WorldWideScience

Sample records for anaerobic methane-oxidizing community

  1. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  2. Temporal resilience and dynamics of anaerobic methane-oxidizing microbial communities to short-term changes in methane partial pressures

    Science.gov (United States)

    Klasek, S.; Tiantian, Y.; Torres, M. E.; Colwell, F. S.; Wang, F.; Liang, L.

    2015-12-01

    Marine sediments produce tens to hundreds of teragrams of methane annually, which is released from the seabed at thousands of cold seeps distributed globally along continental margins. Around 80-90% of this methane is consumed in shallower sediment layers before reaching the hydrosphere, in a microbially-mediated process known as anaerobic oxidation of methane (AOM) However, cold seeps appear to exhibit temporal variation in gas flux intensity, and AOM filter efficiency at cold seeps generally decreases with fluid flow rate. To our knowledge, the degree to which temporal heterogeneity in subsurface methane flux stimulates AOM community growth and adaptation to increased methane concentrations has not been investigated. Static high-pressure bioreactors were used to incubate sulfate-methane transition zone (SMTZ) and methanogenic zone sediments underlying a Mediterranean mud volcano gas flare under in situ temperature and pressure at 8 MPa methane. Sulfide production rates of 0.4 μmol/cm3/day in both sediment regimes after 4 months of incubation suggested the resilience of the marine subsurface methane filter may extend well below the SMTZ (40 cm). Similar incubations of SMTZ samples from below a gas flare off Svalbard at saturating (3.8 MPa) and 0.2 MPa methane are being sampled after 1 week, 4 weeks, and 4 months; sulfide production rates of 8-18 nmol/cm3/day were first observed after 4 weeks of incubation. Sediment samples at all specified time points for both sets of incubations were collected for nucleic acid extraction and cell fixation. Anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) are expected dominant taxa in enriched and non-enriched communities. 16S rDNA community analysis is expected to reveal additional microbial players involved in the short-term adaptation to higher methane partial pressures in the marine subsurface. Increased AOM community activity (RNA/DNA ratio) and copy numbers of methane cycling transcripts (mcr

  3. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines

    Science.gov (United States)

    Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S. M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; Hoppert, M.

    2012-07-01

    Methane oxidizing prokaryotes are ubiquitous in oxic and anoxic habitats wherever C1-compounds are present. Thus, methane saturated mud volcano fluids should be a preferred habitat of methane consuming prokaryotes, using the readily available electron donors. In order to understand the relevance of methane as a carbon and energy source in mud volcano communities, we investigate the diversity of prokaryotic organisms involved in oxidation of methane in fluid samples from the Salse di Nirano mud volcano field situated in the Northern Apennines. Cell counts were at approximately 0.7 × 106 microbial cells/ml. A fraction of the microbial biomass was identified as ANME (anaerobic methanotroph) archaea by fluorescence in situ hybridization (FISH) analysis. They are associated in densely colonized flakes, of some tens of μm in diameter, embedded in a hyaline matrix. Diversity analysis based on the 16S rDNA genes, retrieved from amplified and cloned environmental DNA, revealed a high proportion of archaea, involved in anaerobic oxidation of methane (AOM). Aerobic methane-oxidizing proteobacteria could be highly enriched from mud volcano fluids, indicating the presence of aerobic methanotrophic bacteria, which may contribute to methane oxidation, whenever oxygen is readily available. The results imply that biofilms, dominated by ANME archaea, colonize parts of the mud volcano venting system.

  4. Growth of anaerobic methane oxidizing archaea and sulfate reducing bacteria in a high pressure membrane-capsule bioreactor

    NARCIS (Netherlands)

    Timmers, P.H.A.; Gieteling, J.; Widjaja-Greefkes, H.C.A.; Plugge, C.M.; Stams, A.J.M.; Lens, P.N.L.; Meulepas, R.J.W.

    2015-01-01

    Anaerobic methane oxidizing communities of archaea (ANME) and sulfate reducing bacteria (SRB) grow slowly, which limits physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated sulfate

  5. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Orphan, Victoria J; Hallam, Steven J.; DeLong, Edward F

    2003-01-01

    Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that...

  6. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin;

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular...... techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral...

  7. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  8. 硫酸盐还原型甲烷厌氧氧化菌群驯化及其群落特征%Acclimatization and Characteristics of Microbial Community in Sulphate-Dependent Anaerobic Methane Oxidation

    Institute of Scientific and Technical Information of China (English)

    席婧茹; 刘素琴; 李琳; 刘俊新

    2014-01-01

    The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.%甲烷的温室效应是二氧化碳的26倍,高浓度硫酸盐废水对水体、土壤和植物均有危害。硫酸盐为氧化剂的甲烷厌氧氧化是减少甲烷的主要途径之一。本研究以硫酸盐作为电子受体,驯化培养硫酸盐还原型甲烷厌氧氧化菌群,采用 PCR-DGGE技术分析细菌和古菌菌群多样性和群落结构特征,并对其中的优势菌进行系统发育分析。 DGGE 指纹图谱结果表明,硫酸盐的加入使微生物群落结构和优势种群数量发生了明显的改变,其增强了甲烷氧化古菌和硫酸盐还原细菌的丰度,加入硫酸盐驯化的菌群,其细菌

  9. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  10. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    Science.gov (United States)

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).

  11. A microbial consortium couples anaerobic methane oxidation to denitrification

    NARCIS (Netherlands)

    Raghoebarsing, A.A.; Pol, A.; Pas-Schoonen, K.T. van de; Smolders, A.J.P.; Ettwig, K.F.; Rijpstra, W.I.C.; Schouten, S.; Sinninghe Damsté, J.S.; Camp, H.J.M. op den; Jetten, M.S.M.; Strous, M.

    2006-01-01

    Modern agriculture has accelerated biological methane and nitrogen cycling on a global scale. Freshwater sediments often receive increased downward fluxes of nitrate from agricultural runoff and upward fluxes of methane generated by anaerobic decomposition. In theory, prokaryotes should be capable o

  12. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    OpenAIRE

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) metha...

  13. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archae and bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Pancost, R.D.; Lint, S. de; Maarel, M.J.E.C. van der; Gottschal, J.C.

    2000-01-01

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Medite

  14. Microbiology, ecology and application of the nitrite-dependent anaerobic methane oxidation process

    Directory of Open Access Journals (Sweden)

    Li-Dong eShen

    2012-07-01

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo, which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process observed in Candidatus Methylomirabilis oxyfera. M. oxyfera is affiliated with the NC10 phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described bacterial shapes. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is an ecological process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

  15. Atmospheric oxygen levels, anaerobic methane oxidation, and the coupling of the global COS cycles by sulfate reduction

    Science.gov (United States)

    Wortmann, U. G.; Chernyavsky, B. M.

    2007-12-01

    Changes in the partitioning between the reduced and oxidized reservoirs of carbon and sulfur are the dominant control on atmospheric oxygen levels, and the partitioning itself depends to a large degree on microbial redox processes remineralizing organic matter (OM). However, the controls of organic matter preservation in marine sediments are one of the most complex and controversial issues in contemporary biochemistry. Knowledge how the transition from one electron acceptor to another affects OM remineralization rates is scant even for the transition from aerobic to anaerobic respiration. Much less is known about the transition from anaerobic respiration to fermentation. Although the individual pathways of methane generation are known, our understanding of the complex interactions between different bacterial groups remains limited, resulting in considerable difficulties to resolve these questions in microcosm experiments. Here we show that a dramatic drop in seawater sulfate concentrations during the Early Cretaceous (Wortmann & Chernyavsky, Nature 2007) resulted in a global breakdown of microbial sulfate reduction in the marine subsurface biosphere. This event resulted in a positive excursion of the global δ13C-value, suggesting that organic matter remineralization rates dropped by more than 50%. This implies that the methanogenic microbial community was unable to increase their metabolic rates, despite the increased supply of organic matter. the reduced availability of sulfate for anaerobic methane oxidation did not increase the flux of isotopically light carbon into the ocean/atmosphere system. We therefore speculate that the capacity of marine methanogenic ecosystems to synthesize extracellular enzymes to hydrolyze organic matter is specific to the prevailing type of organic matter. This results in a positive coupling of the metabolic activity of both ecosystems, which in turn is a necessary prerequisite to decouple reduced carbon and sulfur burial, a key

  16. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    Science.gov (United States)

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control.

  17. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  18. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

    Science.gov (United States)

    Meng, Han; Wang, Yong-Feng; Chan, Ho-Wang; Wu, Ruo-Nan; Gu, Ji-Dong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two new processes of recent discoveries linking the microbial nitrogen and carbon cycles. In this study, 16S ribosomal RNA (rRNA) gene of anammox bacteria and pmoA gene of n-damo bacteria were used to investigate their distribution and diversity in natural acidic and re-vegetated forest soils. The 16S rRNA gene sequences retrieved featured at least three species in two genera known anammox bacteria, namely Candidatus Brocadia anammoxidans, Candidatus Brocadia fulgida, and Candidatus Kuenenia stuttgartiensis while the pmoA gene amplified was affiliated with two species of known n-damo bacteria Candidatus Methylomirabilis oxyfera and a newly established Candidatus Methylomirabilis sp. According to the results, the diversity of anammox bacteria in natural forests was lower than in re-vegetated forests, but no significant difference was observed in n-damo community between them. Quantitative real-time PCR showed that both anammox and n-damo bacteria were more abundant in the lower layer (10-20 cm) than the surface layer (0-5 cm). The abundance of anammox bacteria varied from 2.21 × 10(5) to 3.90 × 10(6) gene copies per gram dry soil, and n-damo bacteria quantities were between 1.69 × 10(5) and 5.07 × 10(6) gene copies per gram dry soil in the two different layers. Both anammox and n-damo bacteria are reported for the first time to co-occur in acidic forest soil in this study, providing a more comprehensive information on more defined microbial processes contributing to C and N cycles in the ecosystems. PMID:27178181

  19. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2009-08-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where upward methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. In the Danube Canyon and the Dnjepr palaeo-delta AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in brackish and limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the paleoceanographic history of the sediment, since in all cores methane was completely oxidized at the transition from the formerly oxic brackish clays to marine anoxic sediments. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sub-surface sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most δ13C- depleted isotopic signal of methane was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  20. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. On the shelf of the Danube paleo-delta and the Dnjepr Canyon, AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in formerly limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the limnic history of the sediment, since in all cores methane was completely oxidized at the limnic-marine transition. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most depleted δ13C-signal was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  1. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium.

    Science.gov (United States)

    Choi, Sun-Ah; Lee, Eun-Hee; Cho, Kyung-Suk

    2013-01-01

    The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 μmol·g-dry biomass(-1)·h(-1), and it had a half-saturation constant (Km ) of 143.8 μM. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64 μmol·g-dry biomass(-1)·h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43 μmol·g-dry biomass(-1)·h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 μM, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 10(8) to 2.1-5.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium.

  2. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria : The Medinaut Shipboard Scientific Party

    NARCIS (Netherlands)

    Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J.E.C.; Gottschal, JC

    2000-01-01

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear, In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Medite

  3. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  4. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    Science.gov (United States)

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species. PMID:26911022

  5. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  6. Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants

    NARCIS (Netherlands)

    Benner, Jessica; De Smet, Delfien; Ho, Adrian; Kerckhof, Frederiek-Maarten; Vanhaecke, Lynn; Heylen, Kim; Boon, Nico

    2015-01-01

    Methane-oxidizing cultures from five different inocula were enriched to be used for co-metabolic degradation of micropollutants. In a first screening, 18 different compounds were tested for degradation with the cultures as well as with four pure methane-oxidizing bacterial (MOB) strains. The tested

  7. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    Science.gov (United States)

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  8. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands.

    Science.gov (United States)

    Hu, Bao-lan; Shen, Li-dong; Lian, Xu; Zhu, Qun; Liu, Shuai; Huang, Qian; He, Zhan-fei; Geng, Sha; Cheng, Dong-qing; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; He, Yun-feng

    2014-03-25

    The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 10(7) gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m(-2) per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution. PMID:24616523

  9. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    International Nuclear Information System (INIS)

    Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO3-, SO42-, and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake.

  10. The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars

    OpenAIRE

    Marlow, Jeffrey J.; LaRowe, Douglas E.; Ehlmann, Bethany L.; Amend, Jan P.; Orphan, Victoria J

    2014-01-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO_2 partial pressures. In all scenarios, AOM is exergonic, ranging from −31 to −135 kJ/mol CH_4. A reaction transport model was constructed to examine how environmentally ...

  11. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  12. Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants

    OpenAIRE

    Benner, Jessica; De Smet, Delfien; Ho, Adrian; Kerckhof, Frederiek-Maarten; Vanhaecke, Lynn; Heylen, Kim; Boon, Nico

    2015-01-01

    Methane-oxidizing cultures from five different inocula were enriched to be used for co-metabolic degradation of micropollutants. In a first screening, 18 different compounds were tested for degradation with the cultures as well as with four pure methane-oxidizing bacterial (MOB) strains. The tested compounds included pharmaceuticals, chemical additives, pesticides, and their degradation products. All enriched cultures were successful in the degradation of at least four different pollutants, b...

  13. Anaerobic methane oxidation may be more prevalent in surface soils than was originally thought

    Science.gov (United States)

    Gauthier, Mathieu; Bradley, Robert L.; Šimek, Miloslav

    2013-04-01

    Anaerobic oxidation of methane (CH4) (AOM) is a process that was first reported to occur in deep anoxic marine sediments. In this environment, CH4 is oxidized with sulphate (SO42-) as the terminal electron acceptor. It is mediated by a syntrophic consortium formed by SO42- reducing bacteria and anaerobic CH4 oxidizing Archaea, or by the latter alone. Since this landmark discovery, AOM was found to occur in other environments including freshwater lake sediments and water columns, mud volcanoes, landfill leachate, deep buried Holocene sediments and hydrocarbon contaminated aquifers. All of these situations are very specific and point to AOM as being primarily occurring in highly reducing conditions. Thus, observations of AOM in surface soils with fluctuating REDOX conditions are relatively scarce, although a few independent studies have reported AOM in surface peatlands as well as in a forest soil. Furthermore, AOM may follow different pathways, such as via the coupled oxidation of CH4 and reduction of manganese (Mn(IV)) or iron (Fe(III)), or by a lone denitrifying species that converts nitrite to nitric oxide in order to generate O2 that is then used internally to oxidize CH4. Thus, the goal of our study was to determine whether AOM is more prevalent than was thought in hydromorphic surface soils across different environments, and whether the addition of NO3- or SO4= as alternative electron acceptors may stimulate the process. We collected samples from 3 peatland soils in Scotland, 2 acid-sulphate soils in Finland, and shore sediments of 15 drained fish ponds in the Czech Republic. Subsamples were incubated in the absence of O2 and amended with either NO3-, SO42-, or left unamended (control). The net flux of CH4 and CO2 were assessed by gas chromatography after 2, 20, 40 and 60 days. We also used a 13C-CH4 isotope dilution technique to determine gross production and consumption rates of CH4. We detected AOM in all of our soils, with oxidation rates ranging between 0

  14. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.

    Science.gov (United States)

    Milucka, Jana; Widdel, Friedrich; Shima, Seigo

    2013-05-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.

  15. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  16. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation

    Directory of Open Access Journals (Sweden)

    Maria E. Hernandez

    2015-02-01

    Full Text Available We have previously observed that methane supplied to lake sediment microbial communities as a substrate not only causes a response by bona fide methanotrophic bacteria, but also by non-methane-oxidizing bacteria, especially by members of the family Methylophilaceae. This result suggested that methane oxidation in this environment likely involves communities composed of different functional guilds, rather than a single type of microbe. To obtain further support for this concept and to obtain further insights into the factors that may define such partnerships, we carried out microcosm incubations with sediment samples from Lake Washington at five different oxygen tensions, while methane was supplied at the same concentration in each. Community composition was determined through 16S rRNA gene amplicon sequencing after 10 and 16 weeks of incubation. We demonstrate that, in support of our prior observations, the methane-consuming communities were represented by two major types: the methanotrophs of the family Methylococcaceae and by non-methanotrophic methylotrophs of the family Methylophilaceae. However, different species persisted under different oxygen tensions. At high initial oxygen tensions (150 to 225 µM the major players were, respectively, species of the genera Methylosarcina and Methylophilus, while at low initial oxygen tensions (15 to 75 µM the major players were Methylobacter and Methylotenera. These data suggest that oxygen availability is at least one major factor determining specific partnerships in methane oxidation. The data also suggest that speciation within Methylococcaceae and Methylophilaceae may be driven by niche adaptation tailored toward specific placements within the oxygen gradient.

  17. Differential methane oxidation activity and microbial community composition at cold seeps in the Arctic off western Svalbard

    Science.gov (United States)

    Gründger, Friederike; Svenning, Mette M.; Niemann, Helge; Silyakova, Anna; Serov, Pavel; Li Hong, Wei; Wegener, Gunter; Panieri, Giuliana; Carroll, JoLynn

    2016-04-01

    Most models considering climate change related bottom water warming suggest that gas hydrates may become destabilized, leading to the mobilization of methane into seabed and water column ecosystems, and, eventually, into the atmosphere. However, the capacity of methanotrophic microbes retaining methane in sediments and the hydrosphere is not well constrained. Here, we investigate the microbial utilization of methane in sediments and the water column, focusing on cold seeps discovered at the arctic continental margin of western Svalbard. We measured ex situ rates of methane oxidation and sulfate reduction in two active gas flare sites with different geological settings at the Vestnesa Ridge (1204 m water depth) and within a pingolike feature area southwest off Svalbard (PLF; 380 m water depth). Our results show contrarily situations at our two sampling sites: At Vestnesa Ridge we find high methane oxidation rates with values up to 2055 nmol cm‑3 d‑1 at the sediment surface where the sediments are oversaturated with methane. Whereas, methane concentration and oxidation rates are low in the overlying water column (2 pmol cm‑3 d‑1). In contrast, at the sediment surface at PLF methane concentration and oxidation rates are considerably lower (up to 1.8 nmol cm‑3 d‑1). While the overlying bottom water contains high concentration of methane and shows oxidation rates with values of up to 3.8 nmol cm‑3 d‑1. The data on methane oxidation and sulfate reduction activity are compared to the sediment geochemistry and to data from metagenomic analysis identifying the methanotrophic community composition. These results provide unique insight into the dynamic responses of the seabed biological filter at cold seeps in the Arctic off western Svalbard. This study is part of the Centre for Arctic Gas Hydrate, Environment and Climate and was supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259.

  18. Field-scale tracking of active methane-oxidizing communities in a landfill-cover soil reveals spatial and seasonal variability

    NARCIS (Netherlands)

    Henneberger, R.; Chiri, E.; Bodelier, P.L.E.; Frenzel, P.; Luke, C.; Schroth, M.H.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable

  19. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.

    Science.gov (United States)

    Henneberger, Ruth; Chiri, Eleonora; Bodelier, Paul E L; Frenzel, Peter; Lüke, Claudia; Schroth, Martin H

    2015-05-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.

  20. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Orphan, Victoria Jeanne [California Institute of Technology

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  1. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China

    Science.gov (United States)

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems. PMID:26368535

  2. Different Atmospheric Methane-Oxidizing Communities in European Beech and Norway Spruce Soils▿ †

    OpenAIRE

    Degelmann, Daniela M.; Borken, Werner; Drake, Harold L; Kolb, Steffen

    2010-01-01

    Norway spruce (Picea abies) forests exhibit lower annual atmospheric methane consumption rates than do European beech (Fagus sylvatica) forests. In the current study, pmoA (encoding a subunit of membrane-bound CH4 monooxygenase) genes from three temperate forest ecosystems with both beech and spruce stands were analyzed to assess the potential effect of tree species on methanotrophic communities. A pmoA sequence difference of 7% at the derived protein level correlated with the species-level d...

  3. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  4. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  5. [Research progress in microbial methane oxidation coupled to denitrification].

    Science.gov (United States)

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  6. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog.

    Science.gov (United States)

    Esson, Kaitlin C; Lin, Xueju; Kumaresan, Deepak; Chanton, Jeffrey P; Murrell, J Colin; Kostka, Joel E

    2016-04-15

    The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, in Minnesota. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing (SIP), expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14 to 17 μmol of CH4g dry weight soil(-1)day(-1) Within DNA-SIP incubations, the relative abundance of methanotrophs increased from 4%in situto 25 to 36% after 8 to 14 days. Phylogenetic analysis of the(13)C-enriched DNA fractions revealed that the active methanotrophs were dominated by the generaMethylocystis(type II;Alphaproteobacteria),Methylomonas, andMethylovulum(both, type I;Gammaproteobacteria). In field samples, a transcript-to-gene ratio of 1 to 2 was observed forpmoAin surface peat layers, which attenuated rapidly with depth, indicating that the highest methane consumption was associated with a depth of 0 to 10 cm. Metagenomes and sequencing of cDNApmoAamplicons from field samples confirmed that the dominant active methanotrophs wereMethylocystisandMethylomonas Although type II methanotrophs have long been shown to mediate methane consumption in peatlands, our results indicate that members of the generaMethylomonasandMethylovulum(type I) can significantly contribute to aerobic methane oxidation in these ecosystems. PMID:26873322

  7. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  8. Exploring the ecophysiology of anaerobic communities of methanotrophic archaea and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Timmers, P.H.A.

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is a widespread occurring process in anoxic marine sediments. The process is performed by ANaerobic MEthane oxidizing archaea (ANME) and associated sulfate reducing bacteria (SRB). The ANME presumably oxidize methane through reve

  9. Trace methane oxidation studied in several Euryarchaeota under diverse conditions

    Directory of Open Access Journals (Sweden)

    James J. Moran

    2005-01-01

    Full Text Available We used 13C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 ± 0.04%, ± 2 standard deviations of the methane produced during growth was less than that by M. barkeri (0.15 ± 0.04%, grown under similar conditions with H2 and CO2. Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 ± 0.05% than during growth on methanol (0.07 ± 0.03%. This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O2, NO3–, SO22–, SO32– or H2 to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD+ showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H2 concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 ± 0.01% of the methane provided to A. fulgidus, 0.002 ± 0.009% to A. lithotrophicus and 0.003 ± 0.02% to A. profundus. Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in

  10. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  11. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  12. Environental assessment of methane oxidizers nitrite driven bacteria

    OpenAIRE

    VAELLO LÓPEZ, MARIA TERESA

    2013-01-01

    The nitrite-dependent anaerobic methane oxidation (N-DAMO) bacteria has been discovered in the last decade and there is little known about its environmental distribution and contribution to the oxidation of methane (CH4). Because CH4 is of environmental concern due to its contribution to global warming, it has become very important to look for ways to reduce it. The purpose of this thesis is the acquisition of established molecular tools and their application in microbial ecology investiga...

  13. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.

    1994-12-01

    Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate-reducing bacteria. A seasonal survey of methane oxidation and CO2 reduction rates indicates that methane production was confined to sulfate-depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate-depleted sediments and occurred at rates lower than those of CO2 reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate-containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2-bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate-depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO2 reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H2 concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen-sulfate reducer consortium is consistent not only with the results of this study, but may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments.

  14. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures.

    Directory of Open Access Journals (Sweden)

    Masashi Hatamoto

    Full Text Available Denitrifying anaerobic methane oxidizing (DAMO microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L(-1·day(-1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89-91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.

  15. 中空纤维膜生物反应器富集反硝化厌氧甲烷氧化菌群的研究%Enrichment of denitrifying anaerobic methane oxidation microbes in a hollow fiber membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    钱祝胜; 付亮; 丁静; 丁兆威; 曾建雄

    2014-01-01

    反硝化厌氧甲烷氧化(DAMO)过程可以由一种称为Methylomirabilis oxy f era的DAMO细菌在有或者没有DAMO古菌下完成.已经报道的DAMO过程的菌群富集时间长(一般需要7~18月),且DAMO体系反硝化速率低.利用中空纤维膜生物反应器(HFMB)提高甲烷的传质来试图实现快速启动DAMO反应,结果发现HFMB在不到3个月时间内就表现出DAMO反应,其反硝化速率达到50 mg · L -1· d-1硝酸盐氮.二代测序显示,HFMB中微生物以 A naerolineaceae , A zospira ,CL500‐3占绝对优势,分别为39.08%,13.68%和11.54%,而 DAMO 细菌(Methylomirabilis)和与厌氧甲烷氧化有关的古菌 Methanosarcina分别占0.02%和0.13%,因此推测在HFMB中DAMO过程是由一群新的菌群主导完成.%The process of denitrifying anaerobic methane oxidation (DAMO) can be catalyzed by DAMO bacteria called Methylomirabilis oxyfera with or without the involvement of DAMO archaea .Enrichment of DAMO microbes often takes a long time (7 ~ 18 months) to show a faint denitrification function in reported DAMO process .This study aimed to fast enrich DAMO microbes in a hollow fiber membrane bioreactor (HFMB) as the special structure of hollow fiber can increase the mass transfer of methane .It is found that HFMB shows DAMO activity in a shorter period of time (<3 months) and the denitrification rate reaches 50 mg · L -1 · d-1 NO3 -‐N .The next‐generation DNA sequencing on the microbes in HFMB shows that Anaerolineaceae ,Azospira,CL500‐3 are dominant with 39.08% ,13.68% and 11.54% of the total microbes , respectively . Meanwhile , Methylomirabilis (DAMO bacteria ) and Methanosarcina (DAMO archaea) are only 0.02% and 0.13% ,respectively .It is speculated therefore that the DAMO process in HFMB may have been catalyzed by other microbes that are different from the known DAMO microbes .

  16. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  17. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil

    Directory of Open Access Journals (Sweden)

    M. Saiful Alam

    2012-07-01

    Full Text Available Nitrogenous fertilizers are generally thought to have an important role in regulating methane oxidation. In this study, the effect of ammonium on methane oxidation activity was investigated in a paddy soil using urea at concentrations of 0, 50, 100, 200 and 400 μg N per gram dry weight soil (N/g.d.w.s and ammonium sulfate at concentrations of 0, 50 and 200 μg N/g.d.w.s. The results of this study demonstrate that urea concentrations of 200 μg N/g.d.w.s. and above significantly inhibit methane oxidation activity, whereas no statistically significant difference was observed in methane oxidation activity among soil microcosms with urea concentrations of less than 200 μg N/g.d.w.s after incubation for 27 days. Similar results were obtained in a sense that methane oxidation activity was inhibited only when the ammonium sulfate concentration was 200 μg N/g.d.w.s in soil microcosms in this study. Phylogenetic analysis of pmoA genes showed that nitrogen fertilization resulted in apparent changes in the community composition of methane-oxidizing bacteria (MOB. Type I MOB displayed an increased abundance in soil microcosms amended with nitrogenous fertilizers, whereas type II MOB dominated the native soil. Furthermore, although no statistically significant relationship was observed between pmoA gene and amoA gene abundances, methane oxidation activity was significantly negatively correlated with nitrification activity in the presence of urea or ammonium sulfate. Our results indicate that the methane oxidation activity in paddy soils might be inhibited when the concentration of ammonium fertilizers is high and that the interactions between ammonia and methane oxidizers need to be further investigated.

  18. Methane oxidation linked to chlorite dismutation

    Science.gov (United States)

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

  19. Methane oxidation linked to chlorite dismutation.

    Directory of Open Access Journals (Sweden)

    Laurence G. Miller

    2014-06-01

    Full Text Available We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate or via chlorite (ClO2- dismutation. Although dissimilatory reduction of ClO4- and ClO3- could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO2- amendment elicited such activity. Methane (0.2 kPa was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO2-. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO2-. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO2- and CH4 consumption was established in soils and cultures, no upstream connection with either ClO4- or ClO3- was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

  20. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. PMID:26912857

  1. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...... in the anaerobic zone in the lower part of soil columns permeated with artificial landfill gas. The lesser-chlorinated compounds were degraded in the upper oxic zone with overlapping gradients of methane and oxygen. Methane oxidation and degradation of HOCs in the top-soils may play a very important role...

  2. 厌氧氨氧化细菌和反硝化厌氧甲烷氧化细菌在岸边带土壤中的分布规律%Distribution of anaerobic ammonia oxidizing bacteria and nitrite-dependent anaerobic methane oxidizing bacteria in soil profile in the riparian zone

    Institute of Scientific and Technical Information of China (English)

    夏超; 祝贵兵; 邹雨璇; 周蓉; 赵思研

    2015-01-01

    厌氧氨氧化(anaerobic ammonium oxidation,anammox)和反硝化厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,n-damo)的发现打破了人们长久以来对生物氮、碳循环的传统认识.厌氧氨氧化细菌(anammox bacteria)和反硝化厌氧甲烷氧化细菌(n-damo bacteria)在水生态系统均有分布,并且在全球氮、碳循环中发挥重要作用.但它们在岸边带土壤中的存在和分布还不甚清楚.因此,本文对湖泊岸边带土壤中厌氧氨氧化细菌和反硝化厌氧甲烷氧化细菌的存在和分布进行了研究.基于厌氧氨氧化细菌hzsB基因(联氨合成酶关键基因)和M.oxyfera-like细菌16S rRNA基因的序列分析,分别证明了厌氧氨氧化细菌和M.oxffera-like细菌在白洋淀湖泊岸边带深层土壤中的共同存在.厌氧氨氧化细菌hzsB基因定量PCR结果显示,其主要分布在地下水位附近及以下部分(40~100 cm),而在表层(0~40 cm)土壤中未被检测到.M.oxyfera-like 细菌16S rRNA基因定量PCR结果显示,不同深度的土壤均有M.oxyfera-like细菌分布,并且其丰度随着土壤深度的增加而递增.这些结果说明厌氧氨氧化细菌和M.oxyfera-like细菌在湖泊岸边带深层土壤中共同存在,并且有不同的分布规律.

  3. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes.

    Directory of Open Access Journals (Sweden)

    Kirsten Oswald

    Full Text Available Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere.

  4. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    Science.gov (United States)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  5. Diversity and distribution of methane-oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin

    Science.gov (United States)

    Cambon-Bonavita, M. A.; Nadalig, T.; Roussel, E.; Delage, E.; Duperron, S.; Caprais, J. C.; Boetius, A.; Sibuet, M.

    2009-12-01

    A giant 800-m-diameter pockmark named REGAB was discovered on the Gabon continental margin actively emitting methane at a water depth of 3200 m. The microbial diversity in sediments from four different assemblages of chemosynthetic organisms, Mytilidae, Vesicomyidae, Siboglinidae and a bacterial mat, was investigated using comparative 16S rRNA gene sequence analysis. Aggregates of anaerobic methanotrophic archaea (ANME-2) and bacteria of the Desulfosarcina/Desulfococcus cluster were found in all four chemosynthetic habitats. Fluorescence in situ hybridization targeting the ANME-2/ Desulfosarcina/Desulfococcus aggregates showed their presence few centimeters (3-5 cm) below the surface of sediment. 16S rRNA gene sequences from all known marine ANME groups were detected in the pockmark sediments, as well as from both known bacterial partners. The archaeal diversity was limited to the ANME cluster for all investigated samples. The bacterial diversity included members of the Proteobacteria, Bacilliales, Cytophaga/Flavobacteria, Verrucomicrobia, JS1 and Actinobacteria clusters. Bacterial 16S rRNA gene sequences related to those of known sulphide-oxidizing symbionts were recovered from tissues of several invertebrates including vesicomyid clams and siboglinid tubeworms of REGAB.

  6. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    OpenAIRE

    Amy V. Callaghan

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-red...

  7. Methane oxidation and methanotrophs: resistance and resilience against model perturbations

    Science.gov (United States)

    Ho, A.; Frenzel, P.

    2009-04-01

    Biodiversity is claimed to be essential for ecosystem functioning. However, most experiments on biodiversity and ecosystem functioning (BEF) have been made on higher plants, while only few studies have dealt with microbial communities. Overall microbial diversity may be very high, and general functions like aerobic carbon mineralization are assumed to be supported by highly redundant communities. Therefore, we focused on methane oxidation, a microbial process of global importance mitigating methane emissions from wetland, rice fields, and landfills. We used a rice paddy as our model system, where >90% of potentially emitted methane may be oxidized in the oxic surface layer. This community is presumed to consist of 10-20 taxa more or less equivalent to species. We focused on the ability of methanotrophs to recover from a disturbance causing a significant die-off of all microbial populations. This was simulated by mixing native with sterile soil in two ratios (1:4 and 1:40). Microcosms were incubated and the temporal shift of the methanotrophic communities was followed by pmoA-based Terminal Restriction Length Polymorphism (T-RFLP), qPCR, and a pmoA-based diagnostic microarray. We consistently observed distinctive temporal shifts between Methylocystaceaea and Methylococcacea, a rapid population growth leading to the same or even higher cell numbers as in microcosms made from native soil alone, but no effect on the amount of methane oxidized. The ratio of different methanotrophs changed with treatment, while the number of taxa stayed nearly the same. Overall, methanotrophs showed a remarkable resilience compensating for die-offs. It has to be noted, however, that our experiment focused on methanotrophs adapted to and living at high methane fluxes. Quite different, methanotrophs living in upland soils do not mitigate methane emissions, but are the only biological sink to atmospheric methane. These microbes are severely substrate limited, and will be much more

  8. Relating methanogen community structure and anaerobic digester function.

    Science.gov (United States)

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  9. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  10. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    Science.gov (United States)

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  11. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  12. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    OpenAIRE

    Shrestha, Pravin Malla; KAMMANN, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2011-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 7...

  13. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Weber, A.; Zopfi, J.

    2001-01-01

    Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35...... the process was very sluggish with turnover times of methane within the sulfate-methane transition zone of 20 yr or more. (C) 2001 Elsevier Science Ltd. All rights reserved.Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea...... sediments from the surface down to the sulfate-methane transition at 2-4 m depth. Sulfate reduction rates were measured experimentally with (SO42-)-S-35, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments without...

  14. [Activity of methane-oxidizing bacteria in the adsorbed state].

    Science.gov (United States)

    Nesterov, A I; Nazarenko, A V

    1975-01-01

    Adsorption of pure cultures of methane oxidizing bacteria, Methylosinus trichosporium 20 and Methylococcus ucrainicus 21, on glass and coal was studied; the former strain was sorbed on both sorbents, the latter strain was sorbed on coal but not on glass. The rate of methane oxidation by the cells of adsorbed microorganisms was higher than in the case of free cells, and increased with a decrease in dimensions of the sorbent particles. PMID:1207502

  15. Environmental control on aerobic methane oxidation in coastal waters

    Science.gov (United States)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  16. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

    Science.gov (United States)

    Ruff, S. Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  17. Methane seep in shallow-water permeable sediment harbors high diversity of anaerobic methanotrophic communities, Elba, Italy

    Directory of Open Access Journals (Sweden)

    S Emil Ruff

    2016-03-01

    Full Text Available The anaerobic oxidation of methane (AOM is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME and sulfate-reducing bacteria (SRB, and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic-carbon depleted permeable sands off the Island of Elba (Italy. We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3 and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise

  18. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

    Science.gov (United States)

    Ruff, S Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  19. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    International Nuclear Information System (INIS)

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  20. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  1. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  2. Kinetics of methane oxidation in selected mineral soils

    Science.gov (United States)

    Walkiewicz, A.; Bulak, P.; Brzeziñska, M.; Włodarczyk, T.; Polakowski, C.

    2012-10-01

    The kinetic parameters of methane oxidation in three mineral soils were measured under laboratory conditions. Incubationswere preceded by a 24-day preincubationwith 10%vol. of methane. All soils showed potential to the consumption of added methane. None of the soils, however, consumed atmospheric CH4. Methane oxidation followed the Michaelis-Menten kinetics, with relatively low values of parameters for Eutric Cambisol, while high values for Haplic Podzol, and especially for Mollic Gleysol which showed the highest methanotrophic activity and much lower affinity to methane. The high values of parameters for methane oxidation are typical for organic soils and mineral soils from landfill cover. The possibility of the involvement of nitrifying microorganisms, which inhabit the ammonia-fertilized agricultural soils should be verified.

  3. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    Science.gov (United States)

    House, Christopher H.; Beal, Emily J.; Orphan, Victoria J.

    2011-11-01

    On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total

  4. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    Directory of Open Access Journals (Sweden)

    Victoria J. Orphan

    2011-11-01

    Full Text Available On Earth, marine anaerobic methane oxidation (AOM can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2 found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to

  5. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    Science.gov (United States)

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  6. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  7. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  8. A four-helix bundle stores copper for methane oxidation

    OpenAIRE

    Vita, Nicholas; Platsaki, Semeli; Baslé, Arnaud; Allen, Stephen J; Paterson, Neil G.; Crombie, Andrew T.; Murrell, J Colin; Waldron, Kevin J.; Dennison, Christopher

    2015-01-01

    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO) 1,2 . Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper 3,4 . MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potent...

  9. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    Science.gov (United States)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  10. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  11. Selective methane oxidation on zeolite stabilized copper oxide clusters

    OpenAIRE

    Grundner, Sebastian

    2016-01-01

    Copper oxide clusters stabilized in the micropores of zeolites have been found to selectively oxidize methane to methanol. The synthesis of a catalyst with homotopic trinuclear copper oxide clusters was achieved via ion exchange and oxidation. The steric and chemical environments of these clusters characterized by combinations of physicochemical measurement were critical to activate and convert methane. While the absence of water was critical for methane oxidation, the presence of water was r...

  12. 甲烷氧化菌分类及代谢途径研究进展%Progresses in the classification and mechanism of methane-oxidizing bacteria

    Institute of Scientific and Technical Information of China (English)

    蔡朝阳; 何崭飞; 胡宝兰

    2016-01-01

    Summary Methane (CH4) as a colorless,odorless organic gas,is one of the most simple hydrocarbons and is widely distributed in environment.As the second most important greenhouse gas,only following carbon dioxide, methane contributes a lot to the global warming. Methane-oxidizing bacteria are a kind of microorganisms which directly use methane as carbon and energy source.Because they can convert methane into carbon dioxide and mitigate the global greenhouse effect,methane-oxidizing bacteria are attracting more and more attention.Methane-oxidizing bacteria not only reduce methane emissions in the soil,but also uptake the methane in the gas phase of the unsaturated soil.They are important to mitigate the global greenhouse effect. According to whether can uptake oxygen in environment as the electron acceptor or not,methane-oxidizing bacteria can be divided into aerobic and anaerobic methane-oxidizing bacteria.Aerobic methane-oxidizing bacteria are gram-negative bacteria,which use methane as carbon and energy source,have been discovered as early as 1906. Because of the potential value of aerobic methane-oxidizing bacteria in practice production,scientists have made extensive research about them in the past 40 years.At the same time,aerobic methane-oxidizing bacteria can reduce soil methane emissions and uptake methane in the atmosphere,playing an important role in global carbon cycle. Because anaerobic methane-oxidizing bacteria”s doubling time is long,research progress about them is slow. Cellular components of different kinds of methane-oxidizing bacteria are different,and they have different enzymes and C1 metabolic pathways.The center metabolic mechanism of C1 component determines the competition ability of different bacteria in different environments.The main center metabolic mechanism can be divided into three categories:ribulose monophosphate cycle,serine cycle,and the Calvin-Benson-Bassham cycle.%甲烷作为仅次于二氧化碳的第2号温室气体,是

  13. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment

    DEFF Research Database (Denmark)

    Shrestha, Pravin; Malvankar, Nikhil S.; Werner, Jeffrey;

    2014-01-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical...... conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial...... with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes....

  14. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    Science.gov (United States)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  15. The anaerobic community of an estuarine environment: an analogue for life on Mars.

    OpenAIRE

    Curtis-Harper, E.; Pearson, V. K.; Schwenzer, S. P.; Olsson-Francis, K.

    2015-01-01

    In this study, we used microbiological techniques in combination with several analytical geochemical techniques to identify potential biomarkers for life on Mars. A community of anaerobic microorganisms containing chemolithoautotrophs was isolated from below the redox potential discontinuity (RPD) layer. The anaerobic conditions, the 11-15 ˚C temperature and high salinity (37 g l-1 NaCl) make the sub-RPD zone an ideal environment to sample a biological analogue for the martian subsurface. Sam...

  16. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    In the present study, the microbial diversity in anaerobic reactors, continuously exposed to oleate, added to a manure reactor influent, was investigated. Relative changes in archaeal community were less remarkable in comparison to changes in bacterial community indicating that dominant archaeal...

  17. Methanogenic degradation of (amino)aromatic compounds by anaerobic microbial communities

    NARCIS (Netherlands)

    Linkova, Y.V.; Stams, A.J.M.

    2011-01-01

    Degradation of a range of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gra

  18. Temperature response of methane oxidation and production potentials in peatland ecosystems across Finland

    Science.gov (United States)

    Welti, Nina; Korrensalo, Aino; Kerttula, Johanna; Maljanen, Marja; Uljas, Salli; Lohila, Annalea; Laine, Anna; Vesala, Timo; Elliott, David; Tuittila, Eeva-Stiina

    2016-04-01

    It has been suggested that the ecosystems located in the high latitudes are especially sensitive to warming. Therefore, we compared 14 peatland systems throughout Finland along a latitudinal gradient from 69°N to 61°N to examine the response of methane production and methane oxidation with warming climate. Peat samples were taken at the height of the growing season in 2015 from 0 - 10cm below the water table depth. The plant communities in sampling locations were described by estimating cover of each plant species and pH of water was measured. Upon return to the lab, we made two parallel treatments, under anoxic and oxic conditions in order to calculate the CH4 production and consumption potentials of the peat and used three temperatures, 4°C, 17.5°C, and 30°C to examine the temperature effect on the potentials. We hypothesized that there will be an observable response curve in CH4 production and oxidation relative to temperature with a greater response with increasing latitude. In general, increasing temperature increased the potential for CH4 production and oxidation, at some sites, the potential was highest at 17.5°C, indicating that there is an optimum temperature threshold for the in situ methane producing and oxidizing microbial communities. Above this threshold, the peat microbial communities are not able to cope with increasing temperature. This is especially noticeable for methane oxidation at sites above 62°N. As countries are being expected to adequately account for their greenhouse gas budgets with increasing temperature models, knowing where the temperature threshold exists is of critical importance.

  19. Oxidation and Assimilation of Atmospheric Methane by Soil Methane Oxidizers

    OpenAIRE

    Roslev, P.; Iversen, N.; Henriksen, K.

    1997-01-01

    The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporat...

  20. Anaerobic transformation of carbon monoxide by microbial communities of Kamchatka hot springs.

    Science.gov (United States)

    Kochetkova, Tatiana V; Rusanov, Igor I; Pimenov, Nikolay V; Kolganova, Tatyana V; Lebedinsky, Alexander V; Bonch-Osmolovskaya, Elizaveta A; Sokolova, Tatyana G

    2011-05-01

    Carbon monoxide (CO) is one of the common gaseous compounds found in hot volcanic environments. It is known to serve as the growth substrate for a number of thermophilic prokaryotes, both aerobic and anaerobic. The goal of this work was to study the process of anaerobic transformation of CO by microbial communities inhabiting natural thermal environments: hot springs of Uzon Caldera, Kamchatka. The anaerobic microbial community of Treshchinny Spring (80°C, pH 6.5) was found to exhibit two peaks of affinity for CO (K (S1) = 54 nM and K (S2) = 1 μM). The actual rate of anaerobic CO transformation by the microbial community of this spring, calculated after obtaining the concentration dependence curve and extrapolated to the natural concentration of CO dissolved in the hot spring water (20 nM), was found to be 120 μmol l(-1) of sediment day(-1). In all the hot springs studied, more than 90% of the carbon of (14)CO upon anaerobic incubation was recovered as (14)CO(2). From 1 to 5% of (14)CO was transformed to volatile fatty acids (VFA). The number of microorganisms capable of anaerobic CO oxidation determined by dilution-to-extinction method reached 10(6) cells ml(-1) of sediment. CO-transforming anaerobic thermophilic microorganisms isolated from the springs under study exhibited hydrogenogenic type of CO oxidation and belonged to the bacterial genera Carboxydocella and Dictyoglomus. These data suggest a significant role of hydrogenogenic carboxydotrophic prokaryotes in anaerobic CO transformation in Uzon Caldera hot springs.

  1. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia

    Science.gov (United States)

    Roslev, Peter; King, Gary M.

    1996-01-01

    The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic

  2. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy

    2016-09-01

    Microbial management in anaerobic digestion is mainly focused on physically present and metabolically active species. Because of its complexity and operation near the thermodynamic equilibria, it is equally important to address functional regulation, based on spatial organisation and interspecies communication. Further establishment of the knowledge on microbial communication in anaerobic digestion through quorum sensing and nanowires is needed. Methods to detect centres of concentrated activity, related to the presence of highly active and well-connected species that take a central role in the anaerobic digestion process, have to be optimized. Bioaugmentation could serve as a crucial tool to introduce keystone species that may create or sustain such centres. Functional stability can be maintained by keeping the microbial community active. This results in a clear trade-off between functionally active and redundant microorganisms as primary basis for microbial community organization. Finally, a microbial community based prediction strategy for advanced process control is formulated. PMID:27376701

  3. A four-helix bundle stores copper for methane oxidation.

    Science.gov (United States)

    Vita, Nicolas; Platsaki, Semeli; Baslé, Arnaud; Allen, Stephen J; Paterson, Neil G; Crombie, Andrew T; Murrell, J Colin; Waldron, Kevin J; Dennison, Christopher

    2015-09-01

    Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location. PMID:26308900

  4. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M.

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  5. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    Directory of Open Access Journals (Sweden)

    Emilie Lefevre

    Full Text Available The increasing occurrence of tetrabromobisphenol A (TBBPA in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA. However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA.

  6. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A.

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M; Gunsch, Claudia K

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  7. Permafrost Thaw Induces Methane Oxidation in Transitional Thaw Stages in a Subarctic Peatland

    Science.gov (United States)

    Perryman, C. R.; Kashi, N. N.; Malhotra, A.; McCalley, C. K.; Varner, R. K.

    2015-12-01

    Rising temperatures in the subarctic are accelerating permafrost thaw and increasing methane (CH4) emissions from subarctic peatlands. Methanotrophs in these peatlands can consume/oxidize CH4, potentially mitigating CH4 emissions in these peatlands. Oxidation rates can exceed 90% of CH4 production in some settings, depending on O2 and CH4 availability and environmental conditions. Malhotra and Roulet identified 10 thaw stages in Stordalen Mire near Abisko, Sweden (68°21'N,18°49'E ) with variable vegetation, environmental conditions, and associated CH4 emissions. We investigated potential methane oxidation rates across these thaw stages. Peat cores were extracted from two depths at each stage and incubated in 350ml glass jars at in situ temperatures and CH4 concentrations. Headspace samples were collected from each incubation jar over a 48-hour period and analyzed for CH4 concentration using flame ionization detection gas chromatography (GC-FID). Oxidation rates ranged from <0.1 to 17 μg of CH4 per gram of dry biomass per day. Water table depth and pore water pH were the strongest environmental correlates of oxidation (sample size = 56, p < 0.001). The highest potential oxidation rates were observed in collapsing palsa sites and recently collapsed sedge-dominated open water sites near palsa mounds. Our results suggest that permafrost thaw induces high CH4 oxidation rates by creating conditions ideal for both methanogenic and methanotrophic microbial communities. Our results also reinforce the importance of incorporating transitional thaw stages in landscape level carbon budgets of thawing peatlands emphasized by Malhotra and Roulet. Forthcoming microbial analysis and stable isotope analysis will further elucidate the factors controlling methane oxidation rates at Stordalen Mire.

  8. Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities

    Science.gov (United States)

    Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g-COD fed were achieved at food-to-microorganism (F/M) ratios of ...

  9. Intensive Ammonia and Methane Oxidation in Organic Liquid Manure Crusts

    DEFF Research Database (Denmark)

    Nielsen, Daniel Aagren; Nielsen, Lars Peter; Schramm, Andreas;

    methane oxidizing bacteria (MOB) and are known to accumulate nitrite and nitrate, indicating the presence of ammonia oxidizers (AOB). We have surveyed six manure tanks with organic covers to investigate the prevalence of MOB and AOB and to link the potential activity with physical and chemical aspects of...... characterized with respect to O2 availability by in situ profiling with electrochemical microsensors. Results show that oxygen penetration increased from few micrometers up to several centimetres with crust age. AOB and ammonium oxidation are ubiquitously present in well-developed manure crusts whereas MOB were...... also CH4 emission mitigation, an organic surface crust can be effective if populations of MOB and AOB are allowed to build up....

  10. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  11. Microbial methane oxidation in the Arctic Ocean offshore Svalbard

    Science.gov (United States)

    Steinle, Lea I.; Graves, Carolyn; Lehmann, Moritz F.; Treude, Tina; Niemann, Helge

    2013-04-01

    Large amounts of methane are released from ocean sediments, most importantly at cold seep environments. Aerobic methanotrophic bacteria in the ocean water column consume a significant fraction of this biogenic methane, preventing its emission to the atmosphere. The understanding of key environmental factors controlling the efficiency of this biological methane-filter is still incomplete. In order to elucidate possible environmental constraints on methane turnover in the ocean, we investigated the temporal and spatial variation of aerobic methane oxidation (MOx) rates at active cold seeps at water depths between 150 and 400 m, located off the coast of Svalbard. In the study area, methane concentrations were consistently elevated in bottom waters (up to 825 nM) and decreased towards the sea surface. Highest MOx rates of up to 3.1 nM/day were typically observed at ~30 m above the sea floor. Despite the constant supply of methane substrate, MOx rates displayed a high temporal variability. Comparison of the distribution of MOx rates and water temperature revealed consistent spatio-temporal patterns suggesting an oceanographic control on the magnitude of MOx: Cool Arctic bottom waters containing a comparably large standing stock of methanotrophic bacteria are episodically displaced by the warmer W-Spitsbergen current, which meanders along the Svalbard continental margin and is depleted in methanotrophic biomass. As a consequence, methane is injected into warmer water masses containing fewer methanotrophs, and overall methane oxidation is reduced. While the primary cause for the observed discrepancy in methanotrophic activity between the different water masses is still uncertain, our preliminary data indicate that MOx fluctuations in the ocean water column above the Svalbard cold seeps are modulated by ocean circulation patterns and the associated differential supply of bacterial stock.

  12. Effects of Endogenous Substrates on Adaptation of Anaerobic Microbial Communities to 3-Chlorobenzoate

    OpenAIRE

    Becker, Jennifer G.; Berardesco, Gina; Rittmann, Bruce E.; Stahl, David A

    2006-01-01

    Lengthy adaptation periods in laboratory studies evaluating the potential for contaminant biodegradation in natural or engineered environments may indicate that the native microbial communities are not metabolizing the contaminants in situ. In this study, we characterized the adaptation period preceding the biodegradation of 3-chlorobenzoate in anaerobic communities derived from lake sediment and wastewater sludge digesters. The importance of alternative mechanisms of adaptation of the anaero...

  13. Effects of Nitrogen Fertilizer,Soil Moisture and Temperature on Methane Oxidation in Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    YANXIAOYUAN; CAIZUCONG

    1996-01-01

    Effects of nitrogen fertilizer,soil mosture and temperature and temperature on methane oxidation in paddy soil were investigated under laboratory conditions.Addition of 0.05 g N kg-1 soil as NH4Cl strongly inhibited methane oxidation and addition of the same rate of KCl also inhibited the oxidation but with more slight effect,suggesting that the inhibitory effect was partly caused by increase in osmotic potential in microorganism cell,Not only NH4+ but also NO3- greatly affected methane oxidation.Urea did not affect methane oxidation in paddy soil in the first two days of incubation,but strong inhibitory effect was observed afterwards.Methane was oxidized in the treated soil with an optimum moisture of 280 g kg-1 ,and air-drying inhibited methane oxidation entirely.The optimum temperature of methane oxidation was about 30℃ in paddy soil.while no methane oxidation was observed at 5℃or 50℃。

  14. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem

    Science.gov (United States)

    Brumme, Rainer; Borken, Werner

    1999-06-01

    Factors controlling methane oxidation were analyzed along a soil acidity gradient (pH(H2O) 3.9 to 5.2) under beech and spruce forests in Germany. Mean annual methane oxidation ranged from 0.1 to 2.5 kg CH4 ha-1 yr-1 and was correlated with base saturation (r2 = 0.88), soil pH (r2 = 0.77), total nitrogen (r2 = 0.71), amount of the organic surface horizon (r2 = 0.49) and bulk density of the mineral soil (r2 = 0.43). At lower pHs the formation of an organic surface horizon was promoted. This horizon did not have any methane oxidation capacity and acted like a gas diffusion barrier, which decreased the methane oxidation capacity of the soil. In contrast, on sites at the higher end of the pH range, higher burrowing activity of earthworms increased macroporosity and thereby gas diffusivity and methane oxidation. Gas diffusivity was also affected by litter shape: broad beech leaves reduced methane oxidation more than spruce needles. An increase in methane oxidation of most soil samples following sieving indicates that diffusion is the main limiting factor for methane oxidation. However, this "sieving effect" was less in soils with a pH below 5 than in soils with a pH above 5, which we attribute to a direct effect of soil acidity. We discuss our results using a hierarchical concept for the "short-term" and "long-term" controls on methane oxidation in forest ecosystems.

  15. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha

    2016-07-09

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  16. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    Science.gov (United States)

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower. PMID:27441825

  17. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    Science.gov (United States)

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  18. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation. PMID:22476263

  19. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  20. Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Jiane Zuo; Ruofan Ji; Xiaojie Chen; Fenglin Liu; Kaijun Wang; Yunfeng Yang

    2012-01-01

    A lab-scale continuously-stirred tank reactor (CSTR),used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios,was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3.day).The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions - denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA),respectively.PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Aachaea.As the FVW/FW ratio increased,Methanoculleus,Methanosaeta and Methanosarcina became the predominant methanogens in the community.Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield.Different mixture ratios of substrates led to different compositions of intermediate metabolites,which may affect the methanogenic community.These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.

  1. Methane Oxidation in Termite Hindguts: Absence of Evidence and Evidence of Absence▿

    OpenAIRE

    Pester, Michael; Tholen, Anne; Friedrich, Michael W.; Brune, Andreas

    2007-01-01

    A steep oxygen gradient and the presence of methane render the hindgut internal periphery of termites a potential habitat for aerobic methane-oxidizing bacteria. However, methane emissions of various termites increased, if at all, only slightly when termites were exposed to an anoxic (nitrogen) atmosphere, and 14CH4 added to the air headspace over live termites was not converted to 14CO2. Evidence for the absence of methane oxidation in living termites was corroborated by the failure to detec...

  2. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    OpenAIRE

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparabl...

  3. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  4. Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation

    OpenAIRE

    Tiwary, A; Williams, I. D.; Pant, D. C.; Kishore, V.V.N.

    2015-01-01

    This paper provides an extensive review of anaerobic digestion (AD) systems, with a specific focus on community scale digesters for urban applications, processing either municipal organic waste exclusively or as mix feed. Emphasis is placed on reducing the systems scale environmental impact of AD technologies, including pre- and post-treatment stages, alongside biogas production. Developments to-date in AD system research in Europe and in the Asia region have been compared, providing a compre...

  5. Use of stable isotopes to determine methane oxidation in landfill cover soils

    Science.gov (United States)

    Liptay, K.; Chanton, J.; Czepiel, P.; Mosher, B.

    1998-04-01

    The mean isotopic composition of CH4 emitted from six New England (United States) landfills was 13C and D enriched (-48.1 to -50.4‰ and -273 to -281‰) relative to anoxic zone landfill CH4 (mean values of -55.9 to -56.2‰ and -296 to -300‰) owing to the oxidation of methane as it was transported from the landfill to the atmosphere through the soil cap. The fraction of methane oxidized f0 during its passage through the soil cap was calculated from the degree of 13C enrichment in emitted CH4 relative to anoxic zone CH4 in conjunction with values determined for the preference of soil methane oxidizing bacteria for 12CH4 over 13CH4 (α = 1.022 ± 0.008). Mean values for methane oxidation in six landfills were from 24 to 35% of the total flux through the soil during the warm season, depending upon how the data were grouped. Our results bracket recent estimates of methane oxidation of about 30% in the warm summer period produced using a model with the input terms of soil temperature, moisture, depth, and oxygen concentration. Because of variations in the response of methane oxidation to temperature at these New England sites, our study is consistent with the modeling results of Czepiel et al. [1996b] that the best estimate for the annual value for methane oxidation in the landfills considered is about 10%.

  6. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    Science.gov (United States)

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.

  7. 重庆凉风垭天然气富集区上覆菜园土壤甲烷氧化细菌群落分析%METHANE OXIDIZING BACTERIAL COMMUNITIES IN SOILS WITH CH4 SEEPING IN LIANGFENGYA,CHONGQING

    Institute of Scientific and Technical Information of China (English)

    龚林锋; 王红梅; 刘乔; 冯亮; 于洋; 祝丽薇

    2013-01-01

    Methane seeping has been observed in an area of several km since 1950s in Liangfengya, Chongqing, south western China. To investigate the community structure and diversity of methane oxidizing bacteria (MOB) , which play important role in methane cycle,surface(5 - 10cm) and bottom(20 -25cm) soil samples in a vegetable garden with CH4 seeping were collected in May, 2008. Surface sample ( CB ) and bottom samples ( CD1, CD2) were subjected to 16S rDNA gene sequencing and clone library constructions for type Ⅰ and type Ⅱ MOB respectively. Results showed that type I MOB is dominated by Methylobacter sp. in all soil samples. CD1 and CD2 shared a same Shannon-Wiener index of typeⅠ MOB with a value of 1. 99 despite of their difference in species compositions. Type Ⅱ MOB was only detected in CD1, which is dominated by Methylocystis sp. The Shannon-Wiener index (2. 07) is higher than that of type Ⅰ MOB ( 1. 99), indicating the preference of Type Ⅱ MOB under conditions with high CH4 concentration. Some of the type I MOB sequences showed high similarities with clones from various environments such as riverine sediments, soils, groundwater ect, which imply a ubiquitous distribution of these type Ⅰ MOB in natural environments. However, most of the sequences of type Ⅰ MOB in bottom soils show very low similarities with the known sequences in NCBI database, suggesting a unique MOB group in the CH4-seeping soils. Due to the great difference in CH4 oxidizing capacities of type Ⅰ and Ⅱ MOB, our data will shed light on understanding the CH4 cycle in the terrestrial seeping sites.%对重庆市凉风垭地区一具有天然气泄漏的菜园土壤进行采样,利用16S rDNA克隆文库研究了该菜园表层及底层土壤样品中甲烷氧化细菌的群落结构,以期了解甲烷泄漏地区甲烷氧化菌的丰度、结构和组成状况,为深入探讨甲烷在该地区的循环及甲烷泄漏对环境的影响奠定基础.DNA序列分析结果显示,该天然

  8. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities.

    Science.gov (United States)

    Matturro, Bruna; Ubaldi, Carla; Grenni, Paola; Caracciolo, Anna Barra; Rossetti, Simona

    2016-07-01

    Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g(-1) sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed. PMID:26162439

  9. Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Hristova, Krassimira R; Kappell, Anthony D; McNamara, Patrick J

    2016-01-01

    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg).

  10. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-04-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  11. Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Frederick Michel

    2013-10-01

    Full Text Available The Bacterial and Archaeal communities in a 1.14 m3 ambient temperature anaerobic digester treating dairy cow manure were investigated using terminal restriction fragment length polymorphisms (T-RFLP and direct sequencing of the cloned polymerase chain reaction (PCR products. Results indicate shifts in the structure of the both the Archaeal and Bacterial communities coincided with digester re-inoculation as well as temperature and loading rate changes. Following re-inoculation of the sour digester, the predominant Archaea shifted from Methanobrevibacter to Methanosarcina, which was the most abundant Archaea in the inoculum. Methonosarcina was replaced by Methanosaeta after the resumption of digester loading in the summer of 2010. Methanosaeta began to decline in abundance as the digester temperature cooled in the fall of 2010 while Methanobrevibacter increased in abundance. The microbial community rate of change was variable during the study period, with the most rapid changes occurring after re-inoculation.

  12. Metabolomics reveals stage-specific metabolic pathways of microbial communities in two-stage anaerobic fermentation of corn-stalk.

    Science.gov (United States)

    Yang, Dawei; Fan, Xiaolei; Shi, Xiaoshuang; Lian, Shujuan; Qiao, Jiangtao; Guo, Rongbo

    2014-07-01

    Analysis of intracellular metabolites is essential to delineate metabolic pathways of microbial communities for evaluation and optimization of anaerobic fermentation processes. The metabolomics are reported for a microbial community during two stages of anaerobic fermentation of corn stalk in a biogas digester using GC–MS. Acetonitrile/methanol/water (2:2:1, by vol) was the best extraction solvent for microbial community analysis because it yielded the largest number of peaks (>200), the highest mean summed value of identified metabolites (23) and the best reproducibility with a coefficient of variation of 30 % among four different extraction methods. Inter-stage comparison of metabolite profiles showed increased levels of sugars and sugar alcohols during methanogenesis and fatty acids during acidogenesis. Identification of stage-specific metabolic pathways using metabolomics can therefore assist in monitoring and optimization of the microbial community for increased biogas production during anaerobic fermentation. PMID:24658741

  13. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  14. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. PMID:26577579

  15. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 oC) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  16. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... and groundwaters. Only three of the eight mixed cultures were able to degrade TCE, or to degrade TCE fast enough to result in a significant removal of TCE within the experimental time, when the cultures used methane as growth substrate. The same three mixed cultures were able to degrade TCE when they oxidized...... methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in degradation...

  17. Ecophysiological Characteristics of Obligate Methanotrophic Bacteria and Methane Oxidation In Situ

    Science.gov (United States)

    King, Gary M.

    1993-01-01

    Most of the obligate methane-oxidizing bacteria (MOB) described to date are neutrophilic mesophiles that grow optimally in dilute media. Kinetic analyses generally indicate that bacterial methane uptake occurs by transport systems with a K(sub m) greater than l micronM. These and other properties of MOB are inconsistent with characteristics of methane oxidation in situ. The inconsistencies indicate a need for greater attention to the ecophysiological characteristics of isolates and the design of enrichment and isolation schemes which emphasize ecologically relevant parameters (e.g., low temperature, limited and diverse substrate availability, low water potential).

  18. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  19. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters.

    Science.gov (United States)

    Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib

    2016-02-01

    The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. PMID:26687494

  20. New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches.

    Science.gov (United States)

    Ding, Jing; Ding, Zhao-Wei; Fu, Liang; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2015-11-01

    The significance of ANME-2d in methane sink in the environment has been overlooked, and there was no any study evaluating the distribution of ANME-2d in the environment. New primers were thus needed to be designed for following research. In this paper, a pair of primers (DP397F and DP569R) was designed to quantify ANME-2d. The specificity and amplification efficiency of this primer pair were acceptable. PCR amplification of another pair of primers (DP142F and DP779R) generated a single, bright targeted band from the enrichment sample, but yielded faint, multiple bands from the environmental samples. Nested PCR was conducted using the primers DP142F/DP779R in the first round and DP142F/DP569R in the second round, which generated a bright targeted band. Further phylogenetic analysis showed that these targeted bands were ANME-2d-related sequences. Real-time PCR showed that the copies of the 16s ribosomal RNA gene of ANME-2d in these samples ranged from 3.72 × 10(4) to 2.30 × 10(5) copies μg(-1) DNA, indicating that the percentage of ANME-2d was greatest in a polluted river sample and least in a rice paddy sample. These results demonstrate that the newly developed real-time PCR primers could sufficiently quantify ANME-2d and that nested PCR with an appropriate combination of the new primers could successfully detect ANME-2d in environmental samples; the latter finding suggests that ANME-2d may spread in environments. PMID:26300291

  1. The alkaloid gramine in the anaerobic digestion process-inhibition and adaptation of the methanogenic community.

    Science.gov (United States)

    Popp, Denny; Harms, Hauke; Sträuber, Heike

    2016-08-01

    As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material. PMID:27138201

  2. The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Richard J. Ciotola

    2014-02-01

    Full Text Available The relationship between seasonal temperatures, organic loading rate (OLR and the structure of archaeal communities in anaerobic digesters was investigated. Previous studies have often assessed archaeal community structure at fixed temperatures and constant OLRs, or at variable temperatures not characteristic of temperate climates. The goal of this study was to determine the maximum OLR that would maintain a balanced microbial ecosystem during operation in a variable temperature range expected in a temperate climate (27–10 °C. Four-liter laboratory digesters were operated in a semi-continuous mode using dairy cow manure as the feedstock. At OLRs of 1.8 and 0.8 kg VS/m3·day the digesters soured (pH < 6.5 as a result of a decrease in temperature. The structure of the archaeal community in the sour digesters became increasingly similar to the manure feedstock with gains in the relative abundance of hydrogenotrophic methanogens. At an OLR of 0.3 kg VS/m3·day the digesters did not sour, but the archaeal community was primarily hydrogenotrophic methanogens. Recommendations for operating an ambient temperature digester year round in a temperate climate are to reduce the OLR to at least 0.3 kg VS/m3·day in colder temperatures to prevent a shift to the microbial community associated with the sour digesters.

  3. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Science.gov (United States)

    Nauer, P. A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M. H.

    2012-06-01

    The global methane (CH4) cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB), but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1-2 μL L-1 with soil-atmosphere CH4 fluxes of -0.14 to -1.1 mg m-2 d-1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2-10 μL L-1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L-1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m-2 d-1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs) at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ). The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil Cluster α (USCα) were not detected. Apparently, USCγ adapted best to the oligotrophic cold climate conditions at the investigated pioneer sites.

  4. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  5. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.

  6. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    Science.gov (United States)

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. PMID:27262719

  7. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    Science.gov (United States)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    -reducing/oxidizing archaeon Ferroglobus placidus. Thus, we suggest that ANME2-D may couple methane oxidation to reduction of ferric iron minerals in the sediment and may be generally important as a link between the iron and methane cycles in deep subsurface environments. Such information has important implications for modeling the global carbon cycle.

  8. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi.

    Science.gov (United States)

    Jo, Ji Hye; Jeon, Che Ok; Lee, Dae Sung; Park, Jong Moon

    2007-09-15

    Hydrogen production by the dark fermentation of food wastes is an economic and environmentally friendly technology to produce the clean energy source as well as to treat the problematic wastes. However, the long-term operations of the continuous anaerobic reactor for fermentative hydrogen production were frequently unstable. In this study, the structure of microbial community within the anaerobic reactor during unstable hydrogen production was examined by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) techniques. The changes in microbial community from H(2)-producing Clostridium spp. to lactic acid-producing Lactobacillus spp. were well coincident with the unexpected process failures and the changes of metabolites concentrations in the effluent of the anaerobic reactor. As the rate of hydrogen production decreased, effluent lactic acid concentration increased. Low rate of hydrogen production and changes in microbial community were related to the 'kimchi' content and storage temperature of food waste feed solution. After low temperature control of the storage tank of the feed solution, any significant change in microbial community within the anaerobic reactor did not occur and the hydrogen production was very stably maintained for a long time.

  9. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments.

    Science.gov (United States)

    Duangmanee, T; Padmasiri, S I; Simmons, J J; Raskin, L; Sung, S

    2007-09-01

    Biological hydrogen production by anaerobic mixed communities was studied in laboratory-scale bioreactors using sucrose as the substrate. A bioreactor in which a fraction of the return sludge was exposed to repeated heat treatments performed better than a control bioreactor without repeated heat treatment of return sludge and produced a yield of 2.15 moles of hydrogen per mole of sucrose, with 50% hydrogen in the biogas. Terminal restriction fragment length polymorphism analysis showed that two different Clostridium groups (comprised of one or more species) were dominant during hydrogen production. The relative abundance of two other non-Clostridium groups increased during periods of decreased hydrogen production. The first group consisted of Bifidobacterium thermophilum, and the second group included one or more of Bacillus, Melissococcus, Spirochaeta, and Spiroplasma spp.

  10. Anaerobic digestion as a sustainable solution for biosolids management by the Montreal metropolitan community.

    Science.gov (United States)

    Frigon, J C; Guiot, S R

    2005-01-01

    The Quebec Waste Management Policy (1998-2008) is requesting that the municipalities prepare a waste management plan, including a global objective of 60% of these wastes to be diverted from landfill sites by reduction, re-usage, recycling and valorization. Around 5.8 million tons of wastes were generated on the territory of the Montreal Metropolitan Community in 2001 for a population of about 3.5 millions citizens. In this paper, we present different management scenarios in which anaerobic digestion was used as a valorization step, focusing on the energetic value of the methane produced and the reduction in greenhouse gas (GHG) emissions. The four scenarios prepared cover the valorization of the organic fraction of municipal solid wastes, green wastes and excess sludge and showed potential methane generation of 17-140 Mm3 with a GHG reduction of 62,000-500,000 tons of CO2-equivalents. PMID:16180478

  11. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    Science.gov (United States)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    accumulation of chloride ions either in spent media or in slurries prepared from Searsville Lake soil, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soils enriched in methanotrophs. This result leads us to surmise that the release of O2 during enzymatic perchlorate reduction was low, and that the oxygen produced was unavailable to the aerobic methanotrophs. This was borne out by patterns of O2 and CO2 production during experiments with lake soil, growth media, and pure cultures of dissimilatory perchlorate reducing bacteria. We observed that O2 release during incubation of D. agitata CKB with 10 mM ClO4- or ClO3- was decoupled from metabolism. More O2 was released during incubations without added acetate than with 10 mM acetate and an even greater amount of O2 was released during incubation with heat-killed cells. This suggests a chemical mechanism of O2 production during reaction with ClO4- and ClO3-. Hence, perchlorate reducing bacteria need not be present to facilitate O2 release from the surface of Mars, in support of recent interpretations of Viking LR and GEx experiments.

  12. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  13. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    International Nuclear Information System (INIS)

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg−1) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor

  14. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure.

    Science.gov (United States)

    Panichnumsin, P; Ahring, B; Nopharatana, A; Chaiprasert, P

    2012-01-01

    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.

  15. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    Directory of Open Access Journals (Sweden)

    Florence Braun

    Full Text Available Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH. Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR, in community structure (SSCP fingerprinting and in dominant microbial species (454-pyrosequencing. The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm

  16. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.

    Science.gov (United States)

    Chen, Ran; Luo, Yi-Hao; Chen, Jia-Xian; Zhang, Yin; Wen, Li-Lian; Shi, Ling-Dong; Tang, Youneng; Rittmann, Bruce E; Zheng, Ping; Zhao, He-Ping

    2016-05-01

    Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm's microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 (-) to NO2 (-) or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 (-). Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 (-) or ClO4 (-) directly. Graphical Abstract ᅟ. PMID:26841777

  17. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure.

    Science.gov (United States)

    Turker, Gokhan; Aydin, Sevcan; Akyol, Çağrı; Yenigun, Orhan; Ince, Orhan; Ince, Bahar

    2016-07-01

    Management of manure containing veterinary antibiotics is a major concern in anaerobic treatment systems because of their possible adverse effects on microbial communities. Therefore, the aim of study was to investigate how oxytetracycline (OTC) influences bacteria and acetoclastic and hydrogenotrophic methanogens under varying operational conditions in OTC-medicated and non-medicated anaerobic cow manure digesters. Concentrations of OTC and its metabolites throughout the anaerobic digestion were determined using ultraviolet-high-performance liquid chromatography (UV-HPLC) and tandem liquid chromatography-mass spectrometry (LC/MS/MS), respectively. Fluorescent in situ hybridization, denaturing gradient gel electrophoresis, cloning, and sequencing analyses were used to monitor changes in microbial community structures. According to the results of analytical and molecular approaches, operating conditions highly influence active microbial community dynamics and associate with biogas production and elimination of OTC and its metabolites during anaerobic digestion of cow manure in the presence of an average initial concentration of 2.2 mg OTC/L. The impact of operating conditions has a drastic effect on acetoclastic methanogens than hydrogenotrophic methanogens and bacteria. PMID:27026176

  18. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    Science.gov (United States)

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-10-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification.

  19. Inhibition of methane oxidation in slurry surface crust by inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun-Feng; Elsgaard, Lars; Petersen, Søren O

    2013-01-01

    Livestock slurry is an important source of methane (CH4). Depending on dry matter content, a floating crust may form where methane-oxidizing bacteria (MOB) and CH4 oxidation activity have been found, suggesting that surface crusts may reduce CH4 emissions from slurry. However, it is not known how...... MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH4+), nitrate (NO3–) and nitrite (NO2–) on potential CH4 oxidation in a cattle slurry surface crust. Methane oxidation was assayed at salt concentrations up to 500 mM at 100 and 10,000 ppmv...... without any decline in activity. The inhibition by NH4+ increased progressively, and no range of tolerance was observed. Methane concentrations of 10,000 ppmv resulted in 50- to 100-fold higher specific CH4 uptake rates than 100 ppmv CH4, but did not change the inhibition patterns of N salts. MOB...

  20. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    Science.gov (United States)

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  1. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    Science.gov (United States)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    characterization identified ~350 proteins, confirmed enhanced microbial activities and significant shift in community structure within the microcosms. Although the activity of Shewanella sp. was suppressed by the incubation conditions, other bacteria were activated. This was shown by at least 3-fold increase in the number of identified proteins, which were primarily players in cellular energy metabolism. Among them, Geobacter sp. and methane-oxidizers, Bradyrhizobium sp., Methylosinus sp. and Methylocystis sp. appear dominant. In order to advance the protein database for better biodiversity and functional identification, we are currently using duo extraction protocols and consolidating metagenome data obtained from the same soil samples. A depth profile (from active to permafrost layer) for methanotrophs is being determined by examining pristine cores, thawed cryosols as well as enrichment cultures. The proteome information from these samples will be presented, which will be complemented by molecular studies.

  2. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-06-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1–2 μL L−1 with soil-atmosphere CH4 fluxes of –0.14 to –1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2–10 μL L−1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L−1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil

  3. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-01-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize MOB communities using pmoA sequencing and T-RFLP. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ∼1–2 μl l−1 with soil-atmosphere CH4 fluxes of −0.14 to −1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ∼2–10 μl l−1, most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μl l−1. Remarkably, most soils oxidized ∼90% of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 OTUs and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. As Type I MOB are widespread in cold climate habitats with elevated CH4 concentrations, USCγ might be the corresponding

  4. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  5. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  6. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R

    2004-05-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity.

  7. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    Science.gov (United States)

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-06-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this `high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane.

  8. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    Science.gov (United States)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  9. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  10. The biotransformation of brewer's spent grain into biogas by anaerobic microbial communities.

    Science.gov (United States)

    Malakhova, Dina V; Egorova, Maria A; Prokudina, Ljuba I; Netrusov, Alexander I; Tsavkelova, Elena A

    2015-12-01

    The present study reports on the biotransformation of the brewer's spent grain (BSG) in co-digestion with Jerusalem artichoke (JA, Helianthus tuberosus L.) phytomass by thermophilic (+55 °C) and mesophilic (+30 °C) anaerobic methanogenic communities. BSG is a by-product of the beer-brewing process generated in large amounts, in which utilization provokes a negative effect on the environment. In this study, we will show an effective conversion of BSG into biogas by selected microbial communities, obtained from different sources (animal manure and previously isolated microbial consortia). The stimulation of methanogenesis was reached by the co-digestion of JA's phytomass (stem and leaves). The optimized conditions for microbial stable cultivation included the use of nutrient medium, containing yeast extract and trace element solution. The optimal BSG concentration in biogas production was 50 and 100 g L(-1). Under thermophilic conditions, the maximum total methane production reached 64%, and it comprised around 6-8 and 9-11 of L CH4 per 100 g of fermented BSG without and with co-digested JA, respectively, when the fresh inoculum was added. Although, after a year of re-cultivation, the values reduced to around 6-7, and 6-10 L CH4/100 g BSG, correspondingly, the selected microbial communities showed effective biotransformation of BSG. The supplementation of soil with the residual fermented BSG (10%, w/w) resulted in the promotion of lettuce (Lepidium sativum L.) growth. The results obtained demonstrate a potential for complete BSG utilization via biogas production and application as a soil additive. PMID:26399858

  11. The biotransformation of brewer's spent grain into biogas by anaerobic microbial communities.

    Science.gov (United States)

    Malakhova, Dina V; Egorova, Maria A; Prokudina, Ljuba I; Netrusov, Alexander I; Tsavkelova, Elena A

    2015-12-01

    The present study reports on the biotransformation of the brewer's spent grain (BSG) in co-digestion with Jerusalem artichoke (JA, Helianthus tuberosus L.) phytomass by thermophilic (+55 °C) and mesophilic (+30 °C) anaerobic methanogenic communities. BSG is a by-product of the beer-brewing process generated in large amounts, in which utilization provokes a negative effect on the environment. In this study, we will show an effective conversion of BSG into biogas by selected microbial communities, obtained from different sources (animal manure and previously isolated microbial consortia). The stimulation of methanogenesis was reached by the co-digestion of JA's phytomass (stem and leaves). The optimized conditions for microbial stable cultivation included the use of nutrient medium, containing yeast extract and trace element solution. The optimal BSG concentration in biogas production was 50 and 100 g L(-1). Under thermophilic conditions, the maximum total methane production reached 64%, and it comprised around 6-8 and 9-11 of L CH4 per 100 g of fermented BSG without and with co-digested JA, respectively, when the fresh inoculum was added. Although, after a year of re-cultivation, the values reduced to around 6-7, and 6-10 L CH4/100 g BSG, correspondingly, the selected microbial communities showed effective biotransformation of BSG. The supplementation of soil with the residual fermented BSG (10%, w/w) resulted in the promotion of lettuce (Lepidium sativum L.) growth. The results obtained demonstrate a potential for complete BSG utilization via biogas production and application as a soil additive.

  12. Growing concentrations of phenol increasingly modify microbial communities' dynamics and performances' stability of anaerobic digesters

    OpenAIRE

    Chapleur, O.; Civade, R.; Hoyos, C.; MAZEAS, L; Bouchez, T.

    2013-01-01

    13th World Congress on Anaerobic Digestion : Recovering (bio) Ressources for the World, Santiago de Compostella, ESP, 25-/06/2013 - 28/06/2013 International audience Anaerobic degradation requires a complex network of interacting and competing microorganisms. Waste anaerobic digesters are based on the intensive use of this flora. Consequently, functioning and stability of digesters are directly related to microbial populations' dynamics. The latter may be subject to external disturbance...

  13. Optimisation of 16S rDNA amplicon sequencing protocols for microbial community profiling of anaerobic digesters

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Larsen, Poul;

    of the community composition. As such sample specific optimisation and standardisation of DNA extraction, as well PCR primer selection, are essential to minimising the potential for such biases. The aim of this study was to develop a protocol for optimized community profiling of anaerobic digesters. The FastDNA......RNA gene amplicon sequencing is rapid, cheap, high throughput, and has high taxonomic resolution. However, biases are introduced in multiple steps of this approach, including non-representative DNA extraction and uneven taxonomic coverage of selected PCR primers, potentially giving a skewed view...... SPIN kit was selected and the mechanical lysis parameters optimised for extraction of genomic DNA from mesophilic and thermophilic anaerobic digester samples. Different primer sets were compared for targeting the archaea and bacteria, both together and individually. Shotgun sequencing of a TruSeq PCR...

  14. Obtaining representative community profiles of anaerobic digesters through optimisation of 16S rRNA amplicon sequencing protocols

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; McIlroy, Simon Jon; Karst, Søren Michael;

    of the community composition . As such sample specific optimisation and standardisation of DNA extraction, as well PCR primer selection, are essential to minimising the potential for such biases. The aim of this study was to develop a protocol for optimized community profiling of anaerobic digesters. The FastDNA......RNA gene amplicon sequencing is rapid, cheap, high throughput, and has high taxonomic resolution. However, biases are introduced in multiple steps of this approach, including non-representative DNA extraction and uneven taxonomic coverage of selected PCR primers, potentially giving a skewed view...... SPIN kit was selected and the mechanical lysis parameters optimised for extraction of genomic DNA from mesophilic and thermophilic anaerobic digester samples. Different primer sets were compared for targeting the archaea and bacteria, both together and individually . Shotgun sequencing...

  15. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Liu, Can; Li, Huan; Zhang, Yuyao; Si, Dandan; Chen, Qingwu

    2016-09-01

    High-solids anaerobic digestion (HSAD), a promising method with smaller reactor and less heating energy consumption, showed relatively lower digestion efficiency sometimes and higher tolerance to some inhibitors. To investigate the phenomena, the archaeal and bacterial communities in four anaerobic digesters treating sewage sludge with total solids (TS) of 10-19% were investigated. Although acetoclastic methanogenesis conducted mainly by genus Methanosarcina was still the main pathway producing methane, the total ratio of acetoclastic methanogens decreased along with the increased TS. In contrary, the relative abundance of hydrogenotrophic methanogens increased from 6.8% at TS 10% to 22.3% at TS 19%, and methylotrophic methanogens from 10.4% to 20.9%. The bacterial community was dominated by five phyla. Acidogenic and acetogenic bacteria affiliated to Firmicutes decreased following the increase of TS; while the proteolysis phylum Bacteroidetes increased, with a tolerant family ST-12K33 notably existing in the digesters at TS 17% and 19%. PMID:27235970

  16. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  17. Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue

    OpenAIRE

    Rincón, Bárbara; Portillo Guisado, María del Carmen; González Grau, Juan Miguel; Borja Padilla, Rafael

    2013-01-01

    The microbial communities in a two-stage anaerobic digestion process treating olive mill >solid> residues were studied by molecular identification techniques. The microbial species identification in the hydrolytic-acidogenic step and in the methanogenic step was carried out by polymerase chain reaction amplification of 16S ribosomal RNA genes, denaturing gradient gel electrophoresis, cloning, and sequencing. This study revealed that Firmicutes (from 31.1 to 61.1 %, average 42.1 %) mainly repr...

  18. Methanogenic potential and microbial community of anaerobic batch reactors at different ethylamine/sulfate ratios

    Directory of Open Access Journals (Sweden)

    D. V. Vich

    2011-03-01

    Full Text Available Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration. Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%, Deferribacteres (13% and Proteobacteria (12% were the predominant phyla of the Bacteria domain, while Spirochaetes (40%, Deferribacteres (17% and Bacteroidetes (16% predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea.

  19. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR).

    Science.gov (United States)

    Chen, Chongjun; Sun, Faqian; Zhang, Haiqing; Wang, Jianfang; Shen, Yaoliang; Liang, Xinqiang

    2016-09-01

    Nitrogen removal with different organic carbon effect was investigated using anaerobic baffled reactor (ABR) anammox reactor. Results indicated that organic carbon exert an important effect on nitrogen removal through anammox process. When the feeding COD concentration was lower than 99.7mgL(-1), nitrogen removal could be enhanced via the coexistence of denitrification and anammox. Elevated COD could further deteriorate the anammox activity with almost complete inhibition at the COD concentration of 284.1mgL(-1). The nitrogen removal contribution rate of anammox was varied from 92.7% to 6.9%. However, the anammox activity was recovered when the COD/TN was decreased from 2.33 to 1.25 with influent nitrite addition. And, the anammox process was again intensified from 27.0 to 51.2%. High-throughput Miseq sequencing analyses revealed that the predominant phylum changed from Chloroflexi to Proteobacteria with the elevated COD addition, which indicated COD concentration was the most important factor regulating the bacterial community structure. PMID:27285572

  20. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    Science.gov (United States)

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  1. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis.

    Science.gov (United States)

    Liu, An-Chi; Chou, Chu-Yang; Chen, Ling-Ling; Kuo, Chih-Horng

    2015-01-20

    Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium.

  2. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    OpenAIRE

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here w...

  3. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  4. pmoA Primers for Detection of Anaerobic Methanotrophs▿

    OpenAIRE

    Luesken, F.A.; Zhu, B.; Alen, T.A. van; Butler, M.K.; Diaz, M. R.; Song, B.; Op den Camp, H.J.M.; M. S. M. Jetten; Ettwig, K.F.

    2011-01-01

    Published pmoA primers do not match the pmoA sequence of “Candidatus Methylomirabilis oxyfera,” a bacterium that performs nitrite-dependent anaerobic methane oxidation. Therefore, new pmoA primers for the detection of “Ca. Methylomirabilis oxyfera”-like methanotrophs were developed and successfully tested on freshwater samples from different habitats. These primers expand existing molecular tools for the study of methanotrophs in the environment.

  5. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach.

    Directory of Open Access Journals (Sweden)

    Eric G Matson

    Full Text Available Anaerobic carbon monoxide dehydrogenase (CODH is a key enzyme in the Wood-Ljungdahl (acetyl-CoA pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities.

  6. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Walter, Andreas [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria); Ebner, Christian [Abwasserverband Zirl und Umgebung, Meilbrunnen 5, 6170 Zirl (Austria); Insam, Heribert [Institut für Mikrobiologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck (Austria)

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  7. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes...... of Amx 820 and EUB 338 mixed. Denitrification was observed through the reductions of both COD and nitrate–nitrite concentrations under anaerobic/anoxic conditions. By providing a stoichiometric ratio of nitrite to ammonium nitrogen with addition nitrate nitrogen, a gradual reduction of ANAMMOX activity...

  8. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  9. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.

    OpenAIRE

    Shrestha, Minita; Abraham, Wolf-Rainer; Shrestha, Pravin Malla; Noll, Matthias; Conrad, Ralf

    2008-01-01

    Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH(4) into the atmosphere and thus play an important role for the global cycle of this greenhouse gas. Therefore, we measured the activity and composition of the methanotrophic community in the rhizosphere of rice microcosms. Methane oxidation was determined by measuring the CH(4) flux in the presence and absence of difluoromethane as a specific inhibitor for methane oxidation. Methane oxidation started on da...

  10. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost.

    Science.gov (United States)

    Ueno, Y; Haruta, S; Ishii, M; Igarashi, Y

    2001-11-01

    Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.

  11. Modelling the growth of methane-oxidizing bacteria in a fixed biofilm

    DEFF Research Database (Denmark)

    Bilbo, Carl Morten; Arvin, Erik; Holst, Helle;

    1992-01-01

    Methane-oxidizing bacteria were grown in a fixed biofilm reactor in order to study their ability to degrade chlorinated aliphatic hydrocarbons. Focus is on the growth behaviour of the mixed culture. The growth is described by a model that includes methanotrophic bacteria in the active biomass....... The study forms the basis for setting up a future meauring programme. This work indicates a yield coefficient for methanotrophs of 0.36 mg biomass COD per mg CH$-4$/. In weight units this corresponds to approx. 1.44 mg biomass per mg CH$-4$/. This is close to the theoretical maximum growth yield...

  12. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    OpenAIRE

    Cai, Yuanfeng; Yan, Zheng; Bodelier, P. L. E.; Conrad, R.; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this ‘high-affinity’ methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was ...

  13. Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste.

    Science.gov (United States)

    Wu, Bo; Wang, Xing; Deng, Ya-Yue; He, Xiao-Lan; Li, Zheng-Wei; Li, Qiang; Qin, Han; Chen, Jing-Tao; He, Ming-Xiong; Zhang, Min; Hu, Guo-Quan; Yin, Xiao-Bo

    2016-10-01

    A successful start-up enables acceleration of anaerobic digestion (AD) into steady state. The microbial community influences the AD performance during the start-up. To investigate how microbial communities changed during the start-up, microbial dynamics was analyzed via high-throughput sequencing in this study. The results confirmed that the AD was started up within 25 d. Thermophilic methanogens and bacterial members functioning in hydrolysis, acidogenesis, and syntrophic oxidation became predominant during the start-up stage, reflecting a quick adaption of microorganisms to operating conditions. Such predominance also indicated the great contribution of these members to the fast start-up of AD. Redundancy analysis confirmed that the bacterial abundance significantly correlated with AD conditions. The stable ratio of hydrogenotrophic methanogens to aceticlastic methanogens is also important to maintain the stability of the AD process. This work will be helpful to understand the contribution of microbial community to the start-up of AD. PMID:27251412

  14. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    Science.gov (United States)

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  15. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    Science.gov (United States)

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  16. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    Directory of Open Access Journals (Sweden)

    Shaun M. Baesman

    2015-06-01

    Full Text Available The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5 medium via methane oxidation.

  17. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor

    Directory of Open Access Journals (Sweden)

    Wang Fengping

    2011-06-01

    Full Text Available Abstract Background Anaerobic oxidation of methane coupled to sulphate reduction (SR-AOM prevents more than 90% of the oceanic methane emission to the atmosphere. In a previous study, we demonstrated that the high methane pressure (1, 4.5, and 8 MPa stimulated in vitro SR-AOM activity. However, the information on the effect of high-pressure on the microbial community structure and architecture was still lacking. Results In this study we analysed the long-term enrichment (286 days of this microbial community, which was mediating SR-AOM in a continuous high-pressure bioreactor. 99.7% of the total biovolume represented cells in the form of small aggregates (diameter less then 15 μm. An increase of the total biovolume was observed (2.5 times. After 286 days, the ANME-2 (anaerobic methanotrophic archaea subgroup 2 and SRB (sulphate reducing bacteria increased with a factor 12.5 and 8.4, respectively. Conclusion This paper reports a net biomass growth of communities involved in SR-AOM, incubated at high-pressure.

  18. Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw

    Institute of Scientific and Technical Information of China (English)

    Chong Wang; Jiane Zuo; Xiaojie Chen; Wei Xing; Linan Xing; Peng Li; Xiangyang Lu

    2014-01-01

    The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR) were investigated by 16S rDNA clone library technology.The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom,with a recirculation connected to the two units.The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw,which showed a very good biogas production and decomposition of cellulosic materials.The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor,with more bacteria community diversities in the acidogenic unit.The methanogens were mostly related with Methanosaeta,Methanosarcina,Methanoculleus,Methanospirillum and Methanobacterium; the predominating genus Methanosaeta,accounting for 40.5%,54.2%,73.6% and 78.7% in four samples from top to bottom,indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit.The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit.The differentiation of methanogenic community composition in two phases,as well as pH values and volatile fatty acid (VFA) concentrations confirmed the phase separation of the ITPAR.Overall,the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens,more diverse communities and stronger syntrophic assodations among microorganisms,which made two phase anaerobic digestion of cellulosic materials more efficient.

  19. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    Directory of Open Access Journals (Sweden)

    Brandon eBrooks

    2015-07-01

    Full Text Available While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13-21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  20. Assessing the role of spatial structure on cell-specific activity and interactions within uncultured methane-oxidizing syntrophic consortia (Invited)

    Science.gov (United States)

    Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.

    2013-12-01

    Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.

  1. Performance of biological phosphorus removal and characteristics of microbial community in the oxic-settling-anaerobic process by FISH analysis

    Institute of Scientific and Technical Information of China (English)

    Jian-fang WANG; Qing-liang ZHAO; Wen-biao JIN; Shi-jie YOU; Jin-na ZHANG

    2008-01-01

    Performance of biological phosphorus removal in the oxic-settling-anaerobic (OSA) process was investigated. Cell staining and fluorescent in situ hybridization (FISH) were used to analyze characteristics and microbial community of sludge.Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system, biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus (TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms (PAOs). FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system, which accounted for around 28% of total bacteria.

  2. Characteristics of extracellular polymeric substances and bacterial communities in an anaerobic membrane bioreactor coupled with online ultrasound equipment.

    Science.gov (United States)

    Yu, Zhiyong; Wen, Xianghua; Xu, Meilan; Huang, Xia

    2012-08-01

    Two parallel anaerobic membrane bioreactors (MBRs), integrated with or without ultrasound equipment for online membrane fouling control (US-AnMBR, or AnMBR) were established to digest waste activated sludge (WAS). The characteristics of bound extracellular polymeric substances (EPS) and bacterial communities in the systems were investigated for further understanding of the membrane fouling mechanisms. Ultrasound was an effective method for reducing cake layer resistance. A relatively high amount of bound EPS were found in the cake layer, especially for the US-AnMBR, by responding to the external forces (i.e. cross flow and ultrasound). High-throughput pyrosequencing and denaturing gradient gel electrophoresis (DGGE) were applied to analyze the bacterial diversity. Some bacterial populations contributing to membrane fouling were identified to accumulate in the cake layer, such as Peptococcaceae, Bacteroides and Syntrophobacterales. Since the ultrasounded retentate was recirculated back to the reactor, the bacterial community in the digested sludge was affected. PMID:22621809

  3. Different methanotrophic potentials in stratified polar fjord waters (Storfjorden, Spitsbergen identified by using a combination of methane oxidation techniques

    Directory of Open Access Journals (Sweden)

    S. Mau

    2013-04-01

    Full Text Available The bacterially mediated aerobic methane oxidation (MOx is a key mechanism in controlling methane (CH4 emissions from the world's oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Spitsbergen by applying a combination of radio-tracer based incubation assays (3H-CH4 and 14H-CH4, stable C-CH4 isotope measurements, and molecular tools (16S rRNA DGGE-fingerprinting, pmoA- and mxaF gene analyses. Strofjorden is stratified in the summertime with melt water (MW in the upper 60 m of the water column, Arctic water (ArW between 60–100 m and brine-enriched shelf water (BSW down to 140 m. CH4 concentrations were supersaturated with respect to the atmospheric equilibrium (∼3 nM throughout the water column, increasing from ∼20 nM at the surface to a maximum of 72 nM at 60 m and decreasing below. MOx rate measurements at near in situ CH4 concentrations (here measured with 3H-CH4 raising the ambient CH4 pool by −1 at 60 m followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with 14H-CH4 at elevated CH4 concentrations (incubations were spiked with ∼450 nM of 14H-CH4, providing an estimate of the CH4 oxidation potential showed comparably low turnover rates (−1 at 60 m, but peaked in ArW/BSW at ∼100 m water depth, concomitant with increasing 14C-values in the residual CH4 pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH4 concentrations. In contrast, the activity of the deep water MOx community is relatively low at the ambient, summertime CH4 concentrations but has the potential to increase rapidly in response to CH4 availability. A similar distinction between surface and deep water MOx is also suggested by our molecular analyses. Although, we found pmoA and maxF gene sequences throughout the water column attesting the ubiquitous presence of MOx communities in Storfjorden, deep water amplicons of pmoA and maxF were unusually long

  4. The indirect global warming potential and global temperature change potential due to methane oxidation

    International Nuclear Information System (INIS)

    Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

  5. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al2O3 > Rh/Al2O3 > Pt/Al2O3. Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  6. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  7. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning.

  8. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. PMID:27236402

  9. Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Stams, A.J.M.; Alves, M. M.; Smidt, H.

    2007-01-01

    Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR...

  10. Depth-related coupling relation between methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in a marine sediment core from the Dongsha region, the South China Sea.

    Science.gov (United States)

    Xu, Xiao-Ming; Fu, Shao-Ying; Zhu, Qing; Xiao, Xi; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

    2014-12-01

    The vertical distributions of methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in the marine sediment core of DH-CL14 from the Dongsha region, the South China Sea, were investigated. To enumerate MOBs and SRBs, their specific genes of pmoA and apsA were quantified by a culture-independent molecular biological technique, real-time polymerase chain reaction (RT-PCR). The result shows that the pmoA gene copies per gram of sediments reached the maximum of 1,118,679 at the depth of 140-160 cm. Overall considering the detection precision, sample amount, measurement cost, and sensitivity to the seepage of methane from the oil/gas reservoirs or gas hydrates, we suggest that the depth of 140-160 cm may be the optimal sampling position for the marine microbial exploration of oils, gases, and gas hydrates in the Dongsha region. The data of the pmoA and apsA gene copies exhibit an evident coupling relation between MOBs and SRBs as illustrated in their vertical distributions in this sediment core, which may well be interpreted by a high sulfate concentration inhibiting methane production and further leading to the reduction of MOBs. In comparison with the numbers of the pmoA and apsA copies at the same sediment depth, we find out that there were two methane-oxidizing mechanisms of aerobic and anaerobic oxidation in this sediment core, i.e., the aerobic oxidation with free oxygen dominantly occurred above the depth of 210-230 cm, while the anaerobic oxidation with the other electron acceptors such as sulfates and manganese-iron oxides happened below the depth of 210-230 cm. PMID:25064353

  11. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health. PMID:27291499

  12. Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters.

    Science.gov (United States)

    Carey, Daniel E; Zitomer, Daniel H; Kappell, Anthony D; Choi, Melinda J; Hristova, Krassimira R; McNamara, Patrick J

    2016-08-10

    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.

  13. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment. PMID:26086149

  14. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment.

  15. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments.

    Science.gov (United States)

    Canion, Andy; Overholt, Will A; Kostka, Joel E; Huettel, Markus; Lavik, Gaute; Kuypers, Marcel M M

    2014-10-01

    The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming. PMID:25115991

  16. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  17. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage;

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...... oxidizing bacteria and archaea (AOB and AOA) or nitrate-reducing/denitrifying bacteria via their supply of nitrite. Along the Randers Fjord estuary (Denmark), gradients of salinity, nutrients, and organic loading can be observed, and anammox has been detected previously at some sites. The aim of this study...... was to correlate the activity, abundance, and diversity of anammox bacteria, AOB and AOA in surface sediment along the fjord with the sediment microdistribution of nitrite. Using 15N incubations, 16S rRNA gene sequencing, and fluorescence in situ hybridization, anammox was only detected at the two innermost...

  18. Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: temporal variations in microbial communities.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available An anaerobic dynamic membrane digester (ADMD was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests.

  19. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Bottcher, ME; Luschen, H.;

    2004-01-01

    and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42--CH4 transition where H2S reaches 4 maximum concentration. Because of an excess of reactive iron in the deep limnic...... deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe 21 diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur....... The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO42- and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO42--CH4 and H2S-Fe2+ cause...

  20. Anaerobic methane oxidation and a deep H 2S sink generate isotopically heavy sulfides in Black Sea sediments

    Science.gov (United States)

    Jørgensen, Bo Barker; Böttcher, Michael E.; Lüschen, Holger; Neretin, Lev N.; Volkov, Igor I.

    2004-05-01

    The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO 42--CH 4 transition where H 2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H 2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe 2+ diffusing up from below. The H 2S-Fe 2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO 42- and 10 yr for H 2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO 42--CH 4 and H 2S-Fe 2+ cause the trapping of isotopically heavy iron sulfide with δ 34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO 42- diffusing downward into the SO 42--CH 4 transition has an isotopic composition of +19‰, close to the +23‰ of H 2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO 42- (+43‰) and H 2S (-15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H 2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history.

  1. Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds.

    Science.gov (United States)

    Hu, Xiaolong; Du, Hai; Ren, Cong; Xu, Yan

    2016-04-15

    Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances ofClostridia,Clostridium kluyveri,Bacteroidia, andMethanobacteriasignificantly increased, with corresponding increases in levels of pH, NH4 (+), and available phosphorus, from degraded to high-quality pit muds, while levels ofLactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under theClostridia,Bacteroidia,Methanobacteria, andMethanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, andStreptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud. PMID:26896127

  2. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, B.; Neumann, L.; Scherer, P. [Hochschule fuer Angewandte Wissenschaften, Fakultaet Life Sciences, Lifetec Process Engineering, Hamburg (Germany)

    2008-08-15

    The aim of the study was to investigate the long-term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH{sub 4}) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    OpenAIRE

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Mike S.M. Jetten; van Niftrik, Laura; Keltjens, Jan T.

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one...

  4. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2

    OpenAIRE

    Baani, Mohamed; Liesack, Werner

    2008-01-01

    Methane-oxidizing bacteria (methanotrophs) attenuate methane emission from major sources, such as wetlands, rice paddies, and landfills, and constitute the only biological sink for atmospheric methane in upland soils. Their key enzyme is particulate methane monooxygenase (pMMO), which converts methane to methanol. It has long been believed that methane at the trace atmospheric mixing ratio of 1.75 parts per million by volume (ppmv) is not oxidized by the methanotrophs cultured to date, but ra...

  5. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    OpenAIRE

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2013-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functi...

  6. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also lime

  7. Operando XAS study of the influence of CO and NO on methane oxidation by Pd/Al2O3

    Science.gov (United States)

    Marchionni, V.; Nachtegaal, M.; Petrov, A.; Kröcher, O.; Ferri, D.

    2016-05-01

    Methane oxidation on Pd/Al2O3 has been investigated using operando X-ray absorption spectroscopy (XAS) at the Pd K-edge. The influence of CO and NO on methane abatement has been addressed performing temperature programmed reaction runs while recording simultaneously XANES spectra. During CO oxidation Pd is reduced while methane conversion is shifted to higher temperature. NO strongly inhibits both CO and CH4 oxidation, despite the higher fraction of oxidized palladium.

  8. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium eurycarpum, in a Maine Wetland

    OpenAIRE

    King, G. M.

    1996-01-01

    Methane oxidation associated with the belowground tissues of a common aquatic macrophyte, the burweed Sparganium eurycarpum, was assayed in situ by a chamber technique with acetylene or methyl fluoride as a methanotrophic inhibitor at a headspace concentration of 3 to 4%. Acetylene and methyl fluoride inhibited both methane oxidation and peat methanogenesis. However, inhibition of methanogenesis resulted in no obvious short-term effect on methane fluxes. Since neither inhibitor adversely affe...

  9. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process. PMID:27021584

  10. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink. PMID:24337222

  11. Effects of preconditioning the rhizosphere of different plant species on biotic methane oxidation kinetics.

    Science.gov (United States)

    Ndanga, Éliane M; Lopera, Carolina B; Bradley, Robert L; Cabral, Alexandre R

    2016-09-01

    The rhizosphere is known as the most active biogeochemical layer of the soil. Therefore, it could be a beneficial environment for biotic methane oxidation. The aim of this study was to document - by means of batch incubation tests - the kinetics of CH4 oxidation in rhizosphere soils that were previously exposed to methane. Soils from three pre-exposure to CH4 zones were sampled: the never-before pre-exposed (NEX), the moderately pre-exposed (MEX) and the very pre-exposed (VEX). For each pre-exposure zone, the rhizosphere of several plant species was collected, pre-incubated, placed in glass vials and submitted to CH4 concentrations varying from 0.5% to 10%. The time to the beginning of CH4 consumption and the CH4 oxidation rate were recorded. The results showed that the fastest CH4 consumption occurred for the very pre-exposed rhizosphere. Specifically, a statistically significant difference in CH4 oxidation half-life was found between the rhizosphere of the VEX vegetated with a mixture of different plants and the NEX vegetated with ryegrass. This difference was attributed to the combined effect of the preconditioning level and plant species as well as to the organic matter content. Regardless of the preconditioning level, the oxidation rate values obtained in this study were comparable to those reported in the reviewed literature for mature compost. PMID:27177464

  12. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O

    DEFF Research Database (Denmark)

    Johansen, Anders; Carter, Mette Sustmann; Jensen, Erik S.;

    2013-01-01

    Anaerobic digestion of animal manure and crop residues may be employed to produce biogas as a climate-neutral source of energy and to recycle plant nutrients as fertilizers. However, especially organic farmers are concerned that fertilizing with the digestates may impact the soil microbiota...... and fertility because they contain more mineral nitrogen (N) and less organic carbon (C) than the non-digested input materials (e.g. raw animal slurry or fresh plant residues). Hence, an incubation study was performed where (1) water, (2) raw cattle slurry, (3) anaerobically digested cattle slurry/maize, (4......, microbial phospholipid fatty acids (biomass and community composition) and catabolic response profiling (functional diversity). Fertilizing with the anaerobically digested materials increased the soil concentration of NO3− ca. 30–40% compared to when raw cattle slurry was applied. Grass-clover contributed...

  13. Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing.

    Science.gov (United States)

    Maspolim, Yogananda; Zhou, Yan; Guo, Chenghong; Xiao, Keke; Ng, Wun Jern

    2015-10-01

    2-Phase anaerobic digestion (AD), where the acidogenic phase was operated at 2day hydraulic retention time (HRT) and the methanogenic phase at 10days HRT, had been evaluated to determine if it could provide higher organic reduction and methane production than the conventional single-stage AD (also operated at 12days HRT). 454 pyrosequencing was performed to determine and compare the microbial communities. The acidogenic reactor of the 2-phase system yielded a unique bacterial community of the lowest richness and diversity, while bacterial profiles of the methanogenic reactor closely followed the single-stage reactor. All reactors were predominated by hydrogenotrophic methanogens, mainly Methanolinea. Unusually, the acidogenic reactor contributed up to 24% of total methane production in the 2-phase system. This could be explained by the presence of Methanosarcina and Methanobrevibacter, and their activities could also help regulate reactor alkalinity during high loading conditions through carbon dioxide production. The enrichment of hydrolytic and acidogenic Porphyromonadaceae, Prevotellaceae, Ruminococcaceae and unclassified Bacteroidetes in the acidogenic reactor would have contributed to the improved sludge volatile solids degradation, and ultimately the overall 2-phase system's performance. Syntrophic acetogenic microorganisms were absent in the acidogenic reactor but present in the downstream methanogenic reactor, indicating the retention of various metabolic pathways also found in a single-stage system. The determination of key microorganisms further expands our understanding of the complex biological functions in AD process. PMID:26456614

  14. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    Science.gov (United States)

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes. PMID:25966884

  15. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  16. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV Sin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  17. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    Science.gov (United States)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  18. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    Science.gov (United States)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  19. Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans.

    Science.gov (United States)

    Li, Zhiling; Yoshida, Naoko; Wang, Aijie; Nan, Jun; Liang, Bin; Zhang, Chunfang; Zhang, Dongdong; Suzuki, Daisuke; Zhou, Xue; Xiao, Zhixing; Katayama, Arata

    2015-01-01

    Anaerobic mineralization of 2,4,6-tribromophenol (2,4,6-TBP) was achieved by a synthetic anaerobe community comprising a highly enriched culture of Dehalobacter sp. phylotype FTH1 acting as a reductive debrominator; Clostridium sp. strain Ma13 acting as a hydrogen supplier via glucose fermentation; and a novel 4-chlorophenol-degrading anaerobe, Desulfatiglans parachlorophenolica strain DS. 2,4,6-TBP was debrominated to phenol by the combined action of Ma13 and FTH1, then mineralized into CO2 by sequential introduction of DS, confirmed using [ring-(14)C(U)] phenol. The optimum concentrations of glucose, SO4(2-), and inoculum densities were 0.5 or 2.5mM, 1.0 or 2.5mM, and the densities equivalent to 10(4)copiesmL(-1) of the 16S rRNA genes, respectively. This resulted in the complete mineralization of 23μM 2,4,6-TBP within 35days (0.58μmolL(-1)d(-1)). Thus, using a synthetic microbial community of isolates or highly enriched cultures would be an efficient, optimizable, low-cost strategy for anaerobic bioremediation of halogenated aromatics.

  20. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments

    OpenAIRE

    Victoria J Orphan; House, Christopher H.; Hinrichs, Kai-Uwe; McKeegan, Kevin D.; DeLong, Edward F.

    2002-01-01

    No microorganism capable of anaerobic growth on methane as the sole carbon source has yet been cultivated. Consequently, information about these microbes has been inferred from geochemical and microbiological observations of field samples. Stable isotope analysis of lipid biomarkers and rRNA gene surveys have implicated specific microbes in the anaerobic oxidation of methane (AOM). Here we use combined fluorescent in situ hybridization and secondary ion mass spectrometry analyses, to identify...

  1. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process.

    Science.gov (United States)

    Sträuber, Heike; Lucas, Rico; Kleinsteuber, Sabine

    2016-01-01

    Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.

  2. Metagenome changes in the biogas producing community during anaerobic digestion of rice straw.

    Science.gov (United States)

    Pore, Soham D; Shetty, Deepa; Arora, Preeti; Maheshwari, Sneha; Dhakephalkar, Prashant K

    2016-08-01

    The present investigation was undertaken to study the microbial community succession in a sour and healthy digester. Ion torrent next-generation sequencing (NGS)-based metagenomic approach indicated abundance of hydrolytic bacteria and exclusion of methanogens and syntrophic bacteria in sour digester. Functional gene analysis revealed higher abundance of enzymes involved in acidogenesis and lower abundance of enzymes associated with methanogenesis like Methyl coenzyme M-reductase, F420 dependent reductase and Formylmethanofuran dehydrogenase in sour digester. Increased abundance of methanogens (Methanomicrobia) and genes involved in methanogenesis was observed in the restored/healthy digester highlighting revival of pH sensitive methanogenic community. PMID:27025191

  3. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    International Nuclear Information System (INIS)

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L-1 U(VI) and 99% of 13 mg L-1 Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  4. Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande 1749-016 Lisboa (Portugal); Santos, Erika [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-04-15

    Several microbial communities, obtained from uranium contaminated and non-contaminated samples, were investigated for their ability to remove uranium (VI) and the cultures capable for this removal were further assessed on their efficiency for chromium (VI) removal. The highest efficiency for removal of both metals was observed on a consortium from a non-contaminated soil collected in Monchique thermal place, which was capable to remove 91% of 22 mg L{sup -1} U(VI) and 99% of 13 mg L{sup -1} Cr(VI). This study revealed that uranium (VI) removing communities have also ability to remove chromium (VI), but when uranium (VI) was replaced by chromium (VI) several differences in the structure of all bacterial communities were observed. TGGE and phylogenetic analysis of 16S rRNA gene showed that the uranium (VI) removing bacterial consortia are mainly composed by members of Rhodocyclaceae family and Clostridium genus. On the other hand, bacteria from Enterobacteriaceae family were detected in the community with ability for chromium (VI) removal. The existence of members of Enterobacteriaceae and Rhodocyclaceae families never reported as chromium or uranium removing bacteria, respectively, is also a relevant finding, encouraging the exploitation of microorganisms with new abilities that can be useful for bioremediation.

  5. Low-level 14C methane oxidation rate measurements modified for remote field settings

    Science.gov (United States)

    Pack, M. A.; Pohlman, J.; Ruppel, C. D.; Xu, X.

    2012-12-01

    Aerobic methane oxidation limits atmospheric methane emissions from degraded subsea permafrost and dissociated methane hydrates in high latitude oceans. Methane oxidation rate measurements are a crucial tool for investigating the efficacy of this process, but are logistically challenging when working on small research vessels in remote settings. We modified a low-level 14C-CH4 oxidation rate measurement for use in the Beaufort Sea above hydrate bearing sediments during August 2012. Application of the more common 3H-CH4 rate measurement that uses 106 times more radioactivity was not practical because the R/V Ukpik cannot accommodate a radiation van. The low-level 14C measurement does not require a radiation van, but careful isolation of the 14C-label is essential to avoid contaminating natural abundance 14C measurements. We used 14C-CH4 with a total activity of 1.1 μCi, which is far below the 100 μCi permitting level. In addition, we modified field procedures to simplify and shorten sample processing. The original low-level 14C-CH4 method requires 6 steps in the field: (1) collect water samples in glass serum bottles, (2) inject 14C-CH4 into bottles, (3) incubate for 24 hours, (4) filter to separate the methanotrophic bacterial cells from the aqueous sample, (5) kill the filtrate with sodium hydroxide (NaOH), and (6) purge with nitrogen to remove unused 14C-CH4. Onshore, the 14C-CH4 respired to carbon dioxide or incorporated into cell material by methanotrophic bacteria during incubation is quantified by accelerator mass spectrometry (AMS). We conducted an experiment to test the possibility of storing samples for purging and filtering back onshore (steps 4 and 6). We subjected a series of water samples to steps 1-3 & 5, and preserved with mercuric chloride (HgCl2) instead of NaOH because HgCl2 is less likely to break down cell material during storage. The 14C-content of the carbon dioxide in samples preserved with HgCl2 and stored for up to 2 weeks was stable

  6. Nitrification and methane oxidation at the sediment surface in Hamilton Harbour (Lake Ontario)

    International Nuclear Information System (INIS)

    Nitrification and methane oxidation in profundal and littoral sediment surfaces of a polluted system were investigated by means of pore water analyses, enumeration of methanotrophic and nitrifying bacteria, and slurry experiments. Sediment CH4 concentrations (0.38-3.4 mM) were generally higher than NH4+ concentrations (0.35-1.4 mM) at the profundal site but not at the littoral site where CH4 and NH4+ concentrations were 0.10-0.93 and 0.12-0.46 mM, respectively. Methanotroph counts (105 cfu·mL-1) were at least an order of magnitude higher than those of NH4+ -oxidizing bacteria (103-104 MPN·mL-1). Dissolved O2 profiles indicated a penetration of 0.5-2.0 mm (profundal) and 2.5-6.0 mm (littoral) which suggests that actual oxidation of CH4 and NH4+ was restricted to this oxic layer. Calculated fluxes of CH4 (0-23 mmol·M-2·d-1), NH4+ (0-2.5 mmol·-2·d-1), and O2 (-14 mmol·-2·d-1) through the surface sediment suggested that CH4 consumption could account for a more important fraction of the estimated O2 consumption than could nitrification. We conclude that: CH4 metabolism may be more important than nitrification as a sink of hypolimnetic O2 in Hamilton Harbour; and CH4 may suppress nitrification by competition for O2 and NH4+ between methanotrophs and nitrifiers. (author). 29 refs., 5 figs

  7. Microbial methane oxidation at the redoxcline of the Gotland Deep (Central Baltic Sea

    Directory of Open Access Journals (Sweden)

    O. Schmale

    2012-07-01

    Full Text Available Methane concentrations in the stratified water column of the Gotland Deep (Central Baltic Sea show a strong gradient from high values in the saline deep water (max. 504nM to low concentrations in the less dense, brackish surface water (about 4 nM. The steepest gradient is present within the redoxcline (between 115 and 135 m water depth that separates the anoxic deep part from the oxygenated surface water, implying a methane consumption rate of 0.28 nM d−1. The process of microbial methane oxidation within the redoxcline is mirrored by a shift of the stable carbon isotope ratio of methane between the bottom water (δ13C CH4 = −82.4‰ and the suboxic depth interval (δ13C CH4 = −38.7‰. A water column sample from 100 m water depth was studied to identify the microorganisms responsible for the methane turnover at the redoxcline. Notably, methane monoxygenase gene expression analyses for the specific water depth demonstrated that accordant methanotrophic activity was due to only one microbial phylotype. An imprint of these organisms on the particular organic matter was revealed by distinctive lipid biomarkers showing bacteriohopanepolyols and lipid fatty acids characteristic for aerobic type I methanotrophic bacteria (e.g. 35-aminobacteriohopane-30,31,32,33,34-pentol. In conjunction with earlier findings, our results support the idea that biogeochemical cycles in Central Baltic Sea redoxclines are mainly driven by only a few microbial key species.

  8. Surface composition and catalytic activity of La-Fe mixed oxides for methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengxiang [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Li, Zhanping [Analysis Center, Tsinghua University, Beijing 100084 (China); Ma, Hongwei [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Gao, Zhiming, E-mail: zgao@bit.edu.cn [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China)

    2015-10-01

    Graphical abstract: - Highlights: • The sample with La/Fe atomic ratio of 0.94 is single phase perovskite La{sub 0.94}FeO{sub 3−d}. • The excess ironic oxide exists on the surface of the perovskite crystallites. • La{sup 3+} ions are enriched on surface of the oxides even for the La{sub 0.68}Fe sample. - Abstract: Four La-Fe oxide samples with La/Fe atomic ratio y = 1.02 ∼ 0.68 (denoted as LayFe) were prepared by the citrate method. The samples had a decreased specific surface area with the La/Fe atomic ratio decreasing. XRD pattern proved that the sample La{sub 0.94}Fe is single phase perovskite La{sub 0.94}FeO{sub 3−d}. Phase composition of the samples was estimated by the Rietveld refinement method. XPS analyses indicate that La{sup 3+} ions are enriched on surface of crystallites for all the samples, and surface carbonate ions are relatively abundant on the samples La{sub 1.02}Fe and La{sub 0.94}Fe. Catalytic activity for methane oxidation per unit surface area of the samples is in the order of La{sub 0.68}Fe > La{sub 0.76}Fe > La{sub 0.94}Fe > La{sub 1.02}Fe both in the presence and in the absence of gaseous oxygen. A reason for this order would be the higher concentration of Fe{sup 3+} ion on the surface of the samples La{sub 0.68}Fe and La{sub 0.76}Fe.

  9. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.;

    2010-01-01

    . Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta......Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community...... structure. Improvement of hydrogenotrophic and acidogenic (beta-oxidation) activity rates was detected upon successive LCFA pulses, while different inhibition effects over specific anaerobic trophic groups were observed. Bioreactor recovery capacity and biomass adaptation to LCFA inhibition were verified...

  10. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    Science.gov (United States)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  11. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    Science.gov (United States)

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. PMID:26241771

  12. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure.

    Science.gov (United States)

    Zhou, Jun; Zhang, Rui; Liu, Fenwu; Yong, Xiaoyu; Wu, Xiayuan; Zheng, Tao; Jiang, Min; Jia, Honghua

    2016-10-01

    Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering. PMID:26944458

  13. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2015-08-14

    Two lab-scale anaerobic membrane bioreactors (AnMBRs), one up-flow attached-growth (UA) and another continuously stirred (CSTR), were operated under mesophilic conditions (35 °C) while treating synthetic municipal wastewater (800 mg L−1 COD). Each reactor was attached to both polyvinylidene fluoride (PVDF) and polyethersulfone (PES) microfiltration (MF) membranes in an external cross-flow configuration. Both reactors were started up and run under the same operating conditions for multiple steady-state experiments. Chemical oxygen demand (COD) removal rates were similar for both reactors (90–96%), but captured methane was found to be 11–18% higher for the CSTR than the UA reactor. Ion Torrent sequencing targeting 16S rRNA genes showed that several operational taxonomic units (OTUs) most closely related to fermentative bacteria (e.g., Microbacter margulisiae) were dominant in the suspended biomass of the CSTR, accounting for 30% of the microbial community. Conversely, methanogenic archaea (e.g., Methanosaeta) and syntrophic bacteria (e.g., Smithella propionica) were found in significantly higher relative abundances in the UA AnMBR as compared to the CSTR due to their affinity for surface attachment. Of the methanogens that were present in the CSTR sludge, hydrogenotrophic methanogens dominated (e.g., Methanobacterium). Measured EPS (both proteins and carbohydrates), which has been broadly linked to fouling, was determined to be consistently lower in the UA AnMBR membrane samples than in CSTR AnMBR membrane samples. Principal component analysis (PCA) based on HPLC profiles of soluble microbial products (SMPs) further demonstrated these differences between reactor types in replicate runs. The results of this study showed that reactor configuration can significantly impact the development of the microbial communities of AnMBRs that are responsible for both membrane and reactor performance.

  14. AN INNOVATIVE DESIGN FOR ANAEROBIC CO-DIGESTION OF ANIMAL WASTES FOR SUSTAINABLE DEVELOPMENT IN RURAL COMMUNITIES

    Science.gov (United States)

    With the aim of the Phase I project to develop an innovative anaerobic co-digestion design for the treatment of dairy manure and poultry waste, our Phase I team has evaluated the technical and economic feasibility of the anaerobic co-digestion design concept with a thorough in...

  15. Microbial community analysis in sludge of anaerobic wastewater treatment systems : integrated culture-dependent and culture-independent approaches

    NARCIS (Netherlands)

    Roest, C.

    2007-01-01

    The need for clean water is increasing and anaerobic wastewater treatment can be used as a cost-effective solution for purification of organically polluted industrial waste streams. This thesis presents results from microbiological investigations of several full-scale and lab-scale anaerobic wastewa

  16. Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.

    Science.gov (United States)

    Smith, Ami M; Sharma, Deepak; Lappin-Scott, Hilary; Burton, Sara; Huber, David H

    2014-03-01

    The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m(3) digester produced biogas with 57% methane, and chemical oxygen demand removal of 54%. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93% of the clones and 76% of the pyrotags. Of the Firmicutes, class Clostridia (52% pyrotags) was most abundant followed by class Bacilli (13% pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97% minimum similarity level. Fifteen OTUs were dominant (≥2% abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (99% of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.

  17. Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum.

    Science.gov (United States)

    Islam, Tajul; Jensen, Sigmund; Reigstad, Laila Johanne; Larsen, Oivind; Birkeland, Nils-Kåre

    2008-01-01

    Methanotrophic bacteria constitute a ubiquitous group of microorganisms playing an important role in the biogeochemical carbon cycle and in control of global warming through natural reduction of methane emission. These bacteria share the unique ability of using methane as a sole carbon and energy source and have been found in a great variety of habitats. Phylogenetically, known methanotrophs constitute a rather limited group and have so far only been affiliated with the Proteobacteria. Here, we report the isolation and initial characterization of a nonproteobacterial obligately methanotrophic bacterium. The isolate, designated Kam1, was recovered from an acidic hot spring in Kamchatka, Russia, and is more thermoacidophilic than any other known methanotroph, with optimal growth at approximately 55 degrees C and pH 3.5. Kam1 is only distantly related to all previously known methanotrophs and belongs to the Verrucomicrobia lineage of evolution. Genes for methane monooxygenases, essential for initiation of methane oxidation, could not be detected by using standard primers in PCR amplification and Southern blot analysis, suggesting the presence of a different methane oxidation enzyme. Kam1 also lacks the well developed intracellular membrane systems typical for other methanotrophs. The isolate represents a previously unrecognized biological methane sink, and, due to its unusual phylogenetic affiliation, it will shed important light on the origin, evolution, and diversity of biological methane oxidation and on the adaptation of this process to extreme habitats. Furthermore, Kam1 will add to our knowledge of the metabolic traits and biogeochemical roles of the widespread but poorly understood Verrucomicrobia phylum.

  18. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    Science.gov (United States)

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  19. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities

    Directory of Open Access Journals (Sweden)

    Chistoserdov Andrei

    2009-11-01

    Full Text Available Abstract Background Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species' of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela. Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets. Results The analyses of ca. 250,000 sequence reads revealed that the number of detected Operational Taxonomic Units (OTUs far exceeded previous richness estimates from the same sites based on clone libraries and Sanger sequencing. More than 90% of this diversity was represented by OTUs with less than 10 sequence tags. We detected a substantial number of taxonomic groups like Apusozoa, Chrysomerophytes, Centroheliozoa, Eustigmatophytes, hyphochytriomycetes, Ichthyosporea, Oikomonads, Phaeothamniophytes, and rhodophytes which remained undetected by previous clone library-based diversity surveys of the sampling sites. The most important innovations in our newly developed bioinformatics pipeline employ (i BLASTN with query parameters adjusted for highly variable domains and a complete database of public ribosomal RNA (rRNA gene sequences for taxonomic

  20. Methane-Oxidizing Bacteria in a California Upland Grassland Soil: Diversity and Response to Simulated Global Change

    OpenAIRE

    Horz, Hans-Peter; Rich, Virginia; Avrahami, Sharon; Bohannan, Brendan J. M.

    2005-01-01

    We investigated the diversity of methane-oxidizing bacteria (i.e., methanotrophs) in an annual upland grassland in northern California, using comparative sequence analysis of the pmoA gene. In addition to identifying type II methanotrophs commonly found in soils, we discovered three novel pmoA lineages for which no cultivated members have been previously reported. These novel pmoA clades clustered together either with clone sequences related to “RA 14” or “WB5FH-A,” which both represent clust...

  1. Toxicity of 1,1,1-Trichloroethane and Trichloroethene on a Mixed Culture of Methane-Oxidizing Bacteria

    OpenAIRE

    Broholm, Kim; Jensen, Bjørn K.; Christensen, Thomas H.; Olsen, Lajla

    1990-01-01

    The influence of trichloroethene (TCE; 0 to 65 mg/liter) and 1,1,1-trichloroethane (1,1,1-TCA; 0 to 103 mg/liter) on methane consumption of a mixed culture of methane-oxidizing bacteria was studied in laboratory batch experiments. Increasing concentrations of TCE or 1,1,1-TCA resulted in decreasing methane consumption. Methane consumption was totally inhibited at a concentration of 13 mg of TCE per liter, while methane consumption was still observed at the upper studied concentration of 103 m...

  2. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.;

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials ...

  3. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading

    DEFF Research Database (Denmark)

    Wang, Wen; Xie, Li; Luo, Gang;

    2013-01-01

    (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema......A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane...

  4. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    Science.gov (United States)

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  5. Evaluation of functional microbial community's difference in full-scale and lab-scale anaerobic digesters feeding with different organic solid waste: Effects of substrate and operation factors.

    Science.gov (United States)

    Niu, Qigui; Kobayashi, Takuro; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-10-01

    Samples taken from the full-scale and lab-scale anaerobic digesters feeding with different organic solid waste were investigated with assessment of the substrate effects. To understand the substrate effects on the microbial community diversity, heterogeneity, and functional structure, twelve samples were analyzed by constructing 16S rRNA gene clone libraries and statistical analysis. Microbial diversity varied according to substrate types and operating parameters. With acetoclastic methanogen of genus Methanosaeta predominated in full scale and Methanosarcina predominated in the lab-scale digesters, a significant difference archaeal communities were found. Principal component analysis clearly indicates that both bacterial and archaeal communities create independent clusters according to substrate types. However, the relationship between acetogenic bacteria and the acetoclastic methanogens had a similar variation tends in most of full-scale and lab-scale reactors. Canonical correlation analysis and variance partitioning analysis implied that bacterial and archaeal community variations were significantly affected by substrate and the operation conditions. PMID:26119052

  6. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling. PMID:27225476

  7. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    KAUST Repository

    Gonzalez-Gil, Graciela

    2016-04-26

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  8. Methane oxidation associated to submerged brown-mosses buffers methane emissions from Siberian polygonal peatlands

    Science.gov (United States)

    Liebner, Susanne; Zeyer, Josef; Knoblauch, Christian

    2010-05-01

    Circumpolar peatlands store roughly 18 % of the globally stored carbon in soils [based on 1, 2]. Also, northern wetlands and tundra are a net source of methane (CH4), an effective greenhouse gas (GHG), with an estimated annual CH4 release of 7.2% [3] or 8.1% [4] of the global total CH4 emission. Although it is definite that Arctic tundra significantly contributes to the global methane emissions in general, regional variations in GHG fluxes are enormous. CH4 fluxes of polygonal tundra within the Siberian Lena Delta, for example, were reported to be low [5, 6], particularly at open water polygonal ponds and small lakes [7] which make up around 10 % of the delta's surface. Low methane emissions from polygonal ponds oppose that Arctic permafrost thaw ponds are generally known to emit large amounts of CH4 [8]. Combining tools of biogeochemistry and molecular microbiology, we identified sinks of CH4 in polygonal ponds from the Lena Delta that were not considered so far in GHG studies from Arctic wetlands. Pore water CH4 profiling in polygonal ponds on Samoylov, a small island in the central part of the Lena Delta, revealed a pronounced zone of CH4 oxidation near the vegetation surface in submerged layers of brown-mosses. Here, potential CH4 oxidation was an order of magnitude higher than in non-submerged mosses and in adjacent bulk soil. We could additionally show that this moss associated methane oxidation (MAMO) is hampered when exposure of light is prevented. Shading of plots with submerged Scorpidium scorpioides inhibited MAMO leading to higher CH4 concentrations and an increase in CH4 fluxes by a factor of ~13. Compared to non-submerged mosses, the submerged mosses also showed significantly lower δ13C values indicating that they use carbon dioxide derived from methane oxidation for photosynthesis. Applying stable isotope probing of DNA, type II methanotrophs were identified to be responsible for the oxidation of CH4 in the submerged Scorpidium scorpioides. Our

  9. Linking carbon and nitrogen cycling: Environmental transcription of mmoX, pmoA, and nifH by methane oxidizing Proteobacteria in a Sub-Arctic palsa peatland

    Science.gov (United States)

    Liebner, Susanne; Svenning, Mette M.

    2013-04-01

    Sub-Arctic terrestrial ecosystems are currently affected by climate change which causes degradation of stored organic carbon and emissions of greenhouse gases from microbial processes. Methane oxidizing bacteria (MOB) mitigate methane emissions and perform an important function in the soil-atmosphere interaction. In this study we investigated presence and environmental transcription of functional genes of MOB along the degradation of permafrost in a Sub-Arctic palsa peatland using molecular approaches. The acidic and oligotrophic peatland hosts a small number of active MOB among a seemingly specialized community. The methanotrophic community displayed a broad functional potential by transcribing genes for key enzymes involved in both carbon and nitrogen metabolisms including particulate and soluble methane monoogygenase (pMMO and sMMO) as well as nitrogenase. Transcription of mmoX that encodes for a subunit of the sMMO suggests an ecological importance of sMMO with a broad substrate range in this peatland. In situ transcripts of mmoX were tracked mainly to Methylocella related Beijerinckiaceae, and to relatives of Methylomonas while Methylocystis constituting the dominant group which utilizes pMMO. These results address interesting questions concerning in-situ substrate preferences of MOB, and the general importance of species that lack a pMMO for mitigating methane emissions. The importance of MOB for the nitrogen budget in this low pH, nitrogen limited habitat was identified by nifH transcripts of native methanotrophs. Hence, methane oxidizing Proteobacteria show an extended functional repertoire and importance for the biogeochemical cycling in this dynamic ecosystem of degrading permafrost.

  10. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    OpenAIRE

    Wilkins, David; Rao, Subramanya; Lu, Xiaoying; Lee, Patrick K. H.

    2015-01-01

    Anaerobic digestion (AD) is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (“biogas”). While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso-...

  11. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra

    Directory of Open Access Journals (Sweden)

    T. C. Maximov

    2011-05-01

    Full Text Available The role of the microbial processes governing methane emissions from tundra ecosystems is receiving increasing attention. Recently, cooperation between methanotrophic bacteria and submerged Sphagnum was shown to reduce methane emissions but also to supply CO2 for photosynthesis for the plant. Although this process was shown to be important in the laboratory, the differences that exist in methane emissions from inundated vegetation types with or without Sphagnum in the field have not been linked to these bacteria before. In this study, chamber flux measurements, an incubation study and a process model were used to investigate the drivers and controls on the relative difference in methane emissions between a submerged Sphagnum/sedge vegetation type and an inundated sedge vegetation type without Sphagnum. It was found that methane emissions in the Sphagnum-dominated vegetation type were 50 % lower than in the vegetation type without Sphagnum. A model sensitivity analysis showed that these differences could not sufficiently be explained by differences in methane production and plant transport. The model, combined with an incubation study, indicated that methane oxidation by endophytic bacteria, living in cooperation with submerged Sphagnum, plays a significant role in methane cycling at this site. This result is important for spatial upscaling as oxidation by these bacteria is likely involved in 15 % of the net methane emissions at this tundra site. Our findings support the notion that methane-oxidizing bacteria are an important factor in understanding the processes behind methane emissions in tundra.

  12. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1.

    Science.gov (United States)

    Kits, K Dimitri; Klotz, Martin G; Stein, Lisa Y

    2015-09-01

    Obligate methanotrophs belonging to the Phyla Proteobacteria and Verrucomicrobia require oxygen for respiration and methane oxidation; nevertheless, aerobic methanotrophs are abundant and active in low oxygen environments. While genomes of some aerobic methanotrophs encode putative nitrogen oxide reductases, it is not understood whether these metabolic modules are used for NOx detoxification, denitrification or other purposes. Here we demonstrate using microsensor measurements that a gammaproteobacterial methanotroph Methylomonas denitrificans sp. nov. strain FJG1(T) couples methane oxidation to nitrate reduction under oxygen limitation, releasing nitrous oxide as a terminal product. Illumina RNA-Seq data revealed differential expression of genes encoding a denitrification pathway previously unknown to methanotrophs as well as the pxmABC operon in M. denitrificans sp. nov. strain FJG1(T) in response to hypoxia. Physiological and transcriptome data indicate that genetic inventory encoding the denitrification pathway is upregulated only upon availability of nitrate under oxygen limitation. In addition, quantitation of ATP levels demonstrates that the denitrification pathway employs inventory such as nitrate reductase NarGH serving M. denitrificans sp. nov. strain FJG1(T) to conserve energy during oxygen limitation. This study unravelled an unexpected metabolic flexibility of aerobic methanotrophs, thereby assigning these bacteria a new role at the metabolic intersection of the carbon and nitrogen cycles. PMID:25580993

  13. Community Proteogenomics of a Cold-methane Seep Sediment at Nyegga, Mid-Norwegian Margin

    Science.gov (United States)

    Stokke, R.; Roalkvam, I.; Lanzen, A.; Chen, Y.; Haflidason, H.; Steen, I.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is limited to anoxic environments and differs in its rates from a few pmol cm-3day-1 in subsurface SMTZ (sulfate-methane transition zone) of deep margins, to a few μmol cm-3 day-1 in surface sediments above gas hydrates [1]. This process is catalyzed by consortia of anaerobic methane oxidizing archaea (ANME) in association with sulfate-reducing bacteria. The Nyegga area is located on the Mid-Norwegian continental slope at the northern flank of the Storegga Slide at 700-800 mbsl. Hundreds of pockmarks are widespread on the seabed in Nyegga and sub-zero temperatures (-0.7 °C), and pingo-structures within the pockmarks are indicators of active fluid flow locations. Preliminary microbial and geochemical profiling of a 22 cm push-core within the G11 pockmark gave strong indications of an ANME-1 dominated community at 14-16 cmbsf. In light of these findings we submitted extracted DNA to 454-pyrosequencing. Sequencing data (829,527 reads) was assembled using the Newbler v2.3, resulting in 13,151 contigs (357,530 reads) over 500 bp with the longest contig being 24,521 bp. MEGAN taxonomic analysis supported the high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME-1. In order to obtain functional information of the ANME-1 community, protein extraction protocols from sediment samples was established. Extracted proteins was separated on a large (18cm) 1D-SDS-PAGE and subsequently cut in 30 gel slices. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the metagenome including known contaminants such as trypsin and human keratin was search against using Mascot 2.2. IRMa tool box [2] was used in peptide validation and peptides whose score >= 25.0 (i.e avg identity, pkey enzymes

  14. The Leeuwenhoek Lecture 2000 The natural and unnatural history of methane-oxidizing bacteria

    OpenAIRE

    Dalton, Howard

    2005-01-01

    Methane gas is produced from many natural and anthropogenic sources. As such, methane gas plays a significant role in the Earth's climate, being 25 times more effective as a greenhouse gas than carbon dioxide. As with nearly all other naturally produced organic molecules on Earth, there are also micro-organisms capable of using methane as their sole source of carbon and energy. The microbes responsible (methanotrophs) are ubiquitous and, for the most part, aerobic. Although anaerobic methanot...

  15. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  16. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Jamie A FitzGerald

    Full Text Available Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1 and strongest (R6 performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation.

  17. Mitigation of ammonia inhibition by internal dilution in high-rate anaerobic digestion of food waste leachate and evidences of microbial community response.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Cho, Si-Kyung; Shin, Hang-Sik; Jung, Kyung-Won; Kim, Hyun-Woo

    2016-09-01

    A high-rate anaerobic digestion of food waste leachate were tested using intermittent continuously stirred tank reactors (iCSTRs) to evaluate how severe ammonia inhibition could be mitigated with internal dilution strategy, and to identify how bacterial and archaeal community respond in genus and species level. Experimental results show that the digestion performance was well maintained up to hydraulic retention time (HRT) of 40 days but could not keep steady-state as HRT decreased to 30 days due to severe free ammonia (FA) inhibition. Coupling internal dilution was the key to relieve the inhibition since it reduced FA concentration as low as 62 mg/L even at HRT 30 days, which corresponds to organic loading rate of 5 g COD/L/d, demonstrating CH4 yield of 0.32 L CH4 /g CODadded . It was confirmed that the dilution offers iCTSRs manage severe ammonia inhibition with the balanced community structure between bacteria and archaea in this high-rate anaerobic digestion. Genus and species level pyrosequencing evidence that FA inhibition to community dynamics of Methanosarcina and Methanosaeta is strongly connected to methanogenesis, and Methanosarcina plays a key role in an iCSTR with the dilution. Biotechnol. Bioeng. 2016;113: 1892-1901. © 2016 Wiley Periodicals, Inc. PMID:26927830

  18. Comparative performance and microbial community of single-phase and two-phase anaerobic systems co-digesting cassava pulp and pig manure

    DEFF Research Database (Denmark)

    Panichnumsin, P.; Ahring, B.K.; Nopharatana, A.;

    2010-01-01

    In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, while...... those of singlephase CSTR were 59 ± 1% and 1670 ± 60 ml l-1 d-1, respectively. Codigestion in two-phase CSTR gave higher 12% solid degradation and 25% methane production than single-phase CSTR. Phylogenetic analysis of 16S rDNA clone library revealed that the Bacteroidetes were the most abundant group...

  19. Seawater methane flux, methane oxidation rates, and methane sources on the Central US Beaufort Sea Continental Shelf

    Science.gov (United States)

    Pohlman, J.; Pack-Woo, M.; Xu, X.; Ruppel, C. D.; Casso, M.; Worley, C.

    2012-12-01

    Previous studies have shown that some shallow-water circum-Arctic Ocean continental shelves (e.g., the Laptev Sea) are releasing substantial methane to the atmosphere. A number of processes -- including microbial degradation of organic matter in shallow sediments or in deeper sediments that were only recently thawed from permafrost, the dissociation of gas hydrates that formed in association with permafrost, and leakage from deeper thermogenic reservoirs -- may contribute to these methane fluxes. In August 2012, the USGS Gas Hydrates Project, with sponsorship from the DOE Methane Hydrates R&D Program, conducted a cross-shelf survey of greenhouse gas fluxes, carbon isotopic signatures of methane and CO2, and methane oxidation rates on the Central US Beaufort Sea continental shelf. IODP drilling has been proposed for a shelf-to-upper continental slope transect on this part of the Alaskan Beaufort passive margin to unravel the history of late Pleistocene to contemporary climate warming and sea level rise. The work presented here complements a 2012 USGS multichannel seismic program intended as IODP site survey. The flux, isotopic, and oxidation rate surveys sampled nearshore areas still underlain by subsea permafrost, a location where relict gas hydrate previously associated with permafrost may still exist and extend across the shelf to where present-day methane release is likely dominated by microbial methane generated in situ. The new geochemical data were acquired using dedicated cavity ringdown spectrometers (CRDS) for the atmospheric and sea surface measurements. The seawater CRDS also characterized the carbon isotopic signature of the CO2 and CH4 in real-time. Oxidation rate measurements were carried out using the low level 14C-CH4 (LL 14C) tracer method. Continuous measurements of surface air and surface seawater methane and carbon dioxide concentration, in conjunction with relevant meteorological and water chemistry data, permit us to calculate sea

  20. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield and a hi......Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...

  1. Towards Biogeochemical Modeling of Anaerobic Oxidation of Methane: Characterization of Microbial Communities in Methane-bearing North American Continental Margin Sediments

    Science.gov (United States)

    Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.

    2015-12-01

    Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.

  2. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  3. Methane oxidation in pig and cattle slurry storages, and effects of surface crust moisture and methane availability

    DEFF Research Database (Denmark)

    Petersen, S.O.; Ambus, P.

    2006-01-01

    Storages with liquid manure (slurry) may develop a surface crust of particulate organic matter, or an artificial crust can be established. Slurry storages are net sources of atmospheric methane (CH4), but a potential for bacterial oxidation of CH4 in surface crusts was recently suggested in a study......2 during incubation, while intact subsamples were used to characterize CH4 oxidation as a function of CH4 availability and moisture content. Methane oxidation was observed in all materials except for an expanded clay product (Leca) sampled from a pig slurry storage. Despite significant variation...... content, each time followed by determination of CH4 fluxes. Only one surface crust material showed a relationship between CH4 fluxes and moisture content that would implicate gas diffusivity in the regulation of CH4 oxidation. The occurrence of inducible CH4 oxidation activity in slurry storage surface...

  4. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  5. Modeling the effects of vegetation on methane oxidation and emissions through soil landfill final covers across different climates.

    Science.gov (United States)

    Abichou, Tarek; Kormi, Tarek; Yuan, Lei; Johnson, Terry; Francisco, Escobar

    2015-02-01

    Plant roots are reported to enhance the aeration of soil by creating secondary macropores which improve the diffusion of oxygen into soil as well as the supply of methane to bacteria. Therefore, methane oxidation can be improved considerably by the soil structuring processes of vegetation, along with the increase of organic biomass in the soil associated with plant roots. This study consisted of using a numerical model that combines flow of water and heat with gas transport and oxidation in soils, to simulate methane emission and oxidation through simulated vegetated and non-vegetated landfill covers under different climatic conditions. Different simulations were performed using different methane loading flux (5-200 g m(-2) d(-1)) as the bottom boundary. The lowest modeled surface emissions were always obtained with vegetated soil covers for all simulated climates. The largest differences in simulated surface emissions between the vegetated and non-vegetated scenarios occur during the growing season. Higher average yearly percent oxidation was obtained in simulations with vegetated soil covers as compared to non-vegetated scenario. The modeled effects of vegetation on methane surface emissions and percent oxidation were attributed to two separate mechanisms: (1) increase in methane oxidation associated with the change of the physical properties of the upper vegetative layer and (2) increase in organic matter associated with vegetated soil layers. Finally, correlations between percent oxidation and methane loading into simulated vegetated and non-vegetated covers were proposed to allow decision makers to compare vegetated versus non-vegetated soil landfill covers. These results were obtained using a modeling study with several simplifying assumptions that do not capture the complexities of vegetated soils under field conditions.

  6. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion.

    Science.gov (United States)

    Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong

    2016-08-01

    This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD. PMID:27132224

  7. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion.

    Science.gov (United States)

    Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong

    2016-08-01

    This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.

  8. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia

    Science.gov (United States)

    Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng

    2014-01-01

    A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981

  9. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  10. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  11. The effect of enzymatic pre-hydrolysis of dairy wastewater on the granular and immobilized microbial community in anaerobic bioreactors.

    Science.gov (United States)

    Cammarota, Magali C; Rosa, Daniela R; Duarte, Iolanda C S; Saavedra, Nora K; Varesche, Maria B A; Zaiat, Marcelo; Freire, Denise M G

    2013-01-01

    The effect of a lipase-rich enzyme preparation produced by the fungus Penicillium sp. on solid-state fermentation was evaluated in two anaerobic bioreactors (up-flow anaerobic sludge blanket (UASB) and horizontal-flow anaerobic immobilized biomass (HAIB)) treating dairy wastewater with 1200 mg oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of the solid enzymatic preparation at 30 degrees C for 24 h. This resulted in a final concentration of free acids eight times higher than the initial value. The bioreactors operated at 30 degrees C with hydraulic retention times of 12 h (HAIB) and 20 h (UASB) for a period of 430 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. There was, however, an increase in the effluent oil and grease concentration (from values as low as 17 mg/L to values above 150 mg/L in the UASB bioreactor, and from 38-242 mg/L in the HAIB bioreactor), and oil and grease accumulation in the biomass throughout the operational period (the oil and grease content reached 1.7 times that found in the inoculum of the UASB bioreactor). The HAIB bioreactor gave better results because the support for biomass immobilization acted as a filter, retaining oil and grease at the entry of the bioreactor. The molecular analysis of the Bacteria and Archaea domains revealed significant differences in the microbial profiles in experiments conducted with and without the pre-hydrolysis step. The differences observed in the overall parameters could be related to the microbial diversity of the anaerobic sludge. PMID:23530355

  12. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.

    Science.gov (United States)

    Wang, Wen; Xie, Li; Luo, Gang; Zhou, Qi; Angelidaki, Irini

    2013-10-01

    A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema and hydrogenotrophic genus Methanoculleus in the liquid, which indicated that H2 were converted to methane by both direct (hydrogenotrophic methanogenesis) and indirect (homoacetogenesis+aceticlastic methanogenesis) pathways in the liquid. However, the aceticlasitic genus Methanosaeta was dominant for archaea in the biofilm on the HFM, which indicated indirect (homoacetogenesis+aceticlastic methanogenesis) H2 conversion pathway on the biofilm. PMID:23941705

  13. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    Science.gov (United States)

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  14. Field-scale treatment of landfill gas with a passive methane oxidizing biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Philopoulos, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Felske, C. [Alberta Research Council, Edmonton, AB (Canada); McCartney, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering, Natural Resources Engineering Facility

    2008-09-15

    Municipal solid waste (MSW) landfills produce methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) as a result of the anaerobic biodegradation of organic fractions of waste. This paper provided details of field tests conducted to test 2 approaches that addressed the issue of gases produced at a landfill in Alberta. A CH{sub 4} oxidation layer was applied to replace intermediate and final landfill covers. Landfill gas (LFG) was then trapped using 3 biogenic CH{sub 4} oxidizing biofilters. Mature yard waste was used as a biofilter medium. The LFG was trapped by the liner, accumulated in a collection system, and then passed through the biofilter medium. The study was conducted over a period of 10 months. Results of the study showed that the integration of the biofilter into the landfill cover showed promising results. Low surface emissions were observed in 6 out of 8 monitoring events at 2 of the sites. Low influent LFG fluxes at the third site did not allow for full air sampling analyses to be conducted. 22 refs., 4 tabs., 8 figs.

  15. Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California

    Science.gov (United States)

    Treude, T.; Ziebis, W.

    2010-03-01

    A shallow-water area in the Santa Barbara Channel (California), known collectively as the Coal Oil Point seep field, is one the largest natural submarine oil and gas emission areas in the world. Both gas and oil are seeping constantly through a predominantly sandy seabed into the ocean. This study focused on the methanotrophic activity within the surface sediments (0-15 cm) of the permeable seabed in the so-called Brian Seep area at a water depth ~10 m. Detailed investigations of biogeochemical parameters in the sediment surrounding active gas vents indicated that methane seepage through the permeable seabed induces a convective transport of fluids within the surface sediment layer, which results in a deeper penetration of oxidants (oxygen, sulfate) into the sediment, as well as in a faster removal of potentially inhibiting reduced end products (e.g. hydrogen sulfide). Methanotrophic activity was often found close to the sediment-water interface, indicating the involvement of aerobic bacteria. However, biogeochemical data suggests that the majority of methane is consumed by anaerobic oxidation of methane (AOM) coupled to sulfate reduction below the surface layer (>15 cm), where sulfate is still available in high concentrations. This subsurface maximum of AOM activity in permeable sands is in contrast to known deep-sea seep habitats, where upward fluid advection through more fine-grained sediments leads to an accumulation of AOM activity within the top 10 cm of the sediments, because sulfate is rapidly depleted.

  16. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    Science.gov (United States)

    Amos, Richard T.; Bekins, Barbara A.; Delin, Geoffrey N.; Cozzarelli, Isabelle M.; Blowes, David W.; Kirshtein, Julie D.

    2011-07-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH 4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH 4 and CO 2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in δ 13C CH4 from an average of - 57.6‰ (± 1.7‰) in the methanogenic zone to - 39.6‰ (± 8.7‰) at 105 m downgradient, strongly suggest CH 4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O 2 across the water table is leading to aerobic degradation of CH 4 at this interface. Dissolved N 2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O 2 through aerobic degradation of CH 4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O 2 transport mechanisms.

  17. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC Treatment by 454-Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O integrated process for the treatment of petrochemical nanofiltration concentrate (NFC wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A and aerobic biofilm (Sample O, 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD and Total Organic Carbon (TOC removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN on average were 90.51% and 75.11% during the entire treatment process.

  18. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    Science.gov (United States)

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  19. Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs.

    Science.gov (United States)

    He, Zhanfei; Wang, Jiaqi; Zhang, Xu; Cai, Chaoyang; Geng, Sha; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-12-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs. PMID:26342737

  20. Methane oxidizing bacteria at the oxic-anoxic interface : taxon-specific activity and resilience

    OpenAIRE

    Reim, Andreas

    2013-01-01

    The methanotrophic bacteria are the only known biological sink for the third most important greenhouse gas methane, performing an important ecosystem function influencing global climate change. In the soil surface layer of water logged soils aerobic methanotrophs thrive at the oxic-anoxic interface attenuating the amount of potentially emitted methane. The highly diverse methanotroph community is shaping the interface characterize...

  1. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  2. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  3. The use of novel packing material for improving methane oxidation in biofilters.

    Science.gov (United States)

    Brandt, Emanuel Manfred F; Duarte, Felipe V; Vieira, João Paulo R; Melo, Vinícius M; Souza, Cláudio L; Araújo, Juliana C; Chernicharo, Carlos Augusto L

    2016-11-01

    The use of biofilters (working bed volume of 7.85 L) for the oxidation of CH4 at low concentrations (from 0.17%v/v to 3.63%v/v, typically in waste gas from anaerobic sewage treatment) was investigated and four empty bed residence times were tested (in min): 42.8, 29.5, 19.6, and 7.4. Mixtures of organic (composted leaves) and three non-organic materials (sponge-based material - SBM, blast furnace slag - BFS, and expanded vermiculite - ExpV) were used as packing media. Along 188 operational days after the steady state was reached (95 days for start-up), the CH4 mineralization decreased while the inlet loads gradually increased from 3.0 ± 0.8 gCH4 m(-3) h(-1) to 148.8 ± 4.4 gCH4 m(-3) h(-1). The biofilter packed with ExpV showed the best results, since the CH4 conversions decreased from 95.0 ± 5.0% to 12.7 ± 3.7% as a function of inlet concentration, compared to the other two biofilters (SBM and BFS) which showed CH4 conversions decreasing from 56.0 ± 5.4% to 3.5 ± 1.2% as a function of inlet concentration. The methanotrophic activity of biomass taken from ExpV biofilter was three times higher than the activity of biomass from the other two biofilters. Taken together, these results suggested that ExpV provides an attractive environment for microbial growth, besides the mechanical resistance provided to the whole packing media, showing the potential to its use in biofiltration of diffuse CH4 emissions.

  4. The use of novel packing material for improving methane oxidation in biofilters.

    Science.gov (United States)

    Brandt, Emanuel Manfred F; Duarte, Felipe V; Vieira, João Paulo R; Melo, Vinícius M; Souza, Cláudio L; Araújo, Juliana C; Chernicharo, Carlos Augusto L

    2016-11-01

    The use of biofilters (working bed volume of 7.85 L) for the oxidation of CH4 at low concentrations (from 0.17%v/v to 3.63%v/v, typically in waste gas from anaerobic sewage treatment) was investigated and four empty bed residence times were tested (in min): 42.8, 29.5, 19.6, and 7.4. Mixtures of organic (composted leaves) and three non-organic materials (sponge-based material - SBM, blast furnace slag - BFS, and expanded vermiculite - ExpV) were used as packing media. Along 188 operational days after the steady state was reached (95 days for start-up), the CH4 mineralization decreased while the inlet loads gradually increased from 3.0 ± 0.8 gCH4 m(-3) h(-1) to 148.8 ± 4.4 gCH4 m(-3) h(-1). The biofilter packed with ExpV showed the best results, since the CH4 conversions decreased from 95.0 ± 5.0% to 12.7 ± 3.7% as a function of inlet concentration, compared to the other two biofilters (SBM and BFS) which showed CH4 conversions decreasing from 56.0 ± 5.4% to 3.5 ± 1.2% as a function of inlet concentration. The methanotrophic activity of biomass taken from ExpV biofilter was three times higher than the activity of biomass from the other two biofilters. Taken together, these results suggested that ExpV provides an attractive environment for microbial growth, besides the mechanical resistance provided to the whole packing media, showing the potential to its use in biofiltration of diffuse CH4 emissions. PMID:27505166

  5. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane

    Directory of Open Access Journals (Sweden)

    Gunter eWegener

    2016-02-01

    Full Text Available In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20 and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37 or at 50°C (G50. These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20 or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37 or with bacteria of the HotSeep-1 cluster (G50. We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1 to 7‰ of archaeal 16S rRNA gene amplicons. In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1 to 9‰ of bacterial 16S rRNA gene amplicons, whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2 or HotSeep-1 did not grow on elemental sulfur. Our results support a

  6. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Ruff, S Emil; Kellermann, Matthias Y; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1-7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1-9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as

  7. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique.

    Science.gov (United States)

    Wang, Chao; Xie, Bing; Han, Lu; Xu, Xiaofan

    2013-10-01

    In order to investigate the anaerobic ammonium-oxidation (Anammox) nitrogen removal pathway of the aged refuse bioreactor treating landfill leachate, a lab-scale bioreactor was established and run for 35 weeks, the performance of the bioreactor and its bacterial community structure of Planctomycetes were analyzed. The results showed that the average TN removal rate of landfill leachate could be reached to 89%. 16S rRNA gene library of Planctomycetes revealed that Anammox sequences accounted for 28.3% of the total Planctomycetes sequences in the bioreactor, and previously recognized Anammox bacterium Candidatus Kuenenia stuttgartiensis was the only detected Anammox species in the reactor. It was also found that Anammox bacteria distributed at different sites of the bioreactor while mostly concentrated in the middle and low-middle part. Results above confirmed that Anammox process could happen in aged refuse bioreactor treating landfill leachate and provided an alternative nitrogen removal pathway in practical landfills.

  8. Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters.

    Science.gov (United States)

    Wilkins, David; Lu, Xiao-Ying; Shen, Zhiyong; Chen, Jiapeng; Lee, Patrick K H

    2015-01-01

    Methanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Methanobacteriales, Methanomicrobiales, and Methanosarcinales were detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of the mcrA genes suggested that these digesters were dominated by acetoclastic methanogens, particularly Methanosarcinales, while the other digesters were dominated by hydrogenotrophic Methanomicrobiales. The proposed euryarchaeotal order Methanomassiliicoccales and the uncultured WSA2 group were detected with the 16S rRNA gene, and potential mcrA genes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using the mcrA gene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance of mcrA transcripts in digesters treating sludge and wastewater samples, supporting the mcrA gene as a biomarker for methane yield.

  9. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    Science.gov (United States)

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  10. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    Science.gov (United States)

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  11. Diversity and methane oxidation of active epibiotic methanotrophs on live Shinkaia crosnieri

    OpenAIRE

    Watsuji, Tomo-o; Yamamoto, Asami; Takaki, Yoshihiro; Ueda, Kenji; Kawagucci, Shinsuke; Takai, Ken

    2014-01-01

    Shinkaia crosnieri is a galatheid crab that predominantly dwells in deep-sea hydrothermal systems in the Okinawa Trough, Japan. In this study, the phylogenetic diversity of active methanotrophs in the epibiotic microbial community on the setae of S. crosnieri was characterized by reverse transcription-polymerase chain reaction (RT-PCR) of a functional gene (pmoA) encoding a subunit of particulate methane monooxygenase. Phylogenetic analysis of pmoA transcript sequences revealed that the activ...

  12. Anaerobic Process.

    Science.gov (United States)

    Yang, Qian; Ju, Mei-Ting; Li, Wei-Zun; Liu, Le; Wang, Yan-Nan; Chang, Chein-Chi

    2016-10-01

    A review of the literature published in 2015 on the focus of Anaerobic Process. It is divided into the following sections. Pretreatment Organic waste Multiple-stage co-digestion Process Methodology and Technology. PMID:27620085

  13. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  14. Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils

    Science.gov (United States)

    Bodelier, Paul LE; Bär-Gilissen, Marie-Jose; Meima-Franke, Marion; Hordijk, Kees

    2012-01-01

    Climate change will lead to more extreme precipitation and associated increase of flooding events of soils. This can turn these soils from a sink into a source of atmospheric methane. The latter will depend on the balance of microbial methane production and oxidation. In the present study, the structural and functional response of methane oxidizing microbial communities was investigated in a riparian flooding gradient. Four sites differing in flooding frequency were sampled and soil-physico-chemistry as well as methane oxidizing activities, numbers and community composition were assessed. Next to this, the active community members were determined by stable isotope probing of lipids. Methane consumption as well as population size distinctly increased with flooding frequency. All methane consumption parameters (activity, numbers, lipids) correlated with soil moisture, organic matter content, and conductivity. Methane oxidizing bacteria were present and activated quickly even in seldom flooded soils. However, the active species comprised only a few representatives belonging to the genera Methylobacter, Methylosarcina, and Methylocystis, the latter being active only in permanently or regularly flooded soils. This study demonstrates that soils exposed to irregular flooding harbor a very responsive methane oxidizing community that has the potential to mitigate methane produced in these soils. The number of active species is limited and dominated by one methane oxidizing lineage. Knowledge on the characteristics of these microbes is necessary to assess the effects of flooding of soils and subsequent methane cycling therein. PMID:22408730

  15. The influence of hydrogeological disturbance and mining on coal seam microbial communities.

    Science.gov (United States)

    Raudsepp, M J; Gagen, E J; Evans, P; Tyson, G W; Golding, S D; Southam, G

    2016-03-01

    The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro-organisms in pumped water from the actively mined areas, as well as, pre- and post-mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro-organisms in anoxic coal mine waters belonged to the family 'Candidatus Methanoperedenaceae'. As the Archaeal family 'Candidatus Methanoperedenaceae' has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance. PMID:26541089

  16. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough.

    Science.gov (United States)

    Katayama, Taiki; Yoshioka, Hideyoshi; Takahashi, Hiroshi A; Amo, Miki; Fujii, Tetsuya; Sakata, Susumu

    2016-08-01

    Little is known about the microbial distribution patterns in subseafloor sediments. This study examines microbial diversity and activities in sediments of the Nankai Trough, where biogenic gas hydrates are deposited. Illumina sequencing of 16S rRNA genes revealed that the prokaryotic community structure is correlated with hydrate occurrence and depth but not with the sedimentary facies. The bacterial phyla 'Atribacteria' lineage JS1 and Chloroflexi dominated in all samples, whereas lower taxonomic units of Chloroflexi accounted for community variation related to hydrate saturation. In archaeal communities, 'Bathyarchaeota' was significantly abundant in the hydrate-containing samples, whereas Marine Benthic Group-B dominated in the upper sediments without hydrates. mcrA gene sequences assigned to deeply branching groups and ANME-1 were detected only in hydrate-containing samples. A predominance of hydrogenotrophic methanogens, Methanomicrobiales and Methanobacteriales, over acetoclastic methanogens was found throughout the depth. Incubation tests on hydrate-containing samples with a stable isotope tracer showed anaerobic methane oxidation activities under both low- and seawater-like salinity conditions. These results indicate that the distribution patterns of microorganisms involved in carbon cycling changed with gas hydrate occurrence, possibly because of the previous hydrate dissociation followed by pore water salinity decrease in situ, as previously proposed by a geochemical study at the study site. PMID:27170363

  17. A laboratory-scale comparison of compost and sand--compost--perlite as methane-oxidizing biofilter media.

    Science.gov (United States)

    Philopoulos, Andrew; Ruck, Juliane; McCartney, Daryl; Felske, Christian

    2009-03-01

    Municipal solid waste landfills produce methane, a potent greenhouse gas. A treatment approach is to passively vent landfill gas through a methane-oxidizing biofilter medium, a porous substrate that facilitates the growth of methanotrophic bacteria. Two substrates, compost and a sand-compost-perlite (SCP) mixture, were evaluated in a laboratory-scale experiment for their suitability as biofilter media. The SCP mixture was investigated to minimize settlement and was based on a particle size distribution specification used for turf grass. The long-term (218 days) methane removal rates showed that both compost and SCP were capable of removing 100% of the methane influent flux (134 g CH(4) m( -2) day(-1)). The post-experiment analysis showed that compost had compacted more than SCP. This did not affect the results; however, in a field installation, traffic on the biofilter surface (e.g. maintenance) could cause further compaction and negatively affect performance. Exopolymeric substance produced by the methanotrophic bacteria, attributed by others for declining removal rates due to bio-clogging, was not observed to affect the results. The maximum exopolymeric substance values measured were 23.9 and 7.8 mg D-glucose g(-1) (dry basis) for compost and SCP, respectively.

  18. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor

    Science.gov (United States)

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    METHANE is a greenhouse gas whose concentration in the atmosphere is increasing1-3 Much of this methane is derived from the metabolism of methane-generating (methanogenic) bacteria4,5, and over the past two decades much has been learned about the ecology of methanogens; specific inhibitors of methanogenesis, such as 2-bromoethanesulphonic acid, have proved useful in this regard6. In contrast, although much is known about the biochemistry of methane-oxidizing (methanotrophic) bacteria7, ecological investigations have been hampered by the lack of an analogous specific inhibitor6. Methanotrophs limit the flux of methane to the atmosphere from sediments8,9 and consume atmospheric methane10, but the quantitative importance of methanotrophy in the global methane budget is not well known5. Methylfluoride (CH3F) is known to inhibit oxygen consumption by Methylococcus capsulatus11, and to inhibit the oxidation of 14CH4 to 14CO2 by endosymbionts in mussel gill tissues12. Here we report that methylfluoride (MF) inhibits the oxidation of methane by methane monooxygenase, and by using methylfluoride in field investigations, we find that methanotrophic bacteria can consume more than 90% of the methane potentially available.

  19. Microbial community structure and functioning in marine sediments associated with diffuse hydrothermal venting assessed by integrated meta-omics.

    Science.gov (United States)

    Urich, Tim; Lanzén, Anders; Stokke, Runar; Pedersen, Rolf B; Bayer, Christoph; Thorseth, Ingunn H; Schleper, Christa; Steen, Ida H; Ovreas, Lise

    2014-09-01

    Deep-sea hydrothermal vents are unique environments on Earth, as they host chemosynthetic ecosystems fuelled by geochemical energy with chemolithoautotrophic microorganisms at the basis of the food webs. Whereas discrete high-temperature venting systems have been studied extensively, the microbiotas associated with low-temperature diffuse venting are not well understood. We analysed the structure and functioning of microbial communities in two diffuse venting sediments from the Jan Mayen vent fields in the Norwegian-Greenland Sea, applying an integrated 'omics' approach combining metatranscriptomics, metaproteomics and metagenomics. Polymerase chain reaction-independent three-domain community profiling showed that the two sediments hosted highly similar communities dominated by Epsilonproteobacteria, Deltaproteobacteria and Gammaproteobacteria, besides ciliates, nematodes and various archaeal taxa. Active metabolic pathways were identified through transcripts and peptides, with genes of sulphur and methane oxidation, and carbon fixation pathways highly expressed, in addition to genes of aerobic and anaerobic (nitrate and sulphate) respiratory chains. High expression of chemotaxis and flagella genes reflected a lifestyle in a dynamic habitat rich in physico-chemical gradients. The major metabolic pathways could be assigned to distinct taxonomic groups, thus enabling hypotheses about the function of the different prokaryotic and eukaryotic taxa. This study advances our understanding of the functioning of microbial communities in diffuse hydrothermal venting sediments.

  20. Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand

    Science.gov (United States)

    Stott, M. B.; Saito, J. A.; Crowe, M. A.; Dunfield, P. F.; Hou, S.; Nakasone, E.; Daughney, C. J.; Smirnova, A. V.; Mountain, B. W.; Takai, K.; Alam, M.

    2008-08-01

    The bacterial and archaeal diversity of a hydrothermal vent microbial community at Brothers volcano situated in the Kermadec arc, ˜400 km off the north coast of New Zealand, was examined using culture-independent molecular analysis. An unusual microbial community was detected with only 1% and 40% of the bacterial phylotypes exhibiting >92% small subunit (SSU) rRNA gene sequence similarity with cultivated and noncultivated microbes, respectively. Of the 29 bacterial representative phylotypes, over one third of the SSU rRNA gene sequences retrieved belonged to uncultivated candidate divisions including OP1, OP3, OP5, OP8, OD1, and OP11. All archaeal phylotypes belonged to the phylum Euryarchaeota in the uncultivated groups deep hydrothermal vent euryarchaeotal (DHVE) I and II or to the phylum Korarchaeota. Like the bacterial clone library, only a small proportion of archaeal SSU rRNA gene sequences (˜2% and 20%) displayed >92% sequence identity with any archaeal isolates or noncultivated microbes, respectively. Although the bacterial phylotypes detected were phylogenetically most similar to microbial communities detected in methane, hydrocarbon, and carbon dioxide-based hydrothermal and seep environments, no phylotypes directly associated with anaerobic methane oxidation and mcrA activity could be detected. The geochemical composition of the vent fluids at the Brothers-lower cone sample site is unusual and we suggest that it may play a prominent role in the species selection of this microbial community.

  1. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog

    OpenAIRE

    Esson, Kaitlin C.; Lin, Xueju; Kumaresan, Deepak; Jeffrey P Chanton; Murrell, J. Colin; Kostka, Joel E.

    2016-01-01

    The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, Minnesota, USA. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing, expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14-17 μmol CH4 g dry wt soil-1 d-1. Within DNA-SIP incubations...

  2. Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms

    OpenAIRE

    Kightley, D.; Nedwell, D. B.; Cooper, M.

    1995-01-01

    Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotr...

  3. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  4. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses

    Directory of Open Access Journals (Sweden)

    Anuliina ePutkinen

    2012-01-01

    Full Text Available It is known that Sphagnum associated methanotrophy (SAM changes in relation to the peatland water table (WT level. After drought, rising WT is able to reactivate SAM. We aimed to reveal whether this reactivation is due to activation of indigenous methane (CH4 oxidizing bacteria (MOB already present in the mosses or to MOB present in water. This was tested through two approaches: In a transplantation experiment, Sphagna lacking SAM activity were transplanted into flark water next to Sphagna oxidizing CH4. Already after 3 d, most of the transplants showed CH4 oxidation activity. Microarray showed that the MOB community compositions of the transplants and the original active mosses had become more similar within 28 d thus indicating MOB movement through water between mosses. Methylocystis-related type II MOB dominated the community. In a following experiment, SAM inactive mosses were bathed overnight in non-sterile and sterile-filtered SAM active site flark water. Only mosses bathed with non-sterile flark water became SAM active, which was also shown by the pmoA copy number increase of over 60 times. Thus, it was evident that MOB present in the water can colonize Sphagnum mosses. This colonization could act as a resilience mechanism for peatland CH4 dynamics by allowing the re-emergence of CH4 oxidation activity in Sphagnum.

  5. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  6. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    Science.gov (United States)

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes. PMID:25341468

  7. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    Science.gov (United States)

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes.

  8. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source.

    Science.gov (United States)

    Timmers, Peer Ha; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons Jm; Plugge, Caroline M

    2016-06-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with (13)C-labeled CH4 ((13)CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, (13)C-labeled CO2 ((13)CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with (13)CO2 production and no methanogenesis occurred, excluding TMO as a possible source for (13)CO2 production from (13)CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  9. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Science.gov (United States)

    Timmers, Peer HA; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons JM; Plugge, Caroline M

    2016-01-01

    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551

  10. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge.

    Science.gov (United States)

    Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H

    2016-10-15

    Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also

  11. Effect of iron-manganese-sepiolite as heterogeneous Fenton-like catalyst on the performance and microbial community of anaerobic granular sludge treatment system.

    Science.gov (United States)

    Su, Chengyuan; Li, Weiguang; Chen, Menglin; Huang, Zhi; Wu, Lei

    2016-01-01

    Both short-term and long-term exposure experiments have been carried out to investigate the influence of iron (Fe)-manganese (Mn)-sepiolite, as a heterogeneous Fenton-like catalyst, on the performance and microbial community of anaerobic granular sludge. During the short-term exposure experiments, chemical oxygen demand (COD) removal efficiency decreased from 73.1% to 64.1% with the presence of 100mg/L of catalyst. However, long-term exposure to the catalyst did not significantly affect the COD removal efficiency (81.8%) as compared to the control (83.5%). Meanwhile, the absorption peaks of coenzyme F420 in extracellular polymeric substances (EPS) of sludge samples were remarkable by excitation-emission matrix (EEM) fluorescence spectra. After long-term exposure, the presence of the catalyst increased secretions of EPS from 83.7mg/g VSS to 89.1mg/g VSS. Further investigations with high throughput sequencing indicated that the abundance of Methanosaeta increased from 57.7% to 70.4% after long-term exposure. In bacterial communities, Proteobacteria, Firmicutes, and Synergistetes were predominant.

  12. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance.

  13. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing.

    Science.gov (United States)

    Shu, Duntao; He, Yanling; Yue, Hong; Wang, Qingyi

    2015-06-01

    The microbial communities and abundance in anaerobic sludge from 4 industrial and 2 municipal wastewater treatment plants were investigated using 454 pyrosequencing technology in this study. A total of 5482-8692 high-quality reads of 16S rRNA V3-V5 regions were obtained. Taxonomic analysis using QIIME and RDP classifier found that Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes were the most abundant phyla in these samples. Furthermore, real-time PCR was used to validate the absolute abundance of these 16S rRNAs and some functional genes, including total bacteria, anammox bacteria, NOB (Nitrobacter, Nitrospira), AOA amoA, AOB amoA, nosZ, nirS, nirK, narG, napA, nrfA, mcrA and dsrA. Multivariate linear regression analysis indicated that AOA might be mixotrophic. Finally, redundancy analysis was used to reveal the relationships between operation parameters and microbial communities. Results showed that the coexistence of anammox, denitrification and DNRA could be useful for the simultaneous removal of nitrogen and organic matter. PMID:25817026

  14. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  15. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO2−-N/L d (using synthetic medium) and 37.8 mg NO2−-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  16. Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions.

    Science.gov (United States)

    Walkiewicz, A; Bulak, P; Brzezińska, M; Wnuk, E; Bieganowski, A

    2016-06-01

    Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg(-1), respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status. PMID:26946175

  17. The role of microbial diversity in the dynamics and stability of global methane consumption: microbial methane oxidation as a model-system for microbial ecology (ESF EuroDiversity METHECO)

    Science.gov (United States)

    Frenzel, P.; Metheco-Team

    2009-04-01

    therefore cannot be ignored in nature conservation and management issues. Investigating this hypothesis is equivalent to assessing the Biodiversity-Ecosystem Functioning relationship (BEF) which has been intensively studied in classical ecology has largely been ignored investigating microbial communities. METHECO is focusing on methane oxidizing bacteria, a well-defined yet sufficiently diverse group of bacteria catalyzing an important ecosystem service: next to carbon dioxide, methane is the most important greenhouse gas adding about 30% to the radiative forcing exerted by carbon dioxide. The emission of methane would be even much higher without the activity of methane-oxidizing bacteria which on a global basis mitigate about 50% of the biologically produced methane. In contrast, methanotrophs in aerated upland soils form the only biological sink for atmospheric methane playing a vital role in the global climate. METHECO is studying diversity and functioning of methanotrophs over a wide range of European ecosystems from the Mediterranean to the Arctic, and from landfills to pristine environments. Our objectives are (i) the definition of meaningful taxonomic units which describe microbial diversity in the habitats studied, (ii) assessing the effects of perturbations on diversity and functioning, (iii) identifying controls of methanotrophic activity and diversity, and (iv) developing a standardized methodology and framework for environmental microbial ecology.

  18. Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway

    Directory of Open Access Journals (Sweden)

    S. Mau

    2013-10-01

    Full Text Available The bacterially mediated aerobic methane oxidation (MOx is a key mechanism in controlling methane (CH4 emissions from the world's oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Svalbard by applying a combination of radio-tracer-based incubation assays (3H-CH4 and 14C-CH4, stable C-CH4 isotope measurements, and molecular tools (16S rRNA gene Denaturing Gradient Gel Electrophoresis (DGGE fingerprinting, pmoA- and mxaF gene analyses. Storfjorden is stratified in the summertime with melt water (MW in the upper 60 m of the water column, Arctic water (ArW between 60 and 100 m, and brine-enriched shelf water (BSW down to 140 m. CH4 concentrations were supersaturated with respect to the atmospheric equilibrium (about 3–4 nM throughout the water column, increasing from ∼20 nM at the surface to a maximum of 72 nM at 60 m and decreasing below. MOx rate measurements at near in situ CH4 concentrations (here measured with 3H-CH4 raising the ambient CH4 pool by −1 at 60 m, followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with 14C-CH4 (incubations were spiked with ∼450 nM of 14C-CH4, providing an estimate of the CH4 oxidation at elevated concentration showed comparably low turnover rates (−1 at 60 m, and peak rates were found in ArW/BSW at ∼100 m water depth, concomitant with increasing 13C values in the residual CH4 pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH4 concentrations. In contrast, the activity of the deep-water MOx community is relatively low at the ambient, summertime CH4 concentrations but has the potential to increase rapidly in response to CH4 availability. A similar distinction between surface and deep-water MOx is also suggested by our molecular analyses. The DGGE banding patterns of 16S rRNA gene fragments of the surface MW and deep water were clearly different. A DGGE band related to the known type I MOx

  19. The potential of methane-oxidizing bacteria for applications in environmental biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wendlandt, Karin-Dagmar; Stottmeister, Ulrich; Jechorek, Mirko [Helmholtz-Center for Environmental Research UFZ, Leipzig (Germany); Helm, Jana [School of Physics and Astronomy, The University of Edinburgh, Edinburgh (United Kingdom); Soltmann, Bettina [Institute for Materials Science, Dresden University of Technology, Dresden (Germany); Beck, Matthias [Oncotec, Pharma Production GmbH, Dessau-Rosslau (Germany)

    2010-04-15

    Methanotrophic bacteria possess a unique set of enzymes enabling them to oxidize, degrade and transform organic molecules and synthesize new compounds. Therefore, they have great potential in environmental biotechnology. The application of these unique properties was demonstrated in three case studies: (i) Methane escaping from leaky gas pipes may lead to massive mortality of trees in urban areas. Lack of oxygen within the soil surrounding tree roots caused by methanotrophic activity was identified as one of the reasons for this phenomenon. The similarity between metabolic reactions performed by the key enzymes of methanotrophs (methane monooxygenase) and ammonium oxidizers (ammonium monooxygenase) might offer a solution to this problem by applying commercially available nitrification and urease inhibitors. (ii) Methanotrophs are able to co-metabolically degrade contaminants such as low-molecular-weight-chlorinated hydrocarbons in soil and water in the presence of methane. Batch and continuous trichloroethylene degradation experiments in laboratory-scale reactors using Methylocystis sp. GB 14 were performed, partly with cells entrapped in a polymer matrix. (iii) Using a short, two-stage pilot-scale process, the intracellular polymer accumulation of poly-{beta}-hydroxybutyrate (PHB) in methanotrophs reached a maximum of 52%. Interestingly, an ultra-high-molecular-weight PHB of 3.1 MDa was accumulated under potassium deficiency. Under strictly controlled conditions (temperature, pH and methane supply) this process can be nonsterile because of the establishment of a stable microbial community (dominant species Methylocystis sp. GB 25 {>=}86% by biomass). The possibility to substitute methane with biogas from renewable sources facilitates the development of a methane-based PHB production process that yields a high-quality biopolymer at competitive costs. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes

    Science.gov (United States)

    Cadieux, Sarah B.; White, Jeffrey R.; Sauer, Peter E.; Peng, Yongbo; Goldman, Amy E.; Pratt, Lisa M.

    2016-08-01

    Microbial oxidation of methane (CH4) plays a central role in carbon cycling in Arctic lakes, reducing potential CH4 emissions associated with warming. Isotopic signatures of CH4 (δ13C and δ2H) are indicators of microbial oxidation, wherein the process strongly enriches 13C and 2H in residual CH4. We present δ13C and δ2H measurements obtained from sampling the water column and sediment for dissolved CH4 from three, small Arctic lakes in western Greenland under both open-water and ice-covered conditions from 2013 to 2014. Despite substantial variations in aquatic chemistry among the lakes, δ13C and δ2H of CH4 suggested that CH4 was produced predominantly by acetoclastic methanogenesis in the littoral sediments and hydrogenotrophic methanogenesis in the profundal sediments in all of the lakes. Surprisingly large variations for both δ13C and δ2H of CH4 were observed, with δ13C extending from -72‰ to +7.4‰ and δ2H from -390‰ to +250‰. The CH4 isotopic values reported here were significantly more enriched (p < 0.0001) in both 13C and 2H than values reported from other Arctic freshwater environments. As is characteristic of methanotrophy, the enrichment in 13C and 2H was associated with low CH4 concentrations. We suggest that the CH4 most enriched in 13C and 2H may reflect unusually efficient methanotrophic communities in Arctic ice-margin lakes. This study provides the first measurement of δ2H for CH4 in an Arctic freshwater environment at concentrations <10 μM. The extreme enrichment of 13C and 2H of CH4 from Arctic methanotrophy has significant implications for interpreting sources and sinks of CH4. Without knowledge of local geology, stable isotope values of CH4 higher than -30‰ for δ13C and -150‰ for δ2H could be misinterpreted as thermogenic, geothermal, or abiogenic origins. Given crystalline bedrock and the strong positive correlation between δ13C and δ2H throughout the water columns in three Arctic lakes confirms that CH4 heavily

  1. Associative patterns among anaerobic fungi, methanogenic archaea and bacterial communities in response to changes in diet and age in the rumen of dairy cows

    Directory of Open Access Journals (Sweden)

    Sanjay eKumar

    2015-07-01

    Full Text Available The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF, protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lactation and multiparous (≥ second lactation cows. To this end, we investigated shifts in the ruminal ARF and methanogenic communities in both primiparous (n=5 and multiparous (n=5 cows as they transitioned from a high forage to a high grain diet upon initiation of lactation. A total of 20 rumen samples were extracted for genomic DNA, amplified using archaeal and fungal specific primers, sequenced on a 454 platform and analyzed using QIIME. Community comparisons (Bray-Curtis index revealed the effect of diet (P < 0.01 on ARF composition, while archaeal communities differed between primiparous and multiparous cows (P < 0.05. Among ARF, several lineages were unclassified, however, phylum Neocallimastigomycota showed the presence of three known genera. Abundance of Cyllamyces and Caecomyces shifted with diet whereas, Orpinomyces was influenced by both diet and age. Methanobrevibacter constituted the most dominant archaeal genus across all samples. Co-occurrence analysis incorporating taxa from bacteria, ARF and archaea revealed syntrophic interactions both within and between microbial domains in response to change in diet as well as age of dairy cows. Notably, these interactions were numerous and complex in multiparous cows supporting our hypothesis that the rumen microbiome also matures with age to sustain the growing metabolic needs of the host. This study provides a broader picture of the ARF and methanogenic populations in the rumen of dairy cows and their co-occurrence implicates specific relationships between different microbial domains in response to

  2. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.

    Science.gov (United States)

    Krukenberg, Viola; Harding, Katie; Richter, Michael; Glöckner, Frank Oliver; Gruber-Vodicka, Harald R; Adam, Birgit; Berg, Jasmine S; Knittel, Katrin; Tegetmeyer, Halina E; Boetius, Antje; Wegener, Gunter

    2016-09-01

    The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation. PMID:26971539

  3. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  4. Quantitative microbiological analysis of bacterial community shifts in a high-rate anaerobic bioreactor treating sulfite evaporator condensate.

    Science.gov (United States)

    Ney, U; Macario, A J; Conway de Macario, E; Aivasidis, A; Schoberth, S M; Sahm, H

    1990-08-01

    The bacterial population of a high-rate, anaerobic, fixed-bed loop reactor treating sulfite evaporator condensate from the pulp industry was studied over a 14-month period. This period was divided into seven cycles that included a startup at the beginning of each cycle. Some 82% of the total biomass was immobilized on and between the porous glass rings filling the reactor. The range of the total number of microorganisms in these biofilms was 2 x 10 to 7 x 10 cells per ml. Enumeration and characterization by microbiological methods and by phase-contrast, epifluorescence, and electron microscopy showed that the samples consisted mainly of the following methanogens: a Methanobacterium sp., a Methanosarcina sp., a Methanobrevibacter sp., and a Methanothrix sp., as well as furfural-degrading sulfate-reducing bacteria resembling Desulfovibrio furfuralis. Viable counts of hydrogenotrophic methanogens were relatively stable (mostly within the range of 3.2 x 10 to 7.5 x 10 cells per ml), but Methanobrevibacter cells increased from fixed bed into a second reactor vessel. Acetotrophic methanogens reached their highest numbers of 1.3 x 10 to 2.6 x 10 cells per ml in the last fermentation cycles. They showed a morphological shift from sarcinalike packets in early samples to single coccoid forms in later phases of the fermentation. Furfural-degrading sulfate reducers reached counts of 1 x 10 to 5.8 x 10 cells per ml. The distribution of the chief metabolic groups between free fluid and biofilms was analyzed in the fifth fermentation cycle: 4.5 times more furfural degraders were found in the free fluid than in the biofilms. In contrast, 5.8 times more acetotrophic and 16.6 times more hydrogenotrophic methanogens were found in the biofilms than in the free liquid. The data concerning time shifts of morphotypes among the trophic groups of methanogens corroborated the trends observed by using immunological assays on the same samples.

  5. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    Science.gov (United States)

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  6. Density-dependent enhancement of methane oxidation activity and growth of Methylocystis sp. by a non-methanotrophic bacterium Sphingopyxis sp

    Directory of Open Access Journals (Sweden)

    So-Yeon Jeong

    2014-12-01

    Full Text Available Methanotrophs are a biological resource as they degrade the greenhouse gas methane and various organic contaminants. Several non-methanotrophic bacteria have shown potential to stimulate growth of methanotrophs when co-cultured, and however, the ecology is largely unknown. Effects of Sphingopyxis sp. NM1 on methanotrophic activity and growth of Methylocystis sp. M6 were investigated in this study. M6 and NM1 were mixed at mixing ratios of 9:1, 1:1, and 1:9 (v/v, using cell suspensions of 7.5 × 1011 cells L−1. Methane oxidation of M6 was monitored, and M6 population was estimated using fluorescence in situ hybridization (FISH. Real-time PCR was applied to quantify rRNA and expression of transcripts for three enzymes involved in the methane oxidation pathway. NM1 had a positive effect on M6 growth at a 1:9 ratio (p < 0.05, while no significant effects were observed at 9:1 and 1:1 ratios. NM1 enhanced the methane oxidation 1.34-fold at the 1:9 ratio. NM1 increased the population density and relative rRNA level of M6 by 2.4-fold and 5.4-fold at the 1:9 ratio, indicating that NM1 stimulated the population growth of M6. NM1 increased the relative transcriptional expression of all mRNA targets only at the 1:9 ratio. These results demonstrated that NM1 enhanced the methanotrophic activity and growth of M6, which was dependent on the proportion of NM1 present in the culture. This stimulation can be used as management and enhancement strategies for methanotrophic biotechnological processes.

  7. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. PMID:26810032

  8. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.

    Science.gov (United States)

    Hung, Chun-Hsiung; Lee, Kuo-Shing; Cheng, Lu-Hsiu; Huang, Yu-Hsin; Lin, Ping-Jei; Chang, Jo-Shu

    2007-06-01

    Fermentative H(2) production microbial structure in an agitated granular sludge bed bioreactor was analyzed using fluorescence in situ hybridization (FISH) and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE). This hydrogen-producing system was operated at four different hydraulic retention times (HRTs) of 4, 2, 1, and 0.5 h and with an influent glucose concentration of 20 g chemical oxygen demand/l. According to the PCR-DGGE analysis, bacterial community structures were mainly composed of Clostridium sp. (possibly Clostridium pasteurianum), Klebsiella oxytoca, and Streptococcus sp. Significant increase of Clostridium/total cell ratio (68%) was observed when the reactor was operated under higher influent flow rate. The existence of Streptococcus sp. in the reactor became more important when operated under a short HRT as indicated by the ratio of Streptococcus probe-positive cells to Clostridium probe-positive cells changing from 21% (HRT 4 h) to 38% (HRT 0.5 h). FISH images suggested that Streptococcus cells probably acted as seeds for self-flocculated granule formation. Furthermore, combining the inspections with hydrogen production under different HRTs and their corresponding FISH analysis indicated that K. oxytoca did not directly contribute to H(2) production but possibly played a role in consuming O(2) to create an anaerobic environment for the hydrogen-producing Clostridium.

  9. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes.

    Science.gov (United States)

    Belostotskiy, Dmitry E; Ziganshina, Elvira E; Siniagina, Maria; Boulygina, Eugenia A; Miluykov, Vasili A; Ziganshin, Ayrat M

    2015-10-01

    This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.

  10. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    Science.gov (United States)

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required.

  11. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    Science.gov (United States)

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    2016-01-01

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  12. The Effect of Feedstocks on Microbial Communities in Anaerobic Digesters%原料差异对厌氧消化微生物群落的影响

    Institute of Scientific and Technical Information of China (English)

    史宏伟; 邹德勋; 左剑恶; 朱保宁; 刘研萍; 李秀金

    2011-01-01

    Food waste, vegetable residue, and wheat stalk were anaerobically digested for biogas production, and the digestate were analyzed by PCR-DGGE to identify anaerobic micro-organism strains and compare the differences in microorganism communities among three feedstocks. Three hydraulic retention times( HRT) of 30 d, 20 d and 50 d for all digesters were used at the same temperature of 35±1 ℃. The digestion parameters and microbial communities were analyzed in the experiments under optimal conditions. The daily biogas yields were 756 mL· g-1VS-1, 696 mL·g-1VS-1 and 433 mL·g-1VS-1 for kitchen waste, vegetable residue, and wheat straw, respectively. The methane contents in the biogas ranged between 51.5%~55.1%. The microbial communities and the variations of bacteria and archaea in three digesters were investigated by PCR-DGGE techniques. The Shannon-Wiener index of bacteria and archaea were 3.14±0.17 and 2.11 ±0.45, respectively. The Simpson index of bacteria and archaea were 0.94±0.02 and 0.83 ±0.09, respectively. Although the bacteria species of Bacteroidetes and the archaea species of Melhanosaeta and Methanospirillum were found to be dominant in the digesters, the quantity and community strains were different for three feedstocks investigated. The findings could provide useful information for the future studies.%以餐厨垃圾、果蔬垃圾、麦秸3种不同原料分别进行厌氧消化,研究了各反应器在最佳运行条件下的消化特性和微生物群落组成.结果表明:VS产气率南高到低依次为餐厨垃圾(756.4 mL·g-1VS-1)、麦秸( 696.5 mL·g-1VS-1)和果蔬垃圾(433.5 mL·g-1VS-1),甲烷含量在51.5%-55.1%之间,利用PCR-DGGE技术系统地分析了不同原料消化系统内细菌和古菌的群落结构构成及差异.结果表明,虽然3组样品中细菌和古菌的群落存在相同的优势微生物,但其数量和群落结构差异也较为明显,细菌中以拟杆菌(Bac te ro idetes)以及古菌中甲烷鬃菌

  13. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs

    OpenAIRE

    Kumaresan, Deepak; Héry, Marina; Bodrossy, Levente; Singer, Andrew C.; Stralis-Pavese, Nancy; Thompson, Ian P.; Murrell, J. Colin

    2011-01-01

    Landfills represent a major source of methane into the atmosphere. In a previous study, we demonstrated that earthworm activity in landfill cover soil can increase soil methane oxidation capacity (Héry et al., 2008). In this study, a simulated landfill cover soil mesocosm (1 m x 0.15 m) was used to observe the influence of earthworms (Eisenia veneta) on the active methanotroph community composition, by analyzing the expression of the pmoA gene, which is responsible for methane oxidation. mRN...

  14. Microbial community characteristics of semi-dry anaerobic digestion with organic waste%有机生活垃圾半干发酵菌群的分布变化特征

    Institute of Scientific and Technical Information of China (English)

    于美玲; 张大雷; 李玉婷; 董晓莹; 王晓明; 寇巍

    2015-01-01

    The organic waste mainly refers to the solid waste that is generated by residents’ daily life. If the organic waste is converted into energy through anaerobic digestion, it will reduce the adverse impact on the environment and contribute to reduction in consumption of fossil fuel. Analysis of the space and time differences of various kinds of microbial community in fermentation process, plays a very important role for controlling the fermentation process effectively, understanding the fermentation stage, optimization of fermentation conditions and improving the efficiency of biogas production. This paper investigated the temporal and spatial distribution of microbial community during the semi-dry fermentation of organic waste, and studied the relationship of acid production, methane production and ammonia production using most probable number (MPN). The experiment used anaerobic fermentation under one-time charging medium temperature (37℃), and designed six sampling positions. The inoculum was biogas slurry fermented with pig manure, and the concentration was 30%, pH value was adjusted to 7.0 before anaerobic fermentation. The results showed that, in the early stage of organic waste anaerobic fermentation, large amounts of air existed in the reactor, and there was less number of anaerobic bacteria. With the formation of the anaerobic environment and rich nutrients, the number of anaerobic bacteria began to rise. The anaerobic acidification bacteria and anaerobic ammonification bacteria proliferated earliest, and the acidification bacteria was prior to reach maximum than ammonification bacteria and occupied the dominant position. The methane bacteria didn’t proliferate at the start-up phase, they enter the fast growth stage after 15 days, and the peak value was 3.24×109 mL-1 on the 25th day. In the gas peak decline period, the number of anaerobic ammonification bacteria and anaerobic acidification bacteria began to decline, however, the methane bacteria

  15. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  16. Isotopic partitioning of net ecosystem CO2 exchange reveals the importance of methane oxidation in a boreal peatland

    Science.gov (United States)

    Hasselquist, Niles; Peichl, Matthias; Öquist, Mats; Crill, Patrick; Nilsson, Mats

    2016-04-01

    the 13CO2 signature derives from a combination of SOM and pore water CH4 and applying a two-source mixing model, we found that roughly one-third of Rh was the result of methane oxidation whereas the remaining two-thirds came from the mineralization of SOM. Given that Rh represented ca. 50% of total Reco during the measurement period, we provide some of the first in situ measurements that highlight the important role methanotrophic bacteria may play in CO2 fluxes in a northern boreal peatland.

  17. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  18. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-10-15

    The temperature effect (37-65 C) on H{sub 2} production from glucose in an open-mixed culture bioreactor using an enrichment culture from a hot spring was studied. The dynamics of microbial communities was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At 45 and 60 C the H{sub 2} production was the highest i.e. 1.71 and 0.85 mol H{sub 2}/mol glucose, respectively. No H{sub 2} was produced at temperatures 50 and 55 C. At 37-45 C, H{sub 2} production was produced by butyrate type fermentation while fermentation mechanism changed to ethanol type at 60 C. Clostridium species were dominant at 37-45 C while at 50-55 C and 60 C the culture was dominated by Bacillus coagulans and Thermoanaerobacterium, respectively. In the presence of B. Coagulans the metabolism was directed to lactate production. The results show that the mixed culture had two optima for H{sub 2} production and that the microbial communities and metabolic patterns promptly changed according to changing temperatures. (author)

  19. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Kim, Mi-Sun; Kim, Jong-Oh; Kim, Young Mo; Park, Jong Moon

    2016-08-01

    In recent years, anaerobic co-digestion (AcoD) has been widely used to improve reactor performance, especially methane production. In this study, we applied two different operating temperatures (thermophilic and mesophilic) and gradually increased the load of food wastewater (FWW) to investigate the bacterial communities during the AcoD of waste activated sludge (WAS) and FWW. As the load of FWW was increased, methane production rate (MPR; L CH4/L d) and methane content (%) in both Thermophilic AcoD (TAcoD) and Mesophilic AcoD (MAcoD) increased significantly; the highest MPR and methane content in TAcoD (1.423 L CH4/L d and 68.24%) and MAcoD (1.233 L CH4/L d and 65.21%) were observed when the FWW mixing ratio was 75%. However, MPR and methane yield in both reactors decreased markedly and methane production in TAcoD ceased completely when only FWW was fed into the reactor, resulting from acidification of the reactor caused by accumulation of organic acids. Pyrosequencing analysis revealed a decrease in bacterial diversity in TAcoD and a markedly different composition of bacterial communities between TAcoD and MAcoD with an increase in FWW load. For example, Bacterial members belonging to two genera Petrotoga (assigned to phylum Thermotogae) and Petrimonas (assigned to phylum Bacteroidetes) became dominant in TAcoD and MAcoD with an increase in FWW load, respectively. In addition, quantitative real-time PCR (qPCR) results showed higher bacterial and archaeal populations (expressed as 16S rRNA gene concentration) in TAcoD than MAcoD with an increase in FWW load and showed maximum population when the FWW mixing ratio was 75% in both reactors. Collectively, this study demonstrated the dynamics of key bacterial communities in TAcoD and MAcoD, which were highly affected by the load of FWW. PMID:27155112

  20. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors import...

  1. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  2. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    Science.gov (United States)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  3. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge.

    Science.gov (United States)

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40-55) to 21.3 ± 1.5% in the last period (day 71-110) when ammonium concentration was elevated to be within 5,000-6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial 'ammonium inhibition'. PMID:27312792

  4. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    Science.gov (United States)

    Zhang, Junya; Lv, Chen; Tong, Juan; Liu, Jianwei; Liu, Jibao; Yu, Dawei; Wang, Yawei; Chen, Meixue; Wei, Yuansong

    2016-01-01

    The effects of microwave pretreatment (MW) on co-digestion of food waste (FW) and sewage sludge (SS) have never been investigated. In this study, a series of mesophilic biochemical methane potential (BMP) tests were conducted to determine the optimized ratio of FW and SS based on MW, and the evolution of bacterial and archaeal community was investigated through high-throughput sequencing method. Results showed that the optimized ratio was 3:2 for co-digestion of FW and SS based on MW, and the methane production was 316.24 and 338.44mLCH4/gVSadded for MW-FW and MW-SS, respectively. The MW-SS was superior for methane production compared to MW-FW, in which accumulation of propionic acid led to the inhibition of methanogenesis. Proteiniborus and Parabacteroides were responsible for proteins and polysaccharides degradation for all, respectively, while Bacteroides only dominated in co-digestion. Methanosphaera dominated in MW-FW at the active methane production phase, while it was Methanosarcina in MW-SS and mono-SS. PMID:26496214

  5. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Lin, T. J.; Ver Eecke, H. C.; Breves, E. A.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Dahle, H.; Bishop, J. L.; Lane, M. D.; Butterfield, D. A.; Kelley, D. S.; Lilley, M. D.; Baross, J. A.; Holden, J. F.

    2016-02-01

    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.

  6. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.

    Science.gov (United States)

    Wu, Shu-Yii; Hung, Chun-Hsiung; Lin, Chi-Neng; Chen, Hsin-Wei; Lee, An-Sheng; Chang, Jo-Shu

    2006-04-01

    A novel continuously stirred anaerobic bioreactor (CSABR) seeded with silicone-immobilized sludge was developed for high-rate fermentative H2 production using sucrose as the limiting substrate. The CSABR system was operated at a hydraulic retention time (HRT) of 0.5-6 h and an influent sucrose concentration of 10-40 g COD/L. With a high feeding sucrose concentration (i.e., 30-40 g COD/L) and a short HRT (0.5 h), the CSABR reactor produced H2 more efficiently with the highest volumetric rate (VH2) of 15 L/h/L (i.e., 14.7 mol/d/L) and an optimal yield of ca. 3.5 mol H2/mol sucrose. The maximum VH2 value obtained from this work is much higher than any other VH2 values ever documented. Formation of self-flocculated granular sludge occurred during operation at a short HRT. The granule formation is thought to play a pivotal role in the dramatic enhancement of H2 production rate, because it led to more efficient biomass retention. A high biomass concentration of up to 35.4 g VSS/L was achieved even though the reactor was operated at an extremely low HRT (i.e., 0.5 h). In addition to gaining high biomass concentrations, formation of granular sludge also triggered a transition in bacterial community structure, resulting in a nearly twofold increase in the specific H2 production rate. According to denatured-gradient-gel-electrophoresis analysis, operations at a progressively decreasing HRT resulted in a decrease in bacterial population diversity. The culture with the best H2 production performance (at HRT = 0.5 h and sucrose concentration = 30 g COD/L) was eventually dominated by a presumably excellent H2-producing bacterial species identified as Clostridium pasteurianum.

  7. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    Science.gov (United States)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    Lake sediments are globally significant sources of CH4 to the atmosphere, but the factors controlling the production and consumption of CH4 in these systems are understudied. Increasing availability of electron acceptors (EA) (other than CO2) in sediments can decrease or even suppress CH4 production by diverting the electron flow (from H2 and organic substances) from methanogenic to other anaerobic respiration pathways. However, whether these changes in microbial function extend down to changes in the structure of microbial communities is not known. Also anaerobic oxidation of methane (AOM) could be enhanced by increased availability of EAs (SO42‑, NO3‑, Fe3+ and Mn4+), but information on the role of this process in lake sediments is scarce. We studied the effects of inorganic EAs on the potential for CH4 production and consumption and on the structure of microbial communities in sediments of a boreal lake. Anoxic slurries of sediment samples collected from two depths (0 - 10 cm; 10 - 30 cm) of the profundal zone of a boreal, mesotrophic Lake Ätäskö, were amended with 1) CH4 or with CH4 and either 2) 10 mM Mn4+, 3) 10 mM Fe3+, 4) O2 or 5) CH2F2 (inhibitor of aerobic methane oxidation) and incubated at +10° C for up to 4 months. Furthermore, slurries from the 10 - 30 cm layer were amended with CH4 and either 6) 2 mM NO3‑ or 7) 2 mM SO42‑ and incubated at +4 ° C for up to 14 months. The processes were measured using 13C-labelling and by concentration measurements of CH4 and CO2. Effects of treatments 1-3 on microbial communities were also analysed by next-generation sequencing of 16S rRNA, as well as methyl coenzyme-M reductase gene amplicons and mRNA transcripts. CH4 production (max. 83 nmol gdw‑1d‑1) took place in the anaerobic treatments but was generally decreased by the addition of NO3‑, SO42‑, Fe3+ and Mn4+. Although the structure of sediment archaeal community was resistant to Fe3+/Mn4+ - additions, slight changes in the structure of

  8. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  9. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  10. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  11. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  12. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  13. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments.

    Science.gov (United States)

    Glass, Jennifer B; Yu, Hang; Steele, Joshua A; Dawson, Katherine S; Sun, Shulei; Chourey, Karuna; Pan, Chongle; Hettich, Robert L; Orphan, Victoria J

    2014-06-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphide-rich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold (≤ 10°C) and sulphidic (> 1 mM ΣH(2)S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  14. Comparative studies of pelagic microbial methane oxidation within two anoxic basins of the central Baltic Sea (Gotland Deep and Landsort Deep

    Directory of Open Access Journals (Sweden)

    G. Jakobs

    2013-07-01

    Full Text Available Pelagic methane oxidation was investigated in dependence on differing environmental conditions within the redox zone of the Gotland Deep (GD and Landsort Deep (LD, central Baltic Sea. The redox zone of both deeps, which indicates the transition between oxic and anoxic conditions, was characterized by a pronounced methane concentration gradient between the deep water (GD: 1233 nM, LD: 2935 nM and the surface water (GD and LD 13C CH4 enrichment (δ13C CH4 deep water: GD −84‰, LD −71‰ ; redox zone: GD −60‰, LD −20‰ ; δ13C CH4 vs. Vienna Pee Dee Belemnite standard, clearly indicating microbial methane consumption in that specific depth interval. Expression analysis of the methane monooxygenase identified one active type I methanotrophic bacterium in both redox zones. In contrast, the turnover of methane within the redox zones showed strong differences between the two basins (GD: max. 0.12 nM d–1 and LD: max. 0.61 nM d–1, with a four times higher turnover rate constant (k in the LD (GD: 0.0022 d–1, LD: 0.0079 d–1. Vertical mixing rates for both deeps were calculated on the base of the methane concentration profile and the consumption of methane in the redox zone (GD: 2.5 × 10–6 m2 s–1 LD: 1.6 × 10–5 m2 s–1. Our study identified vertical transport of methane from the deep water body towards the redox zone as well as differing hydrographic conditions within the oxic/anoxic transition zone of these deeps as major factors that determine the pelagic methane oxidation.

  15. Advances in the research of methane oxidation in forest soils%森林土壤氧化(吸收)甲烷研究进展

    Institute of Scientific and Technical Information of China (English)

    邓湘雯; 杨晶晶; 陈槐; 黄志宏; 项文化; 彭长辉

    2012-01-01

    Methane (CH4) is an important greenhouse gas, which is second only to carbon dioxide and about 25% contribution to global warming. Atmospheric methane can be oxidized by methanotrophic bacteria under aerobic condition. There are numerous reports of atmospheric CH4 oxidation and absorption in forest soils. Methanotrophic bacteria are a group of bacteria physiologically defined by their ability to use methane as sole source of carbon and energy for growth. However, it remains considerable uncertainty about the amounts of CH4 released from forest soils to the atmosphere, which depended on the abundance and relative activity of methanogenus and methanotrophic bacteria in forest ecosystems. Most studies have been focused on the environmental effects on the oxidizability and the biochemical properties of methanotrophic bacteria. The oxidation processes were a kind of high capacity and low affinity oxidation, affected by lots of factors, such as soil temperature, soil aeration, soil pH and nitrogen fertilizer. Generally, soil aeration was influenced by soil texture and soil moisture. And soil bulk density, soil structure and moisture were also influenced by land use types, and thereby affecting soil methane oxidation. Soil methane oxidation capacity also could be influenced by plants through changes in habitat or allelopathy. Few studies on soil animals, only termites in the emissions inventory is included in the global methane accounting. Starting from the classification of the methane-oxidizing bacteria, the methanotrophs on methane oxidation mechanism, the ecological distribution of the bacteria and methane oxidation factors, spatial and temporal heterogeneity, observation methods are reviewed. So, this review could provide a theoretical basis to correctly understand and accurately predict forest soil methane oxidation under the conditions of a certain type of climate and land use intensity.%甲烷是一种重要的温室气体,对全球气

  16. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DEFF Research Database (Denmark)

    Zargar, K.; Saville, R.; Phelan, R. M.;

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaero...

  17. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    Science.gov (United States)

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  18. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  19. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  20. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    Science.gov (United States)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  1. Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing.

    Science.gov (United States)

    Rasool, Kashif; Shahzad, Asif; Lee, Dae Sung

    2016-11-15

    Anaerobic decolorization and biotransformation of azo dye was investigated in a sulfate-reducing environment. Batch reactor studies were performed with mixed cultures of anaerobic sulfate-reducing bacteria (SRBs) enriched from anaerobic digester sludge. Complete sulfate and color removal were achieved in batch experiments with different initial dye concentrations (50-2500mg/L) and 1000mg/L of sulfate. Induction of various oxidoreductive enzyme activities such as phenol oxidase, veratryl alcohol oxidase, lignin peroxidase, and azo reductase was studied to understand their involvement in dye metabolism under anoxic environment. The degradation of Cotton Red B was confirmed using high-performance liquid chromatography and gas chromatography-mass spectroscopy. Sulfidogenic sludge demonstrated excellent dye degradation and mineralization ability, producing aniline and 1,4-diamino benzene as metabolites. A barcoded 16S rRNA gene-pyrosequencing approach was used to assess the bacterial diversity in the sludge culture and a phylogenetic tree was constructed for sulfate-reducing bacteria. PMID:27475462

  2. Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments

    Science.gov (United States)

    Talbot, Helen M.; Handley, Luke; Spencer-Jones, Charlotte L.; Dinga, Bienvenu Jean; Schefuß, Enno; Mann, Paul J.; Poulsen, John R.; Spencer, Robert G. M.; Wabakanghanzi, Jose N.; Wagner, Thomas

    2014-05-01

    Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30‰ to -40‰ for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential

  3. A bioreactor approach to investigate the linkage between methane oxidation and nitrate/nitrite reduction in the pelagic oxic-anoxic transition zone of the central Baltic Sea

    Directory of Open Access Journals (Sweden)

    Gunnar Jakobs

    2016-08-01

    Full Text Available Evidence of aerobic methane oxidation coupled to denitrification has been provided for different freshwater environments, whereas the significance of this process for the marine realm has not been adequately investigated. The goal of this study was to investigate the methane-related reduction of nitrate/nitrite in a marine environment (salinity 8.5. A water sample was collected from the oxic-anoxic transition zone of the Gotland Deep (central Baltic Sea and the microorganisms contained therein were cultivated in a bioreactor under hypoxic conditions (0.5 µM O2. To enrich the microorganisms involved in the coupled process the bioreactor was continuously sparged with methane as the sole energy and carbon source and simultaneously supplied with a nutrient solution rich in nitrate and nitrite. The bioreactor experiment showed a relationship between the turnover of methane and the concomitant concentration decrease of nitrite and nitrate at the early stage of the experiment. This relationship indicates the role of methanotrophs, which may support heterotrophic denitrifiers by the release of organic compounds as an energy source. Besides, a mixture of uncultured microorganisms, aerobic methanotrophic and heterotrophic denitrifying bacteria were identified in the enrichment culture. Microbial incorporation of nitrite and methane was proven on the cellular and gene levels via 15NO2- / 13CH4 incubation experiments and subsequent analyses with nano secondary ion mass spectrometry (NanoSIMS and stable isotope probing (SIP. The NanoSIMS showed the incorporation of 15N in almost all the bacteria and in 9% of those there was a concomitant enrichment in 13C. The relatively low abundance of methane-consuming bacteria in the bioreactor was further reflected in specific fatty acids indicative for type I methanotrophic bacteria. Based on pmoA gene analyses, this bacterium is different from the one that was identified as the only key player of methane oxidation in

  4. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  5. Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria.

    Directory of Open Access Journals (Sweden)

    Sven Hoefman

    Full Text Available Knowledge on long-term preservation of micro-organisms is limited and research in the field is scarce despite its importance for microbial biodiversity and biotechnological innovation. Preservation of fastidious organisms such as methane-oxidizing bacteria (MOB has proven difficult. Most MOB do not survive lyophilization and only some can be cryopreserved successfully for short periods. A large-scale study was designed for a diverse set of MOB applying fifteen cryopreservation or lyophilization conditions. After three, six and twelve months of preservation, the viability (via live-dead flow cytometry and culturability (via most-probable number analysis and plating of the cells were assessed. All strains could be cryopreserved without a significant loss in culturability using 1% trehalose in 10-fold diluted TSB (TT as preservation medium and 5% DMSO as cryoprotectant. Several other cryopreservation and lyophilization conditions, all of which involved the use of TT medium, also allowed successful preservation but showed a considerable loss in culturability. We demonstrate here that most of these non-culturables survived preservation according to viability assessment indicating that preservation induces a viable but non-culturable (VBNC state in a significant fraction of cells. Since this state is reversible, these findings have major implications shifting the emphasis from survival to revival of cells in a preservation protocol. We showed that MOB cells could be significantly resuscitated from the VBNC state using the TT preservation medium.

  6. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    OpenAIRE

    Kanlayanee Meesap; Nimaradee Boonapatcharoen; Somkiet Techkarnjanaruk; Pawinee Chaiprasert

    2012-01-01

    The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS) and oil and grease (O&G) concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD), SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane poten...

  7. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  8. Methane oxidation kinetics of bio-cover sewage sludge modified by coal ash for landfill%垃圾填埋场覆盖材料改性污泥的甲烷氧化动力学

    Institute of Scientific and Technical Information of China (English)

    王丹; 赵玲; 尹平河; 肖娟宜; 黄思明

    2012-01-01

    在实验室模拟条件下,以粉煤灰改性污泥为垃圾填埋场生物覆盖材料,分析了初始甲烷浓度、初始氧气浓度对甲烷氧化效率的影响,并测定了甲烷氧化动力学方程及动力学参数,旨在为材料实际工程应用提供理论依据.结果表明:初始CH4、O2浓度制约生物覆盖材料的甲烷氧化效率,初始CH4、O2浓度越高,材料甲烷氧化能力越强;甲烷氧化过程符合2级动力学方程-dV(CH4)/dt=kV(CH4)V(O2);利用Michaelis-Menten模型得出覆盖层材料的最大氧化速率Vmax为2.54 μmol g-1h-1,半速常数Km为0.49 μmol.%In this study, laboratory-scale experiments were carried out to examine the effects of initial methane and oxygen contents on methane oxidation efficiency in landfill bio-cover sewage sludge, and the kinetic equation and corresponding parameters were also determined, aiming to provide scientific basis for the practical engineering application. The results showed that the methane and oxygen contents strongly affected the methane oxidation efficiency. The higher methane and oxygen contents resulted in stronger methane oxidation efficiency. The kinetics of methane oxidation was - dV( CH4)/di = kV{ CH4 ) V( 02) , which fit the second-order reaction. As calculated from Michaelis-Menten equation, the largest methane oxidation rate ( Kmax ) was 2. 54 μmol g ‐ 1h‐ 1, and the half saturation constant ( Km ) was found at 0. 49 μmol.

  9. A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae

    OpenAIRE

    Beck, David A. C.; Marina G. Kalyuzhnaya; Stephanie Malfatti; Susannah G. Tringe; Tijana Glavina del Rio; Natalia Ivanova; Mary E. Lidstrom; Ludmila Chistoserdova

    2013-01-01

    We investigated microbial communities active in methane oxidation in lake sediment at different oxygen tensions and their response to the addition of nitrate, via stable isotope probing combined with deep metagenomic sequencing. Communities from a total of four manipulated microcosms were analyzed, supplied with 13C-methane in, respectively, ambient air, ambient air with the addition of nitrate, nitrogen atmosphere and nitrogen atmosphere with the addition of nitrate, and these were compared ...

  10. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  11. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  12. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  13. Reator compartimentado anaeróbio/aeróbio: sistema de baixo custo para tratamento de esgotos de pequenas comunidades Anaerobic/aerobic baffled reactor: low cost system for sewage treatment in small communities

    Directory of Open Access Journals (Sweden)

    Gustavo H. R. da Silva

    2005-06-01

    /aerobic reactor to treat sanitary sewage in small urban and rural communities. The system performance was evaluated at several hydraulic detention times (HDT. The best values of chemical oxygen demand (CODtotal - 73.7% and total suspended solids (TSS removal - 78.8% were obtained for HDTtotal of 8 h (4 h for the anaerobic phase and 4 h for the aerobic phase. The baffled reactor presented good operational stability, a necessary feature of low cost systems.

  14. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    Science.gov (United States)

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.

  15. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    Science.gov (United States)

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  16. Molecular tools for investigating ANME community structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Hallam, Steven J.; Page, Antoine P.; Constan, Lea; Song, Young C.; Norbeck, Angela D.; Brewer, Heather M.; Pasa-Tolic, Ljiljana

    2011-05-20

    Methane production and consumption in anaerobic marine sediments 1 is catalyzed by a series of reversible tetramethanopterin (H4MPT)-linked C1 transfer reactions. Although many of these reactions are conserved between one-carbon compound utilizing microorganisms, two remain diagnostic for archaeal methane metabolism. These include reactions catalyzed by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase and methyl coenzyme M reductase. The latter enzyme is central to C-H bond formation and cleavage underlying methanogenic and reverse methanogenic phenotypes. Here we describe a set of novel tools for the detection and functional analysis of H4MPT-linked C1 transfer reactions mediated by uncultivated anaerobic methane oxidizing archaea (ANME). These tools include polymerase chain reaction primers targeting ANME methyl coenzyme M reductase subunit A subgroups and protein extraction methods from marine sediments compatible with high-resolution mass spectrometry for profiling population structure and functional dynamics. [910, 1,043

  17. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  18. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  19. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  20. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    International Nuclear Information System (INIS)

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation

  1. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    Science.gov (United States)

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR.

  2. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    Science.gov (United States)

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation. PMID:27235975

  3. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    Science.gov (United States)

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations. PMID:27132226

  4. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fangbai [Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650 (China); Jiang, Longfei [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Yan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-01-01

    Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs). - Highlights: • The biodegradation PCBs and PBDEs in e-waste contaminated soils was studied. • DIRB and arylhalorespiring bacteria were responsive to dehalogenation respiration. • Soil bacteria and Fe ion cycling play synergistic roles in dehalogenation.

  5. Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure.

    Science.gov (United States)

    Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun

    2014-03-01

    The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens. PMID:24463413

  6. pmoA-based analysis of methanotrophs in a littoral lake sediment reveals a diverse and stable community in a dynamic environment

    OpenAIRE

    Pester, Michael; Friedrich, Michael W.; Schink, Bernhard; Brune, Andreas

    2004-01-01

    Diversity and community structure of aerobic methane-oxidizing bacteria in the littoral sediment of Lake Constance was investigated by cloning analysis and terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the pmoA gene. Phylogenetic analysis revealed a high diversity of type I and type II methanotrophs in the oxygenated uppermost centimeter of the sediment. T-RFLP profiles indicated a high similarity between the active methanotrophic community in the oxic layer and...

  7. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  8. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    Science.gov (United States)

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  9. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    Directory of Open Access Journals (Sweden)

    Kanlayanee Meesap

    2012-01-01

    Full Text Available The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS and oil and grease (O&G concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD, SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae.

  10. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  11. [Decline of Activity and Shifts in the Methanotrophic Community Structure of an Ombrotrophic Peat Bog after Wildfire].

    Science.gov (United States)

    Danilova, O V; Belova, S E; Kulichevskaya, I S; Dedysh, S N

    2015-01-01

    This study examined potential disturbances of methanotrophic communities playing a key role in reducing methane emissions from the peat bog Tasin Borskoye, Vladimir oblast, Russia as a result of the 2007 wildfire. The potential activity of the methane-oxidizing filter in the burned peatland site and the abundance of indigenous methanotrophic bacteria were significantly reduced in comparison to the undisturbed site. Molecular analysis of methanotrophic community structure by means of PCR amplification and cloning of the pmoAgene encoding particulate methane monooxygenase revealed the replacement of typical peat-inhabiting, acidophilic type II methanotrophic bacteria with type I methanotrophs, which are less active in acidic environments. In summary, both the structure and the activity of the methane-oxidizing filter in burned peatland sites underwent significant changes, which were clearly pronounced even after 7 years of the natural ecosystem recovery. These results point to the long-term character of the disturbances caused by wildfire in peatlands. PMID:27169243

  12. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, Mary E. [Univ. of Washington, Seattle, WA (United States); Chistoserdova, Ludmila [Univ. of Washington, Seattle, WA (United States); Kalyuzhnaya, Marina G. [Univ. of Washington, Seattle, WA (United States); Orphan, Victoria J. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Beck, David A. [Univ. of Washington, Seattle, WA (United States)

    2014-08-07

    The research conducted as part of this project contributes significantly to the understanding of the microbes and their activities involved in methane metabolism in freshwater lake sediments and in the environment in a more global sense. Significant new insights have been gained into the identity of the species that are most active in methane oxidation. New concepts have been developed based on the new data on how these organisms metabolize methane, impacting not only environmental microbiology but also biotechnology, including biotechnology of next generation biofuels. Novel approaches have been developed for studying functional microbial communities, via holistic approaches, such as metagenomics, metatrancriptomics and metabolite analysis. As a result, a novel outlook has been obtained at how such communities operate in nature. Understanding methane-oxidizing communities in lakes and other environments is of significant benefit to the public, in terms of methane emission mitigation and in terms of potential biotechnological applications.

  13. Effect of long-term drainage of peatland on whole-profile microbial community structure

    Science.gov (United States)

    Mpamah, Promise; Taipale, Sami; Rissanen, Antti; Biasi, Christina; Nykänen, Hannu

    2015-04-01

    Peatlands are crucial global carbon stores largely due to prevailing hydrological regime leading to higher rate of carbon input than loss. Like other changes in environmental conditions, alteration in peatland water table, which causes increased aeration in the upper layer, does not only cause a shift in this exchange rates, but leads to changes in plant species cover, litter quality as well as the niches of microbes, by affecting their functions and activities. Effects of changes in peatland hydrology are therefore complex, and play a key role in peat carbon cycles. Changed peat hydrology may especially affect the inter-play between methanogens and methanotrophs which are important members of the microbial community taking part in anaerobic/aerobic peatland carbon cycles. We provide more information on the effect of long-term (more than 33 years) changes in hydrology on the whole-peat-profile microbes, from top to bottom. We studied drained and adjacent non-drained peatlands in Lakkasuo mire complex and Lammi area of Finland, which differed in vegetation cover and management history. We focused majorly on the phospholipid fatty acids (PLFA) analysis as an indicator of the overall microbial community structure, but also used DNA analysis to mainly compare the methane oxidizing bacteria (MOB) of the different peatland types with different vegetation. Our PLFA results showed that peat mire complexes are more similar in their microbial community, within location and profiles than between locations irrespective of hydrological changes and types or vegetation covers. PLFA and DNA analysis also showed that MOB species belonging to type II were more dominant than those of type I in both locations studied. Our study also showed that long-term draining of peatlands does not change the biomass of soil microbial communities, but alters their structural or relative composition. The effect of long-term peatland drainage is mostly located at the surface. Depth gradient effects

  14. Simulation model for oxygen consumption flux and prediction of methane oxidation in landfill cover soil%覆盖层氧气消耗通量模型及甲烷氧化能力预测

    Institute of Scientific and Technical Information of China (English)

    邢志林; 赵天涛; 陈新安; 车轮; 张丽杰; 全学军

    2015-01-01

    填埋场覆盖层生物气扩散规律和甲烷氧化能力的评估是甲烷减排研究的重要组成部分。以数值模拟方法分析了氧气在覆盖层中的扩散规律,得到了指数方程形式的氧气扩散模型(R2范围0.8941~0.9975);通过检测有机碳和甲烷浓度变化进一步考察了模拟覆盖层不同深度的甲烷氧化能力,证实了在0.05~0.25 m范围内甲烷氧化活性最高;以Fick定律和轴向扩散模型推导了模拟覆盖层中氧气消耗通量模型,该模型计算得到的氧气消耗通量与覆盖层中微生物甲烷氧化经验方程相比无显著差异;结合以上模型推演出覆盖层甲烷消耗通量模型,与实际检测值相比,预测结果理想(R2=0.9983)。该成果可为揭示填埋场覆盖层生物气扩散规律、强化甲烷氧化能力以及预测甲烷排放提供新的思路和理论依据。%Diffusion process of biogas and evaluation of methane oxidation in landfill cover soil are important parts of research on methane emission. Diffusion process of oxygen in landfill cover soil was analyzed by simulation, and an oxygen diffusion model fitted by exponential equation (0.8941methane oxidation in different landfill cover depths was also investigated by analyzing organic carbon and monitoring methane concentration. The most intensive methane oxidation occurred at the layer of 0.05—0.25 m. An oxygen consumption flux model in landfill cover was derived on the basis of Fick’s law and axial dispersion model. There was no significant difference between fitted values by oxygen consumption flux model and derived values by empirical equation of biological methane oxidation. Based on the above model, a methane consumption flux model was derived finally, and the prediction was consistent with detection. These results provided new ideas and theoretical basis for revealing biogas diffusion process in landfill cover soil

  15. A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae

    Directory of Open Access Journals (Sweden)

    David A.C. Beck

    2013-02-01

    Full Text Available We investigated microbial communities active in methane oxidation in lake sediment at different oxygen tensions and their response to the addition of nitrate, via stable isotope probing combined with deep metagenomic sequencing. Communities from a total of four manipulated microcosms were analyzed, supplied with 13C-methane in, respectively, ambient air, ambient air with the addition of nitrate, nitrogen atmosphere and nitrogen atmosphere with the addition of nitrate, and these were compared to the community from an unamended sediment sample. We found that the major group involved in methane oxidation in both aerobic and microaerobic conditions were members of the family Methylococcaceae, dominated by species of the genus Methylobacter, and these were stimulated by nitrate in aerobic but not microaerobic conditions. In aerobic conditions, we also noted a pronounced response to both methane and nitrate by members of the family Methylophilaceae that are non-methane-oxidizing methylotrophs, and predominantly by the members of the genus Methylotenera. The relevant abundances of the Methylococcaceae and the Methylophilaceae and their coordinated response to methane and nitrate suggest that these species may be engaged in cooperative behavior, the nature of which remains unknown.

  16. Anaerobic degradation of 1,1,2,2-tetrachloroethane and association with microbial communities in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland : laboratory experiments and comparisons to field data

    Science.gov (United States)

    Lorah, Michelle M.; Voytek, Mary A.; Kirshtein, Julie D.; Jones, Elizabeth J.

    2003-01-01

    Defining biodegradation rates and processes is a critical part of assessing the feasibility of monitored natural attenuation as a remediation method for ground water containing organic contaminants. During 1998?2001, the U.S. Geological Survey conducted a microbial study at a freshwater tidal wetland along the West Branch Canal Creek, Aberdeen Proving Ground, Maryland, as part of an investigation of natural attenuation of chlorinated volatile organic compounds (VOCs) in the wetland sediments. Geochemical analyses and molecular biology techniques were used to investigate factors controlling anaerobic degradation of 1,1,2,2-tetrachloroethane (TeCA), and to characterize the microbial communities that potentially are important in its degradation. Rapid TeCA and daughter product degradation observed in laboratory experiments and estimated with field data confirm that natural attenuation is a feasible remediation method at this site. The diverse microbial community that seems to be involved in TeCA degradation in the wetland sediments varies with changing spatial and seasonal conditions, allowing continued effective natural attenuation throughout the year. Rates of TeCA degradation in anaerobic microcosm experiments conducted with wetland sediment collected from two different sites (WB23 and WB30) and during three different seasons (March?April 1999, July?August 1999, and October?November 2000) showed little spatial variability but high seasonal variability. Initial first-order degradation rate constants for TeCA ranged from 0.10?0.01 to 0.16?0.05 per day (half-lives of 4.3 to 6.9 days) for March?April 1999 and October?November 2000 microcosms incubated at 19 degrees Celsius, whereas lower rate constants of 0 ? 0.03 and 0.06 ? 0.03 per day were obtained in July?August 1999 microcosms incubated at 19 degrees Celsius. Microbial community profiles showed that low microbial biomass and microbial diversity in the summer, possibly due to competition for nutrients by the

  17. Anaerobic microbial LCFA degradation in bioreactors

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Alves, J.I.; Smidt, Hauke; Stams, A.J.M.; Alves, M. M.

    2008-01-01

    This paper reviews recent results obtained on long-chain fatty acids (LCFA) anaerobic degradation. Two LCFA were used as model substrates: oleate, a mono-unsaturated LCFA, and palmitate, a saturated LCFA, both abundant in LCFA-rich wastewaters. 16S rRNA gene analysis of sludge samples submitted to continuous oleate- and palmitate-feeding followed by batch degradation of the accumulated LCFA demonstrated that bacterial communities were dominated by members of the Clostridiaceae and Sy...

  18. Analysis of Methanogenic Community of Anaerobic Granular Sludge Based on mcrA Gene%基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析

    Institute of Scientific and Technical Information of China (English)

    刘春; 李亮; 马俊科; 吴根; 杨景亮

    2011-01-01

    The methanogenic community in anaerobic granular sludge from a full-scale UASB treating avernectin wastewater was analyzed based on mcrA gene, compared to 16S rRNA gene. The results indicated that the diversity indices of methanogenic community, including Shannon diversity index, Margalef richness index and Berger-Parker dominance index, were no difference between mcrA gene-based and 16S rRNA gene-based PCR products analysis by DGGE, although their DGGE band patterns were different, implying that the diversity analysis of methanogenic community based on mcrA genes was consistent with 16S rRNA gene. The phylogenetic analysis of dominant methanogenic populations based on these two target genes also showed resemble and Methanobacteriales and Methanosarcinales were determined to be the main orders of methanogenic populations in anaerobic granular sludge. On the other hand, the difference in phylogenetic analysis suggested simultaneously some group-specific of the two target genes. The hybridization of methanogenic community in FISH analysis based on two target genes was almost identical except a little different hybridization areas. The average relative abundance of methanogenic community was 24.25% ± 6.47% detected by FISH based on mcrA gene, lower than that based on 16S rRNA gene (33.42% ±2.34% ). Then it could be concluded that the analysis of methanogenic community based on mcrA gene and 16S rRNA gene exhibited high resemblance and mcrA gene could used to be target gene for methanogenic community, as an alternative of 16S rRNA gene.%基于mcrA基因对阿维菌素废水处理工业化UASB厌氧颗粒污泥中产甲烷菌群进行分析,并与基于16S rRNA基因的产甲烷菌群分析结果进行比较.结果表明,基于2种目标基因PCR产物的DGGE图谱存在差异,但根据图谱计算所得产甲烷菌群Shannon多样性指数、Margalef丰富度指数和Berger-Parker优势度指数没有差异,表明基于2种目标基因的产甲烷菌群多

  19. Bacterial community distribution of anaerobic ammonium oxidation biofilter at low temperature%低温厌氧氨氧化生物滤池细菌群落沿层分布规律

    Institute of Scientific and Technical Information of China (English)

    曾涛涛; 李冬; 刘涛; 邱文新; 蔡言安; 许达; 张杰

    2013-01-01

    通过扫描电镜(SEM)、变性梯度凝胶电泳技术(DGGE)和克隆测序等方法,对低温(14.9~16.2℃)稳定运行的上流式厌氧氨氧化(ANAMMOX)生物滤池内上(140~190 cm)、中(60~140 m)、下(10~60 cm)3部分细菌群落分布进行研究.研究结果表明:大部分氨氮、亚氮在反应器中部呈比例地去除,总氮去除负荷达2.4 kg/(m3.d);类似ANAMMOX菌的球形细菌主要分布在反应器中部;生物滤柱上部细菌多样性最高,中部其次,下层细菌多样性最低,细菌群落结构沿层变化是适应生物滤柱沿层氮素变化的结果;生物滤柱不同滤层分布着同一种厌氧氨氧化菌(ANAMMOX)与好氧氨氧化菌(AOB),克隆测序鉴定ANAMMOX菌为Candidatus Kuenenia stuttgartiensis,AOB为Nitrosomonas sp.ENI-11:AOB的存在能够消耗进水中的微量溶解氧,为反应器创造厌氧环境,有利于生物滤柱中部富集较多的ANAMMOX菌.%Techniques of scanning electron microscopy (SEM), denaturing gradient gel electrophoresis (DGGE), cloning and sequencing were utilized together to study bacterial community distribution of upper (140-190 cm), middle (60-140 cm) and lower (10-60 cm) parts of an up-flow anaerobic ammonium oxidation (ANAMMOX) biofilter, which was run stably at low temperature (14.9-16.2 ℃). The results show that a large proportion of ammonia and nitrite proportional disappears in the middle part of biofilter and a high total nitrogen removal rate of 2.4 kg/(m3·d) is obtained. The spherical bacteria, which is similar to ANAMMOX bacteria, predominates in the middle part of biofilter. There is the highest bacterial diversity in the upper part of biofilter, followed by middle part and minimum bacterial diversity in lower part. Bacterial community structures varied in different parts of biofilter due to nitrogen distinction along biofilter layer. There is only one type of ANAMMOX bacterium and AOB presented in different parts of biofilter, which are identified as

  20. Methane oxidation with in situ enhanced facultative bacteria from aged-refuse%矿化垃圾中兼性营养菌原位强化甲烷氧化

    Institute of Scientific and Technical Information of China (English)

    赵天涛; 张云茹; 张丽杰; 全学军; 彭绪亚

    2012-01-01

    引言好氧甲烷氧化菌在新陈代谢上具有独一无二的特性:它们能够利用甲烷和其他一碳化合物作为唯一碳源和能源.这类微生物最典型的特点是利用甲烷单加氧酶( MMO,methane monooxygenase)催化甲烷氧化为甲醇[1].长时间来,所有的甲烷氧化菌都被认为是专一营养的,即它们无法利用含有碳碳键的化合物生长.%Facultative methanotrophs can utilize methane as well as multi-carbon compounds, including organic acids and carbohydrates. Facultative methanotrophs from aged-refuse were enhanced in situ to overcome the limitations of methane oxidation by existing landfill covers. Methanotrophs from oligotrophic aged-refuse had a better environmental tolerance by analysis of scanning electron microscope (SEM). These bacteria could enrich quickly in the presence of carbon source. However, the methane-oxidation capability could not be improved if only adding carbohydrates or nitrate mineral salts (NMS) medium alone. Compound acclimation of facultative methanotrophs were carried out by NMS medium and glucose/ starch. After a delay period of 7-9 d, methane consumption came into a logarithmic growth period, which indicated that facultative methanotrophs had strong biological activity and high substrate competitive advantage. Metabolic pathways of facultative methanotrophs were modified by adding NMS medium, and methane could be utilized despite the presence of other carbon sources. The activity of facultative methanotrophs was enhanced by low concentration of chloroform. Oxidation rate of methane reached 0. 114 ml·d-1·g-1 as the concentration of chloroform was 50 mg·L-1. The problems about the engineering application of obligate methanotrophs were overcome due to the discovery of the new method, and the results would have important implication for understanding the methane-oxidizing bacteria and the factors controlling methane fluxes in the environment.

  1. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    Science.gov (United States)

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  2. Anaerobic bacteria in otitis media.

    Science.gov (United States)

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  3. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    Science.gov (United States)

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  4. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope (δ13C and δ18O CO2; δ13C and δD CH4) approach

    International Nuclear Information System (INIS)

    Highlights: ► Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. ► The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. ► Isotope tracking of the contribution of the methane oxidation to the CO2 concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach (δ13C and δ18O of CO2; δ13C and δD of CH4) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO2 levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH4 oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation by the methanotrophic bacteria. δ13C of CO2 samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  5. Impact of organic matter type on the efficiency and microbial community structure of an anaerobic digestion process%底物类型对产甲烷效能及微生物群落结构的影响

    Institute of Scientific and Technical Information of China (English)

    王昊昱; 陶彧; 任南琪

    2016-01-01

    In order to investigate the impact of organic matter type on the efficiency and microbial community structure during anaerobic digestion operation, an expanded granular sludge bed ( EGSB ) was applied to treat brewery spent grain hydrolysates ( BSGH ) and pig manure hydrolysates ( PMH ) that were pre-hydrolyzed by specific enzymes under thermophilic conditions. Results showed that after the organic matter of BSGH was altered by PMH, a series decrease of 40%, 75% and 25% was observed for the bulk COD removal, methane production and organic biomethanation rate, respectively. Meanwhile, the acetic acid concentration in the effluent increased from 50 mg/L to 3 700 mg/L. For the microbial community, the abundance of Firmicutes doubled after the substrate type changing, while Bacteroidetes decreased 50% instead. The quantity of methanogens dropped by 61% and the previously most abundant genus Methanosaeta was replaced by Methanobacterium.%为考察底物类型对厌氧消化过程的影响,以升流式厌氧膨胀床作为厌氧消化反应器,以经过"热-酶联合预水解"后的啤酒糟和猪粪作为处理对象,研究不同有机负荷率条件下反应器的运行效能和微生物群落结构.结果表明,当有机底物类型从啤酒糟转变为猪粪后,反应器的COD去除率降低40%,甲烷产量减少75%,有机物甲烷化率降低25%,且出水乙酸质量浓度由50 mg/L跃升至3 700 mg/L.同时,Firmicutes细菌门的丰度提高约1倍,Bacteroidetes细菌门的相对丰度则减少约50%;产甲烷菌数量减少61%,产甲烷菌属Methanobacterium替代Methanosaeta成为最占优势的古细菌菌属.

  6. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  7. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  8. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    OpenAIRE

    Tal, Yossi; Joy E M Watts; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR product...

  9. Diversity of anaerobic microbes in spacecraft assembly clean rooms.

    Science.gov (United States)

    Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri

    2010-05-01

    Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.

  10. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  11. [Achievement of Sulfate-Reducing Anaerobic Ammonium Oxidation Reactor Started with Nitrate-Reducting Anaerobic Ammonium Oxidation].

    Science.gov (United States)

    Liu, Zheng-chuan; Yuan, Lin-jiang; Zhou, Guo-biao; Li, Jing

    2015-09-01

    The transformation of nitrite-reducing anaerobic ammonium oxidation to sulfate-reducing anaerobic ammonium oxidation in an UASB was performed and the changes in microbial community were studied. The result showed that the sulfate reducing anaerobic ammonium oxidation process was successfully accomplished after 177 days' operation. The removal rate of ammonium nitrogen and sulfate were up to 58. 9% and 15. 7%, the removing load of ammonium nitrogen and sulfate were 74. 3 mg.(L.d)-1 and 77. 5 mg.(L.d)-1 while concentration of ammonium nitrogen and sulfate of influent were 130 mg.(L.d)-1 and 500 mg.(L.d)-1, respectively. The lost nitrogen and sulphur was around 2 in molar ratio. The pH value of the effluent was lower than that of the influent. Instead of Candidatus brocadia in nitrite reducing anaerobic ammonium oxidation granular sludge, Bacillus benzoevorans became the dominant species in sulfate reducing anaerobic ammonium oxidation sludge. The dominant bacterium in the two kinds of anaerobic ammonium oxidation process is different. Our results imply that the two anaerobic ammonium oxidation processes are carried out by different kind of bacterium. PMID:26717697

  12. Decolourisation of textile wastewater in a submerged anaerobic membrane bioreactor.

    Science.gov (United States)

    Spagni, Alessandro; Casu, Stefania; Grilli, Selene

    2012-08-01

    Azo dye decolourisation can be easily achieved by biological reduction under anaerobic conditions. The aim of this study was to evaluate the applicability of submerged anaerobic membrane bioreactors (SAMBRs) for the decolourisation of dyeing wastewater containing azo dyes. The reactive orange 16 was used as model of an azo dye. The results demonstrated that very high decolourisation (higher than 99%) can be achieved by SAMBRs. Although decolourisation was not significantly influenced by the azo dye concentrations up to 3.2 g L(-1), methane production was greatly inhibited (up to 80-85%). Since volatile fatty acids accumulated in the treatment system with the azo dye concentration increase, methanogenes seem to be the most sensitive microbial populations of the anaerobic ecological community. The results demonstrated that anaerobic process combined with membrane filtration can deal with highly concentrated wastewaters that result from stream separation of industrial discharges.

  13. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  14. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    Science.gov (United States)

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle.

  15. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes

    NARCIS (Netherlands)

    Sokolova, T.G.; Henstra, A.M.; Sipma, J.; Parshina, S.N.; Stams, A.J.M.; Lebedinsky, A.V.

    2009-01-01

    Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens

  16. Enrichment of anaerobic syngas converting bacteria from bioreactor sludges

    NARCIS (Netherlands)

    Alves, J.I.; Stams, A.J.M.; Plugge, C.M.; Alves, M.M.; Sousa, D.Z.

    2013-01-01

    Thermophilic (55°C) anaerobic microbial communities were enriched with a synthetic syngas mixture (composed of CO, H2 and CO2 ) or with CO alone. Cultures T-Syn and T-CO were incubated and successively transferred with syngas (16 transfers) or CO (9 transfers), respectively, with increasing CO parti

  17. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.

    Science.gov (United States)

    Ragsdale, Stephen W

    2014-01-01

    Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

  18. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  19. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. PMID:26897411

  20. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  1. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  2. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    Energy Technology Data Exchange (ETDEWEB)

    Widory, D., E-mail: d.widory@brgm.fr [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Proust, E.; Bellenfant, G. [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Bour, O. [INERIS, Parc Technologique ALATA, 60550 Verneuil-en-Halatte (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  3. Anaerobic degradation of increased phenol concentrations in batch assays.

    Science.gov (United States)

    Wirth, Benjamin; Krebs, Maria; Andert, Janet

    2015-12-01

    Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L(-1)) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L(-1). At 5000 mg L(-1), complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L(-1) after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS (-1) day(-1) at 2000 mg L(-1). This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57%) to a community with a nearly even distribution of Methanobacteriales (21%) and Methanosarcinales (34%) with increasing starting phenol concentration.

  4. The implementation of artificial neural networks to model methane oxidation in landfill soil covers[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, A.; Albanna, M.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Civil and Environmental Engineering

    2009-07-01

    The disposal of solid waste significantly contributes to the total anthropogenic emissions of methane (CH{sub 4}), a greenhouse gas that negatively affects climate change. The oxidation of methane in landfill bio-covers takes place through the use of methanotrophic bacteria which provides a sink for methane. The rate at which methane is biologically oxidized depends on several parameters. This study provided a better understanding of the oxidation of methane in landfill soil covers through modeling methane oxidation with artificial neural networks (ANNs). An ANN was trained and tested to model methane oxidation in various batch scale systems for 3 types of soils. Input data consisted of temperature, moisture content, soil composition and the nutrient content added to the system. Model results were in good agreement with experimental results reported by other researchers. It was concluded that the use of ANNs to model methane oxidation in batch scale bio-covers can address the large number of complicated physical and biochemical processes that occur within the landfill bio-cover. 10 refs., 7 tabs., 5 figs.

  5. Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes

    Science.gov (United States)

    Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.

    2010-12-01

    internal sulfur cycle within the community. The community contained expressed enzymes of a variety of carbon metabolism pathways. Key enzymes of the reverse TCA cycle for fixation of CO2 and the Wood-Ljungdahl pathway for oxidation of acetyl-CoA and / or the fixation of CO2 were found. Key enzymes of aerobic and anaerobic methane-oxidation pathways were identified as well, namely particulate methane monooxygenase and methyl-Coenzyme M reductase. Various house-keeping gene-products, like cold- and heat shock proteins as well as ribosomal proteins and ATP synthases were identified. This approach has a future potential of broadening our understanding of environmental complexity and regulation in response to geochemical constraints. [1] Dupierris, V., Masselon, C., Court, M., Kieffer-Jaquinod, S., and Bruley, C. (2009) A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics 25, 1980-1981.

  6. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    Science.gov (United States)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  7. Survival of bacterial indicators and the functional diversity of native microbial communities in the Floridan aquifer system, south Florida

    Science.gov (United States)

    Lisle, John T.

    2014-01-01

    model than when exposed to groundwater from the APPZ (range: 0.540–0.684 h-1). The inactivation rates for the first phase of the models for P. aeruginosa were not significantly different between the UFA (range: 0.144–0.770 h-1) and APPZ (range: 0.159–0.772 h-1) aquifer zones. The inactivation rates for the second phase of the model for this P. aeruginosa were also similar between UFA (range: 0.003–0.008 h-1) and APPZ (0.004–0.005 h-1) zones, although significantly slower than the model’s first phase rates for this bacterial species. Geochemical data were used to determine which dissimilatory biogeochemical reactions were most likely to occur under the native conditions in the UFA and APPZ zones using thermodynamics principles to calculate free energy yields and other cell-related energetics data. The biogeochemical processes of acetotrophic and hydrogenotrophic sulfate reduction, methanogenesis and anaerobic oxidation of methane dominated in all six groundwater sites. A high throughput DNA microarray sequencing technology was used to characterize the diversity in the native aquifer bacterial communities (bacteria and archaea) and assign putative physiological capabilities to the members of those communities. The bacterial communities in both zones of the aquifer were shown to possess the capabilities for primary and secondary fermentation, acetogenesis, methanogenesis, anaerobic methane oxidation, syntrophy with methanogens, ammonification, and sulfate reduction. The data from this study provide the first determination of bacterial indicator survival during exposure to native geochemical conditions of the Floridan aquifer in south Florida. Additionally, the energetics and functional bacterial diversity characterizations are the first descriptions of native bacterial communities in this region of the Floridan aquifer and reveal how these communities persist under such extreme conditions. Collectively, these types of data can be used to develop and refine

  8. Soil methane oxidation in a long-term no-tillage system in Southern BrazilOxidação de metano em solo a longo prazo sob plantio direto no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Cimélio Bayer

    2013-09-01

    Full Text Available Conservation management systems are usually suggested as alternative to restore the soil methane (CH4 oxidation capacity of degraded soils; however, little information is available on tropical and subtropical soils. Our objective was to evaluate the long-term (19 years effect of no-tillage (NT versus conventional tillage (CT management systems on CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Annual CH4 fluxes of two cropping systems [O/M-black oat (Avena strigosa/maize and V/M-vetch (Vigna sativa/maize] were measured in NT and CT soils. Static chambers were used for air sampling, while chromatography was used for CH4 analysis. Analysis of the historical dataset at this experimental site indicated improvements in soil quality under the NT system, especially in legume-based cropping system (V/M that exhibited the highest annual biomass input. CH4 fluxes ranged from −42 ± 2 to 38 ± 16 μg C m-2 h-1, and annual CH4 emissions ranged from −825 ± 117 (CT V/M to 453 ± 185 g C ha-1 (NT O/M. Thus, the annual CH4 oxidation capacity of the soil was not related to the soil quality produced by the soil management systems. On the basis of our results and published literature, we postulate that conservation management systems improve the methane oxidation and soil quality in distinct soil layers, which result in a slow effect of these management systems on the methane oxidation capacity. Sistemas conservacionistas de manejo de solo são considerados usualmente uma alternativa para restaurar a capacidade de solos agrícolas degradados em oxidar metano (CH4, mas escassa informação é disponível para solos tropicais e subtropicais. O objetivo do presente estudo foi avaliar o efeito de longo prazo (19 anos do plantio direto (PD nos fluxos de CH4 em um Argissolo Vermelho (Classificação Brasileira degradado da região Sul do Brasil, em comparação ao preparo convencional (PC. Fluxos anuais de CH4 do solo foram avaliados nos sistemas PD e

  9. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    Science.gov (United States)

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. PMID:27230921

  10. 杜儿坪矿中部风井风排瓦斯氧化处理项目设计%The Design of Ventilation Air Methane Oxidation Treatment Project of

    Institute of Scientific and Technical Information of China (English)

    罗申国

    2013-01-01

    我国煤矿风排瓦斯量巨大,直接排放造成环境污染和能源浪费,利用乏风氧化机组将其销毁,同时产生热能,不仅改善大气环境,还为矿井风排瓦斯处理开辟了一条新途径。以杜儿坪矿中部风井风排瓦斯氧化处理项目设计为例,介绍了工程概况、机组选型、装机规模及工艺系统设计方案,并论述了避免对矿井通风安全造成影响的措施。%There is a huge number of coal mine ventilation air methane in China,emptying directly lead to envi-ronmental pollution and energy waste,using oxidation unit will be destroyed,and generate heat,not only improve the atmospheric environment,also for mine ventilation air methane treatment has opened up a new way.Takes the ventila-tion air methane oxidation treatment project design in Du'erping coal mine central ventilation shaft as an example,in-troduces the engineering general situation,the unit type selection,installed capacity and design scheme of process system,and discusses the measures to avoid affecting the safety of mine ventilation.

  11. Activity and abundance of methane-oxidizing bacteria in secondary forest and manioc plantations of Amazonian Dark Earth and their adjacent soils

    Directory of Open Access Journals (Sweden)

    Amanda eBarbosa Lima

    2014-10-01

    Full Text Available The oxidation of atmospheric CH4 in upland soils is mostly mediated by uncultivated groups of microorganisms that have been identified solely by molecular markers, such as the sequence of the pmoA gene encoding the β-subunit of the particulate methane monooxygenase enzyme. The objective of this work was to compare the activity and diversity of methanotrophs in Amazonian Dark Earth soil (ADE, Hortic Anthrosol and their adjacent non-anthropic soil. Secondly, the effect of land use in the form of manioc cultivation was examined by comparing secondary forest and plantation soils. CH4 oxidation potentials were measured and the structure of the methanotroph communities assessed by qPCR and amplicon pyrosequencing of pmoA genes. The oxidation potentials at low CH4 concentrations (10 ppm of volume were relatively high in all the secondary forest sites of both ADE and adjacent soils. CH4 oxidation by the ADE soil only recently converted to a manioc plantation was also relatively high. In contrast, both the adjacent soils used for manioc cultivation and the ADE soil with a long history of agriculture displayed lower CH4 uptake rates. Amplicon pyrosequencing of pmoA genes indicated that USCα, Methylocystis and the tropical upland soil cluster (TUSC were the dominant groups depending on the site. By qPCR analysis it was found that USCα pmoA genes, which are believed to belong to atmospheric CH4 oxidizers, were more abundant in ADE than adjacent soil. USCα pmoA genes were abundant in both forested and cultivated ADE soil, but were below the qPCR detection limit in manioc plantations of adjacent soil. The results indicate that ADE soils can harbor high abundances of atmospheric CH4 oxidizers and are potential CH4 sinks, but as in other upland soils this activity can be inhibited by the conversion of forest to agricultural plantations.

  12. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  13. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focu

  14. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  15. Pentachlorophenol (PCP) degradation microorganism community structure under microaeration condition

    Institute of Scientific and Technical Information of China (English)

    Chen Yuancai; Hao Yuan; Fu Shiyu; Zhan Huaiyu

    2007-01-01

    The comparison of pentachlorophenol (PCP)degradation was conducted under micro-aeration and anaerobic condition with three series of batch experiment,results of which indicated that during micro-aeration condition co-immobilized of anaerobic granular sludge and isolated aerobic bacterial species could enhance the efficiency of PCP reduction through the synergism of aerobes and anaerobes reductive dechlorination and exchange of metabolites within the co-immobilized granular sludge.While during anaerobic condition,there was no great difference in the three series.The specific activities experiment further confirmed that strict anaerobes were not affected over the presence of micro aeration environment.Microorganism community construction of co-immobilized anaerobic granular sludge and the mixed isolated aerobic community was also deduced.By the efficient cooperation of aerobes and anaerobes,the high efficiency removal rate of PCP was implemented.

  16. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  17. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  18. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  19. The phenomenon of granulation of anaerobic sludge.

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.

    1989-01-01

    Successful high-rate anaerobic wastewater treatment can only be accomplished when the slowgrowing anaerobic biomass is efficiently held back in the anaerobic treatment system. This biomass retention can be achieved in various ways including immobilization of the organisms on fixed materials and immo

  20. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  1. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, th...

  2. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  3. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  4. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  5. 'Methane oxidation on supported gold catalysts'

    DEFF Research Database (Denmark)

    Walther, Guido

    2008-01-01

    hydrocarbon oxygenates, even at mild conditions (p =1 bar, # B250XC). This has been taken as an indication that CH4 oxidation proceeds along a pathway of full combustion. Thus, it was decided to study the tail of the CH4 oxidation pathway, which is given by CO and H2 oxidation, in more detailed. Extensive...

  6. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  7. Community analysis of methane oxidizing bacteria in municipal solid waste semi-aerobic landfill%准好氧填埋场垃圾样品中甲烷氧化菌的群落多样性分析

    Institute of Scientific and Technical Information of China (English)

    张维; 岳波; 黄启飞; 黄泽春

    2012-01-01

      为了探讨准好氧垃圾填埋场中的甲烷氧化机理,本研究利用RealTime-PCR和PCR-DGGE技术对其中的甲烷氧化菌分别进行了定量分析和群落多样性分析.研究结果表明,PCR-DGGE技术可以用于垃圾样品中甲烷氧化菌的微生物多样性分析;在距导气管0、2.5、5.0、10.0和15.0 m处垃圾样品中甲烷氧化菌的数量分别为1.13×109、2.22×108、2.38×108、2.20×107和5.21×106 g-1,呈现逐渐降低的趋势;垃圾样品中甲烷氧化菌的丰富度和香侬多样性指数依次为:0 m>2.5 m>5.0 m =10.0 m>15.0 m,此外,垃圾样品中甲烷氧化菌可归为:Methylocaldum(甲基暖菌属)、Methylobacterium(甲基杆菌属)和Methylocystis(甲基孢囊菌属),且优势菌种为Type I型Methylocaldum.

  8. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species.

  9. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  10. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China); Chou, Hsi-Ling [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 407, Taiwan, ROC (China); Peng, Yu-Huei [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan, ROC (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer BDE-3 was degraded with two anaerobes in different rates. Black-Right-Pointing-Pointer Glucose addition augment the debromination efficiencies. Black-Right-Pointing-Pointer Hydrogen gas was detected and relative microbes were identified. Black-Right-Pointing-Pointer Extra-carbon source enhanced degradation partial due to H{sub 2}-generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H{sub 2} gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  11. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    Science.gov (United States)

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system. PMID:26841609

  12. Effect of incubation conditions on anaerobic susceptibility testing results.

    OpenAIRE

    Murray, P R; Niles, A C

    1982-01-01

    We determined the effect of performing antimicrobial susceptibility tests in five different anaerobic incubation systems: GasPak jar, large GasPak jar, evacuated-gassed anaerobic jar, anaerobic chamber, and Bio-Bag. Growth of the anaerobes was equivalent in all five incubation systems. The results of testing 38 anaerobes against 11 antimicrobial agents were comparable for the anaerobic jars and anaerobic chamber. However, discordant results were observed for metronidazole and cefamandole test...

  13. Repeated pulse feeding induces functional stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion.

  14. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  15. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  16. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  17. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    Science.gov (United States)

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  18. 污泥厌氧发酵工艺的产氢效能与细菌种群特征%Performances of Biohydrogen Production and Characteristics of Bacterial Community in Anaerobic Digester of Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    杨雪; 万春黎; 杜茂安; 李观元; 万芳

    2012-01-01

    目的 探讨产氢效能与微生物种群间的关系,为产氢工艺的优化提供理论指导.方法 经碱处理后的剩余污泥为研究对象,分别设置3种典型的pH条件(酸性5.0、中性7.0、碱性11.0),研究剩余污泥发酵产氢量、底物降解情况以及产氢过程中微生物种群的演替规律.结果 碱性条件下的产氢量最大可以达到14.4 mL/g.变性梯度凝胶电泳(DGGE)图谱显示出,碱性条件下典型的产氢茵属主要有Clostridium sp.、Enterococcus durans、Eubacterium sp..结论 碱性条件下的产氢可能主要与蛋白质的降解关系最密切,同时Eubacterium sp.只在碱性发酵装置中存在,推断是导致产氢量差异的重要原因.%This study investigated the hydrogen-producing performances of alkaline pretreated sludge and structure of bacterial community, and discussed the relationship between the performances and succession of bacterial community. It could further provide theoretical guidance for hydrogen-producing process. Taking alkaline pretreated sludge as seed sludge, the effects of three different pH conditions (acidic pH of 5. 0, neutral pH of 7. 0,and alkaline pH of 11.0)on hydrogen production,degradation of complex organics,and succession of bacterial community were investigated. The results showed that alkaline pH was the optimum condition and the maximum hydrogen yield was 14. 4 mL/g-MLSS. The denaturing gradient gel electrophoresis (DGGE) results indicated that alkaline pH was more proper for cultivation of hydrogen producing communities. The Clostridium sp. ,Enterococcus durans,and Eubacterium sp. were the dominant hydrogen produced bacterial populations. Hydrogen producing was most correlative with protein consuming under alkaline pH. And Eubacterium sp. only existed under alkaline pH could be the reason for relatively higher hydrogen-producing.

  19. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...

  20. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    OpenAIRE

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a...

  1. Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust

    Science.gov (United States)

    Ivarsson, Magnus; Schnürer, Anna; Bengtson, Stefan; Neubeck, Anna

    2016-01-01

    The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes. PMID:27433154

  2. Anaerobic fungi: a potential source of biological H2 in the oceanic crust

    Directory of Open Access Journals (Sweden)

    Magnus eIvarsson

    2016-05-01

    Full Text Available The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes.

  3. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  4. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Science.gov (United States)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  5. How to use molecular biology tools for the study of the anaerobic digestion process?

    NARCIS (Netherlands)

    Cabezas, Angela; Araujo, de Juliana Calabria; Callejas, Cecilia; Galès, Amandine; Hamelin, Jérôme; Marone, Antonella; Machado de Sousa, Diana; Trably, Eric; Etchebehere, Claudia

    2015-01-01

    Anaerobic digestion is used with success for the treatment of solid waste, urban and industrial effluents with a concomitant energy production. The process is robust and stable, but the complexity of the microbial community involved in the process is not yet fully comprehensive. Nowadays, the stu

  6. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina;

    2008-01-01

    , a microorganism described previously as an anaerobic benzaldehyde degrader. Within the archaeal community, there was a shift between two different species of the genus Methanosaeta sp., indicating a highly specific impact of DBP or degradation products on archaeal species. RNA-directed probes were designed from...

  7. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and