoma-like well-differentiated liposarcomas, histologically proven, looking for thick septa or nodules in T1-weighted images and linear, nodular, or amorphous hyperintensities on FS-T2/STIR sequences. Fourteen lipomas (23.3%) showed thick septa and/or nodules on T1, whereas on FS-T2 or STIR sequences only seven (11.7%) displayed hyperintense nodules and/or septa. All well-differentiated liposarcomas contained these signs on FS-T2 or STIR sequences. The presence of hyperintense septa or nodules in a predominantly lipomatous tumor on FS-T2/STIR sequences helps to differentiate malignant tumors from lipomas. Employing the presence of hyperintense nodules and/or septa as criteria of malignancy specificity was 76.6% and sensitivity 100%. Overdiagnoses of well-differentiated liposarcoma can occur due to the presence of non-lipomatous areas within lipomas. (orig.)

  19. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems

    International Nuclear Information System (INIS)

    Schmidt, Thomas; Pröter, Jürgen; Scholwin, Frank; Nelles, Michael

    2013-01-01

    In this study the anaerobic digestion of grain stillage in three different reactor systems (continuous stirred tank reactor, anaerobic sequencing batch reactor, fixed bed reactor) with and without immobilization of microorganisms was investigated to evaluate the performance during increase of the organic loading rate (OLR) from 1 to 10 g of volatile solids (VS) per liter reactor volume and day and decrease of the hydraulic retention time (HRT) from 40 to 6 days. No significant differences have been observed between the performances of the three examined reactor systems. The changes in OLR and HRT caused a reduction of the specific biogas production (SBP) of about 25% from about 650 to 550 L kg −1 of VS but would also diminish the necessary digester volume and investment costs of about 75% compared to the state of the art. -- Highlights: ► It was shown that without immobilization of microorganisms low HRT's are possible. ► No significant differences have been observed between different digester designs. ► Trace element supplementation is obligatory with grain stillage as substrate

  20. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    Science.gov (United States)

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    Science.gov (United States)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  2. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  3. Start-up optimization of a batch anaerobic digestor for the treatment of solid cow manure

    OpenAIRE

    Riggio, Silvio; Torrijos, Michel; Debord, Romain; van Hullebusch, Eric D.; Comas, Joaquim; Steyer, Jean-Philippe; Escudié, Renaud

    2015-01-01

    In dry anaerobic digestors operated in batch mode where a liquid phase is sprinkled on a static solid phase, the choice of a liquid or a solid recycle form a previous batch into a new one is a key factor for a better industrial management when looking for a balance between energy production, substrate biodegradability and the initial investment. This work aims at studying the influence of this recycling on the kinetics and the performances of three systems filled-up with only solid cow man...

  4. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  5. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  6. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  7. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-01

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS feed , while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS feed . The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO 3 /kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  8. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  9. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  10. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  11. Innovative bioelectrochemical-anaerobic-digestion integrated system for ammonia recovery and bioenergy production from ammonia-rich residues

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production (Figure 1). In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  12. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    Science.gov (United States)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  13. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  14. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  15. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  16. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  17. Inhibitory effects on anaerobic digestion of swine manure

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, P.W.S.; Zhou, H. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]. E-mail: hzhou@uoguelph.ca; Hacker, R. [Univ. of Guelph, Dept. of Animal and Poultry Science, Guelph, Ontario (Canada)

    2002-06-15

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  18. Inhibitory effects on anaerobic digestion of swine manure

    International Nuclear Information System (INIS)

    Cheung, P.W.S.; Zhou, H.; Hacker, R.

    2002-01-01

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  19. Anaerobic digestion of swine manure: Inhibition by ammonia

    DEFF Research Database (Denmark)

    Hansen, Kaare Hvid; Angelidaki, Irini; Ahring, Birgitte Kiær

    1998-01-01

    A stable anaerobic degradation of swine manure with ammonia concentration of 6 g-N/litre was obtained in continuously stirred tank reactors with a hydraulic retention time of 15 days, at Four different temperatures. Methane yields of 188, 141, 67 and 22 ml-CH4/g-VS were obtained at 37, 45, 55...... and 60 degrees C, respectively. The yields were significantly lower than the potential biogas yield of the swine manure used (300 ml-CH4/g-VS). A free ammonia concentration of 1.1 g-N/litre or more was found to cause inhibition in batch cultures at pH 8.0 (reactor pH), and higher free ammonia...... concentrations resulted in a decreased apparent specific growth rate. Batch experiments with various mixtures of swine and cattle manure showed that the biogas process was inhibited when the swine-to-cattle manure ratio was higher than 25:75, corresponding to a free ammonia concentration of approximately 1.1 g...

  20. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  1. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  2. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-01-01

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  3. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar

    2015-01-01

    the biochemical acidogenic potential of solid waste from juvenile rainbow trout was evaluated by measuring the yield of volatile fatty acids (VFA) during anaerobic digestion by batch or fed-batch reactor operation at hydrolysis time (HT) / hydraulic retention time (HRT) of 1, 5, or 10 days (and for batch......Anaerobic digestion is a way to utilize the potential energy contained in solid waste produced in recirculating aquaculture systems (RASs), either by providing acidogenic products for driving heterotrophic denitrification on site or by directly producing combustive methane. In this study...

  4. Optic nerve injury demonstrated by MRI with STIR sequences

    International Nuclear Information System (INIS)

    Takehara, S.; Tanaka, T.; Uemura, K.; Shinohara, Y.; Yamamoto, T.; Tokuyama, T.; Satoh, A.

    1994-01-01

    We studied nine patients with optic nerve injury associated with closed head trauma by magnetic resonance imaging (MRI) with short inversion time inversion recovery (STIR) sequences on 11 occasions from 4 days to 14 years after the injury: three studies were within 17 days and eight over 4 months to 14 years. MRI revealed abnormal high signal in 10 of the 11 injured nerves. MRI 4 days after the injury showed no abnormality. (orig.)

  5. Anaerobic prefermentation and primary sedimentation of wastewater ...

    African Journals Online (AJOL)

    This research was carried out with the aim of evaluating the solubilisation and acidification capacity of fermenting organisms in suspension in a sequencing batch reactor (SBR), which had a volume of 1 800 ℓ. Using 8 h cycles with 340 min of anaerobic reaction time, the wastewater fed to the SBR presented an average of ...

  6. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  7. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    Energy Technology Data Exchange (ETDEWEB)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Espinosa, Norman [University of Zurich, Faculty of Medicine, Zurich (Switzerland); Orthopedic University Hospital Balgrist, Orthopedic Surgery, Zurich (Switzerland)

    2017-08-15

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  8. Is there an added value of T1-weighted contrast-enhanced fat-suppressed spin-echo MR sequences compared to STIR sequences in MRI of the foot and ankle?

    International Nuclear Information System (INIS)

    Zubler, Veronika; Zanetti, Marco; Dietrich, Tobias J.; Pfirrmann, Christian W.; Mamisch-Saupe, Nadja; Espinosa, Norman

    2017-01-01

    To prospectively compare T1-weighted fat-suppressed spin-echo magnetic resonance (MR) sequences after gadolinium application (T1wGdFS) to STIR sequences in patients with acute and chronic foot pain. In 51 patients referred for MRI of the foot and ankle, additional transverse and sagittal T1wGdFS sequences were obtained. Two sets of MR images (standard protocol with STIR or T1wGdFS) were analysed. Diagnosis, diagnostic confidence, and localization of the abnormality were noted. Standard of reference was established by an expert panel of two experienced MSK radiologists and one experienced foot surgeon based on MR images, clinical charts and surgical reports. Patients reported prospectively localization of pain. Descriptive statistics, McNemar test and Kappa test were used. Diagnostic accuracy with STIR protocol was 80% for reader 1, 67% for reader 2, with contrast-protocol 84%, both readers. Significance was found for reader 2. Diagnostic confidence for reader 1 was 1.7 with STIR, 1.3 with contrast-protocol; reader 2: 2.1/1.7. Significance was found for reader 1. Pain location correlated with STIR sequences in 64% and 52%, with gadolinium sequences in 70% and 71%. T1-weighted contrast material-enhanced fat-suppressed spin-echo magnetic resonance sequences improve diagnostic accuracy, diagnostic confidence and correlation of MR abnormalities with pain location in MRI of the foot and ankle. However, the additional value is small. (orig.)

  9. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Angelidaki, I.; Toraeng, L.; Waul, C.M.; Schmidt, J.E.

    2003-07-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in one stage continuous stirred tank reactor (CSTR) and a two stages reactor system consisting by a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor in the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with {sup 14}C-LAS which resulted in 5.6% {sup 14}CO{sub 2} in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for the most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process. (author)

  10. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Bot, J.C.J.; Barkhof, F.; Lycklama a Nijeholt, G.J.; Bergers, E.; Castelijns, J.A.; Polman, C.H.; Ader, H.J.

    2000-01-01

    The current optimal imaging protocol in spinal cord MR imaging in patients with multiple sclerosis includes a long TR conventional spin-echo (CSE) sequence, requiring long acquisition times. Using short tau inversion recovery fast spin-echo (fast STIR) sequences both acquisition time can be shortened and sensitivity in the detection of multiple sclerosis (MS) abnormalities can be increased. This study compares both sequences for the potential to detect both focal and diffuse spinal abnormalities. Spinal cords of 5 volunteers and 20 MS patients were studied at 1.0 T. Magnetic resonance imaging included cardiac-gated sagittal dual-echo CSE and a cardiac-gated fast STIR sequence. Images were scored regarding number, size, and location of focal lesions, diffuse abnormalities and presence/hindrance of artifacts by two experienced radiologists. Examinations were scored as being definitely normal, indeterminate, or definitely abnormal. Interobserver agreement regarding focal lesions was higher for CSE (κ=0.67) than for fast STIR (κ=0.57) but did not differ significantly. Of all focal lesions scored in consensus, 47 % were scored on both sequences, 31 % were only detected by fast STIR, and 22 % only by dual-echo CSE (n. s.). Interobserver agreement for diffuse abnormalities was lower with fast STIR (κ=0.48) than dual-echo CSE (κ=0.65; n. s.). After consensus, fast STIR showed in 10 patients diffuse abnormalities and dual-echo CSE in 3. After consensus, in 19 of 20 patients dual-echo CSE scans were considered as definitely abnormal compared with 17 for fast STIR. The fast STIR sequence is a useful adjunct to dual-echo CSE in detecting focal abnormalities and is helpful in detecting diffuse MS abnormalities in the spinal cord. Due to the frequent occurrence of artifacts and the lower observer concordance, fast STIR cannot be used alone. (orig.)

  11. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover.

    Science.gov (United States)

    Li, YuQian; Liu, ChunMei; Wachemo, Akiber Chufo; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Li, XiuJin

    2017-07-01

    Several completely stirred tank reactors (CSTR) connected in series for anaerobic digestion of corn stover were investigated in laboratory scale. Serial anaerobic digestion systems operated at a total HRT of 40days, and distribution of HRT are 10+30days (HRT10+30d), 20+20days (HRT20+20d), and 30+10days (HRT30+10d) were compared to a conventional one-step CSTR at the same HRT of 40d. The results showed that in HRT10+30d serial system, the process became very unstable at organic load of 50gTS·L -1 . The HRT20+20d and HRT30+10d serial systems improved methane production by 8.3-14.6% compared to the one-step system in all loads of 50, 70, 90gTS·L -1 . The conversion rates of total solid, cellulose, and hemicellulose were increased in serial anaerobic digestion systems compared to single system. The serial systems showed more stable process performance in high organic load. HRT30+10d system showed the best biogas production and conversions among all systems. Copyright © 2017. Published by Elsevier Ltd.

  12. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  13. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  14. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    OpenAIRE

    Zupančič, Gregor Drago; Panjičko, Mario; Zelić, Bruno

    2017-01-01

    Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy v...

  15. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Science.gov (United States)

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR with 50,000 m3 d−1 for treating a town’s wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O reactor and an oxidation ditch (OD being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS. X-ray fluorescence (XRF analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  17. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    Science.gov (United States)

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    Science.gov (United States)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  19. Sequenced anaerobic - aerobic treatment of hemp pulping wastewaters

    NARCIS (Netherlands)

    Kortekaas, S.

    1998-01-01

    Biological treatment is an indispensable instrument for water management of non-wood pulp mills, either as internal measure to enable progressive closure of water cycles, or as end of pipe treatment. In this thesis, the sequenced anaerobic-aerobic treatment of hemp ( Cannabis

  20. Sequential batch anaerobic composting of municipal solid waste (MSW) and yard waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.M.; Chynoweth, D.P.; Barkdoll, A.W.; Nordstedt, R.A.; Owens, J.M.; Sifontes, J. (Florida Univ., Gainesville, FL (United States). Dept. of Agricultural Engineering)

    1993-01-01

    Sequential batch anaerobic composting (SEBAC[sup TM]) was used to treat two fractions of municipal solid waste (MSW), the organic fraction of the MSW (processed MSW) and yard waste. Processed MSW gave a mean methane yield of 0.19 m[sup 3] kg[sup -1] volatile solids (VS) after 42 days. The mean VS reduction was 49.7% for this same period. Yard waste gave a mean methane yield of 0.07 m[sup 3] kg[sup -1] VS. Methane content of the biogas stabilized at a mean of 48% from three to four days after startup. The mean VS reduction for yard waste was 19%. With processed MSW, the volatile acid concentration was over 3000 mg L[sup -1] during startup but these acids were reduced within a few days to negligible levels. The trend was similar with yard waste except that volatile acids reached maximum concentrations of less than 1000 mg L[sup -1]. Composts from the reactors were evaluated for agronomic characteristics and pollution potential. Processed MSW and yard waste residues had marginal fertilizer value but posed no potential for groundwater pollution. Yard waste residue caused no apparent inhibition to mustard (Brassica juncea) germination relative to a commercial growth medium. Anaerobic yard waste compost demonstrated the potential to improve the water holding capacity of Florida soils. (author)

  1. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    Science.gov (United States)

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  3. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, Rajinikanth, E-mail: rrajinime@yahoo.co.in [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Lim, Jun Wei [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Mao, Yu [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Energy and Environmental Sciences, Yunnan Normal University, 121 Street, Kunming 650092 China (China); Chen, Chia-Lung [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); Wang, Jing-Yuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 06-08 CleanTech One, 1 Cleantech Loop, 637141 Singapore (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2013-01-15

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH{sub 4}/gVS{sub added}) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH{sub 4}/gVS{sub added}. Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement

  4. Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context

    International Nuclear Information System (INIS)

    Rajagopal, Rajinikanth; Lim, Jun Wei; Mao, Yu; Chen, Chia-Lung; Wang, Jing-Yuan

    2013-01-01

    The objective of this study was to evaluate the feasibility of anaerobic co-digestion of brown water (BW) [feces-without-urine] and food waste (FW) in decentralized, source-separation-based sanitation concept. An effort has been made to separate the yellow water (urine) and brown water from the source (using no-mix toilet) primarily to facilitate further treatment, resource recovery and utilization. Batch assay analytical results indicated that anaerobic co-digestion [BW + FW] showed higher methane yield (0.54–0.59 L CH 4 /gVS added ) than BW or FW as a sole substrate. Anaerobic co-digestion was performed in the semi-continuously fed laboratory scale reactors viz. two-phase continuous stirred-tank reactor (CSTR) and single-stage sequencing-batch operational mode reactor (SeqBR). Initial 120 d of operation shows that SeqBR performed better in terms of organic matter removal and maximum methane production. At steady-state, CODs, CODt, VS removals of 92.0 ± 3.0, 76.7 ± 5.1 and 75.7 ± 6.6% were achieved for SeqBR at 16 d HRT, respectively. This corresponds to an OLR of 2–3 gCOD/L d and methane yield of about 0.41 L CH 4 /gVS added . Good buffering capacity did not lead to accumulation of VFA, showing better process stability of SeqBR at higher loading rates. The positive findings show the great potential of applying anaerobic co-digestion of BW + FW for energy production and waste management. In addition, daily flush water consumption is reduced up to 80%. Decentralized, source-separation-based sanitation concept is expected to provide a practical solution for those countries experiencing rapid urbanization and water shortage issues, for instance Singapore. - Highlights: ► Source separation of organic waste/wastewater streams on household level was done. ► Brown water (BW) was collected from a specially designed no-mix toilet. ► BW and food waste codigestion proved as a potential substrate for biogas production. ► A distinct improvement in methane yield

  5. Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills

    CSIR Research Space (South Africa)

    Kekana, Paul

    2016-12-01

    Full Text Available Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects...

  6. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  7. Perancangan Sistem Pengukuran pH dan Temperatur Pada Bioreaktor Anaerob Tipe Semi-Batch

    Directory of Open Access Journals (Sweden)

    Dimas Prasetyo Oetomo

    2013-12-01

    Full Text Available Proses pada bioreaktor dapat dilakukan secara aerob yaitu menggunakan bantuan oksigen dan anaerob yaitu tidak menggunakan bantuan oksigen. Pada penelitian ini dilakukan fermentasi  enceng gondok untuk menghasilkan biogas menggunakan bioreaktor anaerob tipe semi-batch. Enceng gondok memiliki rasio C/N sebesar 22.5 – 35.84% yang merupakan komposisi optimum untuk ekstraksi biogas. Kinerja dari bioreaktor dalam produksi biogas dipengaruhi oleh beberapa parameter seperti pH dan temperatur. Pada penelitian ini dilakukan perancangan sistem pengukuran besaran pH dan temperatur secara online sehingga memudahkan dalam pengambilan data. Bahan yang digunakan pada proses fermentasi adalah campuran enceng gondok yang telah dicincang dan dicampur air dengan dua komposisi penambahan berbeda untuk dibandingkan. Pada Bioreaktor1 digunakan komposisi enceng gondok dan air sebesar 1:3 dan pada bioreaktor 2 digunakan komposisi enceng gondok dan air sebesar 0,75: 1,25. Hasil penelitian menyebutkan bahwa bioreaktor 2 dengan komposisi enceng gondok dan air sebesar 0,75: 1,25 menghasilkan biogas lebih aktif dibandingkan dengan bioreaktor 1 dengan komposisi enceng gondok dan air sebesar 1 : 3. Hal tersebut diketahui dari hasil pengukuran selama 76 hari. Dari hasil pengukuran juga diketahui bahwa penurunan nilai COD pada bioreaktor 2 lebih besar dari pada  bioreaktor 1.

  8. Sequencing for Batch Production in a Group Flowline Machine Shop ...

    African Journals Online (AJOL)

    The purpose of the paper is to develop a useful technique for sequencing batches of components through machine shops arranged under the group flowline production system. The approach is to apply a modified version of Petrov's group flowline technique for machining components which follow a unidirectional route.

  9. Effectiveness of the STIR turbo spin–echo sequence MR imaging in evaluation of lymphadenopathy in esophageal cancer

    International Nuclear Information System (INIS)

    Alper, Fatih; Turkyilmaz, Atila; Kurtcan, Serpil; Aydin, Yener; Onbas, Omer; Acemoglu, Hamit; Eroglu, Atilla

    2011-01-01

    Purpose: We have investigated the utility of the STIR TSE sequence in the differentiation of benign from malignant mediastinal lymph nodes in patients with esophageal cancer. Patients and methods: This study included 35 consecutive patients who were diagnosed as esophageal cancer and were undergone surgery. STIR TSE sequences were obtained as the ECG trigger. The signal intensity of the benign and malign lymph nodes, normal esophagus, and pathologic esophagus can be calculated on STIR sequence. Results: Pathologically, the number of total lymph nodes in 35 operated cases was 482. Approximately 152 lymph nodes were detected with MR imaging. Of these, 28 were thought to be malignant, and 124 were thought to be benign, although 32 were malignant and 120 were benign according pathological results. The ratio of benign lymph node intensity value to normal esophagus intensity value was 0.73 ± 0.3. The ratio of malignant lymph node intensity value to normal esophagus intensity value ratio was 2.03 ± 0.4. According to these results, the sensitivity of MR was 81.3%, the specificity was 98.3%. Conclusion: We think that if motionless images can be obtained with MRI, we may be able to differentiate benign lymph nodes from malignant ones.

  10. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Clark Virginia L

    2011-01-01

    Full Text Available Abstract Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.

  11. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  12. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  13. Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum.

    Science.gov (United States)

    Kanjilal, Baishali; Noshadi, Iman; Bautista, Eddy J; Srivastava, Ranjan; Parnas, Richard S

    2015-03-01

    1,3-propanediol (1,3-PD) was produced with a robust fermentation process using waste glycerol feedstock from biodiesel production and a soil-based bacterial inoculum. An iterative inoculation method was developed to achieve independence from soil and selectively breed bacterial populations capable of glycerol metabolism to 1,3-PD. The inoculum showed high resistance to impurities in the feedstock. 1,3-PD selectivity and yield in batch fermentations was optimized by appropriate nutrient compositions and pH control. The batch yield of 1,3-PD was maximized to ~0.7 mol/mol for industrial glycerol which was higher than that for pure glycerin. 16S rDNA sequencing results show a systematic selective enrichment of 1,3-PD producing bacteria with iterative inoculation and subsequent process control. A statistical design of experiments was carried out on industrial glycerol batches to optimize conditions, which were used to run two continuous flow stirred-tank reactor (CSTR) experiments over a period of >500 h each. A detailed analysis of steady states at three dilution rates is presented. Enhanced specific 1,3-PD productivity was observed with faster dilution rates due to lower levels of solvent degeneration. 1,3-PD productivity, specific productivity, and yield of 1.1 g/l hr, 1.5 g/g hr, and 0.6 mol/mol of glycerol were obtained at a dilution rate of 0.1 h(-1)which is bettered only by pure strains in pure glycerin feeds.

  14. Start-up of a sequential dry anaerobic digestion of paunch under psychrophilic and mesophilic temperatures.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Hao, Xiying

    2018-04-01

    The present laboratory study evaluated the sequential leach bed dry anaerobic digestion (DAD) of paunch under psychrophilic (22°C) and mesophilic (40°C) temperatures. Three leach bed reactors were operated under the mesophilic temperature in sequence at a solid retention time (SRT) of 40d with a new batch started 27d into the run of the previous one. A total of six batches were operated for 135d. The results showed that the mesophilic DAD of paunch was efficient, reaching methane yields of 126.9-212.1mLg -1 volatile solid (VS) and a VS reduction of 32.9-55.5%. The average daily methane production rate increased from 334.3mLd -1 to 571.4mLd -1 and 825.7mLd -1 when one, two and three leach bed reactors were in operation, respectively. The psychrophilic DAD of paunch was operated under a SRT of 100d and a total of three batches were performed in sequence for 300d with each batch starting after completion of the previous one. Improvements in the methane yield from 93.9 to 107.3 and 148.3mLg -1 VS and VS reductions of 24.8, 30.2 and 38.6% were obtained in the consecutive runs, indicating the adaptation of anaerobic microbes from mesophilic to psychrophilic temperatures. In addition, it took three runs for anaerobic microbes to reduce the volatile fatty acid accumulation observed in the first and second trials. This study demonstrates the potential of renewable energy recovery from paunch under psychrophilic and mesophilic temperatures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion.

    Science.gov (United States)

    Stone, James J; Clay, Sharon A; Zhu, Zhenwei; Wong, Kwok L; Porath, Laura R; Spellman, Garth M

    2009-10-01

    Tylosin and chlortetracycline (CTC) are antimicrobial chemicals that are fed to >45% of the US swine herds at therapeutic and sub-therapeutic dosages to enhance growth rates and treat swine health problems. These compounds are poorly absorbed during digestion so that the bioactive compound or metabolites are excreted. This study investigated the degradation and stabilization of swine manure that contained no additives and compared the observed processes with those of manure containing either tylosin or CTC. The batch anaerobic incubation lasted 216 days. The breakdown of insoluble organic matter through anaerobic hydrolysis reactions was faster for manure containing CTC compared with tylosin or no-antimicrobial treatments. Volatile fatty acid (VFA) accumulation, including acetate, butyrate, and propionate, was greater for CTC-containing manure compared to tylosin and no-antimicrobial treatments. The relative abundance of two aceticlastic methanogens, Methanosaetaceae and Methanosarcinaceae spp., were less for CTC manure than manure with no-antimicrobial treatment. In addition, generation of methane and carbon dioxide was inhibited by 27.8% and 28.4%, respectively, due to the presence of CTC. Tylosin effects on manure degradation were limited, however the relative abundance of Methanosarcinaceae spp. was greater than found in the CTC or no-antimicrobial manures. These data suggest that acetate and other C-1 VFA compounds would be effectively utilized during methanogenesis in the presence of tylosin.

  16. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  17. Stable isotope probing of acetate fed anaerobic batch incubations shows a partial resistance of acetoclastic methanogenesis catalyzed by Methanosarcina to sudden increase of ammonia level.

    Science.gov (United States)

    Hao, Liping; Lü, Fan; Mazéas, Laurent; Desmond-Le Quéméner, Elie; Madigou, Céline; Guenne, Angéline; Shao, Liming; Bouchez, Théodore; He, Pinjing

    2015-02-01

    Ammonia inhibition represents a major operational issue for anaerobic digestion. In order to refine our understanding of the terminal catabolic steps in thermophilic anaerobic digestion under ammonia stress, we studied batch thermophilic acetate fed experiments at low (0.26 g L(-1)) and high (7.00 g L(-1)) Total Ammonia Nitrogen concentrations (TAN). Although methane production started immediately for all incubations and resulted in methane yields close to stoichiometric expectations, a 62-72% decrease of methanogenic rate was observed throughout the incubation at 7.00 g L(-1) of TAN compared to 0.26 g L(-1). Stable Isotope Probing analysis of active microbial communities in (13)C-acetate fed experiments coupled to automated ribosomal intergenic spacer analysis and 16S rDNA pyrotag sequencing confirmed that microbial communities were similar for both TAN conditions. At both TAN levels, the (13)C-labeled bacterial community was mainly affiliated to Clostridia-relatives, with OPB54 bacteria being the most abundant sequence in the heavy DNA 16S rDNA pyrotag library. Sequences closely related to Methanosarcina thermophila were also abundantly retrieved in the heavy DNA fractions, showing that this methanogen was still actively assimilating labeled carbon from acetate at free ammonia nitrogen concentrations up to 916 mg L(-1). Stable isotopic signature analysis of biogas, measured in unlabeled acetate fed experiments that were conducted in parallel, confirmed that acetoclastic methanogenic pathway was dominant at both ammonia concentrations. Our work demonstrates that, besides the syntrophic acetate oxidation pathway, acetoclastic methanogenesis catalyzed by Methanosarcina can also play a major role in methane production at high ammonia levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    Science.gov (United States)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  19. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  20. 40 CFR 205.57-7 - Acceptance and rejection of batch sequence.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Acceptance and rejection of batch sequence. 205.57-7 Section 205.57-7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205...

  1. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors.

    Science.gov (United States)

    Wilkinson, A; Kennedy, K J

    2012-01-01

    Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.

  2. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, Tinaztepe, 35160 Izmir (Turkey); Demirden, Pinar, E-mail: pinar.demirden@kozagold.com [Environmental Engineer, Koza Gold Company, Environmental Department, Ovacik, Bergama Izmir (Turkey)

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  3. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-01-01

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  4. Continuous ARGET ATPR of methyl methacrylate and butyl acrylate in a stirred tank reactor

    NARCIS (Netherlands)

    Chan, N.; Meuldijk, J.; Cunningham, M.F.; Hutchinson, R.A.

    2013-01-01

    ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization) of butyl acrylate (BA) and methyl methacrylate (MMA) was successfully adapted from a batch process to a continuous stirred tank reactor (CSTR) with 50 ppm copper. A series of batch polymerizations were first

  5. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Rao, N. Chandrasekhara; Sarma, P.N.

    2007-01-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  6. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: vmohan_s@yahoo.com; Rao, N. Chandrasekhara [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Biotechnologies and Process Engineering for the Environment, Universite de Savoie Technolac, Chambery, 73376 Le Bourget Du Lac Cedex (France); Sarma, P.N. [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2007-06-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio {approx}0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes.

  7. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  8. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  9. Nutrient Removal of Grey Water from Wet Market Using Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Omar Danial; Mohd Razman Salim; Salmiati

    2016-01-01

    Fresh water scarcity has become an important issue in this world today. Water reuse is known as one of the strategies to overcome this problem. Grey water is one of the sources of reused water. Several researches were carried out on water reuse, but limited attention was focused on reusing grey water from wet market, which contains high nutrient and organic matters. This study was carried out on nutrient removal from grey water using sequencing batch reactor (SBR). The grey water sample was taken from a wet market (Pasar Peladang, Skudai). About 1L of grey water was fed into the reactor with a total volume of 4L. Anoxic-aerobic phase were divided with a ratio of 30 % - 70 % of total time respectively. Mixing was maintained at 30 rpm during the start of each cycle until settling phase to achieve uniform condition. Influent and effluent were set for 30 minutes. The SBR was operated with 3 cycles/ day, temperature 30 degree Celsius, cycle time 8 hours and hydraulic retention time (HRT) 1.2 days. Aeration at 35 L/ min was induced for ammonia conversion and assisting nitrification.. The results show that the bacteria growing in alternating anoxic/ aerobic systems could remove organic substrates and nutrient. The COD, Total Nitrogen and Total Phosphorus removal efficiencies were maximum at the levels of 94 %, 88 % and 70 % respectively. Anaerobic-Aerobic-Anoxic phase was proposed to increase the removal percentage. (author)

  10. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7g-N/L during 30days, resulting in an average recovery rate of 80g-N/m2/d. Meanwhile, a maximum power density of 0.71±0.5W/m2 was generated at 2.85A/m2. Both current driven NH4+ migration...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

  11. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  12. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-digestion with swine manure.

    Science.gov (United States)

    Creamer, K S; Chen, Y; Williams, C M; Cheng, J J

    2010-05-01

    Environmentally sound treatment of by-products in a value-adding process is an ongoing challenge in animal agriculture. The sludge produced as a result of the dissolved air flotation (DAF) wastewater treatment process in swine processing facilities is one such low-value residue. The objective of this study was to determine the fundamental performance parameters for thermophilic anaerobic digestion of DAF sludge. Testing in a semi-continuous stirred tank reactor and in batch reactors was conducted to determine the kinetics of degradation and biogas yield. Stable operation could not be achieved using pure DAF sludge as a substrate, possibly due to inhibition by long-chain fatty acids or to nutrient deficiencies. However, in a 1:1 ratio (w/w, dry basis) with swine manure, operation was both stable and productive. In the semi-continuous stirred reactor at 54.5 degrees Celsius, a hydraulic residence time of 10 days, and an organic loading rate of 4.68 gVS/day/L, the methane production rate was 2.19 L/L/day and the specific methane production rate was 0.47 L/gVS (fed). Maximum specific methanogenic activity (SMA) in batch testing was 0.15 mmoles CH(4) h(-1) gVS(-1) at a substrate concentration of 6.9 gVS L(-1). Higher substrate concentrations cause an initial lag in methane production, possibly due to long-chain fatty acid or nitrogen inhibition. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Effect of Fluidized Bed Stirring on Drying Process of Adhesive Particles

    Directory of Open Access Journals (Sweden)

    P. Hoffman

    2017-04-01

    Full Text Available This paper presents an attempt to optimize fluidized bed drying of wet and adhesive particles (with an initial diameter of about 580 mm with the use of stirring, and discusses the influence of stirring on the total drying time. The goal was to demonstrate the positive effect of stirring a fluidized bed to the drying time, to find the optimal parameters (stirrer design, speed, and size. Experiments were conducted on a drying chamber in batch operation. The objective was to evaluate the effect of stirring on the total drying time. The drying chambers were 85 mm, 100 mm, and 140 mm in diameter. An optimal stirrer shape and speed were specified. Our arrangement of the fluidized bed resulted in a decrease in drying time by up to 40 %.

  14. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  15. Additional merit of coronal STIR imaging for MR imaging of lumbar spine

    Directory of Open Access Journals (Sweden)

    Ranjana Gupta

    2015-01-01

    Full Text Available Introduction: Back pain is a common clinical problem and is the frequent complaint for referral of lumbar spine magnetic resonance imaging (MRI. Coronal short tau inversion recovery sequence (STIR can provide diagnostically significant information in small percentage of patients. Materials and Methods: MRI examinations of a total of 350 patients were retrospectively included in the study. MR sequences were evaluated in two settings. One radiologist evaluated sagittal and axial images only, while another radiologist evaluated all sequences, including coronal STIR sequence. After recording the diagnoses, we compared the MRI findings in two subsets of patients to evaluate additional merit of coronal STIR imaging. Results: With addition of coronal STIR imaging, significant findings were observed in 24 subjects (6.8%. Twenty-one of these subjects were considered to be normal on other sequences and in three subjects diagnosis was changed with the addition of coronal STIR. Additional diagnoses on STIR included sacroiliitis, sacroiliac joint degenerative disease, sacral stress/insufficiency fracture/Looser′s zones, muscular sprain and atypical appendicitis. Conclusion: Coronal STIR imaging can provide additional diagnoses in a small percentage of patients presenting for lumbar spine MRI for back pain. Therefore, it should be included in the routine protocol for MR imaging of lumbar spine.

  16. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    for NADPH over NADH. In this study, the influence of aeration and the response to the addition of electron acceptors on xylose fermentation by F. oxysporum were also studied. The batch cultivation of F. oxysporum on xylose was performed under aerobic, anaerobic and oxygen-limited conditions in stirred tank...... conditions (0.3 vvm). When the artificial electron acceptor acetoin was added to an anaerobic batch fermentation of xylose by F. oxysporum, the ethanol yield increased while xylitol excretion was also decreased....

  17. Characteristics of biohydrogen production by ethanoligenens R{sub 3} isolated from continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, A.Y.; Liu, K. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering; Liu, B. [Northeast Forestry Univ., Harbin (China). School of Material Science and Engineering; Xu, J.L. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    This study investigated the fermentative hydrogen production characteristics of ethanoligenens R{sub 3} isolated from anaerobic sludge in a continuous stirred tank reactor. The effects of the initial pH value, the proportion of carbon and nitrogen sources, and the effects of fermentation temperature were investigated in a series of batch experiments. Substrates for the hydrogen production of glucose and peptone were used as carbon and nitrogen sources. Results of the experiments showed that a maximum hydrogen production yield of 834 mlH{sub 2}/L culture was obtained with a fermentation temperature of 35 degrees C and an initial pH value of 5.5. The maximum average hydrogen production rate of 10.87 mmolH{sub 2}/g cell dry weight per hour was obtained at a carbon-nitrogen source ratio of 3.3. The degradation efficiency of the glucose used as a carbon source ranged from 91.5 to 95.43 per cent during the conversion of glucose to hydrogen by the bacteria.

  18. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing

    International Nuclear Information System (INIS)

    Linke, Bernd

    2006-01-01

    Anaerobic treatment of solid wastes from potato processing was studied in completely stirred tank reactors (CSTR) at 55 o C. Special attention was paid to the effect of increased organic loading rate (OLR) on the biogas yield in long-term experiments. Both biogas yield and CH 4 in the biogas decreased with the increase in OLR. For OLR in the range of 0.8 gl -1 d -1 -3.4 gl -1 d -1 , biogas yield and CH 4 obtained were 0.85 l g -1 -0.65 l g -1 and 58%-50%, respectively. Biogas yield y as a function of maximum biogas yield y m , reaction rate constant k and HRT are described on the basis of a mass balance in a CSTR and a first order kinetic. The value of y m can be obtained from curve fitting or a simple batch test and k results from plotting y/(y m -y) against 1/OLR from long-term experiments. In the present study values for y m and k were obtained as 0.88 l g -1 and 0.089 d -1 , respectively. The simple model equations can apply for dimensioning completely stirred tank reactors (CSTR) digesting organic wastes from food processing industries, animal waste slurries or biogas crops

  19. Anaerobic treatment of sludge: focusing on reduction of LAS concentration in sludge

    DEFF Research Database (Denmark)

    Haagensen, Frank; Mogensen, Anders Skibsted; Angelidaki, Irini

    2002-01-01

    Anaerobic degradation of linear alkylbenzene sulfonates (LAS) was tested in continuous stirred tank reactors (CSTR). LAS12 was used as a model compound and was spiked on sewage sludge. The experiments clearly showed that transformation of LAS12 occurred under anaerobic conditions. The degree...

  20. The value of STIR sequence in the characterization of mediastinal lymph nodes

    Directory of Open Access Journals (Sweden)

    Aylin Okur

    2013-12-01

    Full Text Available INTRODUCTION: To investigate availability of Short Time Inversion Recovery Turbo Spin Echo Magnetic Resonance imaging (STIR TSE MRI in the detection of mediastinal lymph nodes and in the distinguishing malign and benign lymph nodes detected in cases with pulmonary lesions. METHODS: Overall, 46 patients having mediastinal lymph nodes with confirmed or suspected lung cancer were included to the study. All patients underwent STIR TSE MR imaging before mediastinoscopy. Lymph nodes were assessed by signal characteristics on STIR TSE MRI. The results of histopathological evaluation and STIR TSE MRI were compared after mediastinoscopy. As data were qualitative, distributions were expressed as percentage and chi-square test was used to determine the difference between variables. RESULTS: Overall, 92 lymph nodes were analyzed. When a comparison was made between malign and benign lymph nodes, a significant difference was found between STIR MRI signal properties of lymph nodes and lymph node size. The specificity, sensitivity, positive predictive value and negative predictive value of STIR TSE MRI were estimated as 75.0%, 75.0%, 61.5% and 83.3%, respectively. DISCUSSION AND CONCLUSION: Although the negative predictive value is high in STIR TSE MRI, it has a low positive predictive value. Thus, the case may directly undergo surgery without performing mediastinoscopy when no malign lymph node is detected in STIR TSE MRI, while mediastinoscopy is warranted when a malign lymph node is detected.

  1. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  2. Modeling Lab-sized Anaerobic Fluidized Bed Reactor (AFBR) for Palm Oil Mill Effluent (POME) treatment: from Batch to Continuous Reactors

    Science.gov (United States)

    Mufti Azis, Muhammad; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2018-03-01

    Indonesia is aiming to produce 30 million tones/year of crude palm oil (CPO) by 2020. As a result, 90 million tones/year of POME will be produced. POME is highly polluting wastewater which may cause severe environmental problem due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Due to the limitation of open pond treatment, the use of AFBR has been considered as a potential technology to treat POME. This study aims to develop mathematical models of lab-sized Anaerobic Fluidized Bed Reactor (AFBR) in batch and continuous processes. In addition, the AFBR also utilized natural zeolite as an immobilized media for microbes. To initiate the biomass growth, biodiesel waste has been used as an inoculum. In the first part of this study, a batch AFBR was operated to evaluate the COD, VFA, and CH4 concentrations. By comparing the batch results with and without zeolite, it showed that the addition of 17 g/gSCOD zeolite gave larger COD decrease within 20 days of operation. In order to elucidate the mechanism, parameter estimations of 12 kinetic parameters were proposed to describe the batch reactor performance. The model in general could describe the batch experimental data well. In the second part of this study, the kinetic parameters obtained from batch reactor were used to simulate the performance of double column AFBR where the acidogenic and methanogenic biomass were separated. The simulation showed that a relatively long residence time (Hydraulic Residence Time, HRT) was required to treat POME using the proposed double column AFBR. Sensitivity analyses was conducted and revealed that μm1 appeared to be the most sensitive parameter to reduce the HRT of double column AFBR.

  3. Study of nitrifying sequencing batch reactor in presence of m-Cresol

    International Nuclear Information System (INIS)

    Gonzalez-Alvarez, E.; Steed, E.; Ben-youssef, C.; Zepeda, A.

    2009-01-01

    The process of the nitrification has been studied scantly in presence of phenolic compounds such as m-cresol. the aim of this study was evaluate the tolerance of a nitrifying SBR (Sequencing Batch Reactor) to m-cresol and the ability of the sludge to consume this phenolic compound. Nitrification is the process of oxidation of ammonia to nitrite and nitrate by lithoautotrophic ammonia-and nitrite-oxidizing bacteria. (Author)

  4. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.

    Science.gov (United States)

    Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam

    2017-04-01

    The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence.

    Science.gov (United States)

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-04-01

    To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (pCHESS and for T2 Dixon than for STIR (pCHESS (pCHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence re...... with highest similarity to DNA repair protein from Campylobacter jejuni (25% aa). Orf34 showed similarity to sigma factors with highest similarity (28% aa) to the sporulation specific Sigma factor, Sigma 28(K) from Bacillus thuringiensis....

  7. MSVAT-SPACE-STIR and SEMAC-STIR for Reduction of Metallic Artifacts in 3T Head and Neck MRI.

    Science.gov (United States)

    Hilgenfeld, T; Prager, M; Schwindling, F S; Nittka, M; Rammelsberg, P; Bendszus, M; Heiland, S; Juerchott, A

    2018-05-24

    The incidence of metallic dental restorations and implants is increasing, and head and neck MR imaging is becoming challenging regarding artifacts. Our aim was to evaluate whether multiple-slab acquisition with view angle tilting gradient based on a sampling perfection with application-optimized contrasts by using different flip angle evolution (MSVAT-SPACE)-STIR and slice-encoding for metal artifact correction (SEMAC)-STIR are beneficial regarding artifact suppression compared with the SPACE-STIR and TSE-STIR in vitro and in vivo. At 3T, 3D artifacts of 2 dental implants, supporting different single crowns, were evaluated. Image quality was evaluated quantitatively (normalized signal-to-noise ratio) and qualitatively (2 reads by 2 blinded radiologists). Feasibility was tested in vivo in 5 volunteers and 5 patients, respectively. Maximum achievable resolution and the normalized signal-to-noise ratio of MSVAT-SPACE-STIR were higher compared with SEMAC-STIR. Performance in terms of artifact correction was dependent on the material composition. For highly paramagnetic materials, SEMAC-STIR was superior to MSVAT-SPACE-STIR (27.8% smaller artifact volume) and TSE-STIR (93.2% less slice distortion). However, MSVAT-SPACE-STIR reduced the artifact size compared with SPACE-STIR by 71.5%. For low-paramagnetic materials, MSVAT-SPACE-STIR performed as well as SEMAC-STIR. Furthermore, MSVAT-SPACE-STIR decreased artifact volume by 69.5% compared with SPACE-STIR. The image quality of all sequences did not differ systematically. In vivo results were comparable with in vitro results. Regarding susceptibility artifacts and acquisition time, MSVAT-SPACE-STIR might be advantageous over SPACE-STIR for high-resolution and isotropic head and neck imaging. Only for materials with high-susceptibility differences to soft tissue, the use of SEMAC-STIR might be beneficial. Within limited acquisition times, SEMAC-STIR cannot exploit its full advantage over TSE-STIR regarding artifact

  8. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    Science.gov (United States)

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  9. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  10. Dominant obligate anaerobes revealed in lower respiratory tract infection in horses by 16S rRNA gene sequencing.

    Science.gov (United States)

    Kinoshita, Yuta; Niwa, Hidekazu; Katayama, Yoshinari; Hariu, Kazuhisa

    2014-04-01

    Obligate anaerobes are important etiological agents in pneumonia or pleuropneumonia in horses, because they are isolated more commonly from ill horses that have died or been euthanized than from those that survive. We performed bacterial identification and antimicrobial susceptibility testing for obligate anaerobes to establish effective antimicrobial therapy. We used 16S rRNA gene sequencing to identify 58 obligate anaerobes and compared the results with those from a phenotypic identification kit. The identification results of 16S rRNA gene sequencing were more reliable than those of the commercial kit. We concluded that genera Bacteroides and Prevotella-especially B. fragilis and P. heparinolytica-are dominant anaerobes in lower respiratory tract infection in horses; these organisms were susceptible to metronidazole, imipenem and clindamycin.

  11. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B L; Kivaisi, A K; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  12. Optimal conditions and operational parameters for conversion of Robusta coffee residues in a continuous stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Msambichaka, B.L.; Kivaisi, A.K.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    This experiment studied the possibility of optimizing anaerobic degradation, developing microbial adaptation and establishing long term process stability in a Continuous Stirred Tank Reactor (CSTR) running on Robusta coffee hulls as feed substrate. Decrease in lag phase and increase in methane production rate in batch culture experiment conducted before and after process stabilization of each operational phase in the CSTR clearly suggested that microbial adaptation to increasing coffee percentage composition was attained. Through gradual increase of coffee percentage composition, from 10% coffee, 2% VS, 20 days HRT and a 1 g VS/1/day loading rate to 80% coffee, 4.5% VS, 12 days HRT and a loading rate of 3 g VS/1/day the CSTR system was optimized at a maximum methane yield of 535 ml/g VS. Again it was possible to attain long term process stability at the above mentioned optimal operational parameters for a further 3 month period. (au)

  13. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Domestic solid waste and sewage improvement by anaerobic digestion: A stirred digester

    Energy Technology Data Exchange (ETDEWEB)

    Lebrato, J.; Perez-Rodriguez, J.L. [CSIC-UNSE, Instituto de Ciencia de Materiales, Sevilla (Spain); Maqueda, C. [CSIC Instituto de Recursos Naturales y Agrobiologia, Sevilla (Spain)

    1995-05-01

    The processing of the mixture of domestic solid waste and domestic sewage in an stirring digester was studied. The experimental set up consisted of six thermostatically controlled digesters of 1 l, each one in a bath at 35{+-}1oC and magnetically stirred. The best feeding for the culture was 1.7 g COD l{sup -1} day{sup -1}. The minimum hydraulic retention time was 6 days. The efficiency in COD removal of treatment varied between 90.1% and 72.4%. The biogas productivity was 0.19 l g{sup -1} COD day{sup -1}

  15. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass.

    Science.gov (United States)

    Bozan, Mahir; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-09-01

    The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.

  16. Object analysis of bone marrow MR imaging using double echo STIR sequence in hematological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Hitomi [Saitama Medical School, Moroyama (Japan)

    1995-07-01

    The bone marrow of 84 patients with hematological disorders was investigated using short inversion time inversion recovery sequence (STIR) on an 1.5 Tesla superconducting MRI system. Double echo times of 20 and 100 msec were applied to research the signal characteristics of the lesion and carry out quantitative analysis of the receiver operating characteristic curve (ROC). The hematological diseases included 19 cases of myelodysplastic syndrome (MDS), 18 of multiple myeloma (MM), 18 of chronic myelocytic leukemia (CML), 9 of aplastic anemia (AA), 8 of acute myelocytic leukemia (AML), 3 of chronic lymphocytic leukemia (CLL), 3 of myelofibrosis, and 3 others. Using STIR with double echo times, bone marrow showed high signal intensity (SI) on short TE and low SI on long TE in MDS and CML; high SI on short and long TE in myelofibrosis and CLL; high SI on short TE and high to moderately high SI on long TE in MM; and low SI on short and long TE in AA. Quantitative analysis of 33 patients showed high sensitivity and specificity in AA (81% and 94%, respectively) and moderate sensitivity and high specificity in MM (61%, 88%). CML and MDS were similar with low sensitivities (40%, 41%) and high specificities (80%, 78%). Differential diagnosis between CML and MDS was difficult using STIR with the double echo time method. (author).

  17. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  18. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    International Nuclear Information System (INIS)

    Kirchgesner, Thomas; Perlepe, Vasiliki; Michoux, Nicolas; Larbi, Ahmed; Vande Berg, Bruno

    2017-01-01

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS BM ) and soft tissues (EFS ST ) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS BM was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS BM was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  19. Fat suppression at 2D MR imaging of the hands: Dixon method versus CHESS technique and STIR sequence

    Energy Technology Data Exchange (ETDEWEB)

    Kirchgesner, Thomas, E-mail: Thomas.Kirchgesner@uclouvain.be; Perlepe, Vasiliki, E-mail: Vasiliki.Perlepe@uclouvain.be; Michoux, Nicolas, E-mail: Nicolas.Michoux@uclouvain.be; Larbi, Ahmed, E-mail: Ahmed.Larbi@chu-nimes.fr; Vande Berg, Bruno, E-mail: Bruno.VandeBerg@uclouvain.be

    2017-04-15

    Highlights: • Dixon yields effective fat suppression at 2D MRI of the hands. • CHESS fat suppression is less effective especially in the coronal plane. • SNR is higher with Dixon than with CHESS at T1-weighted MR imaging. • SNR is higher with CHESS than with Dixon and STIR at T2-weighted MR imaging. - Abstract: Objective: To compare the effectiveness of fat suppression and the signal-to-noise ratio (SNR) of the Dixon method with those of the CHESS (Chemical Shift-Selective) technique and STIR (Short Tau Inversion Recovery) sequence in hands of normal subjects at 2D MR imaging. Material and methods: 14 healthy volunteers (mean age of 29.4 years) consented to have both hands prospectively imaged with SE T1 Dixon, T1 CHESS, T2 Dixon, T2 CHESS and STIR sequences in a 1.5T MR scanner. Three radiologists scored the effectiveness of fat suppression in bone marrow (EFS{sup BM}) and soft tissues (EFS{sup ST}) in 20 joints per subject. One radiologist measured the SNR in 10 bones per subject. Statistical analysis used two-way ANOVA with random effects, paired t-test and observed agreement to assess differences in effectiveness of fat suppression, differences in SNR and inter-observer agreement. Results: EFS{sup BM} was statistically significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for T2 CHESS (p < 0.0001). EFS{sup BM} was significantly higher for T2 Dixon than for STIR in the coronal plane (p = 0.0020). The SNR was significantly higher for T1 Dixon than for T1 CHESS and for T2 Dixon than for STIR (p < 0.0001). The SNR was significantly lower for T2 Dixon than for T2 CHESS (p < 0.0001). Conclusion: The Dixon method yields more effective fat suppression and higher SNR than the CHESS technique at 2D T1-weighted MR imaging of the hands. At T2-weighted MR imaging, fat suppression is more effective with the Dixon method while SNR is higher with the CHESS technique.

  20. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    Science.gov (United States)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  1. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-01-01

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  2. Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum Purpureum) using batch digester

    Science.gov (United States)

    Haryanto, Agus; Hasanudin, Udin; Afrian, Chandra; Zulkarnaen, Iskandar

    2018-03-01

    This study aimed at determining biogas production from codigestion of Elephant grass and cowdung using batch digester. Fresh grass was manually chopped with a maximum length of 3 cm. Chopped grass (25 kg) was perfectly mixed with fresh cowdung (25 kg). The mixture was introduced into a 220-liter batch drum digester. The substrate was diluted with water at different rates (P1 = 50 L, P2 = 75 L, and P3 = 100 L) and was stirred thoroughly. Six digesters were prepared as duplicate for each treatment. Two other digesters containing only 25 kg cowdung diluted with 25 L water were also provided as control treatment (P0). The digesters were air tightly sealed for 70 days. Observation was conducted on daily temperature, substrate pH (initial and final), TS and VS content, biogas yield and biogas composition. Results showed that final pH of grass containing substrate was in the acidic range, namely 4.50, 4.62, 6.82, whereas that of control (P0) was normal with pH of 7.30. Digester with substrate composition 25:25:100 (cowdung:grass:water) produced the highest biogas total (524.3 L). Biogas yield of codigestion, however, was much lower as compared to that of control, namely 7.35, 16.75, and 111.72 L/kg VS r respectively for treatment P1, P2, P3. with dilution rate of 50, 75, and 100 L. Biogas produced from control digester had methane content of 53.88%. In contrast, biogas resulted from all treatments contained low methane (the highest was 31.37%). Methane yield of 39.3 L/kg TS removal was achieved from digester with dilution 100 L (P3). Mechanical pretreatment is suggested to break Elephant grass down into smaller particles prior to introducing it into the digestion process.

  3. Biodenitrification in Sequencing Batch Reactors. Final report

    International Nuclear Information System (INIS)

    Silverstein, J.

    1996-01-01

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO 3- ) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995

  4. Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement.

    Science.gov (United States)

    Karray, Raida; Karray, Fatma; Loukil, Slim; Mhiri, Najla; Sayadi, Sami

    2017-03-01

    Ulva rigida is a green macroalgae, abundantly available in the Mediterranean which offers a promising source for the production of valuable biomaterials, including methane. In this study, anaerobic digestion assays in a batch mode was performed to investigate the effects of various inocula as a mixture of fresh algae, bacteria, fungi and sediment collected from the coast of Sfax, on biogas production from Ulva rigida. The results revealed that the best inoculum to produce biogas and feed an anaerobic reactor is obtained through mixing decomposed macroalgae with anaerobic sludge and water, yielding into 408mL of biogas. The process was then investigated in a sequencing batch reactor (SBR) which led to an overall biogas production of 375mL with 40% of methane. Further co-digestion studies were performed in an anaerobic up-flow bioreactor using sugar wastewater as a co-substrate. A high biogas production yield of 114mL g -1 VS added was obtained with 75% of methane. The co-digestion proposed in this work allowed the recovery of natural methane, providing a promising alternative to conventional anaerobic microbial fermentation using Tunisian green macroalgae. Finally, in order to identify the microbial diversity present in the reactor during anaerobic digestion of Ulva rigida, the prokaryotic diversity was investigated in this bioreactor by the denaturing gradient gel electrophoresis (DGGE) method targeting the 16S rRNA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.

    Science.gov (United States)

    Li, Ruo-Hong; Li, Xiao-Yan

    2017-12-01

    A sequencing batch reactor-based system was developed for enhanced phosphorus (P) removal and recovery from municipal wastewater. The system consists of an iron-dosing SBR for P precipitation and a side-stream anaerobic reactor for sludge co-fermentation with food waste. During co-fermentation, sludge and food waste undergo acidogenesis, releasing phosphates under acidic conditions and producing volatile fatty acids (VFAs) into the supernatant. A few types of typical food waste were investigated for their effectiveness in acidogenesis and related enzymatic activities. The results show that approximately 96.4% of total P in wastewater was retained in activated sludge. Food waste with a high starch content favoured acidogenic fermentation. Around 55.7% of P from wastewater was recovered as vivianite, and around 66% of food waste loading was converted into VFAs. The new integration formed an effective system for wastewater treatment, food waste processing and simultaneous recovery of P and VFAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    Science.gov (United States)

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  7. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield and a hi......Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...

  8. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Maria Octoviane Dyan

    2015-01-01

    Full Text Available Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor. The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7

  9. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H; Hao, Xiying

    2015-09-01

    A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8gVSL(-1)day(-1) with a 30-day hydraulic retention time (HRT), a CH4 yield of 0.213Lg(-1)VS and CH4 production rate of 0.600LL(-1)day(-1) were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30days at 40°C recovered 0.067Lg(-1)VS as CH4, which was 21% of the batch CH4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K(+), Ca(2+) and Mg(2+) were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. STIR imaging of lymphadenopathy: Advantages over conventional spin-echo techniques

    International Nuclear Information System (INIS)

    Porter, B.A.; Neumann, E.B.; Olson, D.O.; Nyberg, D.A.; Teefy, S.A.; Shields, A.F.

    1987-01-01

    Spin-echo (SE) imaging of lymphadenopathy has been limited by the high signal of surrounding fat. With short TI Inversion Recovery (STIR), fat is cancelled (black), T1 and T2 contrast are additive, and pathologic nodes are white. STIR images (repetition time, 1,400 - 2,400; echo time, 36 or 40; inversion time, 100 or 125) of 69 patients with malignant adenopathy were compared with T1-weighted spin-echo (T1 SE) or intermediate SE and some T2 SE sequences at 0.15 T. Signal-intensity measurements of nodes versus adjacent tissues were used as a measure of contrast. Ratios of these values ranged from 2.5- to more than 17-fold greater for STIR versus T1 or intermediate SE sequences and to more than 40:1 for STIR versus T2 SE images. Some nodes detected on STIR were only identifiable in retrospection CT or T1 SE. In two cases, STIR detected minimally enlarged nodes not detected on CT; biopsy confirmed malignancy. Normal nodes have lower signal than malignant nodes; inflammatory nodes may mimic neoplasm. The authors replaced T2 SE with a combination of T1 SE and STIR, shortening imaging time and enhancing detection of lymphadenopathy

  11. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    African Journals Online (AJOL)

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  12. Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains

    Directory of Open Access Journals (Sweden)

    Dagmar R. D'hooge

    2014-04-01

    Full Text Available Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000, optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP. Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation ( polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties ( ≈ 0.30; dispersity ≈ 1.1. Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm under starved conditions yields a below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains.

  13. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Directory of Open Access Journals (Sweden)

    Xiao-Shuang Shi

    2017-01-01

    Full Text Available Three semicontinuous continuous stirred-tank reactors (CSTR operating at mesophilic conditions (35°C were used to investigate the effect of hydraulic retention time (HRT on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.

  14. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  15. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  16. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  17. Influence of temperature on the anaerobic stabilization of organic ...

    African Journals Online (AJOL)

    This study was aimed at determining the effect of temperature on the stabilization of organic solid waste conjugated with sewage sludge in anaerobic batch ... It is concluded that anaerobic digestion at ambient temperature represents an economical and environmentally viable strategy for the disposal of municipal solid ...

  18. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study

    International Nuclear Information System (INIS)

    Di Maria, F.; Sordi, A.; Micale, C.

    2012-01-01

    Highlights: ► This work quantifies the Italian Composting and MBT facilities upgradable by SADB. ► The bioCH 4 from SADB of source and mechanical selected OFMSW is of 220–360 Nl/kg VS. ► The upgrading investment cost is 30% higher for Composting than for MBT. ► Electricity costs are 0.11–0.28 €/kW h, not influenced by differentiate collection. ► Electrical energy costs are constant for SADB treating more than 30 ktons/year. - Abstract: The energetic potential of the organic fraction of municipal solid waste processed in both existing Composting plants and Mechanical Biological Treatment (MBT) plants, can be successfully exploited by retrofitting these plants with the solid anaerobic digestion batch process. On the basis of the analysis performed in this study, about 50 MBT plants and 35 Composting plants were found to be suitable for retrofitting with Solid Anaerobic Digestion Batch (SADB) facilities. Currently the organic fraction of Municipal Solid Waste (OFMSW) arising from the MBT facilities is about 1,100,000 tons/year, whereas that arising from differentiated collection and treated in Composting plants is about 850,000 tons/year. The SADB performances were analyzed by the aid of an experimental apparatus and the main results, in agreement with literature data, show that the biogas yield ranged from 400 to 650 Nl/kg of Volatile Solids (VS), with a methane content ranging from 55% to 60% v/v. This can lead to the production of about 500 GW h of renewable energy per year, giving a CO 2 reduction of about 270,000 tons/year. From the economic point of view, the analysis shows that the mean cost of a kW h of electrical energy produced by upgrading MBT and Composting facilities with the SADB, ranges from 0.11 and 0.28 €/kW h, depending on the plant size and the amount of waste treated.

  19. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  20. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    Science.gov (United States)

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Chiavola, Agostina; Baciocchi, Renato; Gavasci, Renato

    2010-01-01

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  2. MR STIR imaging versus spin-echo imaging of the breast

    International Nuclear Information System (INIS)

    Zobel, B.B.; Tella, S.; Patrizio, G.; Confalone, D.; D'Archivio, C.; Passariello, R.

    1989-01-01

    A valid tissue characterization of human breast diseases with conventional spin-echo (SE) sequences has not been achieved yet. In spite of experimental works showing that fibroadenomas have a small but significant difference in T1 relaxation time, T1- and T2-weighted SE sequences are not always able to differentiate them. We tried to solve the problem employing two different short T1 inversion-recovery (STIR) sequences with T1 values adequate to nullify the signal of glandular and fatty tissues. This paper reports on twenty-five nodules, including cysts, fibroadenomas, phylloids, and adenocarcinomas, examined with both STIR sequences performed on a superconductive 0.5-T unit

  3. MR imaging in shoulder trauma. Value of STIR images

    International Nuclear Information System (INIS)

    Rand, T.; Trattnig, S.; Haller, J.; Imhof, H.; Nguyen, N.K.

    1998-01-01

    Purpose: To determine the adequacy of MR standard protocols by analyzing conventional T1- and T2-weighted SE sequences, and to evaluate the usefulness of additional fat-suppressed (STIR) images in shoulder trauma. Material and Methods: Paracoronal T1-weighted, T2-weighted SE, and STIR images were obtained on a 0.5 T superconductive system in 25 patients with shoulder trauma. In a separate evaluation of T1/T2 images and a combined evaluation of T1/T2 SE- and STIR images, we compared the number of patients with evidence of Hill-Sachs lesions, bone bruises, and/or rotator-cuff lesions. Results: Compared to the combined evaluation of T1/T2 and STIR images, the separate evaluation of T1/T2 SE images revealed identical results for rotator-cuff lesions and Hill-Sachs lesions, but different results for the bone bruises in the area of the major tubercle. Conclusion: Occult fractures of the major tubercle, indicated by areas of bone bruising, might be missed with MR using conventional SE images. We recommend the use of additional paracoronal fat-suppressed sequences in patients with clinically suspected lesions and equivocal findings on plain radiographs and on standard SE sequences. (orig.)

  4. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  5. Effect of mixing mode on the behavior of an ASBBR with immobilized biomass in the treatment of cheese whey

    Directory of Open Access Journals (Sweden)

    L. H. S. Damasceno

    2008-06-01

    Full Text Available A hydrodynamic study of a mechanically stirred anaerobic sequencing batch biofilm reactor (ASBBR containing immobilized biomass on polyurethane foam was performed with the aim to determine homogeneity of the reactor based on total mixing time. Turbine or helix propellers were used for stirring at rotor speeds of 100, 200, 300 and 500 rpm. Experimental values obtained were fitted to a Boltzmann sigmoid. Homogenization times of the reactor were negligible when compared to the 8-h cycle time for all conditions studied. At low propeller rotations the turbine propeller showed the best performance. For higher rotations total mixing times were similar for both propellers; however the helix propeller had better homogeneity conditions. At a subsequent stage the system was operated in batch mode treating cheese whey at concentrations of 500, 1000 and 2000 mgCOD/L and rotations of 200, 300 and 500 rpm. In these assays the importance of the propeller became evident not only for mixing, but also for substrate flow across the bed containing immobilized biomass. Due to axial flow, the helix propeller offered better mass transfer conditions, evidenced by improved organic matter conversion and lower production of total volatile acids.

  6. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  7. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor

    NARCIS (Netherlands)

    Jiang, Y.; Marang, L.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the

  8. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab

    2015-01-01

    of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  9. Whole-body MRI in children: Would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study

    International Nuclear Information System (INIS)

    Merlini, Laura; Carpentier, Marc; Ferrey, Solène; Anooshiravani, Mehrak; Poletti, Pierre-Alexandre; Hanquinet, Sylviane

    2017-01-01

    Objectives: To test the performance of a single 3D IR T2-Weighted sequence compared to a Whole-body MRI protocol including DWI, T1-Weighted and STIR 3D IR (3S) in a pediatric population. Methods: Two radiologists (15 and 30 years of experience),reviewed WBMRIs: first the STIR alone and 2 weeks later the 3S protocol. The indications were variable. Only positive findings were explicitly reported. A third reader compared the results to gold standard (GS) exams specific for the pathology. Agreement between the two readers, sensitivity and positive predictive value of STIR were calculated. Results: fifty-four WBMRIs were included (16 suspected child abuse, 8 chronic recurrent multifocal osteomyelitis (CRMO), 11 lymphomas, 4 osteosarcomas, 9 neuroblastomas, 6 histiocytosis). The mean age was 6 years 10 months, range: 1 month to 15 years. Agreement between readers was of 0.87 [0.82–0.91] for 3D STIR, and 0.89 [0.83–0.93] for the 3S protocol. For reader 1 sensitivity of 3D STIR was 81.6% and of 3S 81.0%. For reader 2 it was 74.1% for 3D STIR and 74.7% for 3S. For both readers and for both protocols, the positive predictive value (PPV) depended on the type of disease (for example 100% histocytosis and osteosarcomas, >90% for child abuse, >85% CRMO but <70% for lymphoma and neuroblastoma). Conclusions: Sensitivities were not different between the 2 protocols, for each reader and were different between the 2 readers for each protocol.

  10. Whole-body MRI in children: Would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura, E-mail: laura.merlini@hcuge.ch [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland); Carpentier, Marc [Department of Epidemiology, University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva Switzerland (Switzerland); Ferrey, Solène; Anooshiravani, Mehrak [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland); Poletti, Pierre-Alexandre [Department of Radiology, University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva (Switzerland); Hanquinet, Sylviane [Department of Radiology, Unit of Pediatric Radiology, University Hospital Rue Willy-Donzé 6, 1205 Geneva (Switzerland)

    2017-03-15

    Objectives: To test the performance of a single 3D IR T2-Weighted sequence compared to a Whole-body MRI protocol including DWI, T1-Weighted and STIR 3D IR (3S) in a pediatric population. Methods: Two radiologists (15 and 30 years of experience),reviewed WBMRIs: first the STIR alone and 2 weeks later the 3S protocol. The indications were variable. Only positive findings were explicitly reported. A third reader compared the results to gold standard (GS) exams specific for the pathology. Agreement between the two readers, sensitivity and positive predictive value of STIR were calculated. Results: fifty-four WBMRIs were included (16 suspected child abuse, 8 chronic recurrent multifocal osteomyelitis (CRMO), 11 lymphomas, 4 osteosarcomas, 9 neuroblastomas, 6 histiocytosis). The mean age was 6 years 10 months, range: 1 month to 15 years. Agreement between readers was of 0.87 [0.82–0.91] for 3D STIR, and 0.89 [0.83–0.93] for the 3S protocol. For reader 1 sensitivity of 3D STIR was 81.6% and of 3S 81.0%. For reader 2 it was 74.1% for 3D STIR and 74.7% for 3S. For both readers and for both protocols, the positive predictive value (PPV) depended on the type of disease (for example 100% histocytosis and osteosarcomas, >90% for child abuse, >85% CRMO but <70% for lymphoma and neuroblastoma). Conclusions: Sensitivities were not different between the 2 protocols, for each reader and were different between the 2 readers for each protocol.

  11. Covering Materials for Anaerobic Digesters Producing Biogas

    International Nuclear Information System (INIS)

    Itodo, I. N.; Philips, T. K.

    2002-01-01

    The suitability of foam, concrete and clay soil as covering material on anaerobic digesters producing biogas was investigated using four batch-type digesters of 20 litres volume. The methane yield from the digesters was of the order: foam >control> concrete > clay soil. The digester covered with foam had the highest methane yield, best temperature control and most favourable pH conditions. It is most suitable as cover material on anaerobic digesters

  12. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    International Nuclear Information System (INIS)

    Cetecioglu, Zeynep; Ince, Bahar; Gros, Meritxell; Rodriguez-Mozaz, Sara; Barceló, Damia; Ince, Orhan; Orhon, Derin

    2015-01-01

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens

  13. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Cetecioglu, Zeynep, E-mail: cetecioglu@itu.edu.tr [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey); Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Bahar [Bogazici University, Institute of Environmental Sciences, Rumelihisarustu - Bebek, 34342 Istanbul (Turkey); Gros, Meritxell; Rodriguez-Mozaz, Sara; Barceló, Damia [Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona (Spain); Ince, Orhan; Orhon, Derin [Istanbul Technical University, Environmental Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2015-12-01

    This study evaluated the chronic impact and biodegradability of sulfamethoxazole under anaerobic conditions. For this purpose, a lab-scale anaerobic sequencing batch reactor was operated in a sequence of different phases with gradually increasing sulfamethoxazole doses of 1 to 45 mg/L. Conventional parameters, such as COD, VFA, and methane generation, were monitored with corresponding antimicrobial concentrations in the reactor and the methanogenic activity of the sludge. The results revealed that anaerobic treatment was suitable for pharmaceutical industry wastewater with concentrations of up to 40 mg/L of sulfamethoxazole. Higher levels exerted toxic effects on the microbial community under anaerobic conditions, causing the inhibition of substrate/COD utilization and biogas generation and leading to a total collapse of the reactor. The adverse long-term impact was quite variable for fermentative bacteria and methanogenic achaea fractions of the microbial community based on changes inflicted on the composition of the residual organic substrate and mRNA expression of the key enzymes. - Highlights: • Chronic impact of sulfamethoxazole was lethal at 45 mg/L on the microbial community. • Sulfamethoxazole was highly biodegradable under anaerobic conditions. • While the COD removal stopped, the sorption of sulfamethoxazole into the sludge increased. • Sulfamethoxazole has a reversible inhibitory effect on acetoclastic methanogens.

  14. Optimization of semi-continuous anaerobic digestion of sugarcane straw co-digested with filter cake: Effects of macronutrients supplementation on conversion kinetics.

    Science.gov (United States)

    Janke, Leandro; Weinrich, Sören; Leite, Athaydes F; Schüch, Andrea; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2017-12-01

    Anaerobic digestion of sugarcane straw co-digested with sugarcane filter cake was investigated with a special focus on macronutrients supplementation for an optimized conversion process. Experimental data from batch tests and a semi-continuous experiment operated in different supplementation phases were used for modeling the conversion kinetics based on continuous stirred-tank reactors. The semi-continuous experiment showed an overall decrease in the performance along the inoculum washout from the reactors. By supplementing nitrogen alone or in combination to phosphorus and sulfur the specific methane production significantly increased (P0.99), the use of the depicted kinetics did not provide a good estimation for process simulation of the semi-continuous process (in any supplementation phase), possibly due to the different feeding modes and inoculum source, activity and adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  16. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, R. [Science Applications International Corp., McLean, VA (United States)

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  17. Use of limited MR protocol (coronal STIR) in the evaluation of patients with hip pain

    International Nuclear Information System (INIS)

    Khoury, N.J.; Birjawi, G.A.; Hourani, M.H.; Chaaya, M.

    2003-01-01

    To assess the role of a limited MR protocol (coronal STIR) as the initial part of the MR examination in patients with hip pain. Eighty-five patients presenting with hip pain, and normal radiographs of the pelvis, and who underwent our full MR protocol for hips were included retrospectively in the study. The full protocol consists of coronal T1-weighted and short tau inversion-recovery (STIR), and axial T2-weighted sequences. Ninety-three MR examinations were performed. Two radiologists interpreted the STIR (limited) examinations and the full studies separately, masked to each other's findings and to the final diagnosis. Comparison between the two protocols was then undertaken. For both readers, all normal MR examinations on the coronal STIR limited protocol were normal on the full protocol, with an interobserver reliability of 0.96. The STIR protocol was able to detect the presence or absence of an abnormality in 100% of cases (sensitivity). The STIR-only protocol provided a specific diagnosis in only 65% of cases (specificity). A normal coronal STIR study of the hips in patients with hip pain and normal radiographs precludes the need for further pelvic MR sequences. Any abnormality detected on this limited protocol should be further assessed by additional MR sequences. (orig.)

  18. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery.

    Science.gov (United States)

    Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S

    2014-05-20

    Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.

  19. Design of A solar Thermophilic Anaerobic Reactor for Small Farms

    NARCIS (Netherlands)

    Mashad, El H.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    A 10 m(3) completely stirred tank reactor has been designed for anaerobic treatment of liquid cow manure under thermophilic conditions (50degreesC), using a solar heating system mounted on the reactor roof. Simulation models for two systems have been developed. The first system consists of loose

  20. Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion.

    Science.gov (United States)

    Le, Chencheng; Stuckey, David C

    2017-10-01

    Six stirred fill-and-draw batch reactors with a range of carbohydrate feeds (glucose, fructose and sucrose), and nitrogen sources (NH 4 Cl, urea) at various concentrations were used to investigate the effect of feed composition on the production of soluble microbial products (SMPs) during anaerobic digestion (AD). To gain greater insights into the SMPs produced, the composition of various fractions was analyzed, while the low molecular weight (MW) SMPs generated with different feeds and nutrients were collected and chemically analyzed using GC-MS. Other organic solutes such as free amino acids were determined using HPLC, and this level of chemical analysis has never been carried out in past work because of analytical limitations. It was found that the presence of ammonium salts rather than urea at 200 mg/L stimulated the production of not only volatile fatty acids, but also SMPs of different MW fractions, and reduced the production of biogas significantly. The study also revealed that the type of SMP that dominates in a particular system depends on the chemical characteristics of the feed, and this insight has implications on the composition of the effluent from anaerobic digesters (and their potential chlorination by-products), and membrane fouling in membrane bioreactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  2. Complete Genome Sequence of the Anaerobic Halophilic Alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, Noha [University of Georgia, Athens, GA; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Wiegel, Juergen [University of Georgia, Athens, GA

    2011-01-01

    The genome of the anaerobic halophilic alkalithermophile Natranaerobius thermophiles consists of one chromosome and two plasmids.The present study is the first to report the completely sequenced genome of polyextremophile and the harboring genes harboring genes associated with roles in regulation of intracellular osmotic pressure, pH homeostasis, and thermophilic stability.

  3. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors.

    Science.gov (United States)

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-10-06

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin.

  4. Dynamics of the anaerobic process: Effects of volatile fatty acids

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected...... and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems....

  5. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra

    2013-12-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  6. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems

    KAUST Repository

    Zaybak, Zehra; Pisciotta, John M.; Tokash, Justin C.; Logan, Bruce E.

    2013-01-01

    Biocathodes in bioelectrochemical systems (BESs) can be used to convert CO2 into diverse organic compounds through a process called microbial electrosynthesis. Unfortunately, start-up of anaerobic biocathodes in BESs is a difficult and time consuming process. Here, a pre-enrichment method was developed to improve start-up of anaerobic facultatively autotrophic biocathodes capable of using cathodes as the electron donor (electrotrophs) and CO2 as the electron acceptor. Anaerobic enrichment of bacteria from freshwater bog sediment samples was first performed in batch cultures fed with glucose and then used to inoculate BES cathode chambers set at -0.4V (versus a standard hydrogen electrode; SHE). After two weeks of heterotrophic operation of BESs, CO2 was provided as the sole electron acceptor and carbon source. Consumption of electrons from cathodes increased gradually and was sustained for about two months in concert with a significant decrease in cathode chamber headspace CO2. The maximum current density consumed was -34±4mA/m2. Biosynthesis resulted in organic compounds that included butanol, ethanol, acetate, propionate, butyrate, and hydrogen gas. Bacterial community analyses based on 16S rRNA gene clone libraries revealed Trichococcus palustris DSM 9172 (99% sequence identity) as the prevailing species in biocathode communities, followed by Oscillibacter sp. and Clostridium sp. Isolates from autotrophic cultivation were most closely related to Clostridium propionicum (99% sequence identity; ZZ16), Clostridium celerecrescens (98-99%; ZZ22, ZZ23), Desulfotomaculum sp. (97%; ZZ21), and Tissierella sp. (98%; ZZ25). This pre-enrichment procedure enables simplified start-up of anaerobic biocathodes for applications such as electrofuel production by facultatively autotrophic electrotrophs. © 2013 Elsevier B.V.

  7. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. Modeling of anaerobic digestion of complex substrates

    International Nuclear Information System (INIS)

    Keshtkar, A. R.; Abolhamd, G.; Meyssami, B.; Ghaforian, H.

    2003-01-01

    A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, aceto genesis and methano genesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-batch reactor, liquid-gas interactions, liquid-phase equilibrium reactions and a simple mixing model which considers the reactor volume in two separate sections: the flow-through and the retention regions. The dynamic model describes the effects of reactant's distribution resulting from the mixing conditions, time interval of feeding, hydraulic retention time and mixing parameters on the process performance. The model is applied in the simulation of anaerobic digestion of cattle manure under different operating conditions. The model is compared with experimental data and good correlations are obtained

  9. Anaerobic Digestion in a Flooded Densified Leachbed

    Science.gov (United States)

    Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.

    2009-01-01

    A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.

  10. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    International Nuclear Information System (INIS)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying

    2015-01-01

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH 4 yield and high CH 4 productivity was obtained at an OLR of 2.8 g VS L −1 day −1. • Post-digestion of the digestate resulted in a CH 4 yield of 0.067 L g −1 VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L −1 day −1 with a 30-day hydraulic retention time (HRT), a CH 4 yield of 0.213 L g −1 VS and CH 4 production rate of 0.600 L L −1 day −1 were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g −1 VS as CH 4 , which was 21% of the batch CH 4 potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K + , Ca 2+ and Mg 2+ were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system

  11. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Start-up and operation strategies on the liquefied food waste anaerobic digestion and a full-scale case application.

    Science.gov (United States)

    Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2014-11-01

    Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).

  13. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  14. Anaerobic digestion of animal by-products and slaughterhouse waste: main process limitations and microbial community interactions

    OpenAIRE

    Palatsi Civit, Jordi; Viñas, Marc; Guivernau, Miriam; Fernández García, Belén; Flotats Ripoll, Xavier

    2011-01-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270–300 LCH4 kg 1 COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg 1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to l...

  15. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  16. A fuzzy logic approach to control anaerobic digestion.

    Science.gov (United States)

    Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P

    2003-01-01

    One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.

  17. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of Benzalkonium Chloride, Proxel LV, P3 Hypochloran, Triton X-100 and DOWFAX 63N10 on anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores, German Antonio Enriquez; Fotidis, Ioannis; Karakashev, Dimitar Borisov

    2015-01-01

    In this study, the individual and synergistic toxicity of the following xenobiotics: Benzalkonium Chloride (BKC), Proxel LV (PRX), P3 Hypochloran (HPC), Triton X-100 (TRX), and DOWFAX 63N10 (DWF), on anaerobic digestion (AD) process, was assessed. The experiments were performed in batch and conti......In this study, the individual and synergistic toxicity of the following xenobiotics: Benzalkonium Chloride (BKC), Proxel LV (PRX), P3 Hypochloran (HPC), Triton X-100 (TRX), and DOWFAX 63N10 (DWF), on anaerobic digestion (AD) process, was assessed. The experiments were performed in batch...... and continuous (up-flow anaerobic sludge blanket, UASB) reactors with biochemical-industrial wastewater, as substrate. In batch experiments, half-maximal inhibitory concentrations (IC50) for the tested xenobiotics were found to be 13.1, 1003, 311.5 and 24.3 mg L1 for BKC, PRX, DWF and TRX, respectively while HPC...... observed from the batch reactors. Oppositely, TRX showed no inhibition in continuous mode, while inhibition was detected at batch mode....

  19. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry

    CSIR Research Space (South Africa)

    Vadapalli, VRK

    2015-10-01

    Full Text Available This study investigated the implications of using two grades of limestone from a paper and pulp industry for neutralization of acid mine drainage (AMD) in a pilot sequencing batch reactor (SBR). In this regard, two grades of calcium carbonate were...

  20. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced......) and Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation....... The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  1. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  2. Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    International Nuclear Information System (INIS)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2016-01-01

    The effects of CeO 2 nanoparticles (CeO 2 NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO 2 NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce 3+ and Ce 4+ , which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO 2 NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO 2 NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce 3+ . - Highlights: • CeO 2 NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  3. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    Science.gov (United States)

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  4. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  6. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  7. THE EFFECT OF THE ADDITION OF INVERT SUGAR ON THE PRODUCTION OF CEPHALOSPORIN C IN A FED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    1998-12-01

    Full Text Available Cephalosporin C, a b -lactam antibiotic, is the starting molecule for industrial production of semi-synthetic cephalosporins. The bioprocess for its production is carried out in batch stirred and aerated tank reactors utilizing strains of the filamentous fungus Cephalosporium acremonium. In this work a comparison was made between the processes of production of cephalosporin C in a conventional batch bioreactor, with synthetic medium containing glucose and sucrose, and in a fed-batch reactor at several flowrates of supplementary medium containing invert sucrose. In general, the fed-batch process was shown to be more efficient than the conventional batch one, and the process in which the lowest supplementation flowrate was used presented an antibiotic production significantly higher than those obtained under the other conditions.

  8. Anaerobic ammonia removal in presence of organic matter: A novel route

    International Nuclear Information System (INIS)

    Sabumon, P.C.

    2007-01-01

    This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP -248 ± 25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO 2 - , NO 3 - and SO 4 2- ) studied, NO 2 - was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH 4 + to NO 3 - , followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation

  9. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    Science.gov (United States)

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  10. Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2018-01-01

    In the past few years, many studies investigated the anaerobic digestion microbiome by means of 16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other without taking into consideration the followed procedure for amplicons preparation and data analysis...... specifically, the microbial compositions of three laboratory scale biogas reactors were analyzed before and after addition of sodium oleate by sequencing the microbiome with three different approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis revealed that......, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results obtained was also influenced by the number of hypervariable regions under investigation. Finally, amplicon sequencing...

  11. Investigation of mircroorganisms colonising activated zeolites during anaerobic biogas production from grass silage.

    Science.gov (United States)

    Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M

    2011-03-01

    The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Polydimethylsiloxane/MIL-100(Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the determination of triazines in environmental water samples.

    Science.gov (United States)

    Lei, Yun; Chen, Beibei; You, Linna; He, Man; Hu, Bin

    2017-12-01

    Polydimethylsiloxane (PDMS)/MIL-100(Fe) coated stir bar was prepared by sol gel technique, and good preparation reproducibility was achieved with relative standard deviations (RSDs) ranging from 2.6% to 7.5% (n=7) and 3.6% to 10.8% (n=7) for bar-to-bar and batch-to-batch, respectively. Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/MIL-100(Fe) stir bar showed better extraction efficiency for target triazines compounds. It also exhibited relatively fast extraction/desorption kinetics and long lifespan. Based on it, a method of PDMS/MIL-100(Fe) coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the determination of six triazines (simazine, atrazine, prometon, ametryn, prometryne and prebane) in environmental water samples. Several parameters affecting SBSE of six target triazines including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.021-0.079μgL -1 . The repeatability RSDs were in the range of 2.3-6.3% (n=7, c=0.5μgL -1 ) and the enrichment factors (EFs) ranged from 51.1 to 102-fold (theoretical EF was 200-fold). The proposed method was applied to the analysis of target triazines in environmental water samples, with recoveries of 98.0-118% and 94.0-107% for spiked East Lake water and local pond water samples, respectively. Copyright © 2017. Published by Elsevier B.V.

  13. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  14. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    International Nuclear Information System (INIS)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-01-01

    Highlights: ► Flotation concentrate and smelter dust were sampled and combined. ► Copper bioleaching from the combined was investigated. ► Two bio-reactors were investigated and optimized: stirred and airlift. ► STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu 2 S, CuS, and Cu 5 FeS 4 .Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  15. Measurement of cooling coil film heat transfer coefficient with polymer reaction proceeding in a stirred batch reactor; Jugo sonai ni okeru hanno shinko ni tomonau reikyaku coil no kyomaku netsudentatsu keisu no keiji henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K [Soken Chemical and Engineering Co. Ltd., Saitama (Japan); Nishi, K; Kaminoyama, M; Kamiwano, M [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-09-10

    In radical additional solution polymerization, the viscosity increases with reaction progress. It is important to evaluate beforehand the cooling capacity of the reactor, which worsens with the process. In this study, a stirred batch reactor with both a paddle and a helical screw impeller were studied, and measurements were made for the dynamic changes of the film heat transfer coefficient of the cooling coil with progress of the polymer reaction. We found the change could be evaluated by the calculating heat balance of the generated heat, the viscous dissipation energy and the sensible heat change under conditions of monomer conversion and changing viscosity. 11 refs., 7 figs.

  16. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Nkemka, Valentine Nkongndem; Marchbank, Douglas H.; Hao, Xiying, E-mail: xiying.hao@agr.gc.ca

    2015-09-15

    Highlights: • Anaerobic digestion and nutrient mineralization of paunch in a CSTR. • Low CH{sub 4} yield and high CH{sub 4} productivity was obtained at an OLR of 2.8 g VS L{sup −1} day{sup −1.} • Post-digestion of the digestate resulted in a CH{sub 4} yield of 0.067 L g{sup −1} VS. • Post-digestion is recommended for further digestate stabilization. - Abstract: A laboratory study investigated the anaerobic digestion of paunch in a continuous stirred tank reactor (CSTR) for the recovery of biogas and mineralization of nutrients. At an organic loading rate (OLR) of 2.8 g VS L{sup −1} day{sup −1} with a 30-day hydraulic retention time (HRT), a CH{sub 4} yield of 0.213 L g{sup −1} VS and CH{sub 4} production rate of 0.600 L L{sup −1} day{sup −1} were obtained. Post-anaerobic digestion of the effluent from the CSTR for 30 days at 40 °C recovered 0.067 L g{sup −1} VS as CH{sub 4}, which was 21% of the batch CH{sub 4} potential. Post-digestion of the effluent from the digestate obtained at this OLR is needed to meet the stable effluent criteria. Furthermore, low levels of soluble ions such as K{sup +}, Ca{sup 2+} and Mg{sup 2+} were found in the liquid fraction of the digestate and the remainder could have been retained in the solid digestate fraction. This study demonstrates the potential of biogas production from paunch in providing renewable energy. In addition, recovery of plant nutrients in the digestate is important for a sustainable agricultural system.

  17. Batch studies on nitrate removal from potable water | Darbi | Water SA

    African Journals Online (AJOL)

    A sulphur / limestone autotrophic denitrification process was used to achieve the biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions using laboratory-scale batch reactors. The optimum sulphur / limestone ratio was determined to be 1:1 (wt/wt). Different ...

  18. Influence of CeO{sub 2} NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi; Wang, Chao [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Hou, Jun, E-mail: hhuhjyhj@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang, E-mail: pfwang2005@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2016-11-15

    The effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO{sub 2} NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce{sup 3+} and Ce{sup 4+}, which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO{sub 2} NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO{sub 2} NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce{sup 3+}. - Highlights: • CeO{sub 2} NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  19. MR diagnosis of bone metastases at 1.5 T and 3 T. Can STIR imaging be omitted?

    Energy Technology Data Exchange (ETDEWEB)

    Ohlmann-Knafo, S.; Tarnoki, A.D.; Tarnoki, D.L.; Pickuth, D. [Caritasklinikum Saarbruecken St. Theresia (Germany). Dept. of Diagnostic and Interventional Radiology

    2015-10-15

    To date, no prospective comparative study of the diagnostic value of STIR versus T1-weighted (T1w) sequences at both 1.5 T and 3 T has been performed with special focus on the detectability of bone metastases. 212 oncological patients had a whole-body MRI at 1.5 T and/or at 3 T. The standard protocol comprised STIR and T1w sequences. All patients who showed typical signs of bone metastases were included in the study. Evaluation of the images was performed by the calculation of the number of metastases by three independent readers and by visual assessment on a 4-point scale. 86 patients fulfilled the inclusion criteria. The total number of metastases was significantly higher on T1w than on STIR images at both field strengths (p < 0.05). T1w revealed a sensitivity of 99.72 % (3 T) and 100.00 % (1.5 T) versus STIR with 70.99 % (3 T) and 79.34 % (1.5 T). In 53 % (38/72) of all patients, STIR detected fewer bone metastases in comparison with T1w at 3 T. At 1.5 T, STIR showed inferior results in 37.5 % (18/48) of all patients. Qualitative analysis indicated a significantly better lesion conspicuity, lesion delineation and an improved image quality on T1w compared to STIR imaging at both field strengths (p < 0.05) with similar results for T1w at 1.5 T and 3 T, but inferior results for STIR especially at 3 T. The whole-body MRI protocol for the detection of bone metastases could safely be limited to the T1w sequence in adults, especially at 3 T. There is no need for an additional STIR sequence. These initial results will have a major impact on the department's workflow if confirmed by larger studies as they will help reduce examination time and therefore save financial resources.

  20. Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium.

    OpenAIRE

    Florencio, L; Field, J A; Lettinga, G

    1994-01-01

    Methanol is an important anaerobic substrate in industrial wastewater treatment and the natural environment. Previous studies indicate that cobalt greatly stimulates methane formation during anaerobic treatment of methanolic wastewaters. To evaluate the effect of cobalt in a mixed culture, a sludge with low background levels of cobalt was cultivated in an upflow anaerobic sludge blanket reactor. Specific inhibitors in batch assays were then utilized to study the effect of cobalt on the growth...

  1. Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass.

    Science.gov (United States)

    Dussadee, Natthawud; Ramaraj, Rameshprabu; Cheunbarn, Tapana

    2017-05-01

    Napier grass (Pennisetum purpureum), represents an interesting substrate for biogas production. The research project evaluated biogas potential production from dry anaerobic digestion of Napier grass using batch experiment. To enhance the biogas production from ensiled Napier grass, thermal and alkaline pre-treatments were performed in batch mode. Alkali hydrolysis of Napier grass was performed prior to batch dry anaerobic digestion at three different mild concentrations of sodium hydroxide (NaOH). The study results confirmed that NaOH pretreated sample produced high yield of biogas than untreated (raw) and hot water pretreated samples. Napier grass was used as the mono-substrate. The biogas composition of carbon dioxide (30.10%), methane (63.50%) and 5 ppm of H 2 S was estimated from the biogas. Therefore, fast-growing, high-yielding and organic matter-enriched of Napier grass was promising energy crop for biogas production.

  2. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  3. MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR?

    Energy Technology Data Exchange (ETDEWEB)

    Faeda Dalto, Vitor; Nogueira-Barbosa, Marcello Henrique [University of Sao Paulo, Division of Radiology, Department of Internal Medicine, Ribeirao Preto Medical School, Ribeirao Preto, SP (Brazil); Assad, Rodrigo Luppino [University of Sao Paulo, Division of Clinical Imunology, Department of Internal Medicine, Ribeirao Preto Medical School, Ribeirao Preto, SP (Brazil); Crema, Michel Daoud [Hopital Saint-Antoine, Universite Paris VI, Service de Radiologie, Paris (France); Boston University School of Medicine, Department of Radiology, Quantitative Imaging Center, Boston, MA (United States); Hospital do Coracao (HCor) e Teleimagem, Departamento de Radiologia, Sao Paulo, SP (Brazil); Louzada-Junior, Paulo [University of Sao Paulo, Department of Internal Medicine, Ribeirao Preto Medical School, Ribeirao Preto, SP (Brazil)

    2017-09-15

    To compare short tau inversion-recovery (STIR) with another fat saturation method in the assessment of sacroiliac joint inflammation. This prospective cross-sectional study comprised 76 spondyloarthritis (SpA) patients who underwent magnetic resonance imaging of the sacroiliac joints in a 1.5-T scanner, using STIR, spectral attenuated inversion recovery (SPAIR) T2w and spectral presaturation with inversion recovery (SPIR) T1w post-contrast sequences. Two independent readers (R1 and R2) assessed the images using the Spondyloarthritis Research Consortium of Canada (SPARCC) score. We assessed agreement of the SPARCC scores for SPAIR T2w and STIR with that for T1 SPIR post-contrast (reference standard) using the St. Laurent coefficient. We evaluated each sequence using the concordance correlation coefficient (CCC). We observed a strong agreement between STIR and SPAIR T2w sequences. Lin's CCC was 0.94 for R1 and 0.84 for R2 for STIR and 0.94 for R1 and 0.84 for R2 for SPAIR. The interobserver evaluation revealed a good CCC of 0.79 for SPAIR and 0.78 for STIR. STIR technique and SPAIR T2w sequence showed high agreement in the evaluation of sacroiliac joint subchondral bone marrow oedema in patients with SpA. SPAIR T2w may be an alternative to the STIR sequence for this purpose. (orig.)

  4. MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR?

    International Nuclear Information System (INIS)

    Faeda Dalto, Vitor; Nogueira-Barbosa, Marcello Henrique; Assad, Rodrigo Luppino; Crema, Michel Daoud; Louzada-Junior, Paulo

    2017-01-01

    To compare short tau inversion-recovery (STIR) with another fat saturation method in the assessment of sacroiliac joint inflammation. This prospective cross-sectional study comprised 76 spondyloarthritis (SpA) patients who underwent magnetic resonance imaging of the sacroiliac joints in a 1.5-T scanner, using STIR, spectral attenuated inversion recovery (SPAIR) T2w and spectral presaturation with inversion recovery (SPIR) T1w post-contrast sequences. Two independent readers (R1 and R2) assessed the images using the Spondyloarthritis Research Consortium of Canada (SPARCC) score. We assessed agreement of the SPARCC scores for SPAIR T2w and STIR with that for T1 SPIR post-contrast (reference standard) using the St. Laurent coefficient. We evaluated each sequence using the concordance correlation coefficient (CCC). We observed a strong agreement between STIR and SPAIR T2w sequences. Lin's CCC was 0.94 for R1 and 0.84 for R2 for STIR and 0.94 for R1 and 0.84 for R2 for SPAIR. The interobserver evaluation revealed a good CCC of 0.79 for SPAIR and 0.78 for STIR. STIR technique and SPAIR T2w sequence showed high agreement in the evaluation of sacroiliac joint subchondral bone marrow oedema in patients with SpA. SPAIR T2w may be an alternative to the STIR sequence for this purpose. (orig.)

  5. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    NARCIS (Netherlands)

    Mashad, El H.; Zeeman, G.; Loon, van W.K.P.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    The influence of temperature, 50 and 60 °C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature

  6. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor

    DEFF Research Database (Denmark)

    Zhang, Hong; Xu, Xuebing; Mu, Huiling

    2000-01-01

    Lipozyme IM-catalyzed interesterification of the oil blend between palm stearin and coconut oil (75/25 w/w) was studied for the production of margarine fats in a 1 kg scale batch stirred tank reactor. Parameters such as lipase load, water content, temperature, and reaction time were investigated...

  7. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  8. Anaerobic biodegradability and treatment of Egyption domestic sewage

    NARCIS (Netherlands)

    Elmitwally, T.A.; Al-Sarawey, A.; El-Sherbiny, M.F.; Zeeman, G.; Lettinga, G.

    2003-01-01

    The anaerobic biodegradability of domestic sewage for four Egyptian villages and four Egyptian cities was determined in batch experiments. The results showed that the biodegradability of the Egyptian-villages sewage (73%) was higher than that of the cities (66%). The higher biodegradability of the

  9. Operational strategies for nitrogen removal in granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Chen, Fang-yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2011-01-01

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5 mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitrogen (TIN) removal efficiencies of 67.8-71.5%. While under the AO condition with DO controlled at 2 mg/l at the oxic phase, the TIN removal efficiency was improved up to 75.0-80.4%. A novel operational strategy of alternating anoxic/oxic combined with the step-feeding mode was developed for nitrogen removal by aerobic granules. It was found that nitrogen removal efficiencies could be further improved to 93.0-95.9% with the novel strategy. Obviously, the alternating anoxic/oxic strategy combined with step-feeding is the optimal way for TIN removal by granular sludge, which is independent of granule size.

  10. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors

    NARCIS (Netherlands)

    Bassin, J.P.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; Van Loosdrecht, M.C.M.; Dezotti, M.

    2011-01-01

    The effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction–denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB1

  11. Batch leachate treatment using stirred electrocoagulation reactor with variation of residence time and stirring rate

    Science.gov (United States)

    Sitorus, I. S.; Astono, W.; Iswanto, B.

    2018-01-01

    This study aims to reduce pollutant levels of the leachate by electrocoagulation method using a stirred electrocoagulation reactor as the electrochemical water treatment. The release of active coagulants as metallic ions took place in the anode, while in the cathode, the electrolysis reaction in the form of hydrogen gas dischargeoccurred. The source of wastewater is Waste Water Treatment Plant inlet III of Bantar Gebang, Bekasi. Some parameters were analyzed in this research, i.e., Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), NH3, NO3 -, NO2 -, N-total, and organic substances as well as the microorganism growth before and after electrocoagulation, with variations of detention time (seconds) of 10, 20, 120, 600 and rapid mixing conditions (rpm) of 60, 100 and 200. The results show that the greater the rapid mixing speed and the detention time of electrolysis, the higher the removal of contaminants in liquid waste. The optimum condition of electrocoagulation was encountered at 200 rpm rapid mixing with 600 seconds of processing time. The removal efficiencies of electrocoagulation method for each parameter are TSS of 46.80%, BOD5 of 71.33%, COD of 73.77%, Pb of 62.5%,and NH3-N of 57.92%,whereas the pH value has been increased from 8.03 to 8.95. The electrocoagulation method can reduce levels of pollutants, complying with the environmental standards.

  12. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Markus M.M. Bisschops

    2015-10-01

    Full Text Available Stationary-phase (SP batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.

  13. Dynamic modelling of substrate degradation for urban wastewater treatment by sequencing batch reactor

    International Nuclear Information System (INIS)

    Dere, T.; Demirci, Y.; Cekim, M.

    2014-01-01

    This paper presents the dynamic modelling of substrate degradation for urban wastewater treatment by a pilot-scaled sequencing batch reactor including experimental data of a long-term experimental work performed at different operation conditions. During the study, pH, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were measured to investigate SBR treatment performance. Optimum operation times were determined and kinetic constant (k) was calculated (0.60 h-1) with using experimental results for urban wastewater. The Model Simulation estimates were very good fit with the experimental data under organic loading degradation conditions model simulation predictions well match with the experimental results under disturbed organic loading conditions. (author)

  14. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik; Garcia Tellez, Berenice; Rao, Hari Ananda; Lamendella, Regina; Saikaly, Pascal

    2014-01-01

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different

  15. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/gVS-added. Ana......In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g...

  17. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).

    Science.gov (United States)

    Pasukphun, N; Vinitnantharat, S; Gheewala, S

    2010-04-01

    The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.

  18. Comparison of MRI sequences for evaluation of multiple sclerosis of the cervical spinal cord at 3 T

    International Nuclear Information System (INIS)

    Philpott, Cristina; Brotchie, Peter

    2011-01-01

    Purpose: Debate remains regarding the utility of the traditional STIR (short inversion time recovery) sequence in aiding MRI diagnosis of spinal cord lesions in patients with multiple sclerosis (MS) and this sequence is not included in the current imaging guidelines. A recent study proposed a T1 weighted STIR as a superior alternative to the traditional STIR and T2 fast spin echo (FSE). Thus, the aim of this study was to compare the sensitivity of T2, standard STIR and T1 weighted STIR sequences in the evaluation of MS plaques on our 3 T system. Methods and materials: A retrospective analysis of patients with multiple sclerosis who presented to our institution over a period of 5 months and who had cervical cord lesions was undertaken. Patients had been examined with our institutional protocol which included T2 FSE, STIR and the recommended T1 STIR. Quantitative analysis of the lesions versus background cord using sample T-tests was performed for each sequence, and comparative analysis of the lesion contrast:background cord ratios of the 3 sequences (using two-way ANOVA tests) was performed. Results: The T2 sequence was not as sensitive in detecting lesions versus the traditional STIR and T1 weighted STIR, with 10% of lesions not detected using statistical analysis (p < 0.05). The traditional STIR also demonstrated greater contrast ratios than the T2 sequence (p < 0.05) suggesting increased sensitivity. However, the T1 STIR demonstrated even greater contrast ratios than both the traditional STIR and T2 sequences (p < 0.05). Conclusion: This study confirms earlier findings of the traditional STIRs increased sensitivity versus the T2 sequence. However, the new “T1 weighted STIR” appears to be even more sensitive than both these sequences showing potential promise as an alternative method to monitor demyelinating plaques of MS.

  19. Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor

    DEFF Research Database (Denmark)

    Christiansen, N.; Christensen, S.R.; Arvin, E.

    1997-01-01

    Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively...... methane-producing bacteria were inhibited by the chlorinated ethenes....

  20. Ultrasound pre-treatment for anaerobic digestion improvement.

    Science.gov (United States)

    Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F

    2009-01-01

    Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.

  1. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  2. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  3. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  4. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    Science.gov (United States)

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR?

    Science.gov (United States)

    Dalto, Vitor Faeda; Assad, Rodrigo Luppino; Crema, Michel Daoud; Louzada-Junior, Paulo; Nogueira-Barbosa, Marcello Henrique

    2017-09-01

    To compare short tau inversion-recovery (STIR) with another fat saturation method in the assessment of sacroiliac joint inflammation. This prospective cross-sectional study comprised 76 spondyloarthritis (SpA) patients who underwent magnetic resonance imaging of the sacroiliac joints in a 1.5-T scanner, using STIR, spectral attenuated inversion recovery (SPAIR) T2w and spectral presaturation with inversion recovery (SPIR) T1w post-contrast sequences. Two independent readers (R1 and R2) assessed the images using the Spondyloarthritis Research Consortium of Canada (SPARCC) score. We assessed agreement of the SPARCC scores for SPAIR T2w and STIR with that for T1 SPIR post-contrast (reference standard) using the St. Laurent coefficient. We evaluated each sequence using the concordance correlation coefficient (CCC). We observed a strong agreement between STIR and SPAIR T2w sequences. Lin's CCC was 0.94 for R1 and 0.84 for R2 for STIR and 0.94 for R1 and 0.84 for R2 for SPAIR. The interobserver evaluation revealed a good CCC of 0.79 for SPAIR and 0.78 for STIR. STIR technique and SPAIR T2w sequence showed high agreement in the evaluation of sacroiliac joint subchondral bone marrow oedema in patients with SpA. SPAIR T2w may be an alternative to the STIR sequence for this purpose. • There are no studies evaluating which fat saturation technique should be used. • SPAIR T2w may be an alternative to STIR for sacroiliac joint evaluation. • The study will lead to changes in guidelines for spondyloarthritis.

  6. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Directory of Open Access Journals (Sweden)

    Camargo E.F.M.

    2002-01-01

    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  7. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  8. Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.

    Science.gov (United States)

    Nielsen, H B; Heiske, S

    2011-01-01

    In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.

  9. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  10. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Batch sequencing of oil derivates in pipeline networks; Sequenciamento de bateladas de derivados leves de petroleo numa rede dutoviaria

    Energy Technology Data Exchange (ETDEWEB)

    Bonacin, Mario Vicente; Oliveira, Daniel Rossato de; Czaikowski, Daniel Irineu; Polli, Helton Luis; Magatao, Leandro; Stebel, Sergio Leandro; Neves Junior, Flavio [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Ribas, Paulo Cesar [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    This work presents a computational tool to assist the operational scheduling of a pipeline network. In this network, transfer of products is carried out by batches, from a source to a destination. This tool implements a proposal to determine priorities of the outgoing batches as well as alternatives for sequencing them fulfilling the stated periods stipulated. This proposal uses an analysis of production and demand plans, stockage, products draining in terminals, as well as operational restrictions of the pipeline network, looking for optimizing the use of resources such as pipes, bombs and tanks. The scenario in study is composed by 14 areas (4 refineries, 2 harbours, 6 distribution centres and 2 costumers) and 29 pipes. Prioritizing the attendance to the areas of source or demand, the algorithm carries choices between routes and possible batches volumes, considering calculations of time windows, that determine the limited interval when transference operations must occur. Moreover, operations called 'lung' are also treated, which involve flow changes during the movement. (author)

  12. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  13. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    OpenAIRE

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per...

  14. Tratamento de águas residuárias de suinocultura em reator anaeróbio operado em batelada sequencial Treatment of swine wastewater in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Roberto Alves de Oliveira

    2009-12-01

    Full Text Available Neste estudo avaliou-se o desempenho de um reator anaeróbio operado em batelada sequencial, em escala piloto, com volume total de 280 L, no tratamento de águas residuárias de suinocultura. As cargas orgânicas volumétricas aplicadas no reator foram de 4,42; 5,27; 9,33 e 11,79 g DQOtotal (L d-1. As eficiências médias de remoção de DQOtotal, sólidos suspensos totais (SST e sólidos suspensos voláteis (SSV variaram de 56 a 87%. O nitrogênio total Kjedahl (NTK, fósforo total (P-total e magnésio (Mg foram removidos com eficiências médias de 26 a 39%. As produções volumétricas de metano variaram de 0,50 a 0,64 L CH4 (L reator d-1 e não foram observadas diferenças significativas. As relações sólidos voláteis/sólidos totais (SV/ST do lodo de tal reator variaram de 0,74 a 0,58. As maiores concentrações médias de nutrientes no lodo do reator foram para o nitrogênio, fósforo, ferro e cálcio, com valores de 30.610 a 64.400, 1.590 a 9.870, 6.180 a 8.700 e 1.180 a 6.760 mg kg-1 base seca, respectivamente.In the present study, we evaluated an anaerobic sequencing batch reactor, in pilot scale and with a total volume of 280 L, for the treatment of swine wastewater. The organic loading rates applied in such reactor were 4.42; 5.27; 9.33 and 11.79 g CODtotal (L d-1. The average efficiencies of removal of CODtotal total solids suspension (TSS and volatile suspension solids (VSS varied from 56 to 87%. The nutrients total Kjedahl nitrogen (TKN, total phosphorus (total P and Mg were removed with average efficiencies from 26 to 39%. The volumetric methane productions varied from 0.50 to 0.64 L CH4 (L reactor d-1 and did not present significant differences. The VS/TS relations of the aforementioned reactor's sludge varied from 0.74 to 0.58. The highest mean concentrations of nutrients in the reactor sludge were those of nitrogen, phosphorus, iron and calcium, with values from 30.610 to 64.400, 1.590 to 9.870, 6.180 to 8.700 and 1.180 to 6

  15. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  16. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  17. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic...... digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m2 /day and current density...... of 4.33 A/m2 were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic...

  18. Effect of bacterial lipase on anaerobic co-digestion of slaughterhouse wastewater and grease in batch condition and continuous fixed-bed reactor.

    Science.gov (United States)

    Affes, Maha; Aloui, Fathi; Hadrich, Fatma; Loukil, Slim; Sayadi, Sami

    2017-10-10

    This study aimed to investigate the effects of bacterial lipase on biogas production of anaerobic co-digestion of slaughterhouse wastewater (SHWW) and hydrolyzed grease (HG). A neutrophilic Staphylococcus xylosus strain exhibiting lipolytic activity was used to perform microbial hydrolysis pretreatment of poultry slaughterhouse lipid rich waste. Optimum proportion of hydrolyzed grease was evaluated by determining biochemical methane potential. A high biogas production was observed in batch containing a mixture of slaughterhouse composed of 75% SHWW and 25% hydrolyzed grease leading to a biogas yield of 0.6 L/g COD introduced. Fixed bed reactor (FBR) results confirmed that the proportion of 25% of hydrolyzed grease gives the optimum condition for the digester performance. Biogas production was significantly high until an organic loading rate (OLR) of 2 g COD/L. d. This study indicates that the use of biological pre-treatment and FBR for the co-digestion of SHWW and hydrolyzed grease is feasible and effective.

  19. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  20. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    OpenAIRE

    Tang Thi Chinh; Phung Duc Hieu; Bui Van Cuong; Nguyen Nhat Linh; Nguyen Ngoc Lan; Nguyen Sy Nguyen; Nguyen Quang Hung; Le Thi Thu Hien

    2018-01-01

    The sequencing batch reactor (SBR) has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater ...

  1. Azo dye reduction by mesophilic and thermophilic anaerobic consortia

    NARCIS (Netherlands)

    Santos, dos A.B.; Madrid, de M.P.; Stams, A.J.M.; Lier, van J.B.; Cervantes, F.J.

    2005-01-01

    The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 C) and thermophilic (55 C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the

  2. The diagnosis of inflammatory muscular and vascular conditions using MRT with STIR sequences. Diagnostik entzuendlicher Muskel- und Gefaesserkrankungen in der MRT mit STIR-Sequenzen

    Energy Technology Data Exchange (ETDEWEB)

    Beese, M.S. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Winkler, G. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany) Neurologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Nicolas, V. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Maas, R. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Kress, D. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Kunze, K. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany) Neurologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)); Buecheler, E. (Radiologische Klinik, Universitaetskrankenhaus Eppendorf, Hamburg (Germany))

    1993-06-01

    The role of MRT in the prebiopsy diagnosis of muscular and vascular inflammatory conditions was evaluated prospectively and an optimal method of examination was investigated. 92 patients with a suspected diagnosis of myositis (60 cases) or vasculitis (32 cases) were examined, in each case two extremities were studied using transverse T[sub 1] and T[sub 2] weighted SE sequences and double echo STIR sequences on a 0.5 Tesla (56 patients) or 1.5 Tesla magnet (36 patients; T5/S15 Gyroscan, Philips). The site of the biopsy depended on the MRT findings. In 41 patients the suspected diagnosis was confirmed histologically, in two patients an infective myositis was diagnosed on clinical grounds despite negative histology. MRT demonstrated muscle oedema in 86% of patients. There were negative findings after immuno-suppressive therapy (two patients), in focal myositis (3 out of 4 patients) and in one of 7 patients with untreated vasculitis. Amongst 49 patients in whom the suspected diagnosis could not be confirmed there was muscle oedema in 11 cases (9 neuropathies out of 22, two myopathies out of 10). Oedema indicated inflammatory muscular or vascular disease with a sensitivity of 97% (except in treated patients and for focal myositis). The number of false negative biopsies can be greatly reduced by the use of MRT. (orig.)

  3. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Christopher; Hiligsmann, Serge; Beckers, Laurent; Masset, Julien; Thonart, Philippe [Walloon Centre of Industrial Biology, Bd du Rectorat, 29, B.40 - P.70, B-4000 Liege (Belgium); Wilmotte, Annick [Center for Protein Engineering, Institute of Chemistry, B.6-P.14, B-4000 Liege (Belgium)

    2010-02-15

    Investigations were carried out to determine the effect of the pH, the nitrogen source, iron and the dilution rate (h{sup -1}) on fermentative hydrogen production from glucose by the newly isolated strain Citrobacter freundii CWBI952. The hydrogen production rate (HPR), hydrogen yield, biomass and soluble metabolites were monitored at 30 C in 100 mL serum bottles and in a 2.3 L bioreactor operated in batch, sequenced-batch and semicontinuous mode. The results indicate that hydrogen production activity, formate biosynthesis and glucose intake rates are very sensitive to the culture pH, and that additional formate bioconversion and production of hydrogen with lower biomass yields can be obtained at pH 5.9. In a further series of cultures casein peptone was replaced by (NH{sub 4}){sub 2}SO{sub 4}, a low cost alternative nitrogen source. The ammonia-based substitute was found to be suitable for H{sub 2} production when a concentration of 0.045 g/L FeSO{sub 4} was provided. Optimal overall performances (ca. an HPR of 33.2 mL H{sub 2}/L h and a yield of 0.83mol{sub H{sub 2}}/mol{sub glucose}) were obtained in the semicontinuous culture applying the previously optimized parameters for pH, nitrogen, and iron with a dilution rate of 0.012 h{sup -1} and degassing of biogas by N{sub 2} at a 28 mL/min flow rate. (author)

  4. An anaerobic-aerobic sequential batch process with simultaneous methanogenesis and short-cut denitrification for the treatment of marine biofoulings.

    Science.gov (United States)

    Akizuki, S; Toda, T

    2018-04-01

    Although combination of denitritation and methanogenesis for wastewater treatment has been widely investigated, an application of this technology to solid waste treatment has been rarely studied. This study investigated an anaerobic-aerobic batch system with simultaneous denitritation-methanogenesis as an effective treatment for marine biofoulings, which is a major source of intermittently discharged organic solid wastes. Preliminary NO 2 - -exposed sludge was inoculated to achieve stable methanogenesis process without NO 2 - inhibition. Both high NH 4 + -N removal of 99.5% and high NO 2 - -N accumulation of 96.4% were achieved on average during the nitritation step. Sufficient CH 4 recovery of 101 L-CH 4 kg-COD -1 was achieved, indicating that the use of NO 2 - -exposed sludge is effective to avoid NO 2 - inhibition on methanogenesis. Methanogenesis was the main COD utilization pathway when the substrate solubilization occurred actively, while denitritation was the main when solubilization was limited because of substrate shortage. The results showed a high COD removal efficiency of 96.0% and a relatively low nitrogen removal efficiency of 64.4%. Fitting equations were developed to optimize the effluent exchange ratio. The estimated results showed that the increase of effluent exchange ratio during the active solubilization period increased the nitrogen removal efficiency but decreased CH 4 content in biogas. An appropriate effluent exchange ratio with high anaerobic effluent quality below approximately 120 mg-N L -1 as well as sufficient CH 4 gas quality which can be used as fuel for gas engine generator was achieved by daily effluent exchange of 80% during the first week and 5% during the subsequent 8 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impact of microwave pre-treatment on the batch anaerobic digestion of two-phase olive mill solid residue: a kinetic approach

    International Nuclear Information System (INIS)

    Rincon, B.; Gonzalez de Canales, M.; Martin, A.; Borja, R.

    2016-01-01

    The effect of a microwave (MW) pre-treatment on two-phase olive mill solid residue (OMSR) or alperujo with a view to enhancing its anaerobic digestibility was studied. The MW pre-treatment was carried out at a power of 800 W and at a targeted temperature of 50 °C using different heating rates and holding times. The following specific energies were applied: 4377 kJ·kg TS−1 (MW1), 4830 kJ·kg TS−1 (MW2), 7170 kJ·kg TS−1 (MW3) and 7660 kJ·kg TS−1 (MW4). The maximum methane yield, 395±1 mL CH4·g VSadded−1, was obtained for MW4. The effect of the pre-treatment on the kinetics of the process was also studied. The methane production curves generated during the batch tests showed a first exponential stage and a second sigmoidal stage for all the cases studied. In the first stage, the kinetic constant for the pre-treatment MW1 was 54.8% higher than that obtained for untreated OMSR. [es

  6. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    Science.gov (United States)

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)--utilisation of main carbon sources.

    Science.gov (United States)

    Krzywonos, Małgorzata; Cibis, Edmund; Lasik, Małgorzata; Nowak, Jacek; Miśkiewicz, Tadeusz

    2009-05-01

    The aim of the study was to ascertain the extent to which temperature influences the utilisation of main carbon sources (reducing substances determined before and after hydrolysis, glycerol and organic acids) by a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in the course of aerobic batch biodegradation of potato stillage, a high-strength distillery effluent (COD=51.88 g O(2)/l). The experiments were performed at 20, 30, 35, 40, 45, 50, 55, 60 and 63 degrees C, at pH 7, in a 5l working volume stirred-tank bioreactor (Biostat B, B. Braun Biotech International) with a stirrer speed of 550 rpm and aeration at 1.6 vvm. Particular consideration was given to the following issues: (1) the sequence in which the main carbon sources in the stillage were assimilated and (2) the extent of their assimilation achieved under these conditions.

  8. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    OpenAIRE

    Wei Han; Yingting Yan; Yiwen Shi; Jingjing Gu; Junhong Tang; Hongting Zhao

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35?g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen prod...

  9. Batch biomethanation of banana trash and coir path

    Energy Technology Data Exchange (ETDEWEB)

    Deivanai, K.; Bai, R.K. [Madurai Kamaraj Univ. (India)

    1995-08-01

    Anaerobic digestion of banana trash and coir pith was carried out for a period of one month by batch digestion. During biomethanation reduction of total- and volatile-solids was, respectively, 25.3 and 39.6% in banana trash and 13.6 and 21.6% in coir pith. A production of 9.22 l and 1.69 l (per kg TS added) of biogas with average methane content of 72 and 80% was achieved from banana trash and coir pith, respectively. (author)

  10. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    Science.gov (United States)

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  12. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  13. Analysis of bacterial flora associated with peri-implantitis using obligate anaerobic culture technique and 16S rDNA gene sequence.

    Science.gov (United States)

    Tamura, Naoki; Ochi, Morio; Miyakawa, Hiroshi; Nakazawa, Futoshi

    2013-01-01

    To analyze and characterize the predominant bacterial flora associated with peri-implantitis by using culture techniques under obligate anaerobic conditions and 16S rDNA gene sequences. Subgingival bacterial specimens were taken from 30 patients: control (n = 15), consisting of patients with only healthy implants; and test (n = 15), consisting of patients with peri-implantitis. In both groups, subgingival bacterial specimens were taken from the deepest sites. An anaerobic glove box system was used to cultivate bacterial strains. The bacterial strains were identified by 16S rDNA genebased polymerase chain reaction and comparison of the gene sequences. Peri-implantitis sites had approximately 10-fold higher mean colony forming units (per milliliter) than healthy implant sites. A total of 69 different bacterial species were identified in the peri-implantitis sites and 53 in the healthy implant sites. The predominant bacterial species in the peri-implantitis sites were Eubacterium nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, Parascardovia denticolens, Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Centipeda periodontii, and Parvimonas micra. The predominant bacteria in healthy implant sites apart from Streptococcus were Pseudoramibacter alactolyticus, Veillonella species, Actinomyces israelii, Actinomyces species, Propionibacterium acnes, and Parvimonas micra. These results suggest that the environment in the depths of the sulcus showing peri-implantitis is well suited for growth of obligate anaerobic bacteria. The present study demonstrated that the sulcus around oral implants with peri-implantitis harbors high levels of asaccharolytic anaerobic gram-positive rods (AAGPRs) such as E. nodatum, E. brachy, E. saphenum, Filifactor alocis, Slackia exigua, and gram-negative anaerobic rods, suggesting that conventional periodontopathic bacteria are not the only periodontal pathogens active in peri-implantitis, and that AAGPRs

  14. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  15. Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes

    OpenAIRE

    Ihsan Hamawand; Craig Baillie

    2015-01-01

    In this study, a simulation was carried out using BioWin 3.1 to test the capability of the software to predict the biogas potential for two different anaerobic systems. The two scenarios included: (1) a laboratory-scale batch reactor; and (2) an industrial-scale anaerobic continuous lagoon digester. The measured data related to the operating conditions, the reactor design parameters and the chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried...

  16. Spin-echo and STIR MR imaging of sports-related muscle injuries at 1.5 T

    International Nuclear Information System (INIS)

    Greco, A.; McNamara, M.T.; Escher, R.M.B.; Trifilio, G.; Parienti, J.

    1990-01-01

    This paper assesses the value of T2-weighted and short T1 inversion recovery (Stir 1,800,170,27) sequences in the MR diagnosis and follow-up of muscle strain injuries. Fifty-six athletes with clinically diagnosed traumatic muscular damage were studied at 1.5 T with SE T1-weighted, double T2-weighted, and STIR techniques. Images were evaluated in order to detect the presence of muscle tear with associated edema, muscle hemorrhage (focal or diffuse), and perimuscular hemorrhage. The relative conspicuity of muscle injuries on T2-weighted and STIR images was assessed. All acute and subacute muscle injuries were detected on both SE T2-weighted and STIR images, muscle edema and subacute hemorrhage appearing hyperintense to normal muscle. Acute hemorrhage could appear hypointense on T2-weighted images but was always hyperintense on STIR images

  17. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anaerobic bacteria as producers of antibiotics.

    Science.gov (United States)

    Behnken, Swantje; Hertweck, Christian

    2012-10-01

    Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.

  19. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Kampman, Christel; Hendrickx, Tim L.G.; Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M.; Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy

    2012-01-01

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO 2 − -N/L d (using synthetic medium) and 37.8 mg NO 2 − -N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  20. Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.

    Science.gov (United States)

    Zhong, Cheng; He, Man; Liao, Huaping; Chen, Beibei; Wang, Cheng; Hu, Bin

    2016-04-08

    In this work, covalent triazine frameworks (CTFs) were introduced in stir bar sorptive extraction (SBSE) and a novel polydimethylsiloxane(PDMS)/CTFs stir bar coating was prepared by sol-gel technique for the sorptive extraction of eight phenols (including phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-chloro-m-cresol and 2,4-dichlorophenol, 2,4,6-trichlorophenol) from environmental water samples followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared PDMS/CTFs coated stir bar showed good preparation reproducibility with the relative standard deviations (RSDs) ranging from 3.5 to 5.7% (n=7) in one batch, and from 3.7 to 9.3% (n=7) among different batches. Several parameters affecting SBSE of eight target phenols including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.08-0.30 μg/L. The linear range was 0.25-500 μg/L for 2-nitrophenol, 0.5-500 μg/L for phenol, 2-chlorophenol, 4-nitrophenol as well as 2,4-dimethylphenol, and 1-500 μg/L for p-chloro-m-cresol, 2,4-dichlorophenol as well as 2,4,6-trichlorophenol, respectively. The intra-day relative standard deviations (RSDs) were in the range of 4.3-9.4% (n=7, c=2 μg/L) and the enrichment factors ranged from 64.9 to 145.6 fold (theoretical enrichment factor was 200-fold). Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/CTFs stir bar showed better extraction efficiency for target phenol compounds. The proposed method was successfully applied to the analysis of phenols in environmental water samples and good relative recoveries were obtained with the spiking level at 2, 10, 50 μg/L, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. In Search of functionality-diversity relationships in anaerobic mixed culture fermentations

    International Nuclear Information System (INIS)

    Kleerebezem, R.; Temudo, M.; Muyzer Van Loosdrecht, M. C. M.

    2009-01-01

    Based on the work described in this paper we will postulate that in environmental ecosystems with a weak selective pressure no clear relationship exists between the ecosystem functionality and the microbial diversity and microbial composition. In the past years we have been investigating the anaerobic fermentation of glucose, xylose, and glycerol, and mixtures of these substrates in continuously stirred tank reactors (CSTR) inoculated with an activated sludge characterized by a very rich microbial diversity. (Author)

  2. Conversion of Corn Stover Hydrolysates to Acids: Comparison Between Clostridium carboxidivorans P7 and Microbial Communities Developed from Lake Sediment and an Anaerobic Digester

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xia, Chunjie [Southern Illinois University; Kumar, Aditi [Carbondale Community High School; Liang, Yanna [Southern Illinois University

    2017-01-18

    Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able to grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.

  3. Accuracy of magnetic resonance imaging in planning the osseous resection margins of bony tumours in the proximal femur: based on coronal T1-weighted versus STIR images

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Sarfraz; Stevenson, Jonathan; Mangham, Charles; Cribb, Gillian; Cool, Paul [Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Musculoskeletal Oncology, Oswestry, Shropshire (United Kingdom)

    2014-12-15

    Assessment of the extent of tumours using magnetic resonance imaging (MRI) is the basis for bone resection in limb-salvage surgery. We aimed to compare the accuracy of T1-weighted MRI and STIR sequences in measuring the extent of proximal femoral tumours, using the macroscopic specimens as the gold standard for comparison. We compared single coronal T1-weighted with STIR sequences in 34 proximal femoral tumours, using bivalved resected macroscopic tumours for comparison. After randomisation, four observers measured longitudinal osseous tumour extent using MRI and specimen photographs on two separate occasions, 3 weeks apart. There were 25 metastatic tumours, 8 chondrosarcomas and 1 myeloma. Eight patients presented with pathological fractures. The Pearson's correlation coefficient for comparison of T1 with macroscopic tumours was 0.91 (95 % confidence interval [CI]: 0.83 to 0.96) for all observers and 0.90 (95 % CI: 0.81 to 0.95) for STIR images. This difference was not statistically significant, and T1 and STIR sequence measurements had similar precision and accuracy. Bland-Altman plots showed T1-weighted imaging to be unbiased, whereas STIR sequences were biased and had systematic error. Moreover, STIR measurements overestimated tumour size by 6.4 mm (95 % CI: -26.9 to 39.7 mm) and 2 patients were outliers. T1 measurements were closer to the macroscopic measurements with a mean difference of 1.3 mm (95 % CI: -28.9 mm to 31.5 mm), with 3 patients falling outside of this. The variance was greater for STIR measurements. This difference between T1 and STIR measurements was statistically significant (p = 0.000003). The intra-observer reliability between separate measurements for MRI and specimen photographs achieved interclass correlation coefficients of 0.97, 0.96 and 0.95 (T1, STIR and macroscopic tumour respectively). T1 had greater interobserver correlation than for STIR and macroscopic tumour measurements (0.88 vs 0.85 and 0.85 respectively). These

  4. Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber.

    Science.gov (United States)

    Kostanjsek, R; Lapanje, A; Rupnik, M; Strus, J; Drobne, D; Avgustin, G

    2004-01-01

    Anaerobic bacteria from Porcellio scaber hindgut were identified and, subsequently, isolated using molecular approach. Phylogenetic affiliation of bacteria associated with the hindgut wall was determined by analysis of bacterial 16S rRNA gene sequences which were retrieved directly from washed hindguts of P. scaber. Sequences from bacteria related to obligate anaerobic bacteria from genera Bacteroides and Enterococcus were retrieved, as well as sequences from 'A1 subcluster' of the wall-less mollicutes. Bacteria from the genus Desulfotomaculum were isolated from gut wall and cultivated under anaerobic conditions. In contrast to previous reports which suggested the absence of anaerobic bacteria in the isopod digestive system due to short retention time of the food in the tube-like hindgut, frequent renewal of the gut cuticle during the moulting process, and unsuccessful attempts to isolate anaerobic bacteria from this environment our results indicate the presence of resident anaerobic bacteria in the gut of P. scaber, in spite of apparently unsuitable, i.e. predominantly oxic, conditions.

  5. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  6. Single stage anaerobic digestion process. Megas process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Malarich, M.

    1985-12-01

    The rate-limiting step in the anaerobic digestion of domestic sewage sludge and agricultural manures is usually considered the conversion of acetate to methane and carbon dioxide. Some reports have suggested that phase transfer of endproduct carbon dioxide from the liquid to gaseous state may be the overall rate-limiting step. Research to date has focused on batch fermentation studies at varying carbon dioxide partial pressures (pCO/sub 2/) using simple substrates such as glucose or acetate. The results indicate that lowering the pCO/sub 2/ may increase methane production and waste stabilization rates. This research was conducted using continuous fermentations. Continuous fermentations using a complex synthetic waste were performed over a five-month period. The results obtained failed to support the findings of earlier batch studies where methane production increased as pCO/sub 2/ decreased. No significant difference in methane production was found between anaerobic digestion at low pCO/sub 2/ (0.1 to 0.15 atm) and normal pCO/sub 2/ (0.4 to 0.5 atm). 15 refs., 8 figs., 2 tabs.

  7. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    Science.gov (United States)

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  8. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion.

    Science.gov (United States)

    Lee, Jongkeun; Park, Ki Young; Cho, Jinwoo; Kim, Jae Young

    2018-01-01

    In this study, lab-scale batch tests were conducted to investigate releasing characteristics of heavy metals according to degradation of heavy metal containing biomass. The fate of heavy metals after released from biomass was also determined through adsorption tests and Visual MINTEQ simulation. According to the anaerobic batch test results as well as volatile solids and carbon balance analyses, maximum of 60% by wt. of biomass was degraded. During the anaerobic biodegradation, among Cd, Cu, Ni, Pb, and Zn, only Cu and Zn were observed in soluble form (approximately 40% by wt. of input mass). The discrepancy between degradation ratio of biomass and ratio of released heavy metals mass from biomass was observed. It seems that this discordance was caused by the fate (i.e., precipitated with sulfur/hydroxide or adsorbed onto sorbents) of each heavy metal types in solution after being released from biomass. Thus, releasing characteristics and fate of heavy metal should be considered carefully to predict stability of anaerobic digestion process for heavy metal-containing biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    International Nuclear Information System (INIS)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-01-01

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L −1 d −1 . • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L −1 d −1 , methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L −1 d −1 ), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g −1 COD removed, which was higher than that at 38 °C (0.016 g VSS g −1 COD removed )

  11. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    Science.gov (United States)

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  12. [Bacterial diversity in sequencing batch biofilm reactor (SBBR) for landfill leachate treatment using PCR-DGGE].

    Science.gov (United States)

    Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong

    2007-05-01

    For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.

  13. Nonequilibrium chemical instabilities in continuous flow stirred tank reactors: The effect of stirring

    International Nuclear Information System (INIS)

    Horsthemke, W.; Hannon, L.

    1984-01-01

    We present a stochastic model for stirred chemical reactors. In the limiting case of practical interest, i.e., fast stirring, we solve for the characteristic function in steady state and derive expressions for the stationary moments through a perturbation expansion. Moments are explicitly calculated for a generic model of bistable behavior. We find that stirring decreases the area of the bistable region essentially by changing the point of transition from the high reaction rate state to the low reaction rate state. This is in remarkable agreement with the experimental findings of Roux, et al. Our results indicate that stirring should not be considered simply as an ''enhanced diffusion'' process and that nucleation plays only a minor role in transitions between multiple steady states in a continuous flow stirred tank reactor (CSTR)

  14. The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry.

    Science.gov (United States)

    Caluwé, Michel; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-02-01

    In the present study, the influence of a changing feeding pattern from continuous to pulse feeding on the characteristics of activated sludge was investigated with a wastewater from the petrochemical industry from the harbour of Antwerp. Continuous seed sludge, adapted to the industrial wastewater, was used to start up three laboratory-scale sequencing batch reactors. After an adaptation period from the shift to pulse feeding, the effect of an increasing organic loading rate (OLR) and volume exchange ratio (VER) were investigated one after another. Remarkable changes of the specific oxygen uptake rate (sOUR), microscopic structure, sludge volume index (SVI), SVI 30 /SVI 5 ratio, and settling rate were observed during adaptation. sOUR increased two to five times and treatment time decreased 43.9% in 15 days. Stabilization of the SVI occurred after a period of 20 days and improved significantly from 300 mL·g -1 to 80 mL·g -1 . Triplication of the OLR and VER had no negative influence on sludge settling and effluent quality. Adaptation time of the microorganisms to a new feeding pattern, OLR and VER was relatively short and sludge characteristics related to aerobic granular sludge were obtained. This study indicates significant potential of the batch activated sludge system for the treatment of this industrial petrochemical wastewater.

  15. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  16. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    Science.gov (United States)

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  17. Two-phase anaerobic digestion for biogas production from dairy effluent—CSTR and ABR in series

    DEFF Research Database (Denmark)

    Jürgensen, L.; Ehimen, E. A.; Born, J.

    2016-01-01

    Anaerobic digestion of low-strength dairy waste water has been used for the production of biogas. A two-phase pilot scale process had been established within 90 d using a 1 m3continuous stirred tank reactor (CSTR) and a 200 l anaerobic baffled reactor (ABR) in series. The system was fed at constant...... retention time of 1.6 d and with changing feed strengths resulting in various organic loading rates between 1.25-4.50 g/(l d). The average COD removal was 82% with a biogas yield of 0.26 l/gCOD. The combination of CSTR and ABR overcame the disadvantages of both reactor types. By further optimization...

  18. Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool

    International Nuclear Information System (INIS)

    Zhang Yu; Sato, Yutaka S.; Kokawa, Hiroyuki; Park, Seung Hwan C.; Hirano, Satoshi

    2008-01-01

    In the present study, friction stir welding was applied to commercial purity titanium using a polycrystalline cubic boron nitride tool, and microstructure and hardness in the weld were examined. Additionally, the microstructural evolution during friction stir welding was also discussed. The stir zone consisted of fine equiaxed α grains surrounded by serrate grain boundaries, which were produced through the β → α allotropic transformation during the cooling cycle of friction stir welding. The fine α grains caused higher hardness than that in the base material. A lath-shaped α grain structure containing Ti borides and tool debris was observed in the surface region of the stir zone, whose hardness was the highest in the weld

  19. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  20. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  1. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-01-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical

  2. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure.

    Science.gov (United States)

    Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin

    2011-06-01

    The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  4. A new neural observer for an anaerobic bioreactor.

    Science.gov (United States)

    Belmonte-Izquierdo, R; Carlos-Hernandez, S; Sanchez, E N

    2010-02-01

    In this paper, a recurrent high order neural observer (RHONO) for anaerobic processes is proposed. The main objective is to estimate variables of methanogenesis: biomass, substrate and inorganic carbon in a completely stirred tank reactor (CSTR). The recurrent high order neural network (RHONN) structure is based on the hyperbolic tangent as activation function. The learning algorithm is based on an extended Kalman filter (EKF). The applicability of the proposed scheme is illustrated via simulation. A validation using real data from a lab scale process is included. Thus, this observer can be successfully implemented for control purposes.

  5. Preparation of a novel sorptive stir bar based on vinylpyrrolidone-ethylene glycol dimethacrylate monolithic polymer for the simultaneous extraction of diazepam and nordazepam from human plasma.

    Science.gov (United States)

    Torabizadeh, Mahsa; Talebpour, Zahra; Adib, Nuoshin; Aboul-Enein, Hassan Y

    2016-04-01

    A new monolithic coating based on vinylpyrrolidone-ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The polymerization step was performed using different contents of monomer, cross-linker and porogenic solvent, and the best formulation was selected. The quality of the prepared vinylpyrrolidone-ethylene glycol dimethacrylate stir bars was satisfactory, demonstrating good repeatability within batch (relative standard deviation < 3.5%) and acceptable reproducibility between batches (relative standard deviation < 6.0%). The prepared stir bar was utilized in combination with ultrasound-assisted liquid desorption, followed by high-performance liquid chromatography with ultraviolet detection for the simultaneous determination of diazepam and nordazepam in human plasma samples. To optimize the extraction step, a three-level, four-factor, three-block Box-Behnken design was applied. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for diazepam (36-1200 ng/mL) and nordazepam (25-1200 ng/mL), with correlation coefficients of 0.9986 and 0.9968 and detection limits of 12 and 10 ng/mL, respectively. The intra- and interday recovery ranged from 93 to 106%, and the relative standard deviations were less than 6%. Finally, the proposed method was successfully applied to the analysis of diazepam and nordazepam at their therapeutic levels in human plasma. The novelty of this study is the improved polarity of the stir bar coating and its application for the simultaneous extraction of diazepam and its active metabolite, nordazepam in human plasma sample. The method was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of diazepam and nordazepam in biological fluids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu; Ohno, Yoshiharu; Onishi, Yumiko; Matsumoto, Keiko; Nogami, Munenobu; Takenaka, Daisuke; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe, Hyogo (Japan); Aoyama, Nobukazu [Kobe University Hospital, Division of Radiology, Kobe (Japan); Nishio, Wataru [Kobe University Graduate School of Medicine, Division of Cardiovascular, Thoracic and Pediatric Surgery, Kobe (Japan); Ohbayashi, Chiho [Hyogo Cancer Center, Division of Pathology, Akashi (Japan)

    2010-04-15

    The aim of the study was to evaluate the diagnostic performance of diffusion-weighted imaging (DWI) for detection and subtype classification in pulmonary adenocarcinomas through comparison with short TI inversion recovery turbo spin-echo imaging sequence (STIR). Thirty-two patients (mean age, 65.2 years) with 33 adenocarcinomas (mean diameter, 27.6 mm) were enrolled in this study. The detection rates of both sequences were compared. The ADC values on DWI and the contrast ratio (CR) between cancer and muscle on STIR were measured and those were compared across subtype classifications. Finally, ROC-based positive tests were performed to differentiate subtype classifications, and differentiation capabilities were compared. The DWI detection rate [85% (28/33)] was significantly lower than that of STIR [100% (33/33), P < 0.05]. The ADC values showed no significant difference regarding subtype classification; however, the CRs of bronchio-alveolar carcinomas (BACs) were significantly lower than those of other types (P < 0.05). When threshold values for differentiating BACs from others were adapted, the sensitivity and accuracy of DWI were significantly lower than those of STIR (P < 0.05). For differentiating adenocarcinomas with mixed subtypes from those with no BA component, there were no significant differences between the two sequences. STIR is more sensitive for detection and subtype classification than DWI. (orig.)

  7. Polyaniline/cyclodextrin composite coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the analysis of trace polychlorinated biphenyls in environmental waters.

    Science.gov (United States)

    Lei, Yun; He, Man; Chen, Beibei; Hu, Bin

    2016-04-01

    A novel polyaniline/α-cyclodextrin (PANI/α-CD) composite coated stir bar was prepared by sol-gel process for the analysis of polychlorinated biphenyls (PCBs) in this work. The preparation reproducibility of the PANI/α-CD-coated stir bar was good, with relative standard deviations (RSDs) ranging from 2.3% to 3.7% (n=7) and 2.0% to 3.8% (n=7) for bar to bar and batch to batch, respectively. Based on it, a novel method of PANI/α-CD-coated stir bar sorptive extraction (SBSE) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for the determination of trace PCBs in environmental waters. To obtain the best extraction performance for target PCBs, several parameters affecting SBSE, such as extraction time, stirring rate, and ionic strength were investigated. Under optimal experimental conditions, the limits of detection (LODs) of the proposed method for seven PCBs were in the range of 0.048-0.22 μg/L, and the RSDs were 5.3-9.8% (n=7, c=1 μg/L). Enrichment factors (EFs) ranging from 39.8 to 68.4-fold (theoretical EF, 83.3-fold) for target analytes were achieved. The proposed method was successfully applied for the determination of seven target PCBs in Yangtze River water and East Lake water, and the recoveries were in the range of 73.0-120% for the spiked East Lake water samples and 82.7-121% for the spiked Yangtze River water samples, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  9. Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw

    International Nuclear Information System (INIS)

    Khatri, Shailendra; Wu, Shubiao; Kizito, Simon; Zhang, Wanqin; Li, Jiaxi; Dong, Renjie

    2015-01-01

    Highlights: • Synergistic effect of NaOH treatment and Fe dosage to maize straw was investigated. • Combining NaOH treatment and Fe dosing resulted in 57% and 56% higher biogas and methane yield respectively. • Combined treatment shortened the technical digestion time from 48 days to 7 days. • Methane content did not differ significantly among the straw treatments. - Abstract: The synergistic effect of alkaline pretreatment and Fe dosing on anaerobic digestion of maize straw was investigated using mesophilic batch reactors. Three straw treatments were investigated as follows: NaOH (4% and 6%) pretreatment, Fe dosage (50, 200, 1000 and 2000 mg/L), and combined NaOH pretreatment and Fe dosage. Compared to the control, NaOH pretreatment alone increased methane yield by 3.5% (313.3 mL CH_4/gVS) and 22.5% (370.9 mL CH_4/gVS) and shortened the technical digestion time (TDT) from 48 days to 19 days and 10 days in 4% NaOH and 6% NaOH pretreatment respectively. Moreover, Fe dosing (200–1000 mg/L) alone gave a methane yield higher (9.4%) than that obtained from 4% NaOH and 7.5% less than the methane yield from 6% NaOH pretreatment; however, the TDT was 10 days longer. Combining NaOH pretreatment and Fe dosage (200–1000 mg/L) significantly increased the methane yield even further to 21.8% (368.8 mL CH_4/gVS) and 56.2% (472.9 mL CH_4/gVS), and shortened TDT from 48 days to 13 days and 7 days in 4% NaOH and 6% NaOH pretreatment respectively. This synergistic effect may be attributed to the fact that the alkaline treatment improved accessibility of the biodegradable fraction of the straw while Fe contributed to increased microbial enzyme activity.

  10. Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    Science.gov (United States)

    Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin

    2014-08-22

    In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Magnetic resonance imaging of pelvic entheses - a systematic comparison between short tau inversion recovery (STIR) and T1-weighted, contrast-enhanced, fat-saturated sequences

    International Nuclear Information System (INIS)

    Klang, Eyal; Aharoni, Dvora; Rimon, Uri; Eshed, Iris; Hermann, Kay-Geert; Herman, Amir; Shazar, Nachshon

    2014-01-01

    To assess the contribution of contrast material in detecting and evaluating enthesitis of pelvic entheses by MRI. Sixty-seven hip or pelvic 1.5-T MRIs (30:37 male:female, mean age: 53 years) were retrospectively evaluated for the presence of hamstring and gluteus medius (GM) enthesitis by two readers (a resident and an experienced radiologist). Short tau inversion recovery (STIR) and T1-weighted pre- and post-contrast (T1+Gd) images were evaluated by each reader at two sessions. A consensus reading of two senior radiologists was regarded as the gold standard. Clinical data was retrieved from patients' referral form and medical files. Cohen's kappa was used for intra- and inter-observer agreement calculation. Diagnostic properties were calculated against the gold standard reading. A total of 228 entheses were evaluated. Gold standard analysis diagnosed 83 (36 %) enthesitis lesions. Intra-reader reliability for the experienced reader was significantly (p = 0.0001) higher in the T1+Gd images compared to the STIR images (hamstring: k = 0.84/0.45, GM: k = 0.84/0.47). Sensitivity and specificity increased from 0.74/0.8 to 0.87/0.9 in the STIR images and T1+Gd sequences. Intra-reader reliability for the inexperienced reader was lower (p > 0.05). Evidence showing that contrast material improves the reliability, sensitivity, and specificity of detecting enthesitis supports its use in this setting. (orig.)

  12. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution.

    Science.gov (United States)

    Zhang, Jingsi; Li, Ning; Dai, Xiaohu; Tao, Wenquan; Jenkinson, Ian R; Li, Zhuo

    2017-12-19

    Comprehensive insights into the sludge digestate dewaterability were gained through porous network structure of sludge. We measured the evolution of digestate dewaterability, represented by the solid content of centrifugally dewatered cake, in high-solids sequencing batch digesters with and without thermal hydrolysis pretreatment (THP). The results show that the dewaterability of the sludge after digestion was improved by 3.5% (±0.5%) for unpretreated sludge and 5.1% (±0.4%) for thermally hydrolyzed sludge. Compared to the unpretreated sludge digestate, thermal hydrolysis pretreatment eventually resulted in an improvement of dewaterability by 4.6% (±0.5%). Smaller particle size and larger surface area of sludge were induced by thermal hydrolysis and anaerobic digestion treatments. The structure strength and compactness of sludge, represented by elastic modulus and fractal dimension respectively, decreased with increase of digestion time. The porous network structure was broken up by thermal hydrolysis pretreatment and was further weakened during anaerobic digestion, which correspondingly improved the dewaterability of digestates. The logarithm of elastic modulus increased linearly with fractal dimension regardless of the pretreatment. Both fractal dimension and elastic modulus showed linear relationship with dewaterability. The rheological characterization combined with the analysis of fractal dimension of sewage sludge porous network structure was found applicable in quantitative evaluation of sludge dewaterability, which depended positively on both thermal hydrolysis and anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  14. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    International Nuclear Information System (INIS)

    Hwang, Sangchul; Martinez, Diana; Perez, Priscilla; Rinaldi, Carlos

    2011-01-01

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP Fe-surf ) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that ∼8.7% of ENP Fe-surf applied were present in the effluent stream. The stable presence of ENP Fe-surf was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP Fe-surf deteriorated the effluent water quality at a statistically significant level (p Fe-surf would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: → Surfactant-coated engineered iron oxide nanoparticles (ENP Fe-surf ) were assessed. → Effluent quality was analyzed from a sequencing batch reactor with ENP Fe-surf . → ∼8.7% of ENP Fe-surf applied was present in the effluent. → ENP Fe-surf significantly (p Fe-surf will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  15. The mechanism and design of sequencing batch reactor systems for nutrient removal--the state of the art.

    Science.gov (United States)

    Artan, N; Wilderer, P; Orhon, D; Morgenroth, E; Ozgür, N

    2001-01-01

    The Sequencing Batch Reactor (SBR) process for carbon and nutrient removal is subject to extensive research, and it is finding a wider application in full-scale installations. Despite the growing popularity, however, a widely accepted approach to process analysis and modeling, a unified design basis, and even a common terminology are still lacking; this situation is now regarded as the major obstacle hindering broader practical application of the SBR. In this paper a rational dimensioning approach is proposed for nutrient removal SBRs based on scientific information on process stoichiometry and modelling, also emphasizing practical constraints in design and operation.

  16. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    International Nuclear Information System (INIS)

    Ariunbaatar, Javkhlan; Scotto Di Perta, Ester; Panico, Antonio; Frunzo, Luigi; Esposito, Giovanni; Lens, Piet N.L.; Pirozzi, Francesco

    2015-01-01

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC 50 of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid

  17. MR analysis of sternal bone marrow using STIR in hematologic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Eito [Saitama Medical School, Moroyama (Japan)

    1998-12-01

    The magnetic resonance (MR) signal intensity pattern of sternal bone marrow was examined in 21 normal volunteers and 10 patients with aplastic anemia (n=4), multiple myeloma (2), AML (2), gammaglobulinemia (1) and MDS (1) using a sagittal STIR sequence. Double Echo STIR images (TR/TI/TE/NEX=2000/180/20, 100/1) were obtained with a CP body array coil. Craniocaudal phase-encoding with a handmade positioning device effectively avoided overlapping artifacts due to cardiac pulsation. In the normal volunteers, age showed a significant inverse correlation with the calculated SIR (signal intensity ratio of bone marrow relative to subcutaneous fat) using STIR with short TE. The SIR in the sternal body was significantly higher than that in the manubrium (p<0.05). Knowledge of the sternal bone marrow distribution according to age is useful for evaluating hematologic diseases. The proposed method provided high spatial resolution and an excellent bone marrow signal, and may be useful for determining site for aspiration. (author)

  18. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  19. Production of hemicellulose-degrading enzymes by Bacillus macerans in anaerobic culture

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.G.; Withers, S.E.

    1985-09-01

    The cell-associated and exocellular hemicellulolytic polysaccharide depolymerase and glycoside hydrolase activity of Bacillus macerans NCDO 1764 was monitored over a range of anaerobic growth conditions in batch and continuous culture. The enzymes were detectable throughout the complete growth cycle in batch culture reaching and maintaining maximum levels in the stationary phase. In continuous culture enzyme activity was largely independent of growth rate (D=0.025-0.1 h/sup -1/) although the activity was reduced at higher dilution rates (0.125-0.15 h/sup -1/). Although activity was detectable over a wide pH range (pH 5.5-7.5) it was pH dependent, and maximum activities of both the cell-associated and exocellular enzymes were measured in cultures maintained at pH 6.5-7.0 +- 0.1. The principal metabolites formed anaerobically from xylose by B. macerans in batch and continuous culture were acetic acid, formic acid and ethanol which represented 95-99% of the products formed. Smaller amounts of acetone, D,L-lactic acid and succinic acid were formed together with traces of butyric acid (<5 nmol/ml) and isovaleric acid (<25 nmol/ml). The proportions of the metabolites produced varied with growth conditions and were influenced by the pH of the culture and the rate and stage of growth of the microorganism.

  20. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues

    Directory of Open Access Journals (Sweden)

    Cioabla Adrian

    2012-06-01

    Full Text Available Abstract Background Presently, different studies are conducted related to the topic of biomass potential to generate through anaerobic fermentation process alternative fuels supposed to support the existing fossil fuel resources, which are more and more needed, in quantity, but also in quality of so called green energy. The present study focuses on depicting an optional way of capitalizing agricultural biomass residues using anaerobic fermentation in order to obtain biogas with satisfactory characteristics.. The research is based on wheat bran and a mix of damaged ground grains substrates for biogas production. Results The information and conclusions delivered offer results covering the general characteristics of biomass used , the process parameters with direct impact over the biogas production (temperature regime, pH values and the daily biogas production for each batch relative to the used material. Conclusions All conclusions are based on processing of monitoring process results , with accent on temperature and pH influence on the daily biogas production for the two batches. The main conclusion underlines the fact that the mixture batch produces a larger quantity of biogas, using approximately the same process conditions and input, in comparison to alone analyzed probes, indicating thus a higher potential for the biogas production than the wheat bran substrate. Adrian Eugen Cioabla, Ioana Ionel, Gabriela-Alina Dumitrel and Francisc Popescu contributed equally to this work

  1. Using continuous UV extinction measurements to monitor and control the aerated phase of sequencing batch reactors; Einsatz der kontinuierlichen UV-Extinktionsmessung fuer die Ueberwachung und Regelung der Belueftungsphase in SBR-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, L.; Rott, U. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft; Bardeck, S. [Optek-Danulat GmbH (Germany)

    1999-07-01

    The work describes the measurement of UV extinction - expressed as the spectral absorption coefficient SAC - at a randomly chosen wave length as a technique for monitoring organic load in effluents from sequencing batch reactors (SBR) at municipal and industrial waste water treatment plants. Further described is to what extent the continuous determination of the SAC can be used in practice for the control of the aerated phase of sequencing batch reactors. By this means, process stabilization and optimization can be achieved and operating reliability can be enhanced. (orig.) [German] Inhalt dieses Beitrages ist es, die Messung der UV-Extinktion - ausgedrueckt durch den spektralen Absorptionskoeffizient (SAK) - bei einer frei gewaehlten Wellenlaenge als Verfahren fuer die Ueberwachung der organischen Belastung in den Ablaeufen von SBR-Anlagen (Sequencing-Batch-Reactor) in der kommunalen und industriellen Abwasserreinigung vorzustellen. Weiterhin soll dargestellt werden, in wieweit die kontinuierliche Bestimmung des SAK in der Praxis fuer die Regelung der beluefteten Phase von SBR-Anlagen eingesetzt werden kann. Hiermit kann eine Prozessstabilisierung und -optimierung der Anlagen erreicht sowie die Betriebssicherheit erhoeht werden. (orig.)

  2. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2009-01-01

    to investigate the anaerobic biodegradability of MTBE and other gasoline ethers. Inoculums collected from various environments were used, along with different electron acceptors. Only one set of the batch experiments showed a 30-60% conversion of MTBE to tert-butyl alcohol under Fe(III)-reducing conditions...

  3. Counteracting ammonia inhibition during anaerobic digestion by recovery using submersible microbial desalination cell.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-07-01

    Ammonia inhibition is one of the most frequent and serious problems in biogas plants. In this study, a novel hybrid system consisting of a submersible microbial desalination cell (SMDC) and a continuous stirred tank reactor (CSTR) was developed for counteracting ammonia inhibition during anaerobic digestion (AD) with simultaneous in situ ammonia recovery and electricity production. The SMDC was powered by acetate in a buffer solution, while synthetic ammonia-rich wastewater was used as the feeding of the CSTR. Under continuous operation, ammonia recovery rate of 86 g-N/m(2) /day and current density of 4.33 A/m(2) were achieved at steady-state condition. As a result, 112% extra biogas was produced due to ammonia recovery by the SMDC. High-throughput sequencing showed that ammonia recovery had an impact on the microbial community structures in the SMDC and CSTR. Considering the additional economic benefits of biogas enhancement and possible wastewater treatment, the SMDC may represent a cost-effective and environmentally friendly method for waste resources recovery and biomethanation of ammonia-rich residues. © 2015 Wiley Periodicals, Inc.

  4. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...... flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497,487, 561, 582, 575, 359, 619 dm(3) kg(-1) respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions...... giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm(-3) and 7 gN dm(-3) respectively. Pretreatment (pasteurization: 70 degrees C, sterilization: 133 degrees C, and alkali...

  5. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Anaerobic biological treatment of in-situ retort water

    Energy Technology Data Exchange (ETDEWEB)

    Ossio, E.; Fox, P.

    1980-03-01

    Anaerobic fermentation was successfully used in a laboratory-scale batch digester to remove soluble organics from retort water. Required pretreatment includes reduction of ammonia levels to 360 mg-N/l, pH adjustment to 7.0, sulfide control, and the addition of the nutrients, calcium, magnesium, and phoshorus. If the prescribed pretreatment is used, BOD/sub 5/ and COD removal efficiencies of 89 to 90% and 65 to 70% are achieved, respectively.

  7. The operation characteristics of biohydrogen production in continuous stirred tank reactor with molasses

    Energy Technology Data Exchange (ETDEWEB)

    Hong, C.; Wei, H.; Jie-xuan, D.; Xin, Y.; Chuan-ping, Y. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering

    2010-07-01

    The anaerobic fermentation biohydrogen production in a continuous stirred tank reactor (CSTR) was investigated as a means for treating molasses wastewater. The research demonstrated that the reactor has the capacity of continuously producing hydrogen in an initial biomass (as volatile suspension solids) of 17.74 g/L, temperature of approximately 35 degrees Celsius, hydraulic retention time of 6 hours. The reactor could begin the ethanol-type fermentation in 12 days and realize stable hydrogen production. The study also showed that the CSTR reactor has a favourable stability even with an organic shock loading. The hydrogen yield and chemical oxygen demand (COD) increased, as did the hydrogen content.

  8. Continuosly Stirred Tank Reactor Parameters That Affect Sludge Batch 6 Simulant Properties

    International Nuclear Information System (INIS)

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-01-01

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  9. Identifiability study of the proteins degradation model, based on ADM1, using simultaneous batch experiments

    DEFF Research Database (Denmark)

    Flotats, X.; Palatsi, J.; Ahring, Birgitte Kiær

    2006-01-01

    are not inhibiting the hydrolysis process. The ADM1 model adequately expressed the consecutive steps of hydrolysis and acidogenesis, with estimated kinetic values corresponding to a fast acidogenesis and slower hydrolysis. The hydrolysis was found to be the rate limiting step of anaerobic degradation. Estimation...... of yield coefficients based on the relative initial slopes of VFA profiles obtained in a simple batch experiment produced satisfactory results. From the identification study, it was concluded that it is possible to determine univocally the related kinetic parameter values for protein degradation...... if the evolution of amino acids is measured in simultaneous batch experiments, with different initial protein and amino acids concentrations....

  10. Contaminant removal performances on domestic sewage using modified anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Zhou, Jun; Gao, Jingqing; Liu, Yifan; Xiao, Shuai; Zhang, Ruiqin; Zhang, Zhenya

    2013-01-01

    The objective of this study was to enhance removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) from domestic sewage in a sequencing batch reactor with added new materials. A modified anoxic/anaerobic/oxic (MAAO) process, integrating a micro-electrolysis (ME) bed in an anoxic tank, and complex biological media (CBM) in anoxic, anaerobic and oxic tanks to treat domestic sewage, and their performances were investigated. The MAAO system was operated at controlled hydraulic retention time (HRT) of 8 h and mixed liquor recirculation (MLR) at 75%. The results showed that the MAAO system could effectively remove COD, TN and TP with average rates of 93%, 80% and 94%, respectively, in March, and 94%, 76% and 91%, respectively, in August. In this system, TP was primarily removed from the anoxic tank regardless of the operational conditions; removal contribution ratios to TP of the anoxic tank reached 56% both in March and August, indicating that the ME bed can effectively enhance phosphorus removal. TN was primarily removed from the anoxic and anaerobic tanks; removal contribution ratios to TN of anoxic and anaerobic tanks reached 36-38% and 37-38%, respectively. The oxic tank had the highest share of COD removal (56% both in March and August) in the removal of phosphorus. The outflow concentrations of COD, TN and TP were 3-46, 7-14 and 0.3-0.5 mg/L, respectively, in March, and 26-49, 9-15 and 0.04-0.1 mg/L, respectively, in August. COD and TN removal performances indicated that the innovative materials of the ME bed and CBM can effectively enhance COD and TN removal.

  11. Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure

    Directory of Open Access Journals (Sweden)

    Noori M. Cata Saady

    2015-03-01

    Full Text Available Increasing the feed total solids to anaerobic digester improves the process economics and decreases the volume of liquid effluent from current wet anaerobic digestion. The objective of this study was to develop a novel psychrophilic (20 °C anaerobic digestion technology of undiluted cow feces (total solids of 11%–16%. Two sets of duplicate laboratory-scale sequence batch bioreactors have been operated at organic loading rates (OLR of 6.0 to 8.0 g total chemical oxygen demand (TCOD kg−1 inoculum day−1 (d−1 during 210 days. The results demonstrated that the process is feasible at treatment cycle length (TCL of 21 days; however, the quality of cow feces rather than the OLR had a direct influence on the specific methane yield (SMY. The SMY ranged between 124.5 ± 1.4 and 227.9 ± 4.8 normalized liter (NL CH4 kg−1 volatile solids (VS fed d−1. Substrate-to-inoculum mass ratio (SIR was 0.63 ± 0.05, 0.90 ± 0.09, and 1.06 ± 0.07 at OLR of 6.0, 7.0, and 8.0 g TCOD kg−1 inoculum d−1, respectively. No volatile fatty acids (VFAs accumulation has been observed which indicated that hydrolysis was the rate limiting step and VFAs have been consumed immediately. Bioreactors performance consistency in terms of the level of SMYs, VFAs concentrations at end of the TCL, pH stability and volatile solids reduction indicates a stable and reproducible process during the entire operation.

  12. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  13. Characterization and BMP Tests of Liquid Substrates for High-rate Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    M. Mainardis

    2018-01-01

    Full Text Available This work was focused on the physicochemical characterization and biochemical methane potential (BMP tests of some liquid organic substrates, to verify if they were suitable for undergoing a process of high-velocity anaerobic digestion. The selected substrates were: first and second cheese whey, organic fraction of municipal solid waste (OFMSW leachate, condensate water and slaughterhouse liquid waste. Firstly, a physicochemical characterization was performed, using traditional and macromolecular parameters; then, batch anaerobic tests were carried out, and some continuous tests were planned. The results revealed that all the analyzed substrates have a potential to be anaerobically treated. Valuable information about treatment rate for a high-velocity anaerobic digestion process was obtained. Start-up of a lab-scale UASB reactor, treating diluted cheese whey, was successfully achieved with good COD removal efficiency. These preliminary results are expected to be further investigated in a successive phase, where continuous tests will be conducted on condensate water and OFMSW leachate.

  14. Long-term performance of anaerobic digestion for crop residues containing heavy metals and response of microbial communities.

    Science.gov (United States)

    Lee, Jongkeun; Kim, Joonrae Roger; Jeong, Seulki; Cho, Jinwoo; Kim, Jae Young

    2017-01-01

    In order to investigate the long-term stability on the performance of the anaerobic digestion process, a laboratory-scale continuous stirred-tank reactor (CSTR) was operated for 1100 days with sunflower harvested in a heavy metal contaminated site. Changes of microbial communities during digestion were identified using pyrosequencing. According to the results, soluble heavy metal concentrations were lower than the reported inhibitory level and the reactor performance remained stable up to OLR of 2.0g-VS/L/day at HRT of 20days. Microbial communities commonly found in anaerobic digestion for cellulosic biomass were observed and stably established with respect to the substrate. Thus, the balance of microbial metabolism was maintained appropriately and anaerobic digestion seems to be feasible for disposal of heavy metal-containing crop residues from phytoremediation sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria.

    Science.gov (United States)

    He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.

  16. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  17. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.

    Science.gov (United States)

    Lam, Alan Tin-Lun; Li, Jian; Toh, Jessica Pei-Wen; Sim, Eileen Jia-Hui; Chen, Allen Kuan-Liang; Chan, Jerry Kok-Yen; Choolani, Mahesh; Reuveny, Shaul; Birch, William R; Oh, Steve Kah-Weng

    2017-03-01

    Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm 3 ) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm 3 ) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 10 4 cells/cm 2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 10 4 cells/cm 2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with

  18. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    International Nuclear Information System (INIS)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-01-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5 /COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3 . Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3 . Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  19. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)-Effect of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bural, Cavit B.; Demirer, Goksel N. [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Kantoglu, Omer [Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training Center, 06982, Kazan, Ankara (Turkey); Dilek, Filiz B., E-mail: fdilek@metu.edu.t [Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey)

    2010-04-15

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD{sub 5}/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm{sup -3}. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm{sup -3}. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  20. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  1. The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode

    OpenAIRE

    Budiyono; I N. Widiasa; S. Johari; Sunarso

    2010-01-01

    In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures...

  2. Anaerobic digestion of waste activated sludge—comparison of thermal pretreatments with thermal inter-stage treatments

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Thygesen, Anders; Thomsen, Anne Belinda

    2011-01-01

    BACKGROUND: Treatment methods for improved anaerobic digestion (AD) of waste activated sludge were evaluated. Pretreatments at moderate thermal (water bath at 80 °C), high thermal (loop autoclave at 130–170 °C) and thermo-chemical (170 °C/pH 10) conditions prior to AD in batch vials (40 days/37 °....... CONCLUSION: Thermal treatment of waste activated sludge for improved anaerobic digestion seems more effective when applied as an inter-stage treatment rather than a pretreatment. Copyright © 2010 Society of Chemical Industry...

  3. [Comparison research on two-stage sequencing batch MBR and one-stage MBR].

    Science.gov (United States)

    Yuan, Xin-Yan; Shen, Heng-Gen; Sun, Lei; Wang, Lin; Li, Shi-Feng

    2011-01-01

    Aiming at resolving problems in MBR operation, like low nitrogen and phosphorous removal efficiency, severe membrane fouling and etc, comparison research on two-stage sequencing batch MBR (TSBMBR) and one-stage aerobic MBR has been done in this paper. The results indicated that TSBMBR owned advantages of SBR in removing nitrogen and phosphorous, which could make up the deficiency of traditional one-stage aerobic MBR in nitrogen and phosphorous removal. During steady operation period, effluent average NH4(+) -N, TN and TP concentration is 2.83, 12.20, 0.42 mg/L, which could reach domestic scenic environment use. From membrane fouling control point of view, TSBMBR has lower SMP in supernatant, specific trans-membrane flux deduction rate, membrane fouling resistant than one-stage aerobic MBR. The sedimentation and gel layer resistant of TSBMBR was only 6.5% and 33.12% of one-stage aerobic MBR. Besides high efficiency in removing nitrogen and phosphorous, TSBMBR could effectively reduce sedimentation and gel layer pollution on membrane surface. Comparing with one-stage MBR, TSBMBR could operate with higher trans-membrane flux, lower membrane fouling rate and better pollutants removal effects.

  4. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    Science.gov (United States)

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  5. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    Science.gov (United States)

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  6. BIOESTABILIZATION ANAEROBIC SOLID WASTE ORGANIC:QUANTITATIVE ASPECTS

    Directory of Open Access Journals (Sweden)

    Valderi Duarte Leite

    2015-01-01

    Full Text Available It is estimated that in Brazil, the municipal solid waste produced are constituted on average 55% of fermentable organic solid waste and that this quantity can be applied in aerobic or anaerobic stabilization process. Anaerobic digestion is an important alternative for the treatment of different types of potentially fermentable waste, considering providing an alternative source of energy that can be used to replace fossil fuels. To perform the experimental part of this work was constructed and monitored an experimental system consisting of an anaerobic batch reactor, shredding unit of fermentable organic wastes and additional devices. Fermentable organic wastes consisted of leftover fruits and vegetables and were listed in EMPASA (Paraibana Company of Food and Agricultural Services, located in the city of Campina Grande- PB. The residues were collected and transported to the Experimental Station Biological Sewage Treatment (EXTRABES where they were processed and used for substrate preparation. The substrate consisted of a mixture of fermentable organic waste, more anaerobic sewage sludge in the proportion of 80 and 20 % respectively. In the specific case of this study, it was found that 1m3 of substrate concentration of total COD equal to 169 g L-1, considering the reactor efficiency equal to 80 %, the production of CH4 would be approximately 47.25 Nm3 CH4. Therefore, fermentable organic waste, when subjected to anaerobic treatment process produces a quantity of methane gas in addition to the partially biostabilized compound may be applied as a soil conditioning agent.

  7. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  8. Model Integrasi Penjadwalan Produksi Batch dan Penjadwalan Perawatan dengan Kendala Due Date

    Directory of Open Access Journals (Sweden)

    Zahedi .

    2014-01-01

    Full Text Available This paper discusses the integration model of batch production and preventive maintenance scheduling on a single machine producing an item to be delivered at a common due date. The machine is a deteriorating machine that requires preventive maintenance to ensure the availability of the machine at a desired service level. Decision variables of the model are the number of preventive maintenances, the schedule, length of production runs, as well as the number of batches, batch sizes and the production schedule of the resulting batches for each production run. The objective function of the model is to minimize the total cost consisting of inventory costs during parts processing, setup cost and cost of preventive maintenance. The results show three important points: First, the sequence of optimal batches always follows the SPT (short processing time. Second, variation of preventive maintenance unit cost does not influence the sequence of batches. Third, the first production run length from production starting time is smaller than the next production run length and this pattern continues until the due date. When in process inventory unit cost is increased, the pattern will continue until a specified cost limit, and beyond the limit the pattern will change to be the opposite pattern.

  9. VNS (Variable Neighbourhood Search) applied to batch sequencing in operational scheduling of pipeline network; VNS (Variable Neighbourhood Search) aplicado ao sequenciamento de bateladas do 'scheduling' de operacoes de uma malha dutoviaria

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Lia; Arruda, Lucia Valeria Ramos de; Libert, Nikolas [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    This work presents the VNS heuristic technique applied on batches ordering in a real network of petroleum derivatives distribution. These ordering have great influence in operational scheduling of a pipeline network. The operational scheduling purposes the efficient utilization of the resources, resulting on a better performance. Due to the great complexity of the real network problem and the necessity of its resolution in little computational time, it was adopted a problem subdivision in assignment of resources, sequencing and timing. In the resources assignment stage, it is considered the production/consumption functions and the products tankages to determine the total batches, including its volume, flow rate and the time-windows to satisfy the demand. These data are used in the sequencing stage, where a VNS based model determines the batches ordering. In a final step, the last block, realize the temporisation considering the network operational constraints. This work shows the results from the optimization of the sequencing stage which aims the improvement of the solution quality of scheduling. (author)

  10. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    Science.gov (United States)

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A biochemically structured model for ethanol fermentation by Kluyveromyces marxianus: A batch fermentation and kinetic study

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Hobley, Timothy John; Calabrò, V.

    2011-01-01

    Anaerobic batch fermentations of ricotta cheese whey (i.e. containing lactose) were performed under different operating conditions. Ethanol concentrations of ca. 22gL−1 were found from whey containing ca. 44gL−1 lactose, which corresponded to up to 95% of the theoretical ethanol yield within 15h......, lactose, biomass and glycerol during batch fermentation could be described within a ca. 6% deviation, as could the yield coefficients for biomass and ethanol produced on lactose. The model structure confirmed that the thermodynamics considerations on the stoichiometry of the system constrain the metabolic...... coefficients within a physically meaningful range thereby providing valuable and reliable insight into fermentation processes....

  12. A low temperature anaerobic digestion system reduces instability and produces optimal methane yield : case study of a Farrow to Finish farm marketing 10,000 hogs per year in Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, E.; Boivin, S.; Hince, J.-F. [Bio-Terre Systems, Sherbrooke, PQ (Canada); Masse, D. [Agriculture and Agri-Food Canada, Ottawa, ON (Canada)

    2008-07-01

    This presentation described a joint collaboration between Agriculture and Agri-Food Canada (AAFC) and Bio-Terre Systems that resulted in the development of an innovative environmental solution for manure management. The solution which combines low-temperature anaerobic digestion, concentration of solids and production of green energy, responds to the growth of hog production in North America. A case study of a Farrow to Finish farm marketing 10,000 swine in St.-Hilaire, Quebec was presented with particular reference to background information on the farm, process stability and process performance. The Bio-Terre technology was discussed in detail including a discussion of the psychrophilic anaerobic digestion and microorganisms and sequencing batch reactor (SBR) process. The advantages and disadvantages of this process were presented. It was concluded that the process offers many benefits, including energy economy, improved health of animals, odorless spreading, better fertilizer, and reduction of land required. tabs., figs.

  13. Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi

    2010-02-01

    Anaerobic sludges, pretreated by chloroform, base, acid, heat and loading-shock, as well as untreated sludge were evaluated for their thermophilic fermentative hydrogen-producing characters from cassava stillage in both batch and continuous experiments. Results showed that the highest hydrogen production was obtained by untreated sludge and there were significant differences (pstillage.

  14. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  15. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.

    2010-01-01

    Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community....... Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta...... kinetics considering the relation between LCFA inhibitory substrate concentration and specific biomass content, as an approximation to the adsorption process, improved the model fitting and provided a better insight on the physical nature of the LCFA inhibition process. (C) 2009 Elsevier Ltd. All rights...

  16. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    Science.gov (United States)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  17. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    Science.gov (United States)

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Increased performance of continuous stirred tank reactor with calcium supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zhuliang; Yang, Haijun; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), New Materials Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-04-15

    Continuous biohydrogen production with calcium supplementation at low hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR) was studied to maximize the hydrogen productivity of anaerobic mixed cultures. After stable operations at HRT of 8-4 h, the bioreactor became unstable when the HRT was lowered to 2 h. Supplementation of 100 mg/L calcium at HRT 2 h improved the operation stability through enhancement of cell retention with almost two-fold increase in cell density than that without calcium addition. Hydrogen production rate and hydrogen yield reached 24.5 L/d/L and 3.74 mol H{sub 2}/mol sucrose, respectively, both of which were the highest values our group have ever achieved. The results showed that calcium supplementation can be an effective way to improve the performance of CSTR at low HRT. (author)

  19. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    Science.gov (United States)

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Whole-body magnetic resonance imaging for staging and follow-up of pediatric patients with Hodgkin's lymphoma: comparison of different sequences

    International Nuclear Information System (INIS)

    Nava, Daniel; Oliveira, Heverton Cesar de

    2011-01-01

    Objective: to compare the performance of the T1, T2, STIR and DWIBS (diffusion-weighted whole-body imaging with background body signal suppression) sequences in the staging and follow-up of pediatric patients with Hodgkin's lymphoma in lymph node chains, parenchymal organs and bone marrow, and to evaluate interobserver agreement. Materials and methods: the authors studied 12 patients with confirmed diagnosis of Hodgkin's lymphoma. The patients were referred for whole body magnetic resonance imaging with T1-weighted, T2-weighted, STIR and DWIBS sequences. Results: the number of lymph node sites characterized as affected by the disease on T1- and T2-weighted sequences showed similar results (8 sites for both sequences), but lower than DWIBS and STIR sequences (11 and 12 sites, respectively). The bone marrow involvement by lymphoma showed the same values for the T1-, T2-weighted and DWIBS sequences (17 lesions), higher than the value found on STIR (13 lesions). A high rate of interobserver agreement was observed as the four sequences were analyzed. Conclusion: STIR and DWIBS sequences detected the highest number of lymph node sites characterized as affected by the disease. Similar results were demonstrated by all the sequences in the evaluation of parenchymal organs and bone marrow. A high interobserver agreement was observed as the four sequences were analyzed. (author)

  1. Anaerobic degradation of organic municipal solid waste together with liquid manure. Part 1; Anaerob nedbrydning af organisk husholdningsaffald sammen med gylle. Del 1

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, H.; Angelidaki, I.; Ahring, B.K.

    2001-01-01

    This project includes preliminary investigations about anaerobic degradation of organic municipal waste together with liquid manure. Investigations consist of characterization of organic municipal waste and preliminary test of anaerobic degradation of the waste. Characterization is related especially to the contents of environmentally hazardous substances, while the degradation process is characterized by means of determination of biogas potential in batch test and methane yield, organic VS (volatile solids) reduction and process stability in reactor test. In relation to environmentally hazardous substances the content of NPE and LAS in all tests of organic municipal waste was insignificant. The main problem was the content of DEHP, concentration of which is half of the cut-off value in the municipal waste. By TS (Total solid) reduction through the biogas process the DEHP concentration will thus exceed the cut-off value pr kg TS in the effluent if DEHP is not removed at the same time. The PAH concentration in the collected waste was only in one case at the level of the cut-off value which would exceed the cut-off value if no removal happens through the anaerobic degradation. The biogas potential of municipal waste was determined to be 187 m{sup 3}biogas/m{sup 3}waste, which makes organic municipal waste a very attractive waste type for biogas plants. No direct restraint by degradation of clean waste in batch test could be demonstrated. In the reactor test a stable degradation of organic municipal waste with an increasing supply of waste in mixture with manure could be established. By treatment of a mixture of municipal waste and manure in ratio to 50 : 50 a methane yield on 350 lCH{sub 4} kg VS and a VS-reduction between 50% and 60% could be obtained. Using clean municipal waste diluted with water the methane yield was higher than in the batch test and a VS reduction of up to 80% could be obtained. The analyses of DEHP and PAH in influent and effluent of the

  2. Influence of Inoculum Content on Performance of Anaerobic Reactors for Treating Cattle Manure using Rumen Fluid Inoculum

    OpenAIRE

    Sunarso; S. Johari; I N. Widiasa; Budiyono

    2009-01-01

    Biogas productions of cattle manure using rumen fluid inoculums were determined using batch anaerobic digesters at mesophilic temperatures (room and 38.5 oC). The aim of this paper was to analyze the influence of rumen fluid contents on biogas yield from cattle manure using fluid rumen inoculums. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure (M) was fed to each biodigester and mixed with rumen fluid (...

  3. Comparison of MRI pulse sequences for investigation of lesions of the cervical spinal cord

    International Nuclear Information System (INIS)

    Campi, A.; Pontesilli, S.; Gerevini, S.; Scotti, G.

    2000-01-01

    Small spinal cord lesions, even if clinically significant, can be due to the low sensitivity of some pulse sequences. We compared T2-weighted fast (FSE), and conventional (CSE) spin-echo and short-tau inversion-recovery (STIR)-FSE overlooked on MRI sequences to evaluate their sensitivity to and specificity for lesions of different types. We compared the three sequences in MRI of 57 patients with cervical spinal symptoms. The image sets were assessed by two of us individually for final diagnosis, lesion detectability and image quality. Both readers arrived at the same final diagnoses with all sequences, differentiating four groups of patients. Group 1 (30 patients, 53 %), with a final diagnosis of multiple sclerosis (MS). Demyelinating lesions were better seen on STIR-FSE images, on which the number of lesions was significantly higher than on FSE, while the FSE and CSE images showed approximately equal numbers of lesions; additional lesions were found in 9 patients. The contrast-to-noise ratio (CNR) of 17 demyelinating lesions was significantly higher on STIR-FSE images than with the other sequences. Group 2, 19 patients (33 %) with cervical pain, 15 of whom had disc protrusion or herniation: herniated discs were equally well delineated with all sequences, with better myelographic effect on FSE. In five patients with intrinsic spinal cord abnormalities, the conspicuity and demarcation of the lesions were similar with STIR-FSE and FSE. Group 3, 4 patients (7 %) with acute myelopathy of unknown aetiology. In two patients, STIR-FSE gave better demarcation of lesions and in one a questionable additional lesions. Group 4, 4 patients (7 %) with miscellaneous final diagnoses. STIR-FSE had high sensitivity to demyelinating lesions, can be considered quite specific and should be included in spinal MRI for assessment of suspected demyelinating disease. (orig.)

  4. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion.

    Science.gov (United States)

    Zhao, Chen; Yan, Hu; Liu, Yan; Huang, Yan; Zhang, Ruihong; Chen, Chang; Liu, Guangqing

    2016-06-01

    Huge amounts of fruit residues are produced and abandoned annually. The high moisture and organic contents of these residues makes them a big problem to the environment. Conversely, they are a potential resource to the world. Anaerobic digestion is a good way to utilize these organic wastes. In this study, the biomethane conversion performances of a large number of fruit residues were determined and compared using batch anaerobic digestion, a reliable and easily accessible method. The results showed that some fruit residues containing high contents of lipids and carbohydrates, such as loquat peels and rambutan seeds, were well fit for anaerobic digestion. Contrarily, residues with high lignin content were strongly recommended not to be used as a single substrate for methane production. Multiple linear regression model was adopted to simulate the correlation between the organic component of these fruit residues and their experimental methane yield, through which the experimental methane yield could probably be predicted for any other fruit residues. Four kinetic models were used to predict the batch anaerobic digestion process of different fruit residues. It was shown that the modified Gompertz and Cone models were better fit for the fruit residues compared to the first-order and Fitzhugh models. The first findings of this study could provide useful reference and guidance for future studies regarding the applications and potential utilization of fruit residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Alatriste-Mondragon, Felipe; Iranpour, R.

    2003-01-01

    of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP...... and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded...... under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2) -4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2) -3.59 x 10(-2) day(-1)). It is of high significance that experiments...

  6. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Treatment of opium alkaloid containing wastewater in sequencing batch reactor (SBR)—Effect of gamma irradiation

    Science.gov (United States)

    Bural, Cavit B.; Demirer, Goksel N.; Kantoglu, Omer; Dilek, Filiz B.

    2010-04-01

    Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83-90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD 5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm -3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm -3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.

  8. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    Science.gov (United States)

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  10. Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge.

    Science.gov (United States)

    Zhang, Yuyao; Li, Huan

    2017-09-18

    During anaerobic digestion, low-organic-content sludge sometimes is used as feedstock, resulting in deteriorated digestion performance. The operational experience of conventional anaerobic digestion cannot be applied to this situation. To investigate the feature of low-organic-content sludge digestion and explain its intrinsic mechanism, batch experiments were conducted using designed feedstock having volatile solids (VS) contents that were 30-64% of total solids (TS). The results showed that the accumulative biogas yield declined proportionally from 173.7 to 64.8 ml/g VS added and organic removal rate decreased from 34.8 to 11.8% with decreasing VS/TS in the substrate. The oligotrophic environment resulting from low-organic-content substrates led to decreased microbial activity and a switch from butyric fermentation to propionic fermentation. A first-order model described the biogas production from the batch experiments very well, and the degradation coefficient decreased from 0.159 to 0.069 day -1 , exhibiting a positive relation with organic content in substrate. The results observed here corroborated with data from published literature on anaerobic digestion of low-organic-content sludge and showed that it may not be feasible to recover energy from sludge with an organic content lower than 50% through mono digestion.

  11. Are anaerobes a major, underappreciated cause of necrotizing infections?

    Science.gov (United States)

    Zhao-Fleming, Hannah; Dissanaike, Sharmila; Rumbaugh, Kendra

    2017-06-01

    Necrotizing soft tissue infections (NSTIs) are the most severe and rapidly progressing class of skin and soft tissue infections (SSTIs). They are a surgical emergency and are associated with high mortality and morbidity. While NSTIs remain relatively rare, their incidence is steadily rising. Earlier diagnosis and more focused antibiotic treatments can potentially improve patient outcome, but both of these solutions require a more accurate understanding of the microbial component of these infections. While molecular detection methods, namely 16S sequencing, have not been traditionally used to identify the causative microorganisms in NSTIs, they are becoming more commonplace for other types of SSTIs, especially for chronic wound infections. In chronic wound infections, 16S sequencing has revealed a higher than previously detected prevalence of obligate anaerobes. Therefore, it is possible that 16S sequencing may also detect a higher than expected proportion of obligate anaerobes in NSTIs. In this review, we discuss the current state of knowledge concerning the diagnosis and treatment of NSTIs and present reasons why the role of anaerobes may be significantly underestimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimising the anaerobic co-digestion of urban organic waste using dynamic bioconversion mathematical modelling

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    2016-01-01

    Mathematical anaerobic bioconversion models are often used as a convenient way to simulate the conversion of organic materials to biogas. The aim of the study was to apply a mathematical model for simulating the anaerobic co-digestion of various types of urban organic waste, in order to develop...... in a continuously stirred tank reactor. The model's outputs were validated with experimental results obtained in thermophilic conditions, with mixed sludge as a single substrate and urban organic waste as a co-substrate at hydraulic retention times of 30, 20, 15 and 10 days. The predicted performance parameter...... (methane productivity and yield) and operational parameter (concentration of ammonia and volatile fatty acid) values were reasonable and displayed good correlation and accuracy. The model was later applied to identify optimal scenarios for an urban organic waste co-digestion process. The simulation...

  13. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester

    International Nuclear Information System (INIS)

    Romano, Rowena T.; Zhang, Ruihong

    2011-01-01

    The anaerobic digestion of onion residual from an onion processing plant was studied under batch-fed and continuously-fed mesophilic (35 ± 2 o C) conditions in an Anaerobic Phased Solids (APS) Digester. The batch digestion tests were performed at an initial loading of 2.8 gVS L -1 and retention time of 14 days. The biogas and methane yields, and volatile solids reduction from the onion residual were determined to be 0.69 ± 0.06 L gVS -1 , 0.38 ± 0.05 L CH 4 gVS -1 , and 64 ± 17%, respectively. Continuous digestion tests were carried out at organic loading rates (OLRs) of 0.5-2.0 gVS L -1 d -1 . Hydrated lime (Ca(OH) 2 ) was added to the APS-Digester along with the onion residual at 16 mg Ca(OH) 2 gVS -1 to control the pH of the biogasification reactor above 7.0. At steady state the average biogas yields were 0.51, 0.56, and 0.62 L gVS -1 for the OLRs of 0.5, 1.0, and 2.0 gVS L -1 d -1 respectively. The methane yields at steady state were 0.29, 0.32, and 0.31 L CH 4 gVS -1 for the OLRs of 0.5, 1.0, and 2.0 gVS L -1 d -1 respectively. The study shows that the digestion of onion residual required proper alkalinity and pH control, which was possible through the use of caustic chemicals. However, such chemicals will begin to have an inhibitory effect on the microbial population at high loading rates, and therefore alternative operational parameters are needed. -- Highlights: → An APS-Digester was used to study biogas production from onion solid residues. → Biogas and methane yields from onion solids were determined. → Study showed substantial findings for treating onion solid residues.

  14. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

    Science.gov (United States)

    Thomsen, T R; Finster, K; Ramsing, N B

    2001-04-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.

  15. Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    International Nuclear Information System (INIS)

    Qu, X.; Vavilin, V.A.; Mazeas, L.; Lemunier, M.; Duquennoi, C.; He, P.-J.; Bouchez, T.

    2009-01-01

    Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO 2 partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H 2 /H 2 CO 3 as well as acetate-oxidizing syntrophs, were considered. It was shown that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 o C where during the first and second steps methane was generated mostly from H 2 /H 2 CO 3 and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 o C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.

  16. [Factors of the rapid startup for nitrosation in sequencing batch reactor].

    Science.gov (United States)

    Li, Dong; Tao, Xiao-Xiao; Li, Zhan; Wang, Jun-An; Zhang, Jie

    2011-08-01

    The approach and factors for realizing the rapid startup of nitrosation were researched at the low level of dissolved oxygen (DO) in sequencing batch reactor (SBR). The main parameters of the reactor were controlled as follows: DO were 0.15-0.40 mg/L, pH values kept from 7.52 to 8.30, temperature maintained at 22.3-27.1 degrees C, and time of aeration was 8 hours. The purpose of rapid startup for nitrosation was achieved after 57 cycles (36 d) with the alternative influent of high and low ammonium wastewater (the mean values were 245.28 mg/L and 58.08 mg/L respectively) in a SBR, and the nitrosation rate was even 100%. Factors of accumulation of nitrite were investigated and the effects of DO and pH were analyzed during the startup for nitrosation. The results showed that it could improve the efficiency of nitrosation when DO concentration was increased appropriately. The activity of nitrite oxidizing bacteria (NOB) was recovered gradually when DO was higher than 0.72 mg/L. The key factor of controlling nitrosation reaction was the concentration of free ammonia (FA), while the final factor was the concentration of DO. pH was a desired controlling parameter to show the end of nitrification in a SBR cycle, while DO concentration did not indicate the finishing of SBR nitrification accurately because it increased rapidly before ammonia nitrogen was oxidized absolutely.

  17. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    Science.gov (United States)

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  18. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Moset, V.; Bertolini, E.; Cerisuelo, A.; Cambra, M.; Olmos, A.; Cambra-López, M.

    2014-01-01

    Sludge physicochemical composition, methane (CH 4 ) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH 4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH 4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  19. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  20. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    Science.gov (United States)

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  2. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  3. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    International Nuclear Information System (INIS)

    Wang Guanghua; Sui Jun; Shen Huishan; Liang Shukun; He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun; Hu Yongyou

    2011-01-01

    In this study, chlorine dioxide (ClO 2 ) instead of chlorine (Cl 2 ) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO 2 was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO 2 doses of 10 mg ClO 2 /g dry sludge which was much lower than that obtained using Cl 2 based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO 2 /g dry sludge for 40 min. ClO 2 oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO 2 oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  4. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor.

    Science.gov (United States)

    André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T

    2016-02-01

    The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of ammoniacal nitrogen on one-stage and two-stage anaerobic digestion of food waste

    Energy Technology Data Exchange (ETDEWEB)

    Ariunbaatar, Javkhlan, E-mail: jaka@unicas.it [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Scotto Di Perta, Ester [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy); Panico, Antonio [Telematic University PEGASO, Piazza Trieste e Trento, 48, 80132 Naples (Italy); Frunzo, Luigi [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Via Claudio, 21, 80125 Naples (Italy); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR (Italy); Lens, Piet N.L. [UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Pirozzi, Francesco [Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples (Italy)

    2015-04-15

    Highlights: • Almost 100% of the biomethane potential of food waste was recovered during AD in a two-stage CSTR. • Recirculation of the liquid fraction of the digestate provided the necessary buffer in the AD reactors. • A higher OLR (0.9 gVS/L·d) led to higher accumulation of TAN, which caused more toxicity. • A two-stage reactor is more sensitive to elevated concentrations of ammonia. • The IC{sub 50} of TAN for the AD of food waste amounts to 3.8 g/L. - Abstract: This research compares the operation of one-stage and two-stage anaerobic continuously stirred tank reactor (CSTR) systems fed semi-continuously with food waste. The main purpose was to investigate the effects of ammoniacal nitrogen on the anaerobic digestion process. The two-stage system gave more reliable operation compared to one-stage due to: (i) a better pH self-adjusting capacity; (ii) a higher resistance to organic loading shocks; and (iii) a higher conversion rate of organic substrate to biomethane. Also a small amount of biohydrogen was detected from the first stage of the two-stage reactor making this system attractive for biohythane production. As the digestate contains ammoniacal nitrogen, re-circulating it provided the necessary alkalinity in the systems, thus preventing an eventual failure by volatile fatty acids (VFA) accumulation. However, re-circulation also resulted in an ammonium accumulation, yielding a lower biomethane production. Based on the batch experimental results the 50% inhibitory concentration of total ammoniacal nitrogen on the methanogenic activities was calculated as 3.8 g/L, corresponding to 146 mg/L free ammonia for the inoculum used for this research. The two-stage system was affected by the inhibition more than the one-stage system, as it requires less alkalinity and the physically separated methanogens are more sensitive to inhibitory factors, such as ammonium and propionic acid.

  6. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    Science.gov (United States)

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. Copyright © 2015. Published by Elsevier B.V.

  7. Odor from anaerobic digestion of swine slurry: influence of pH, temperature and organic loading

    Directory of Open Access Journals (Sweden)

    Gerardo Ortiz

    2014-12-01

    Full Text Available Farm slurry management from storage and/or treatment is the main source of odors from swine production, which are determined by factors such as operational variations (organic loading, cleaning of facilities and animal diet (pH or environmental conditions (temperature. The aim of this study was to evaluate the influence of pH, temperature and organic loading on odor generation during anaerobic digestion of swine slurry. The methodology employed batch experimental units under controlled pH (6.0, 6.5, 7.0 and 8.0 and temperature (20, 35 and 55 °C conditions. Additionally, an Upflow Anaerobic Sludge Blanket (UASB system was operated under two Organic Loading Rate (OLR conditions as Chemical Oxygen Demand (COD (Phase I: 0.4 g L-1 d-1 of COD, Phase II: 1.1 g L-1 d-1 of COD. Odor (batch and UASB reactor was evaluated by detection and recognition threshold as Dilution Threshold (D-T. Acidic conditions (pH 6.0 and thermophilic temperatures (55 °C increased odors (1,358 D-T and acidified the system (Intermediate/Total Alkalinity ratio (IT/TA: 0.85 in batch experiments. Increasing OLR on UASB reactor reduced odors from 6.3 to 9.6 D-T d-1 due to an increase in the production of biogas (0.4 to 0.6 g g-1 COD removed of biogas.

  8. Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Baryła, Irena

    2012-07-01

    The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

  9. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  10. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  11. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  12. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    International Nuclear Information System (INIS)

    Feng, Xiuli; Liu, Huijie; Lippold, John C.

    2013-01-01

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening

  13. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

    2013-08-15

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

  14. Tetraphenylborate Catalyst Development for the Oak Ridge National Laboratory 20-L Continuously Stirred Tank Reactor Demonstration

    International Nuclear Information System (INIS)

    Barnes, M.J.

    2001-01-01

    The Salt Disposition Systems Engineering Team identified Small Tank Tetraphenylborate Precipitation as one of the three alternatives to replace the In-Tank Precipitation Facility at the Savannah River Site. The proposed design incorporates two continuous stirred tank reactors (CSTR) a concentrate tank and a sintered metal crossflow filter. Previous use of tetraphenylborate in batch operation and testing demonstrated the ability of the feed material to catalyze the decomposition of tetraphenylborate. The Small Tank Tetraphenylborate Precipitation design seeks to overcome the processing limitation of the unwanted reaction by rapid throughput and temperature control. Nitrogen inerting of the vapor space helps mitigate any safety (i.e., flammable) concerns of the reaction

  15. Microwave enhanced digestion of aerobic SBR sludge | Kennedy ...

    African Journals Online (AJOL)

    MWs) for improving characteristics of aerobic sequencing batch reactor (SBR) sludge to enhance mesophilic anaerobic digestion. Effects of pretreatment temperature, MW irradiation intensity and solids concentration on sludge characterisation ...

  16. Biogas Improvement by Adding Australian Zeolite During the Anaerobic Digestion of C:N Ratio Adjusted Swine Manure

    DEFF Research Database (Denmark)

    Wijesinghe, D. Thushari N.; Dassanayake, Kithsiri B.; Sommer, Sven G.

    2018-01-01

    Abstract: Maintenance of the ideal carbon: nitrogen (C:N) ratio with a minimum level of TAN is a key challenge for achieving maximum potential CH4 production through the anaerobic digestion process of agricultural waste such as swine manure. Biogas production can be enhanced by adding zeolite...... into the anaerobic digestion medium. However, the effects of zeolite addition to C:N ratio adjusted feedstock, on the digester performance is unknown. The objectives of this study were to investigate the effect of Australian zeolite on anaerobic digestion of swine manure with a C:N ratio adjusted to 30...... and to determine the optimal zeolite application rate to achieve the best performance. The Australian zeolite significantly enhanced CH4 production and reduced the lag phase of anaerobic digestion in batch production. The optimal addition rate of zeolite was appeared to be around 40 g/L. The better digester...

  17. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... ðl dÞ1 and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 l ðlreactor dÞ1, with a yield of 0.05 l gas ðg VSÞ1. These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  18. OPTIMIZATION OF STIRRING SPEED AND STIRRING TIME TOWARD NANOPARTICLE SIZE OF CHITOSAN-SIAM CITRUS PEEL (Citrus nobilis L.var Microcarpa 70% ETHANOL EXTRACT

    Directory of Open Access Journals (Sweden)

    Wintari Taurina

    2017-04-01

    Full Text Available Siam citrus peel (Citrus nobilis L. var. Microcarpa is a plant derived from Sambas Regency, West Kalimantan Province. Bioavailability of herbal active compounds can be enhanced by formulating extract into nanoparticle. The polymer used was chitosan with crosslinker Na-TPP. Stirring speed and stirring time play an important role to produce small particle size in forming nanoparticle using ionic gelation method. Enhancement of stirring speed and stirring time could reduce particle size. Nanoparticles were prepared using ionic gelation method by mixing Na-TPP, extract and chitosan (1:1:6 with varying the stirring speed 500 rpm, 1000 rpm, 1500 rpm and stirring time 1 hrs, 2 hrs, 3 hrs. The particle size of nanoparticle was found to be 85.3 nm at 1000 rpm of stirring speed and 3 hrs of stirring times, with polidispersity index 0.287, zeta potential +32.37 mV and entrapment efficiency 87.12 %.

  19. Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Jeong-Hoon; Kim, Sang-Hyoun; Yu, Byung Jo; Yoon, Jeong-Jun; Park, Hee-Deung

    2015-08-01

    To search for evidence of syntrophic acetate oxidation by cluster II Spirochaetes with hydrogenotrophic methanogens, batch reactors seeded with five different anaerobic sludge samples supplemented with acetate as the sole carbon source were operated anaerobically. The changes in abundance of the cluster II Spirochaetes, two groups of acetoclastic methanogens (Methanosaetaceae and Methanosarcinaceae), and two groups of hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales) in the reactors were assessed using qPCR targeting the 16S rRNA genes of each group. Increase in the cluster II Spirochaetes (9.0±0.4-fold) was positively correlated with increase in hydrogenotrophic methanogens, especially Methanomicrobiales (5.6±1.0-fold), but not with acetoclastic methanogens. In addition, the activity of the cluster II Spirochaetes decreased (4.6±0.1-fold) in response to high hydrogen partial pressure, but their activity was restored after consumption of hydrogen by the hydrogenotrophic methanogens. These results strongly suggest that the cluster II Spirochaetes are involved in syntrophic acetate oxidation in anaerobic digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modified ADM1 for modeling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge.

    Science.gov (United States)

    Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun

    2017-02-01

    Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.

  1. Study of the operational conditions for anaerobic digestion of urban solid wastes

    International Nuclear Information System (INIS)

    Castillo M, Edgar Fernando; Cristancho, Diego Edison; Victor Arellano, A.

    2006-01-01

    This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg -1 of wet waste day -1 . Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT

  2. Mechanism for Self-Reacted Friction Stir Welding

    Science.gov (United States)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  3. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  4. Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization

    International Nuclear Information System (INIS)

    Molinuevo-Salces, Beatriz; González-Fernández, Cristina; Gómez, Xiomar; García-González, María Cruz; Morán, Antonio

    2012-01-01

    Highlights: ► Vegetable waste as co-substrate for swine manure anaerobic digestion. ► Two hydraulic retention times of 25 and 15 d, respectively. ► SEM characterization of anaerobic sludges to observe microbial composition. ► Vegetable waste as co-substrate increases methane yields up to three times. ► Microbial composition changes after 120 d of digestion. -- Abstract: The effect of adding vegetable waste as a co-substrate in the anaerobic digestion of swine manure was investigated. The study was carried out at laboratory scale using semi-continuous stirred tank reactors working at 37 °C. Organic loading rates (OLRs) of 0.4 and 0.6 g VS L −1 d −1 were evaluated, corresponding to hydraulic retention times (HRTs) of 25 and 15 d, respectively. The addition of vegetable wastes (50% dw/dw) resulted in an improvement of 3 and 1.4-fold in methane yields at HRTs of 25 and 15 d, respectively. Changes on microbial morphotypes were studied by Scanning Electron Microscopy (SEM). Samples analyzed were sludge used as inoculum and digestate obtained from swine manure anaerobic reactors. SEM pictures demonstrated that lignocellulosic material was not completely degraded. Additionally, microbial composition was found to change to cocci and rods morphotypes after 120 d of anaerobic digestion.

  5. Speciation of Co(II) and Ni(II) in anaerobic bioreactors measured by competitive ligand exchange - adsorptive stripping voltammetry

    NARCIS (Netherlands)

    Jansen, S.; Steffen, F.; Threels, W.F.; Leeuwen, van H.P.

    2005-01-01

    Competitive ligand exchange-adsorptive stripping voltammetry is applied to speciation analysis of dissolved Ni(II) and Co(II) in an anaerobic bioreactor and similar batch media. Co and Ni speciation in these media can be measured down to concentration levels of ca. 1 nM. Sulfide interference is

  6. Evaluation of Nitrification Inhibition Using Sequencing Batch Reactors and BioWin Modeling, and the Effect of Aqueous Film Forming Foam on Biological Nutrient Removal

    OpenAIRE

    Hingley, Daniel McCabe

    2011-01-01

    To evaluate continuous and sporadic nitrification inhibition at the HRSD Nansemond Wastewater Treatment Plant, which has a history of nitrification upsets, continuous sequencing batch reactors (SBRs) were operated to simulate the full-scale plant. Four reactors were operated in this study. One reactor was fed with raw influent (RWI) from the Nansemond Wastewater Treatment Plant (NP). Another was fed with NP primary clarifier influent (PCI), which includes the raw influent, as well as plant re...

  7. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization

    International Nuclear Information System (INIS)

    Zheng, Mingxia; Schideman, Lance C.; Tommaso, Giovana; Chen, Wan-Ting; Zhou, Yan; Nair, Ken; Qian, Wanyi; Zhang, Yuanhui; Wang, Kaijun

    2017-01-01

    Highlights: • Nutrient reuse and energy recovery of HTL-WW are realized. • Anaerobic digestion of HTL-WW is vital to the sustainability of algal biocrude. • An anaerobic toxicity assay was conducted to evaluate HTL-WW toxicity. • The presence of adsorbents and biofilms effectively minimized inhibition. • A portion of the toxic compounds could be removed after anaerobic digestion. - Abstract: Previous studies demonstrate anaerobic digestion of hydrothermal liquefaction wastewater (HTL-WW) is significant to the sustainability of algal biofuel development for nutrient reuse and residual energy recovery. HTL-WW contains substantial amounts of residual energy but is toxic to anaerobes. With 6% HTL-WW converted from cyanobacteria (e.g. Spirulina), anaerobes were 50% inhibited. In this study, zeolite, granular activated carbon (GAC), and polyurethane matrices (PM) were used during a two-round anaerobic batch test with HTL-WW, and in the presence of each material, the total methane yields were 136 mL/g COD, 169 mL/g COD, and 168 mL/g COD, respectively, being 11%, 37% and 36% higher than the control. GAC was considered promising due to its highest methane yield of 124 mL/g COD at the second feeding, indicating a good recovery of adsorption capacity. The observed low methane production rates indicated the necessity for anaerobic process optimization. The physicochemical analysis of the digestates demonstrated that most of the compounds identified in the HTL-WW were degraded.

  9. Demand-driven biogas production in anaerobic filters

    International Nuclear Information System (INIS)

    Lemmer, Andreas; Krümpel, Johannes

    2017-01-01

    Highlights: • Feasibility of demand-driven biogas production in anaerobic filters demonstrated. • Predictable ramping up of gas production by 300–400% within one hour. • Degradation degree remained stable >92% for all substrates and operation modes. • Measure of responsiveness to sudden changes in organic loading rate introduced. • Carbon balance for demand-driven operation. - Abstract: The growth in electricity generated from renewable energy sources is posing challenges for grid stability and the need to counter balance the intermittent power supply by these sources. Biogas technology can offer such grid services by adapting biogas production to balance the demand and subsequent electricity production of the combined heat and power unit. Innovative plant designs, such as two-staged anaerobic digestion, could possibly adapt to imbalances in the electricity grid within shorter time frames than traditional continuously stirred tank reactors (CSTR). The scope of this research paper was to demonstrate the feasibility of operating an anaerobic filter for highly flexible gas production. The repeatability of this type of operation was examined to demonstrate its predictability. Based on gas production profiles, a measure of responsiveness was introduced to determine whether and how rapidly adaptations to the production process are possible. Furthermore, the influence of substrate composition was tested and finally a carbon balance was derived to evaluate operation performance. The results indicated that anaerobic filters are well suited for flexible gas production and the results were well reproduced under the conditions presented. Substrate composition was found to have no effect on increasing the rate of methane production. The pH value in the reactor did have an effect on the solubility of CO_2 and HCO_3"− and therefore marked an important parameter that determines biogas composition, especially under varying organic loading rates. The carbon balance had

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible

  11. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  12. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.

    Directory of Open Access Journals (Sweden)

    Melissa R Christopherson

    Full Text Available Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

  13. A Systematic Approach to Quality Oriented Product Sequencing for Multistage Manufacturing Systems

    OpenAIRE

    Zhang, Faping; Butt, Shahid Ikramullah

    2016-01-01

    Product sequencing is one way to reduce cost and improve product quality for multistage manufacturing systems (MMS). However, systematically evaluating the influence of product sequence on quality performance for MMS is still a challenge. By considering the rate of incoming conforming product, manufacturing system quality transition between batch to batch, and quality propagation along stages, this paper investigates the appropriate batch policies and product sequencing for MMS so that satisf...

  14. Minimizing mixing intensity to improve the performance of rice straw anaerobic digestion via enhanced development of microbe-substrate aggregates.

    Science.gov (United States)

    Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile

    2017-12-01

    The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Carmen S.D.; Madeira, Luis M.; Boaventura, Rui A.R.

    2009-01-01

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD 5 and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  16. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    Science.gov (United States)

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  17. On the effect of aqueous ammonia soaking pretreatment on batch and continuous anaerobic digestion of digested swine manure fibers

    DEFF Research Database (Denmark)

    Mirtsou Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis

    2012-01-01

    , their economical profitable operation relies on increasing the methane yield from manure, and especially of its solid fraction which is not so easily degradable. Aqueous Ammonia Soaking (AAS) has been successfully applied on digested fibers separated from the effluent of a manure-fed, full-scale anaerobic digester......-pretreated digested manure fibers on the kinetics of anaerobic digestion process. It was found that AAS treatment had a profound effect mainly on the hydrolysis rate of particulate carbohydrates....

  18. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  19. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    International Nuclear Information System (INIS)

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun

    2015-01-01

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g −1 and settling velocity of 37.2 ± 2.7 m h −1 , were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V max ) varied between 1164.5 mg L −1 h −1 and 1867.4 mg L −1 h −1 . High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule

  20. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  1. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    Science.gov (United States)

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  2. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: Batch versus CSTR experiments to investigate optimal design

    OpenAIRE

    Girault , R.; Bridoux , G.; Nauleau , F.; Poullain , C.; Buffet , J.; Peu , P.; Sadowski , A.G.; Béline , F.

    2012-01-01

    In this study, the maximum ratio of greasy sluvdge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determi...

  3. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guanghua [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Sui Jun [Guangzhou municipal engineering design and research institute, Guangzhou, 510060 (China); Shen Huishan; Liang Shukun [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China); He Xiangming; Zhang Minju; Xie Yizhong; Li Lingyun [Nanhai Limited Liability Development Company, Foshan, 528200 (China); Hu Yongyou, E-mail: ppyyhu@scut.edu.cn [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration area, College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006 (China) and State Key Lab of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology; Guangzhou, 510640 (China)

    2011-08-15

    In this study, chlorine dioxide (ClO{sub 2}) instead of chlorine (Cl{sub 2}) was proposed to minimize the formation of chlorine-based by-products and was incorporated into a sequencing batch reactor (SBR) for excess sludge reduction. The results showed that the sludge disintegrability of ClO{sub 2} was excellent. The waste activated sludge at an initial concentration of 15 g MLSS/L was rapidly reduced by 36% using ClO{sub 2} doses of 10 mg ClO{sub 2}/g dry sludge which was much lower than that obtained using Cl{sub 2} based on similar sludge reduction efficiency. Maximum sludge disintegration was achieved at 10 mg ClO{sub 2}/g dry sludge for 40 min. ClO{sub 2} oxidation can be successfully incorporated into a SBR for excess sludge reduction without significantly harming the bioreactor performance. The incorporation of ClO{sub 2} oxidation resulted in a 58% reduction in excess sludge production, and the quality of the effluent was not significantly affected.

  4. Optimization of Biological Treatment of an Industrial Wastewater in an Intermittent Aeration Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Azar Asadi

    2015-11-01

    Full Text Available In this paper, the simultaneous removal of carbon and nutrients (nitrogen and phosphorus from Faraman’s industrial wastewater (FIW in a time-based sequencing batch reactor (SBR was investigated. The experiments were conducted based on a central composite design (CCD and analyzed using the response surface methodology (RSM. Reaction and aeration times were selected for the purposes of analyzing, modeling, and optimizing the process. Nine dependent parameters were monitored as process responses. The region of exploration for the process was taken as the area enclosed by the boundaries of reaction time (12-36 h and aeration time (40-60 min/h. Reaction time was found to be the most effective variable and showed a decreasing impact on the total chemical oxygen demand (TCOD, slowly-biodegradable chemical oxygen demand (sbCOD, total nitrogen (TN, and total phosphorus (TP removal efficiencies. The optimum operating conditions were determined in the range of 12 to 16 h for the reaction time and 40 to 60 min/h for the aeration time.

  5. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jinming [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China); Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Zhang, Ruihong; Sun, Huawei [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); El-Mashad, Hamed M. [Department of Biological and Agricultural Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Department of Agricultural Engineering, Mansoura University, El-Mansoura (Egypt); Ying, Yibin [Department of Biosystems Engineering, Zhejiang University, Hangzhou 310029 (China)

    2008-12-15

    The effect of different food to microorganism ratios (F/M) (1-10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 {+-} 2 C and 50 {+-} 2 C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H{sub 2}/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H{sub 2}/g VS at the F/M of 6. A modified Gompertz equation adequately (R{sup 2} > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation. (author)

  6. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-01-01

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day −1 . • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day −1

  7. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  8. Mesophilic anaerobic co-digestion of the organic fraction of municipal solid waste with the liquid fraction from hydrothermal carbonization of sewage sludge.

    Science.gov (United States)

    De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F

    2018-06-01

    In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion.

    Science.gov (United States)

    Marques, Isabel Paula; Gil, Luís; La Cara, Francesco

    2014-01-01

    In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. No lag phases were observed and a methane yield of 0.126 to 0.142 m(3) kg(-1) chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic

  10. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  11. Sorption of neptunium(V) on opalinus clay under aerobic/anaerobic conditions

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Amayri, S.; Drebert, J.; Reich, T.

    2011-01-01

    The interaction between neptunium(V) and a natural argillaceous rock (Opalinus Clay (OPA), Mont Terri, Switzerland) has been investigated in batch sorption experiments by varying pH (6-10), Np(V) concentration (10 -12 -10 -4 M), solid-to-liquid ratio (2-20 g/L), and partial pressure of CO 2 (10 -3.5 and 10 -2.3 atm) under aerobic/anaerobic conditions in saturated calcite solution. All batch experiments were carried out using well characterized aerobic and anaerobic dry powders of OPA. The results show a great influence of pH on Np(V) sorption. Under aerobic conditions sorption increases with increasing pH until maximum sorption is reached between pH 8-9. At pH > 9 sorption decreases due to the formation of negatively charged Np(V)-carbonate complexes. By increasing p CO 2 from 10 -3.5 to 10 -2.3 atm, the sorption edge is shifted ∼ 0.5 units to lower pH values. Under anaerobic conditions stronger sorption of 8 x 10 -6 M Np(V) was found, possibly due to partial reduction of Np(V) to Np(IV). The sorption of 8 x 10 -6 M Np(V) under aerobic conditions at pH 8.2 in saturated calcite solution increases continuously with increasing solid-to-liquid ratio of OPA in the range of 2-20 g/L with a constant K d value of 126 ± 13 L/kg. The sorption isotherm was measured over seven orders of magnitude in Np(V) concentration using 239 Np as tracer. The sorption isotherm could be divided in a part of linear sorption behaviour between 10 -13 -10 -9 M Np(V) and non-linear behaviour in the range of 10 -9 -10 -4 M Np(V). (orig.)

  12. Design considerations and operational performance of Anaerobic Digester: A Review

    Directory of Open Access Journals (Sweden)

    Muzaffar Ahmad Mir

    2016-04-01

    Full Text Available Due to the decline in fossil fuel reservoirs, the researchers emphasized more on the production of biogas from organic waste. Producing the renewable energy from biodegradable waste helps to overcome the energy crisis and solid waste management, done by anaerobic digestion. Anaerobic digestion is controlled breakdown of organic matter into methane gas (60%, carbon dioxide (40%, trace components along with digested used as soil conditioner. However there is vast dearth of literature regarding the design considerations. The batch digestion system yields a cost-effective and economically viable means for conversion of the food waste to useful energy. It is therefore recommended that such process can be increasingly employed in order to get and simultaneously protect the environment .This paper aims to draw key analysis and concern about the design considerations, analysis of gas production, substrates and inoculums utilization, uses and impacts of biogas.

  13. Effects of tool speeds and corresponding torque/energy on stir zone formation during friction stir welding/processing

    International Nuclear Information System (INIS)

    Cui, S; Chen, Z W

    2009-01-01

    The way processing parameters and the measurable thermomechanical responses relate to the individual and combined flows forming the different processed zones during friction stir welding/processing has been studied. Experimentally, a cast Al-7Si-0.3Mg alloy was used to provide readily identifiable processed zones. A series of friction stir experiments covering a wide range of tool forward and rotation speeds were conducted followed by the measurement of individual and combined stir areas. It has been found that the basic modes of material flow did not change but the relative volume of each flow depended on both forward and rotation speeds. The trends observed in the present data explain how pin rotation relates to the material transportation mechanism and the associated torque required. This data also explains how forward speed, not rotation speed, relates to specific energy and the volume of the total stir zone.

  14. Interactive model to assess economics of anaerobic digestion of the farm

    Science.gov (United States)

    1981-08-01

    An interactive computer model, to provide economic assessment for on the farm anaerobic digestion systems was designed. The model is accessed as part of the MASEC Models Library. It consists of two phases: engineering analysis and economic analysis. User inputs are stored in a data base and may be retained for future use. Model outputs include a recap of user inputs, calculations for gas production, digester heat requirements, system revenues, yearly cash flow, and a graph of the net present value of the investment. The model is generalized so that nonfarm applications may also be analyzed. The program will work equally well for various digester designs such as continuously stirred reactors, plug flow systems, and fluidized bed columns.

  15. An improved enzyme-linked immunosorbent assay for whole-cell determination of methanogens in samples from anaerobic reactors

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Ahring, B.K.

    1997-01-01

    An enzyme-linked immunosorbent assay was developed for the detection of whole cells of methanogens in samples from anaerobic continuously stirred tank digesters treating slurries of solid waste. The assay was found to allow for quantitative analysis of the most important groups of methanogens......-quality microtiter plates and the addition of dilute hydrochloric acid to the samples. In an experiment on different digester samples, the test demonstrated a unique pattern of different methanogenic strains present in each sample. The limited preparatory work required for the assay and the simple assay design make...... in samples from anaerobic digesters in a reproducible manner. Polyclonal antisera against eight strains of methanogens were employed in the test, The specificities of the antisera were increased by adsorption with cross-reacting cells. The reproducibility of the assay depended on the use of high...

  16. The role of organic load and ammonia inhibition in anaerobic digestion of tannery fleshing

    Directory of Open Access Journals (Sweden)

    Cecilia Polizzi

    2018-06-01

    Full Text Available In this study, batch tests on anaerobic digestion of tannery fleshing (skin-residue waste from hides’ tanning process, as sole substrate, have been performed with the purpose of assessing the effects of high substrate concentration and consequent ammonia inhibition on the process. Co-digestion with tannery primary sludge was also evaluated. According to the results, no inhibition occurred at initial organic load up to 5 gVS/l; an inhibited steady state was observed at 10 gVS/l, and system failure and instability was showed at the highest load of 20 gVS/l. Co-digestion with tannery primary sludge proved feasible, probably due to dilution effect. The observed ammonia and VFA accumulation over the experimental time-lapse is also discussed. Results are intended to increase knowledge on the technological application of anaerobic digestion of sole tannery fleshing, in the perspective of its application as on-site treatment solution for decentralised tanneries. Keywords: Anaerobic digestion, Tannery waste, Ammonia inhibition, Organic load

  17. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process....... Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates....... Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...

  18. Gimballed Shoulders for Friction Stir Welding

    Science.gov (United States)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  19. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  20. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    Science.gov (United States)

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Gimbaled-shoulder friction stir welding tool

    Science.gov (United States)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  2. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    Science.gov (United States)

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  4. Influence of Hydraulic Retention Time on Biogas Production from Frozen Seafood Wastewater using Decanter Cake as Anaerobic Co-digestion Material

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2012-01-01

    In this research, an anaerobic co-digestion using decanter cake from palm oil mill industry to improve the biogas production from frozen seafood wastewater is studied using Continuously Stirred Tank Reactor (CSTR) process. The experiments were conducted in laboratory-scale. The suitable Hydraulic Retention Time (HRT) was observed in CSTR experiments with 24 hours of mixing time using the mechanical mixer. The HRT of CSTR process impacts on the efficiency of biogas production. The best perform...

  5. Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.

    Science.gov (United States)

    Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan

    2014-10-01

    The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Anaerobic digestion of cellulosic wastes: pilot plant studies

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-08-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas, and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs lasting 36, 90, and 423 d were made using batch and batch-fed conditions. Solids solubilization rates and gas production rates were approximately double the target values of 0.6 g of cellulose per L of reactor volume per d and 0.5 L of off-gas per L of reactor per d. Greater than 80% destruction of solids was obtained. Preliminary effluent characterization and disposal studies were completed. A simple dynamic process model has been constructed to aid in process design and for use in process monitoring and control of a large-scale digester. 5 refs., 20 figs., 3 tabs

  7. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  8. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. BIOGAS PRODUCTION IN DAIRY CATTLE SYSTEMS, USING BATCH DIGESTERS WITH AND WITHOUT SOLIDS SEPARATION IN THE SUBSTRATES

    OpenAIRE

    Anjos, Isis Dos; Toneli, Juliana T. C. L.; Sagula, Alex L.; Lucas Junior, Jorge de

    2017-01-01

    ABSTRACT This research aimed to evaluate the biogas production during the anaerobic biodigestion process of dairy cattle manure, with and without solids separation. Sixteen biodigesters of the batch type were used, each one with 2L of capacity, supplied with manure in four different conditions: (1) pure manure, after washing the floors of the free stall system; (2) manure after the solids separator; (3) manure after the solids separator and sand decanter and (4) manure with the solid retained...

  10. High-resolution STIR for 3-T MRI of the posterior fossa: visualization of the lower cranial nerves and arteriovenous structures related to neurovascular compression.

    Science.gov (United States)

    Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi

    2012-09-01

    Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.

  11. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    Science.gov (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  12. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge

    Directory of Open Access Journals (Sweden)

    Jianping Cao

    2017-07-01

    Full Text Available The effects of different types and concentrations of electron donors (glucose, starch, methanol and sodium acetate on the formation of phosphine from anaerobic activated sludge that has been domesticated for a prolonged period were studied in small batch experiments. The results show that types and concentrations of electron donor have significant effects on the production of phosphine from anaerobic activated sludge. Among them, glucose was the most favourable electron donor, whereas sodium acetate was the least favourable electron donor for the removal of phosphorus and the production of phosphine. Higher concentrations of electron donors were more favourable for the reduction of phosphate into phosphine, and supplying more than nine times the amount of electron donor as theoretically required for the reduction of phosphate into phosphine was favourable for the production of phosphine.

  13. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  14. Reducing the dietary protein: Energy (P: E) ratio changes solubilization and fermentation of rainbow trout (Oncorhynchus mykiss) faeces

    DEFF Research Database (Denmark)

    Letelier-Gordo, Carlos Octavio; Dalsgaard, Anne Johanne Tang; Suhr, Karin Isabel

    2015-01-01

    Nutrients discharged from aquaculture industries can detrimentally affect water recipients, and this problem must be addressed if the production is to be decoupled from the natural environment. Denitrification is a process by which nitrate is removed using soluble, readily biodegradable carbon...... compounds. Hydrolysis and concomitant fermentation of organic solids produces such soluble carbon compounds e.g. in the form of volatile fatty acids (VFAs). The current study examined the hydrolysis and the production of VFAs, the carbon:nitrogen ratio (C:N), and the release of nutrients (phosphorus...... collected and pooled prior to incubation in 15, 1L anoxic/anaerobic batch reactors maintained at 20±2°C and continuous magnetic stirring. Daily samples from the batch reactors were obtained for 7 successive days and analyzed for total ammonia nitrogen (TAN), phosphorus expressed as orthophosphate (PO43--P...

  15. Nutritional optimization for anaerobic growth of Bacillus steaothermophilus LLD-16

    Directory of Open Access Journals (Sweden)

    Muhammad Javed

    2016-04-01

    Full Text Available In this study, a range of nutritional supplements including twenty amino acids, major vitamins and four nucleic acid bases were exploited as added-value supplements for the growth of a lactate-minus (ldh mutant Bacillus stearothermophilus LLD-16 under anaerobic environment. The chemostat studies revealed that five amino acids that includes aspartate, glutamate, isoleucine, methionine, and serine were essential for persuaded growth of B. stearothermophilus LLD-16. The anaerobic batch studies showed that a number of nutritional supplements, such as, p-aminobenzoic acid (PABA, folic acid, pantothenic acid, adenine, glycine, leucine, tryptophan, proline, alanine and α-ketoglutarate, when added individually, improved the biomass levels. In contrast, the higher concentrations of cyanocobalamine or biotin, guanine, uracil and isoleucine were found inhibitory. Furthermore, the study explains why the highest biomass formation cannot necessarily be achieved on the richest mixture of amino acids, and the inadequacy of the biosynthetic machinery is very much dependent on the growth conditions of the microorganism.

  16. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  17. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Rahimi, Yousef; Torabian, Ali; Mehrdadi, Naser; Shahmoradi, Behzad

    2011-01-01

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y obs ) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  18. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  19. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  20. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Sirisha, K.; Rao, N. Chandrasekhara; Sarma, P.N.; Reddy, S. Jayarama

    2004-01-01

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 μg/g, 6000 μg/g and 12000 μg/g. At 3000 μg/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 μg/g of chlorpyrifos, 82.5% was degraded. However, for 12000 μg/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 μg/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t 0.5 ) was estimated to be 6.3 h for 3000 μg/g of substrate, 17.5 h for 6000 μg/g and 732.2 h for 12000 μg/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor

  1. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sirisha, K. [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India); Rao, N. Chandrasekhara [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sarma, P.N. [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Reddy, S. Jayarama [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India)]. E-mail: profjreddy_s@yahoo.co.in

    2004-12-10

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 {mu}g/g, 6000 {mu}g/g and 12000 {mu}g/g. At 3000 {mu}g/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 {mu}g/g of chlorpyrifos, 82.5% was degraded. However, for 12000 {mu}g/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 {mu}g/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t{sub 0.5}) was estimated to be 6.3 h for 3000 {mu}g/g of substrate, 17.5 h for 6000 {mu}g/g and 732.2 h for 12000 {mu}g/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor.

  2. Anaerobic digestion of cellulosic wastes: laboratory tests

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1984-11-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 10 references, 17 figures, 4 tables

  3. Cellulolytic properties of an extremely thermophilic anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, J A; Morgan, H W; Daniel, R M [Waikato Univ., Hamilton (New Zealand). Microbial Biochemistry and Biotechnology Unit

    1990-09-01

    An extremely thermophilic anaerobe was isolated from a New Zealand hot spring by incubating bacterial mat strands in a medium containing xylan. The Gramreaction-negative organism that was subsequently purified had a temperature optimum of 70deg C and a pH optimum of 7.0. The isolate, designated strain H173, grew on a restricted range of carbon sources. In batch culture H173 could degrade Avicel completely when supplied at 5 or 10 g l{sup -1}. There was an initial growth phase, during which a cellulase complex was produced and carbohydrates fermented to form acetic and lactic acids, followed by a phase where cells were not metabolising but the cellulase complex actively converted cellulose to glucose. When co-cultered with strain Rt8.B1, an ethanologenic extreme thermophile, glucose was fermented to ethanol and acetate, and no reducing sugars accumulated in the medium. In pH controlled batch culture H173 produced an increased amount of lactate and acetate but there was again a phase when reducing sugars accumulated in the medium, and these were converted to ethanol by co-culture with Rt8.B1. (orig.).

  4. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  6. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  8. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    Science.gov (United States)

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  9. Boosting biogas yield of anaerobic digesters by utilizing concentrated molasses from 2nd generation bioethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Shiplu [Department of Renewable Energy, Faculty of Engineering and Science, University of Agder, Grimstad-4879 (Norway); Moeller, Henrik Bjarne [Department of Biosystems Engineering, Faculty of Science and Technology, Aarhus University, Research center Foulum, Blichers Alle, Post Box 50, Tjele-8830 (Denmark)

    2013-07-01

    Concentrated molasses (C5 molasses) from 2nd generation bioethanol plant has been investigated for enhancing productivity of manure based digesters. A batch study at mesophilic condition (35+- 1 deg C) showed the maximum methane yield from molasses as 286 LCH4/kgVS which was approximately 63% of the calculated theoretical yield. In addition to the batch study, co-digestion of molasses with cattle manure in a semi-continuously stirred reactor at thermophilic temperature (50+- 1 deg C) was also performed with a stepwise increase in molasses concentration. The results from this experiment revealed the maximum average biogas yield of 1.89 L/L/day when 23% VSmolasses was co-digested with cattle manure. However, digesters fed with more than 32% VSmolasses and with short adaptation period resulted in VFA accumulation and reduced methane productivity indicating that when using molasses as biogas booster this level should not be exceeded.

  10. Fermentative Hydrogen Production from Combination of Tofu processing and anaerobic digester sludge wastes using a microbial consortium

    International Nuclear Information System (INIS)

    You-Kwan, O.; Mi-Sun, K.

    2009-01-01

    The combination of Tofu manufacturing waste and anaerobic digester sludge was studied for fermentative H 2 production in batch and continuous modes using a mixed culture originated from sewage. In order to increase the solubilization of organic substrates from Tofu waste, various pretreatments including heat-treatment, acid/alkali treatment, and sonication were examined alone or in combination with others. (Author)

  11. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    Science.gov (United States)

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens

  12. Performance of the Subsurface Flow Wetland in Batch Flow for Municipal Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Abolfazle Rahmani sani

    2009-06-01

    Full Text Available Subsurface flow wetlands are one of the natural treatment methods used for municipal and industrial wastewater treatment that are economical in terms of energy consumption and cost-effectiveness. Much research has been conducted on wetland operation with continuous flow but not enough information is available on batch flow. This study investigates wetland efficiency in batch flow. For the purposes of this research, two pretreatment units of the anaerobic pond type with digestion pits and two subsurface flow wetlands with a 2-day detention time were built on the pilot scale. The cells were charged with sand of 5 mm effective size, uniformity coefficient of 1.5, and a porosity of 35%. One wetland cell and one pretreatment unit were used as control. The municipal wastewater selected to be monitored for the one-year study period had a flow rate of 26 m3/day and average BOD5 of 250mg/l, TSS of 320mg/l, TKN of 35mg/l, TP of 12mg/l and TC of 2×108 MPN/100ml from Sabzevar Wastewater Treatment Plant. The average removal efficiencies of BOD5,TSS,TKN,TP, and TC in the continuous flow for the combined control pretreatment and wetland cell were 77.2%, 92%, 91%, 89%, 96.5% while the same values for the batch flow for the combined experimental pretreatment and wetland cell were 92%, 97%, 97.5%, 97%, and 99.75%, respectively. The removal efficiency in the subsurface flow wetlands in the batch flow was higher than that of the continuous flow. Thus, for wastewaters with a high pollution level, the batch flow can be used in cell operation in cases where there is not enough land for spreading the wetland cell.

  13. Microbial and nutritional regulation of high-solids anaerobic mono-digestion of fruit and vegetable wastes.

    Science.gov (United States)

    Mu, Hui; Li, Yan; Zhao, Yuxiao; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Jin, Fuqiang

    2018-02-01

    The anaerobic digestion of single fruit and vegetable wastes (FVW) can be easily interrupted by rapid acidogenesis and inhibition of methanogen, and the digestion system tends to be particularly unstable at high solid content. In this study, the anaerobic digestion of FVW in batch experiments under mesophilic condition at a high solid concentration of 10% was successfully conducted to overcome the acidogenesis problem through several modifications. Firstly, compared with the conventional anaerobic sludge (CAS), the acclimated anaerobic granular sludge (AGS) was found to be a better inoculum due to its higher Archaea abundance. Secondly, waste activated sludge (WAS) was chosen to co-digest with FVW, because WAS had abundant proteins that could generate intermediate ammonium. The ammonium could neutralize the accumulated volatile fatty acids (VFAs) and prevent the pH value of the digestion system from rapidly decreasing. Co-digestion of FVW and WAS with TS ratio of 60:40 gave the highest biogas yield of 562 mL/g-VS and the highest methane yield of 362 mL/g-VS. Key parameters in the digestion process, including VFAs concentration, pH, enzyme activity, and microbial activity, were also examined.

  14. MRI in multiple sclerosis of the spinal cord: evaluation of fast short-tan inversion-recovery and spin-echo sequences

    International Nuclear Information System (INIS)

    Dietemann, J.L.; Thibaut-Menard, A.; Neugroschl, C.; Gillis, C.; Abu Eid, M.; Bogorin, A.; Warter, J.M.; Tranchant, C.

    2000-01-01

    We compared the sensitivity of T2-weighted spin-echo (FSE) and fast short-tau inversion-recovery (fSTIR) sequences in detection of multiple sclerosis of the spinal cord in 100 consecutive patients with clinically confirmed multiple sclerosis (MS); 86 patients underwent also brain MRI. In all, 310 focal lesions were detected on fSTIR and 212 on T2-weighted FSE, spinal cord lesions were seen better on fSTIR images, with a higher contrast between the lesion and the normal spinal cord. In 24 patients in whom cord plaques were shown with both sequences, the cranial study was normal or inconclusive. Assessment of spinal plaques can be particularly important when MRI of the brain is inconclusive, and in there situations fSTIR can be helpful. (orig.)

  15. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion.

    Science.gov (United States)

    Zhang, Yuan; Yu, Guangren; Yu, Liang; Siddhu, Muhammad Abdul Hanan; Gao, Mengjiao; Abdeltawab, Ahmed A; Al-Deyab, Salem S; Chen, Xiaochun

    2016-03-01

    Computational fluid dynamics (CFD) was applied to investigate mixing mode and power consumption in anaerobic mono- and co-digestion. Cattle manure (CM) and corn stover (CS) were used as feedstock and stirred tank reactor (STR) was used as digester. Power numbers obtained by the CFD simulation were compared with those from the experimental correlation. Results showed that the standard k-ε model was more appropriate than other turbulence models. A new index, net power production instead of gas production, was proposed to optimize feedstock ratio for anaerobic co-digestion. Results showed that flow field and power consumption were significantly changed in co-digestion of CM and CS compared with those in mono-digestion of either CM or CS. For different mixing modes, the optimum feedstock ratio for co-digestion changed with net power production. The best option of CM/CS ratio for continuous mixing, intermittent mixing I, and intermittent mixing II were 1:1, 1:1 and 1:3, respectively. Copyright © 2016. Published by Elsevier Ltd.

  16. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    Science.gov (United States)

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Evaluation of T2-weighted versus short-tau inversion recovery sagittal sequences in the identification and localization of canine intervertebral disc extrusion with low-field magnetic resonance imaging.

    Science.gov (United States)

    Housley, Daniel; Caine, Abby; Cherubini, Giunio; Taeymans, Olivier

    2017-07-01

    Sagittal T2-weighted sequences (T2-SAG) are the foundation of spinal protocols when screening for the presence of intervertebral disc extrusion. We often utilize sagittal short-tau inversion recovery sequences (STIR-SAG) as an adjunctive screening series, and experience suggests that this combined approach provides superior detection rates. We hypothesized that STIR-SAG would provide higher sensitivity than T2-SAG in the identification and localization of intervertebral disc extrusion. We further hypothesized that the parallel evaluation of paired T2-SAG and STIR-SAG series would provide a higher sensitivity than could be achieved with either independent sagittal series when viewed in isolation. This retrospective diagnostic accuracy study blindly reviewed T2-SAG and STIR-SAG sequences from dogs (n = 110) with surgically confirmed intervertebral disc extrusion. A consensus between two radiologists found no significant difference in sensitivity between T2-SAG and STIR-SAG during the identification of intervertebral disc extrusion (T2-SAG: 92.7%, STIR-SAG: 94.5%, P = 0.752). Nevertheless, STIR-SAG accurately identified intervertebral disc extrusion in 66.7% of cases where the evaluation of T2-SAG in isolation had provided a false negative diagnosis. Additionally, one radiologist found that the parallel evaluation of paired T2-SAG and STIR-SAG series provided a significantly higher sensitivity than T2-SAG in isolation, during the identification of intervertebral disc extrusion (T2-SAG: 78.2%, paired T2-SAG, and STIR-SAG: 90.9%, P = 0.017). A similar nonsignificant trend was observed when the consensus of both radiologists was taken into consideration (T2-SAG: 92.7%, paired T2-SAG, and STIR-SAG = 97.3%, P = 0.392). We therefore conclude that STIR-SAG is capable of identifying intervertebral disc extrusion that is inconspicuous in T2-SAG, and that STIR-SAG should be considered a useful adjunctive sequence during preliminary sagittal screening for intervertebral disc

  18. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  19. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  20. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.