WorldWideScience

Sample records for anaerobic biofilm reactors

  1. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  2. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  3. Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Gonzalez, L.J.; Moreno-Davila, I.M.; Rodriguez-Martinez, J.; Garza-Garcia, Y. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico)]. E-mail: leopoldo.rios@mail.uadec.mx

    2009-09-15

    This article describes biological hydrogen production from diary wastewater via anaerobic fermentation using pretreated heat shock (100 degrees Celsius, 30 min.) and acid (pH 3.0, 24 h) treatment procedures to selectively enrich the hydrogen producing mixed consortia prior to inoculation to batch reactors. Bioreactor used for immobilization consortia was operated at mesophilic (room) temperature (20{+-}3 degrees Celsius), under acidophilic conditions (pH 4.0-4.5), HRT (2h), and a natural support for generate hydrogen producing mixed consortia biofilm: Opuntia imbricata. Reactor was initially operated with sorbitol (5g/L) for 60 days of operation. Batch tests were conducted using 20{+-}0.02g of natural support with biofilm. Batch experiments were conducted to investigate the effect of COD (2.9-21.1 g-COD/L), at initial pH of 7.0, 32{+-}1 degrees Celsius. Maximum hydrogen yield was obtained at 21.1 g-COD/L. Experiments of pH effect were conducted using the optimal substrate concentration (21.2 g-COD/L), at pH 4 to 7 and 11.32 (pH diary wastewater) ,and 32{+-}1 degrees Celsius. Experiments results indicate the optimum initial cultivation was pH 4.0, but we can consider also a stable hydrogen production at pH 11.32 (pH diary wastewater), so we can avoid to fit the pH, and use diary wastewater as it left the process of cheese manufacture. The operational pH of 4.0 is 1.5 units below that of previously reported hydrogen producing organisms. The influence of the effect of temperature were conducted using the optimal substrate concentration (21.2 g-COD/L), two pH levels: 4.0 and 11.32, and four different temperatures: 16{+-}3 degrees Celsius (room temperature), 3 C, 45{+-}1 degrees Celsius y 55{+-}1 degrees Celsius.Optimal temperature for hydrogen production from diary wastewater at pH 4.0 was 55{+-}1 degrees Celsius, and for pH 11.32 was 16{+-}3 degrees Celsius.Therefore, the results suggests biofilm reactors in a natural support like Opuntia imbricata have good potential

  4. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  5. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    Pereira, N.S.; Zaiat, M.

    2009-01-01

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m 3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  6. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    Science.gov (United States)

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-01-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.

  7. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  8. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  9. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.

    Science.gov (United States)

    Denac, M; Dunn, I J

    1988-07-05

    Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted

  10. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  11. Protection of biofilms against toxic shocks by the adsorption and desorption capacity of carriers in anaerobic fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petrozzi, S. (Biological Reaction Engineering Group, Chemical Engineering Dept., ETH, Zurich (Switzerland)); Kut, O.M. (Biological Reaction Engineering Group, Chemical Engineering Dept., ETH, Zurich (Switzerland)); Dunn, I.J. (Biological Reaction Engineering Group, Chemical Engineering Dept., ETH, Zurich (Switzerland))

    1993-05-01

    The aim of this study was to select a support medium for an anaerobic biofilm fluidized bed reactor (AFBR) for waste water treatment. Six materials, shale, pumice, porous glass, quartz sand, activated carbon and anthracite were used as carriers for the biofilm. The reactors were operated in parallel for several months with vapour condensate from a sulfite cellulose process as feed. The criteria used for the evaluation were: (a) Reproducibility of the reactor performance, (b) performance of the different carriers under various loading rates, (c) stability against toxic shock loadings using 2,4,6-trichlorophenol (TCP) as toxicant, (d) recovery capacity after intoxication and starvation, (e) adsorption/desorption behavior of the carriers. A comparison between four runs showed good reproducibility of the steady state removal rates. The performance of the reactors and the stability of the degradation rates were tested for a range of loading conditions. Unbuffered, buffered and pH controlled conditions were compared. The pumice carrier was best with respect to the degradation rate achieved per carrier mass. The response of the reactors to massive TCP step loadings was tested. Loadings less than 1.5 kg TCP/m[sup 3]d resulted in initially normal gas production rates for all the systems, except the activated carbon, whose gas production was partially inhibited from the start. After increasing the load to 1.5 kg TCP/m[sup 3]d the gas production rates of all the other reactors fell abruptly to zero. Restarting after 2 months, all reactors showed methanogenic activity without requiring new inoculum. (orig.)

  12. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Biodegradation of phenol with chromium(VI) reduction in an anaerobic fixed-biofilm process-Kinetic model and reactor performance

    International Nuclear Information System (INIS)

    Lin, Yen-Hui; Wu, Chih-Lung; Hsu, Chih-Hao; Li, Hsin-Lung

    2009-01-01

    A mathematical model system was derived to describe the simultaneous removal of phenol biodegradation with chromium(VI) reduction in an anaerobic fixed-biofilm reactor. The model system incorporates diffusive mass transport and double Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to validate the kinetic model system. Batch kinetic tests were conducted independently to evaluate the biokinetic parameters used in the model simulation. The removal efficiencies of phenol and chromium(VI) in an anaerobic fixed-biofilm process were approximately 980 mg/g and 910 mg/g, respectively, under a steady-state condition. In the steady state, model-predicted biofilm thickness reached up to 350 μm and suspended cells in the effluent were 85 mg cell/l. The experimental results agree closely with the results of the model simulations.

  14. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  15. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  16. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  17. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  18. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  19. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    Science.gov (United States)

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  1. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  2. Biofilm reactors for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J L; Clausen, E C; Gaddy, J L

    1988-07-01

    Whole cell immobilization has been studied in the laboratory during the last few years as a method to improve the performance and economics of most fermentation processes. Among the various techniques available for cell immobilization, methods that provide generation of a biofilm offer reduced diffusional resistance, high productivities, and simple operation. This paper reviews some of the important aspects of biofilm reactors for ethanol production, including reactor start-up, steady state behavior, process stability, and mathematical modeling. Special emphasis is placed on covalently bonded Saccharomyces cerevisiae in packed bed reactors.

  3. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  4. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  5. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  6. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  7. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates.

    Science.gov (United States)

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-08-25

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL(-1) can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  8. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ......Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  9. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  10. Biofilm architecture in a novel pressurized biofilm reactor.

    Science.gov (United States)

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  11. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor.

    Science.gov (United States)

    Cho, Sunja; Fujii, Naoki; Lee, Taeho; Okabe, Satoshi

    2011-01-01

    Up-flow oxygen-controlled biofilm reactors equipped with a non-woven fabric support were used as a single reactor system for autotrophic nitrogen removal based on a combined partial nitrification and anaerobic ammonium oxidation (anammox) reaction. The up-flow biofilm reactors were initiated as either a partial nitrifying reactor or an anammox reactor, respectively, and simultaneous partial nitrification and anammox was established by careful control of the aeration rate. The combined partial nitrification and anammox reaction was successfully developed in both biofilm reactors without additional biomass inoculation. The reactor initiated as the anammox reactor gave a slightly higher and more stable mean nitrogen removal rate of 0.35 (±0.19) kg-N m(-3) d(-1) than the reactor initiated as the partial nitrifying reactor (0.23 (±0.16) kg-N m(-3) d(-1)). FISH analysis revealed that the biofilm in the reactor started as the anammox reactor were composed of anammox bacteria located in inner anoxic layers that were surrounded by surface aerobic AOB layers, whereas AOB and anammox bacteria were mixed without a distinguishable niche in the biofilm in the reactor started as the partial nitrifying reactor. However, it was difficult to efficiently maintain the stable partial nitrification owing to inefficient aeration in the reactor, which is a key to development of the combined partial nitrification and anammox reaction in a single biofilm reactor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Activated Sludge and Aerobic Biofilm Reactors

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged ae...

  13. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    International Nuclear Information System (INIS)

    Jiang, Guangming; Yuan, Zhiguo

    2013-01-01

    Highlights: ► H 2 O 2 greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H 2 O 2 . ► FNA + H 2 O 2 reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO 2 -N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H 2 O 2 ) on anaerobic wastewater biofilm are investigated in this study. H 2 O 2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H 2 O 2 at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H 2 O 2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H 2 O 2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H 2 O 2 , like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H 2 O 2 . The combination of FNA and H 2 O 2 could potentially provide an effective solution to sewer biofilm control

  14. Current and future trends for biofilm reactors for fermentation processes.

    Science.gov (United States)

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  15. Benzene degradation in a denitrifying biofilm reactor

    NARCIS (Netherlands)

    Waals, van der Marcelle J.; Atashgahi, Siavash; Rocha, da Ulisses Nunes; Zaan, van der Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more

  16. Microbiology and performance of a methanogenic biofilm reactor during the start-up period.

    Science.gov (United States)

    Cresson, R; Dabert, P; Bernet, N

    2009-03-01

    To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor. Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR-SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm. This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm. The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.

  17. Biofilm formation in attached microalgal reactors.

    Science.gov (United States)

    Shen, Y; Zhu, W; Chen, C; Nie, Y; Lin, X

    2016-08-01

    The objective of this study was to investigate the fundamental question of biofilm formation. First, a drum biofilm reactor was introduced. The drums were coated with three porous substrates (cotton rope, canvas, and spandex), respectively. The relationships among the substrate, extracellular polymeric substances (EPS), and adhesion ratio were analyzed. Second, a plate biofilm reactor (PBR) was applied by replacing the drum with multiple parallel vertical plates to increase the surface area. The plates were coated with porous substrates on each side, and the nutrients were delivered to the cells by diffusion. The influence of nitrogen source and concentration on compositions of EPS and biofilm formation was analyzed using PBR under sunlight. The results indicated that both substrate and nitrogen were critical on the EPS compositions and biofilm formation. Under the optimal condition (glycine with concentration of 1 g l(-1) and substrate of canvas), the maximum biofilm productivity of 54.46 g m(-2) d(-1) with adhesion ratio of 84.4 % was achieved.

  18. Degradation of whey in an anaerobic fixed bed (AnFB) reactor

    OpenAIRE

    Handajani, Marisa

    2004-01-01

    An Anaerobic Fixed Bed (AnFB) reactor was run as an upflow anaerobic reactor with an arrangement of supporting material for growth of a biofilm. The supporting material was made from Liapor-clay-polyethylene sinter lamellas (Herding Co., Amberg). The AnFB reactor was used for treating high concentrations of whey-containing wastewater. Optimal operating conditions for whey treatment at a concentration of COD in the influent of around 50 g whey·l-1 were found for a hydraulic retention ...

  19. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guangming, E-mail: gjiang@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia); Yuan, Zhiguo, E-mail: zhiguo@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2013-04-15

    Highlights: ► H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H{sub 2}O{sub 2}. ► FNA + H{sub 2}O{sub 2} reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO{sub 2}-N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H{sub 2}O{sub 2}) on anaerobic wastewater biofilm are investigated in this study. H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H{sub 2}O{sub 2} at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H{sub 2}O{sub 2} enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H{sub 2}O{sub 2} dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H{sub 2}O{sub 2}, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H{sub 2}O{sub 2}. The combination of FNA and H{sub 2}O{sub 2} could potentially provide an effective solution to sewer biofilm control.

  20. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  1. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  2. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process mea...... control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks....

  3. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  4. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Early stages in biofilm development in methanogenic fluidized-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, A.M.; Heinen, W.; Gorris, L.G.M.; Drift, C. van der (Katholieke Univ. Nijmegen (Netherlands). Dept. of Microbiology and Evolution Biology)

    1990-06-01

    Biofilm development in methanogenic fluidized-bed reactors with sand as the carrier was studied on a laboratory scale. The microorganisms present in consecutive layers of the biofilm of mature sludge granules were prelimilarily characterized on the basis of their morphology, element composition and adhesion capacity and were compared to bacteria which take part in the initial colonization of sand. The early phase of biofilm development was monitored with reactors receiving waste-waters containing different mixtures of volatile fatty acids and inoculated with fluidized-bed reactor effluent for different lengths of time. The results obtained indicate that facultative anaerobic bacteria abundantly present in the outermost biofilm layers of mature sludge granules are probably the main primary colonizers of the sand. Methanothrix spp. or other methanogens were rarely observed among the primary colonizers. The course of biofilm formation was comparable under the various start-up conditions employed including variations in waste-water composition, inoculation and anaerobicity. However, omission of waste-water and thus of substrate resulted in rapid wash-out of the attached biomass. (orig.).

  6. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2018-02-01

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m 2 . The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  7. Dimensioning of aerated submerged fixed bed biofilm reactors ...

    African Journals Online (AJOL)

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified ...

  8. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  9. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    Science.gov (United States)

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  10. Performance of an innovative multi-stage anaerobic reactor during ...

    African Journals Online (AJOL)

    Start-up of an anaerobic reactor is a relatively delicate process and depends on various factors such as wastewater composition, available inoculum, operating conditions and reactor configuration. Accordingly, systematized operational procedures are important, mainly during the start-up of an anaerobic reactor.

  11. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A. Lemire; Marc A. Demeter; Iain George; Howard Ceri; Raymond J. Turner

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  12. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    Development of the floating sulphur biofilm reactor for sulphide oxidation in biological water treatment systems. ... The effect of influent sulphide concentrations, flow rate and reactor dimensions on the sulphur biofilm formation were investigated for the optimisation of elemental sulphur recovery and sulphide removal ...

  13. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  14. From biofilm ecology to reactors: a focused review

    DEFF Research Database (Denmark)

    Boltz, Joshua P.; Smets, Barth F.; Rittmann, Bruce E.

    2017-01-01

    the following three topics: (1) biofilm ecology, (2) biofilm reactor technology and design, and (3) biofilm modeling. In so doing, it addresses the processes occurring in the biofilm, and how these affect and are affected by the broader biofilm system. The symphonic application of a suite of biological methods...... on the performance of various systems, but they can also be used beneficially for the treatment of water (defined herein as potable water, municipal and industrial wastewater, fresh/brackish/salt water bodies, groundwater) as well as in water stream-based biological resource recovery systems. This review addresses...... polymeric substance matrix are somewhat known, but their exact composition and role in the microbial conversion kinetics and biochemical transformations are still to be resolved. Biofilm grown microorganisms may contribute to increased metabolism of micro-pollutants. Several types of biofilm reactors have...

  15. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  16. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Granules grown in the bottom part of UASB reactor were more compact and tense ...

  17. Citric acid application for denitrification process support in biofilm reactor.

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L -1  h -1 and 17.81 mgN L -1  h -1 , respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L -1  h -1 and 24.38 mgN L -1  h -1 ). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCOD re -1 (0.22 ± 0.09 mgTSS mgN re -1 ). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    Science.gov (United States)

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  19. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  20. Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Science.gov (United States)

    Park, Yongjin; Yoon, Sang Sun

    2011-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2 −) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process. PMID:21267455

  1. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m 3 was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparative experimental studies of different fluidized-bed reactor systems with regard to their anaerobic sewage treatment suitability; Vergleichende experimentelle Untersuchung verschiedener Wirbelbett-Reaktorsysteme im Hinblick auf ihre Eignung fuer die anaerobe Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Buettgenbach, L.

    1991-12-12

    Gas-induced fluidized-bed reactors are suited for permanent anaerobic digestion without runbacks. The carrier particles must have a high fixing capacity and mechanical stability for permanent-biofilm formation. The suitability of macroporous polyurethane carrier materials, the biofilm formation properties, the digestion of substrates and the production of biogas were investigated for synthetic waste water and potato starch waste water in 70 l liquid upward current reactors, bubble column reactors and gas lift loop reactors with/out gas recirculation. (LU) [Deutsch] In gasinduzierten Wirbelbett-Reaktoren ist eine prozessstabile anaerobe Abbaureaktion ohne Abwasserruecklauf moeglich. Die Anforderungen an die Fixierkapazitaet und die mechanische Stabilitaet der Traegerpartikel zur Erzeugung stabiler Biofilme ist hoch. Experimentell wurden in begasten und unbegasten Systemen (Fluessigkeits-Aufstromreaktor, Blasensaeulenreaktor, Gaslift-Schlaufenreaktor, Reaktorvolumen jeweils 70 l) die Eignung makroporoeser Traegermaterialien aus Polyurethanmasse, die Biofilmbildung, der Substratabbau und die Biogasproduktion untersucht. Eingesetzt wurde ein synthetisches Abwasser und ein Abwasser aus der Staerkeindustrie (Kartoffelfruchtwasser). (LU)

  3. Development of the floating sulphur biofilm reactor for sulphide ...

    African Journals Online (AJOL)

    driniev

    The formation of floating sulphur biofilm was observed in the microbial ecology studies of tannery ponds undertaken by the. Environmental Biotechnology Group at Rhodes University. This was related to the steep Redox gradients established at the air/ water interface of anaerobic, organically loaded and actively sulphate ...

  4. Modelling an industrial anaerobic granular reactor using a multi-scale approach

    DEFF Research Database (Denmark)

    Feldman, Hannah; Flores Alsina, Xavier; Ramin, Pedram

    2017-01-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within...... the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark...... simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally...

  5. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H.

    1989-01-01

    Anaerobic treatment of cheese whey using a 17.5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4.5 to 38.1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38.1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.

  6. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  7. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  8. Mixing and scale affect moving bed biofilm reactor (MBBR) performance

    NARCIS (Netherlands)

    Kamstra, Andries; Blom, Ewout; Terjesen, Bendik Fyhn

    2017-01-01

    Moving Bed Biofilm Reactors (MBBR) are used increasingly in closed systems for farming of fish. Scaling, i.e. design of units of increasing size, is an important issue in general bio-reactor design since mixing behaviour will differ between small and large scale. Research is mostly performed on

  9. [Bacterial diversity in sequencing batch biofilm reactor (SBBR) for landfill leachate treatment using PCR-DGGE].

    Science.gov (United States)

    Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong

    2007-05-01

    For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.

  10. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  11. Effects of aerobic-anaerobic transient conditions on sulfur and metal cycles in sewer biofilms

    NARCIS (Netherlands)

    Nielsen, A.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between sulfur and metals were studied in aerobic and anaerobic biofilms grown on domestic waste water at 15°C. The dominant metals in the waste water were iron, zinc and copper, which were present in average concentrations of 0.5mg/l, 0.6mg/l and 0.1m/l, respectively. Copper and zinc

  12. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  13. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  14. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  15. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).

  16. Design of A solar Thermophilic Anaerobic Reactor for Small Farms

    NARCIS (Netherlands)

    Mashad, El H.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    A 10 m(3) completely stirred tank reactor has been designed for anaerobic treatment of liquid cow manure under thermophilic conditions (50degreesC), using a solar heating system mounted on the reactor roof. Simulation models for two systems have been developed. The first system consists of loose

  17. Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor

    DEFF Research Database (Denmark)

    Christiansen, N.; Christensen, S.R.; Arvin, E.

    1997-01-01

    Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively...... methane-producing bacteria were inhibited by the chlorinated ethenes....

  18. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  19. Establishing a laboratory model of dental unit waterlines bacterial biofilms using a CDC biofilm reactor.

    Science.gov (United States)

    Yoon, Hye Young; Lee, Si Young

    2017-11-01

    In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner's 2A (R2A) for 10 days, and were subsequently stored at -70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 10 5  CFU cm -2 and 10-14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.

  20. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  2. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    -diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...

  3. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  4. Benzene and ethylbenzene removal by denitrifying culture in a horizontal fixed bed anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, V.R.; Chinalia, F.A.; Sakamoto, I.K.; Varesche [Univ. de Sao Paulo (Brazil). Dept. de Hidraulica e Saneamento; Thiemann, O.H. [Univ. de Sao Paulo (Brazil). Inst. de Fisica de Sao Carlos

    2004-07-01

    Benzene, ethylbenzene, toluene, and xylene are toxic and are important constituents of gasoline and other petroleum fuels. These compounds are potential health hazards because of their high solubility and hence their ability to contaminate groundwater. Anaerobic immobilized biomass is a way of treating wastewater contaminated with the above compounds. The performance of a specially adapted biofilm is critical in the viability of this idea. In this investigation, an especially adapted biofilm was obtained using a denitrifying bacterial strain isolated from a slaughterhouse wastewater treatment plant. The strain was cultured in a liquid medium with added ethanol, nitrate, ethylbenzene, and benzene. To assess the viability of the strain for the purposes of degradation of ethylbenzene, and benzene two separate horizontal reactors were prepared with polyurethane foam in order to immobilize the biomass. Various concentrations of the two compounds were admitted. At high concentrations chemical oxygen demand decreased dramatically and benzene and ethylbenzene removal almost 100 per cent. DNA sequencing of the biofilm showed that Paracoccus versutus was the dominant species in the ethylbenzene reactor. 7 refs., 6 figs.

  5. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...... by recovering acid (e.g., H2SO4, HCI), that can be used to treat the recovered ammonia....

  6. An overview on the reactors to study drinking water biofilms.

    Science.gov (United States)

    Gomes, I B; Simões, M; Simões, L C

    2014-10-01

    The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm

    Directory of Open Access Journals (Sweden)

    Ru Jia

    2017-11-01

    Full Text Available Pseudomonas aeruginosa is a ubiquitous bacterium capable of forming problematic biofilms in many environments. They cause biocorrosion of medical implants and industrial equipment and infrastructure. Aerobic corrosion of P. aeruginosa against stainless steels has been reported by some researchers while there is a lack of reports on anaerobic P. aeruginosa corrosion in the literature. In this work, the corrosion by a wild-type P. aeruginosa (strain PAO1 biofilm against 304 stainless steel (304 SS was investigated under strictly anaerobic condition for up to 14 days. The anaerobic corrosion of 304 SS by P. aeruginosa was reported for the first time. Results showed that the average sessile cell counts on 304 SS coupons after 7- and 14-day incubations were 4.8 × 107 and 6.2 × 107 cells/cm2, respectively. Scanning electron microscopy and confocal laser scanning microscopy corroborated the sessile cell counts. The X-ray diffraction analysis identified the corrosion product as iron nitride, confirming that the corrosion was caused by the nitrate reducing biofilm. The largest pit depths on 304 SS surfaces after the 7- and 14-day incubations with P. aeruginosa were 3.9 and 7.4 μm, respectively. Electrochemical tests corroborated the pitting data.

  8. Anaerobic treatment of winery wastewater in fixed bed reactors.

    Science.gov (United States)

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  9. The developments of anaerobic baffled reactor for wastewater ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... as a series of up-flow anaerobic sludge blanket reactors. (UASBs). As the .... to determine whether the rate of gas production and viscosity affected .... behaviour of glucose fed PABR and used to examine the behaviour of the ...

  10. Anaerobic acidification of glucose in an upflow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zoetemeyer, R J; Matthijsen, A J.C.M.; Van den Heuvel, J C; Cohen, A; Boelhouwer, C

    1982-01-01

    Glucose (10 and 50 kg/cubic meters) was effectively biodegraded to mainly butyrate, lactate, and acetate in an anaerobic upflow reactor at minimum residence times of 26 and 82 minutes, respectivelyly. Sludge granulation occurred at residence times of 1 and 6 hours, respective, which increased biomass retention. Maximum glucose conversion was 450 and 630 kg/cubic meters-day.

  11. The effect of anaerobic baffled reactor effluent on nitrogen and ...

    African Journals Online (AJOL)

    Leaching of nitrogen and phosphorus from soil columns during application of anaerobic baffled reactor effluent was evaluated. The soils used were from Inanda (Ia), Cartref (Cf), and Sepane (Se) forms, and a silica sand (SS). Each was packed into duplicate columns (103 mm internal diameter; 200 mm length), four each for ...

  12. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  13. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    International Nuclear Information System (INIS)

    Zhang, Zhen-Peng; Tay, Joo-Hwa; Show, Kuan-Yeow; Liang, David Tee; Lee, Duu-Jong; Su, Ay

    2008-01-01

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  14. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  15. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications.

    Science.gov (United States)

    Gomes, Inês B; Meireles, Ana; Gonçalves, Ana L; Goeres, Darla M; Sjollema, Jelmer; Simões, Lúcia C; Simões, Manuel

    2018-08-01

    Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.

  16. Transformation products of clindamycin in moving bed biofilm reactor (MBBR)

    DEFF Research Database (Denmark)

    Ooi, Gordon Tze Hoong; Escola Casas, Monica; Andersen, Henrik Rasmus

    2017-01-01

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater...... treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs...... process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments...

  17. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    Science.gov (United States)

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobe–oxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air · min−1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 · ml−1 in the planktonic phase and >107 · cm−2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ≤ 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments. PMID:9746571

  18. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  19. Entrapment and degradation of particulate organics in anaerobic fluidized bed reactor. Kenkisei ryudosho ni yoru fuyusei yuki kokeibutsu no hosoku to bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Araki, N. (Nagaoka National College of Technology, Niigata (Japan)); Harada, H.; Momonoi, K. (Nagaoka University of Technology, Niigata (Japan))

    1993-08-10

    A start-up experiment on an anaerobic fluidized bed reactor has been performed using simulated wastewater added with cellulose as a suspended substance to discuss behavior of suspended base materials and change in bacterial phases of biofilm constituting bacteria cluster. Cellulose removal efficiency of the reactor was 98% of a volumetric load of up to 2 g COD[center dot]1[sup -1][center dot]d[sup -1] performing efficient decomposition including methane. Cellulose content in the fluidized bed increased to 3% to 16% of the fluidized bed MLVSS with increase in a volumetric load from 3 to 10 g COD[center dot]1[sup -1][center dot]d[sup -1]. Bacteria, of which activity changes largely with growth of biofilms among other anaerobic bacteria clusters, are acid producing bacteria and acetic acid-selective methane bacteria, which have grown to 31 times and 70 times at maximum respectively as compared to their species sludge. Sludge resident time in the reactor has dropped rapidly from 80 days to 2.6 days as a result of accumulation of cellulose in the biofilms. The cellulose decomposing activity of the biofilms increases as the biofilms grow. The maximum value was 0.20 Cellulose[center dot]g[sup -1] VSS[center dot]d[sup -1]. 19 refs., 8 figs., 4 tabs.

  20. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  1. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  2. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  3. Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms.

    Science.gov (United States)

    Hille, Andrea; He, Mei; Ochmann, Clemens; Neu, Thomas R; Horn, Harald

    2009-01-01

    Two component biodegradable carriers for biofilm airlift suspension (BAS) reactors were investigated with respect to development of biofilm structure and oxygen transport inside the biofilm. The carriers were composed of PHB (polyhydroxybutyrate), which is easily degradable and PCL (caprolactone), which is less easily degradable by heterotrophic microorganisms. Cryosectioning combined with classical light microscopy and CLSM was used to identify the surface structure of the carrier material over a period of 250 days of biofilm cultivation in an airlift reactor. Pores of 50 to several hundred micrometers depth are formed due to the preferred degradation of PHB. Furthermore, microelectrode studies show the transport mechanism for different types of biofilm structures, which were generated under different substrate conditions. At high loading rates, the growth of a rather loosely structured biofilm with high penetration depths of oxygen was found. Strong changes of substrate concentration during fed-batch mode operation of the reactor enhance the growth of filamentous biofilms on the carriers. Mass transport in the outer regions of such biofilms was mainly driven by advection.

  4. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  5. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  6. Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: an emerging paradigm or "Old Hat"?

    Science.gov (United States)

    Su, Shengchang; Hassett, Daniel J

    2012-09-01

    The cystic fibrosis (CF) airway mucus is an ideal niche in which many bacteria can develop antibiotic- and phagocyte-resistance in unique structures known as "mode II biofilms" where bacteria are embedded within the mucus, yet unattached to airway epithelial cells. Pseudomonas aeruginosa is the dominant CF pathogen, yet herein the authors provide burgeoning evidence that obligate anaerobic bacteria (e.g., Prevotella) actually thrive within the CF mucus, a paradigmatic shift that chronic CF is an "aerobic" disease. Interestingly, CF organisms repress virulence factor production (e.g., P. aeruginosa) while others (e.g., S. aureus) increase them under anaerobic conditions. The authors shed additional light on (i) the anoxic nature of the CF airway mucus, (ii) the relative commonality of anaerobic bacteria isolated from CF sputum, (iii) virulence factor production and cross-talk between obligate anaerobes and P. aeruginosa relative to disease progression/remission, (iv) the role of mucoidy in CF, and (v) the role of nitrosative stress in activation of bacteriophage and pyocins within biofilms. The authors conclude with insight as to how we might treat some CF bacteria during mode II biofilm infections that utilizes a metabolite of bacterial anaerobic respiration and an aerobic oxidation product of airway-generated NO, acidified NO(2)(-).

  7. Anaerobic degradation of coconut husk leachate using UASB-reactor.

    Science.gov (United States)

    Neena, C; Ambily, P S; Jisha, M S

    2007-07-01

    Reffing of coconut husk, the majorprocess in quality coir fibre extraction, causes serious pollution with brackish water lagoons of Kerala. An attempt is made to treat the coconut husk leachate by using a laboratory scale UASB-reactor The experiment was conducted with loading of leachate from 1 kg of fresh coconut husk. The anaerobic treatment was done continuously The parameters like VFA, pH, COD and polyphenols were analysed regularly during the evaluation of the reactor performance. The polyphenol, VFA and COD were diminished gradually with time. The pH of the reactor during the study was found to be in the range of 6-8. The biogas production was increased with loading and about 82% of the total COD/kg husk could be converted to biogas. The maximum polyphenol loading in the reactor was reached to about 298.51 mg/l of husk.

  8. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  9. Removal of micropollutants in Moving Bed Biofilm reactors (MBBRs)

    DEFF Research Database (Denmark)

    Torresi, Elena

    Numerous pollutants such as pharmaceuticals and personal care products are continuously released into municipal wastewater treatment plants (WWTP). Present at concentration of nano- to milligram per liter, they are defined as micropollutants. Micropollutants are only partially removed, possibly due...... compared to conventional activated sludge. In MBBRs, biofilm grow on plastic carriers kept in suspension in the reactor basin via mechanical mixing or aeration, offering a suit of benefits, amongst all comparably small footprint. Despite few existing evidences in aerobic MBBR, an in-depth understanding...

  10. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... ðl dÞ1 and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 l ðlreactor dÞ1, with a yield of 0.05 l gas ðg VSÞ1. These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  11. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    International Nuclear Information System (INIS)

    Ramakrishnan, Anushyaa; Gupta, S.K.

    2006-01-01

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 ± 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors

  12. Effect of increasing nitrobenzene loading rates on the performance of anaerobic migrating blanket reactor and sequential anaerobic migrating blanket reactor/completely stirred tank reactor system

    International Nuclear Information System (INIS)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-01-01

    A laboratory scale anaerobic migrating blanket reactor (AMBR) reactor was operated at nitrobenzene (NB) loading rates increasing from 3.33 to 66.67 g NB/m 3 day and at a constant hydraulic retention time (HRT) of 6 days to observe the effects of increasing NB concentrations on chemical oxygen demand (COD), NB removal efficiencies, bicarbonate alkalinity, volatile fatty acid (VFA) accumulation and methane gas percentage. Moreover, the effect of an aerobic completely stirred tank reactor (CSTR) reactor, following the anaerobic reactor, on treatment efficiencies was also investigated. Approximately 91-94% COD removal efficiencies were observed up to a NB loading rate of 30.00 g/m 3 day in the AMBR reactor. The COD removal efficiencies decreased from 91% to 85% at a NB loading rate of 66.67 g/m 3 day. NB removal efficiencies were approximately 100% at all NB loading rates. The maximum total gas, methane gas productions and methane percentage were found to be 4.1, 2.6 l/day and 59%, respectively, at a NB loading rate of 30.00 g/m 3 day. The optimum pH values were found to be between 7.2 and 8.4 for maximum methanogenesis. The total volatile fatty acid (TVFA) concentrations in the effluent were 110 and 70 mg/l in the first and second compartments at NB loading rates as high as 66.67 and 6.67 g/m 3 day, respectively, while they were measured as zero in the effluent of the AMBR reactor. In this study, from 180 mg/l NB 66 mg/l aniline was produced in the anaerobic reactor while aniline was completely removed and transformed to 2 mg/l of cathechol in the aerobic CSTR reactor. Overall COD removal efficiencies were found to be 95% and 99% for NB loading rates of 3.33 and 66.67 g/m 3 day in the sequential anaerobic AMBR/aerobic CSTR reactor system, respectively. The toxicity tests performed with Photobacterium phosphoreum (LCK 480, LUMIStox) and Daphnia magna showed that the toxicity decreased with anaerobic/aerobic sequential reactor system from the influent, anaerobic and to

  13. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    Science.gov (United States)

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  14. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed......, a large portion of voltage drop was caused by the ohmic (electrolyte) resistance of the medium present between two electrodes, although the two electrodes were closely positioned (about 3 cm distance; internal resistance = 35 ± 2 Ω). The open circuit potential (0.393 V vs. a standard hydrogen electrode...

  15. Utilization of vinasse effluents from an anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F J.C.B.; Rocha, B B.M.; Viana, C E; Toledo, A C

    1986-01-01

    An anaerobic reactor was developed to biodigest alcohol distillery wastes. A further post-treatment of the effluent reduced the level of pollution to the point of eventually discharging into streams and rivers. The present work also analyses the use of biodigested vinasse as a source of food for fish. Very high efficiencies were obtained during primary and secondary treatment of vinasse effluent, as demonstrated by the greatly reduced organic load. The utilization of the treated effluent as a source of fish food presents an excellent alternative for the Brazilian alcohol industry. (Refs. 6).

  16. Anaerobic horizontal flow reactor with polyethylene terephthalate as support material

    Directory of Open Access Journals (Sweden)

    Marcelo Muñoz

    2016-06-01

    Full Text Available A pilot anaerobic reactor was installed to remove the organic load of wastewater from dairy industry. It uses a bacterial inoculum previously acclimated to the substrate. It was disposed horizontally and filled with pieces of polyethylene terephthalate (PET, from plastic bottles. The reactor was operated at room temperature, during 100 days, in three phases: 1 the reactor was stabilized with volumetric organic load from 0.013 to 0.500 kg/day.m³; 2 the hydraulic retention time was of 1 day and the volumetric organic load of 3 kg/day.m³; 3 the volumetric organic load was incremented from 4 to 6.6 kg/day.m³ and the hydraulic retention time was 1 day. Organic material removal efficiencies was of 85%, and approximately 75% were obtained in the second and third phase, respectively. The Y value was 0.15, indicating that 0.15 kg of biomass were generated by kg of QDO supplied to the reactor. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 18868 mg/L, which is a higher value than those of conventional systems.

  17. TREATMENT OF METHANOLIC WASTEWATER BY ANAEROBIC DOWN-FLOW HANGING SPONGE (ANDHS) REACTOR AND UASB REACTOR

    Science.gov (United States)

    Sumino, Haruhiko; Wada, Keiji; Syutsubo, Kazuaki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi

    Anaerobic down-flow hanging sponge (AnDHS) reactor and UASB reactor were operated at 30℃ for over 400 days in order to investigate the process performance and the sludge characteristics of treating methanolic wastewater (2 gCOD/L). The settings OLR of AnDHS reactor and of UASB reactor were 5.0 -10.0 kgCOD/m3/d and 5.0 kgCOD/m3/d. The average of the COD removal demonstrated by both reactors were over 90% throughout the experiment. From the results of methane producing activities and the PCR-DGGE method, most methanol was directly converted to methane in both reactors. The conversion was carried out by different methanogens: one closely related to Methanomethylovorans hollandica in the AnDHS retainted sludge and the other closely related to Methanosarcinaceae and Metanosarciales in the UASB retainted sludge.

  18. Digestion of cheese whey with anaerobic rotating biological contact reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale anaerobic rotating biological contact reactor receiving full strength cheese whey was studied over a range of hydraulic retention times from 11 to 5 days at 35 degrees C. Methane production rates ranging from 1.68 to 3.26 litres CH/sub 4//litre/day and a 76 to 93% reduction in chemical oxygen demand were achieved. At hydraulic retention times shorter than 5 days, steady-state operation could not be maintained for reactors receiving either full strength or diluted whey. A two-stage fermentation system was also studied; the results indicated that stable operation and treatment efficiency (89.5% COD removal) could be achieved.

  19. Anaerobic digestion of cheese whey using an upflow anaerobic sludge blanket reactor: Pt. 3; Sludge and substrate profiles

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.Q.; Lo, K.V.; Liao, P.H. (British Columbia Univ., Vancouver (CA). Dept. of Bio-Resource Engineering)

    1990-01-01

    Anaerobic treatment of cheese whey using a 17.5 litre upflow anaerobic sludge blanket reactor was investigated in the laboratory over a range of influent concentration from 4.5 to 38.1 g COD litre{sup -1} at a constant hydraulic retention time of 5 days. The results indicated that two sludge distribution regions, a sludge bed and a sludge blanket, as well as two distinct reaction phases, acidogenic and methanogenic, were formed. However, as the substrate loading was increased, the acidogenic region extended into the methanogenic region in the upper portion of the reactor until the whole region was acidogenic, leading to the failure of the reactor. (author).

  20. Acclimatization of anaerobic sludge for UASB-reactor start-up

    NARCIS (Netherlands)

    Zeeuw, de W.J.

    1984-01-01

    The Upflow Anaerobic Sludge Bed (UASB) reactor represents a high rate anaerobic wastewater treatment system. The majority of the active biomass in the reactor is present in the form of sludge granules which possess excellent settling properties.
    If no acclimatized (granular)

  1. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  2. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  3. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine.

    Science.gov (United States)

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-07-31

    Pseudomonas aeruginosa (PA) is a ubiquitous microbe. It can form recalcitrant biofilms in clinical and industrial settings. PA biofilms cause infections in patients. They also cause biocorrosion of medical implants. In this work, D-tyrosine (D-tyr) was investigated as an antimicrobial enhancer for ciprofloxacin (CIP) against a wild-type PA biofilm (strain PAO1) on C1018 carbon steel in a strictly anaerobic condition. Seven-day biofilm prevention test results demonstrated that 2 ppm (w/w) D-tyr enhanced 30 ppm CIP by achieving extra 2-log sessile cell reduction compared with the 30 ppm CIP alone treatment. The cocktail of 30 ppm CIP + 2 ppm D-tyr achieved similar efficacy as the 80 ppm CIP alone treatment in the biofilm prevention test. Results also indicated that the enhanced antimicrobial treatment reduced weight loss and pitting corrosion. In the 3-hour biofilm removal test, the cocktail of 80 ppm CIP + 5 ppm D-tyr achieved extra 1.5-log reduction in sessile cell count compared with the 80 ppm CIP alone treatment. The cocktail of 80 ppm CIP + 5 ppm D-tyr achieved better efficacy than the 150 ppm CIP alone treatment in the biofilm removal test.

  4. Treatment of pig excreta using an SCFBR anaerobic reactor

    Directory of Open Access Journals (Sweden)

    Kevin G. Molina T.

    1999-01-01

    Full Text Available A new anaerobic reactor called the Sludge Central Fixed Bed Reactor (SCFBR was built and evaluated for the treatment of liquid residue from the pig farms. The SCFBR has three main parts. The lower area is for sludge, the middle part consists of a concentrically packed zone and an upper area for the separation of solids, liquids and gases. The 28.51 SCFBR reactor was evaluated over a period of 210 days, using three organic loads of 0.548,0.421 and 1.239 g COD/1 day. Initially, the reactor was fed non-continuously using 10 and 10.7 days Hydraulic Retention Times (HRT. The HRT was later decreased to 3.87 days using continuous feeding. For the three 0.548, 0.421 and 1.239 g COD/1 day organic loads, Chemical Oxygen Demand (COD removal was 68%, 81% and 73% respectively and Volatile Solids (VS removal was 53.5%, 55.8% and 50.1% respectively. The SCFBR performed well, as shown by the removal efficiency and stability obtained. A microphotograph of sludge from the lower zone is presented, showing high Methanosaeta (Methanothrix presence.

  5. Granulation for Coking Wastewater Treatment in a Coupled Anaerobic-Aerobic Reactor

    Science.gov (United States)

    Dong, Chunjuan; Lv, Bingnan

    2018-06-01

    A coupled anaerobic-aerobic granular bio-film reactor was employed with two operation stages: Stage I, granular sludge was formed from digestion sludge using brewery wastewater, and Stage II, granular sludge was acclimatized using coking wastewater. Two oxygenation methods (i.e. A and B) were employed to acclimatize the granules. For method A, dissolved O 2 was supplied through a continuous oxygenation way of 800-15000ml-min-1 . And for method B, dissolved O2 was supplied of 800-15000ml-min-1 18-12 times at 20-60min intervals, 1h each time. The experimental results showed that granules could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules lack of nutrition, and it was the key factor for granules forming to add little loose granules. It took only about 6 months for granules acclimation using coking wastewater. Both oxygenation methods could run well when acclimatizing the granules. However, method A could have comparatively high and stable operation effect. The actual coking wastewater had distinct inhibition effect on the granules, but the supplement of some oxygen could promote the recovery of SMA, and NaHCO3 supplement could also weaken the inhibition effect of the CWW. Method A had more strongly activity recovery ability than method B.

  6. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    Science.gov (United States)

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    Science.gov (United States)

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All

  8. PERKEMBANGAN BIOFILM NITRIFIKASI DI FIXED BED REACTOR PADA SALINITAS TINGGI

    Directory of Open Access Journals (Sweden)

    Sudarno

    2012-03-01

    Full Text Available Development of nitrification biomass that is growing attached on carried material was examined by measuring its ammonium or nitrit oxidation rates. Porous ceramic rings (36 pieces were put into the fixed bed reactor (FBR . The fixed bed reactor that was operated continuously for more than 500 day was continued to be operated at a HRT of 1 day, a DO of above 5 mg L-1 and pH of 8. Ammonia concentration in the feeding was 50 mg NH4+-N L-1. At days 1, 5, 12, 20, 33 and 50, six porous ceramic rings were taken out and then ammonia and nitrite removal rate by biofilm in the ceramic rings was separately measured. The measurement of rates was done in small cylindrical glass reactors with initial concentration of ammonia and nitrite was 10 mg N L-1. Until 50 days of incubation AORs were always higher than NORs. Additionally, ammonia oxidizers attach or grow faster in the porous ceramic material than nitrite oxidizers.

  9. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    characteristics and lead to different reactor behaviour. A dynamic mathematical model has been developed for the anaerobic digestion of a glucose based synthetic wastewater in UASB reactors. Cellular automata (CA) theory has been applied to simulate the granule development process. The model takes...... into consideration that granule diameter and granule microbial composition are functions of the reactor operational parameters and is capable of predicting the UASB performance and the layer structure of the granules....

  10. Dimensioning of aerated submerged fixed bed biofilm reactors based on a mathematical biofilm model applied to petrochemical wastewater - the link between theory and practice

    OpenAIRE

    Trojanowicz, Karol; Wójcik, Wtodzimierz

    2014-01-01

    The description of a biofilm mathematical model application for dimensioning an aerated fixed bed biofilm reactor (ASFBBR) for petrochemical wastewater polishing is presented. A simple one-dimensional model of biofilm, developed by P Harremöes, was chosen for this purpose. The model was calibrated and verified under conditions of oil-refinery effluent. The results of ASFBBR dimensioning on the basis of the biofilm model were compared with the bioreactor dimensions determined by application of...

  11. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  12. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    Science.gov (United States)

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  14. Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition

    NARCIS (Netherlands)

    van der Waals, Marcelle J.; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than

  15. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  16. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB Digester system

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.

    2004-01-01

    The treatment of sewage at 15°C was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-Digester system. The latter consists of a UASB reactor complemented with a digester for mutual sewage treatment and sludge stabilisation. The UASB reactor was operated at a

  17. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    Microbial characteristics in the up-flow anaerobic sludge blanket reactor (UASB) of a full-scale high concentration cassava alcohol wastewater plant capable of anaerobic hydrocarbon removal were analyzed using cultivation-independent molecular methods. Forty-five bacterial operational taxonomic units (OTUs) and 24 ...

  18. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    International Nuclear Information System (INIS)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: ► Effective bioremoval of Cr(III) using bacterial biofilms. ► Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. ► Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 °C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 × 10 7 , 4.5 × 10 7 and 3.5 × 10 5 CFU/cm 2 ), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  19. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India); Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Effective bioremoval of Cr(III) using bacterial biofilms. Black-Right-Pointing-Pointer Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. Black-Right-Pointing-Pointer Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 Degree-Sign C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 Multiplication-Sign 10{sup 7}, 4.5 Multiplication-Sign 10{sup 7} and 3.5 Multiplication-Sign 10{sup 5} CFU/cm{sup 2}), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  20. Treatment of slaughterhouse wastewater in an upflow anaerobic sludge blanket reactor: Sludge characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2016-01-01

    Conclusion: Application of slaughterhouse wastewater as feed wastewater demonstrated that the slaughterhouse wastewater to be more effective in promoting the formation of anaerobic granules and granule size in UASB reactor.

  1. Treatment of a textile dye in the anaerobic baffled reactor | Bell ...

    African Journals Online (AJOL)

    scale anaerobic baffled reactor (ABR). The results of the physical decolorisation tests suggested significant decolorisation due to adsorption to the biomass; however, it is possible that the dye chromophores were reduced due to the low redox ...

  2. Characterization of the biomass of a hybrid anaerobic reactor (HAR with two types of support material during the treatment of the coffee wastewater

    Directory of Open Access Journals (Sweden)

    Vivian Galdino da Silva

    2013-06-01

    Full Text Available This study investigated the microbiology of a hybrid anaerobic reactor (HAR in the removal of pollutant loads. This reactor had the same physical structure of an UASB reactor, however with minifilters inside containing two types of support material: expanded clay and gravel. Two hydraulic retention times (HRT of 24h and 18h were evaluated at steady-state conditions, resulting in organic loading rates (OLR of 0.032 and 0.018 kgDBO5m-3d-1 and biological organic loading rates (BOLR of 0,0015 and 0.001 kgDBO5kgSVT- 1d¹, respectively. The decrease in concentration of organic matter in the influent resulted an endogenous state of the biomass in the reactor. The expanded clay was the best support material for biofilm attachment.

  3. Biofilms.

    Science.gov (United States)

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  4. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2014-09-01

    Full Text Available The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. The photo-reactors were designed to act on the liquid surface, as the lamp does not get into contact with the liquid. To increase the efficiency of UV radiation, photo-reactors were coated with aluminum foil. The lamp used in the reactors was germicidal fluorescent, with band wavelength of 230 nm, power of 30 Watts and manufactured by Techlux. In this research, the HRT with the highest removal efficiency was 0.063 days (90.6 minutes, even treating an effluent with veryhigh turbidity due to dissolved solids. It was concluded that the sterilization method using UV has proved to be an effective and appropriate process, among many other procedures.

  5. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  6. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    Science.gov (United States)

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  7. Microbiological and chemical approaches to degradation of mecoprop in a Moving-Bed Biofilm-Reactor

    DEFF Research Database (Denmark)

    Escola, Monica; Tue Kjærgaard Nielsen, Tue; Hansen, Lars Hestbjerg

    Micro-pollutants are ubiquitous in wastewater effluents. Therefore, in-situ treatments of highly polluted water or polishing treatments after classical wastewater treatment have been proposed as a solution. Moving Bed Biofilm-Reactors (MBBRs) are a recent-developed biofilm technology for wastewater...... treatment. MBBRs consist incontain biofilms which are grown on small (1-4 cm diameter) plastic chips that are suspended and mixed in a water tank. These systems have been recognized as robust and versatile. Besides, biofilm systems fdescribe acilitatedemonstrate a clear, but slow, biodegradation of some...... recalcitrant compounds. For all these reasonsThus, MBBRs are pointed as a valuable tool for the elimination of micro-pollutants. Several studies have focused in on describing degradation processes in biofilm by quantifying the loss of micro-pollutants over time. This can be helpful foraid optimizing...

  8. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  9. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  10. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  11. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  12. The efficiency of two anaerobic reactor components; Eficiencias de dos componentes de un reactor anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A. [Facultad de Ingenieria. Universidad de Yucatan (Mexico); Martinez Pereda, P.; Fernandez Villagomez, G. [Universidad Nacional Autonoma de Mexico. Division de Estudios de posgrado de la Facultad de Ingenieria. Mexico (Mexico)

    1997-09-01

    This study examined the behaviour of an anaerobic digester in treating pig farm sewage. The experimental model consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total capacity of 534 litres. The digester was installed on a pig farm and its performance under different operating conditions was determined, with hydraulic retention time (HRT) as the critical parameter for evaluating the anaerobic system`s efficiency. The results obtained during the experiment to establish the critical operating parameters are reported. The organic loads applied for a HRT of 1 day were 7.3 kg/m``3/day of total DQO and 3 kg/m``3/day of soluble DQO, following organic matter removal rates (as total DQO) of 36% and 49% respectively and removal rates (as soluble DQO) of 74% in the UASB and 8% in the sedimentator. The efficiency of the reactor as a whole at this HRT time was a removal rate of 74% of total DQO and 75% of soluble DQO. (Author) 25 refs.

  13. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  14. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best

  15. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-01-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits

  16. Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.; Cuevas, C.M.; Trupiano, A.P.; Guerra, R.G.; Gonzalez, S.M.; Zeeman, G.; Lettinga, G.

    2006-01-01

    The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical

  17. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors.

    Science.gov (United States)

    Rico, Carlos; Montes, Jesús A; Rico, José Luis

    2017-08-01

    Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...

  19. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach...

  20. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-06-05

    Jun 5, 2013 ... sludge instead of imported commercial anaerobic granulated sludge. Over the ... biogas, granulated anaerobic sludge, industrial wastewater. ... production of methane by methanogenic bacteria. Compared with other treatment processes, USAB ... effluent collector; 8, gas outlet; 9, gas collector; 10, side-arm ...

  2. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  3. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    International Nuclear Information System (INIS)

    Bassin, Joao P.; Dezotti, Marcia; Sant'Anna, Geraldo L.

    2011-01-01

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl - /L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  4. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Rao, N. Chandrasekhara; Sarma, P.N.

    2007-01-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  5. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)]. E-mail: vmohan_s@yahoo.com; Rao, N. Chandrasekhara [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India); Biotechnologies and Process Engineering for the Environment, Universite de Savoie Technolac, Chambery, 73376 Le Bourget Du Lac Cedex (France); Sarma, P.N. [Bioengineering and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2007-06-01

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio {approx}0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes.

  6. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  7. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  8. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  9. Sewage disposal using anaerobic membrane reactor. Kenkiseimaku reactor ni yoru gesui shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y. (Dic-Degremont Co. Ltd., Tokyo (Japan))

    1991-11-01

    Discussions were given on a small-scale sewage disposal of about bod 200 mg/l, for which no many examples of use have been hitherto available, using a system combining an anaerobic reactor and membrane modules. Experiments had been carried out from 1988 through 1990 as a part of the Aqua-Renaissance Project. The test equipment wza installed in the premises of the Chigasaki Coastal Research Facilities operated by the Ministry of International Trade and Industry, which used sewage flowing from the adjoining sewage treatment plant for the southern area of the Fujisawa City. The test facility consisted of a system comprising a pretreatment facility, SS decomposing reactor, fluid-bed reactor, separation membrane modules, nitrogen removing facility and micro-organism activity measurement. The test facility was constucted assuming a treatment of 10 m{sup 3} a day. The system was divided into a composite system, A system and B system to operate the system in simplified flows. As a result of comparing the composite system, A system and B system, it was found that B system can deal with wider range of disposal for a small-scale sewage treatment of about 1000 m{sup 3} a day. 6 refs., 14 figs., 3 tabs.

  10. Optimization of the purification process of wine lees through anaerobic filter reactors. Optimizacion del proceso de depuracion de vinazas de vino mediante reactores tipo filtro anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Nebot Sanz, E.; Romero Garcia, L.I.; Quiroga Alonso, J.M.; Sales Marquez, D. (Departamento de Ingenieria Quimica, Universidad de Cadiz, Cadiz (Spain))

    1994-01-01

    In this work, the optimization of thermophilic anaerobic process, using Anaerobic Filter technology was studied. Feed of the Anaerobic Filter was wine-distillery wastewaters. The experiments developed were carried out at lab-scale downflow anaerobic filter reactors. Reactors were filled with a high porous plastic media (Flocor-R). The media support entities have a high surface/volume ratio. Test were run to determine the maximum organic load attainable in the system for wich both, the depurative efficiency and the methane production were optimum. Likewise, the effect of organic load on the anaerobic filter performance were studied. (Author) 15 refs. (Author)

  11. Heavy metals-bioremediation by highly radioresistant Deinococcus radiodurans biofilm prospective use in nuclear reactor decontamination

    International Nuclear Information System (INIS)

    Shukla, Sudhir K.; Subba Rao, T.

    2015-01-01

    of heavy metals. The study signifies the potential use of D. radiodurans biofilms, which can tolerate >20 kGy in nuclear reactor decontamination process for the removal of active heavy metals. (author)

  12. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  13. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Kolpen, Mette; Appeldorff, Cecilie F.; Brandt, Sarah

    2016-01-01

    that production of OH˙may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (katA) and a colistin-resistant CF isolate cultured in microtiter plates...

  14. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  15. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  16. Start-up of intensive anaerobic wastewater methanization processes: impact of hydrodynamic conditions and of control strategy of organic load increase on biofilm formation and activity

    International Nuclear Information System (INIS)

    Cresson, Romain

    2006-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of anaerobic film development and maturation, in order to obtain a better control of their formation and this to decrease the duration of the bioreactor start-up phase. More precisely, the author analysed the impact of hydrodynamic parameters and of load rise strategy on biofilm characteristics (thickness, density, biodiversity) and on its activity (anaerobic breathing, decontamination kinetics) during its development. Thus, after a recall of the anaerobic digestion principle, the author presents processes, methods and techniques used during this research, reports and discusses the obtained results

  17. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis

    DEFF Research Database (Denmark)

    Cai, Weiwei; Han, Tingting; Guo, Zechong

    2016-01-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic...... fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study...

  18. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  19. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    Science.gov (United States)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant

  20. Anaerobic biodegradation of pentachlorophenol in a fixed-film reactor inoculated with polluted sediment from Santos-Sao Vicente Estuary, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Saia, F.T.; Damianovic, M.H.R.Z.; Cattony, E.B.M.; Brucha, G.; Foresti, E. [Sao Paulo Univ., Sao Carlos (Brazil). Lab. of Biological Processes; Vazoller, R.F. [Sao Paulo Univ., Sao Paulo (Brazil). Lab. of Environmental Microbiology

    2007-06-15

    This paper discusses the results of pentachlorophenol (PCP) anaerobic biodegradation in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor operated under methanogenic and halophylic conditions. The system was inoculated with autochthonous microorganisms taken from a site in the Santos-Sao Vicente Estuary (state of Sao Paulo, Brazil) severely contaminated with PCP, phenolic compounds, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy metals. The inoculum was previously enriched for methanogenesis activity by changing glucose concentrations and under halophylic condition. PCP was added to the HAIB reactor as sodium salt (NaPCP) at an initial concentration of 5 mg l{sup -1} and increased to 13, 15, and 21 mg l{sup -1}. Organic matter removal efficiency ranged from 77 to 100%. PCP removal efficiency was 100%. Denaturing gradient gel electrophoresis profile showed changes in the structure of Bacteria domain, which was associated with NaPCP and glucose amendments. The diversity of Archaea remained unaltered during the different phases. Scanning electron microscope examinations showed that cells morphologically resembling Methanosarcina and Methanosaeta predominated in the biofilm. These cells were detected by fluorescence in situ hybridization with the Methanosarcinales (MSMX860) specific probe. The results are of great importance in planning the estuary's restoration by using anaerobic technology and autochthonous microorganisms for bioremediation. (orig.)

  1. A Downflow Hanging Sponge (DHS) reactor for faecal coliform removal from an Upflow Anaerobic Sludge Bed (UASB) effluent

    NARCIS (Netherlands)

    Yaya Beas, R.E.; Kujawa-Roeleveld, K.; Lier, van J.B.; Zeeman, G.

    2015-01-01

    This research was conducted to study the faecal coliforms removal capacity of Downflow Hanging Sponge (DHS) reactors as a post-treatment for an Upflow Anaerobic Sludge Blanket (UASB) reactor. Three long-term continuous lab-scale DHS reactors i.e. a reactor with cube type sponges without

  2. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1

    NARCIS (Netherlands)

    Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.

    2004-01-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown

  3. Biodegradation of phenol using an anaerobic EGSB reactors

    International Nuclear Information System (INIS)

    Eguia, A.; Olvera, M. E.; Cerezo, R.; Kuppusamy, I.

    2009-01-01

    Phenol is a compound found naturally in domestic and industrial waste waters and should be removed since in high concentrations it proves to be fatal. The present investigation was undertaken to evaluate the anaerobic biodegradability of the phenol in the wastewaters supplementing sulphates in the form of CaSO 4 2 , to increment the COD t otal removal value. (Author)

  4. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process....... Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates....... Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed...

  5. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Yingnan; Tsukahara, Kenichiro; Sawayama, Shigeki

    2007-01-01

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 o C) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  6. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  7. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    Science.gov (United States)

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  8. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  9. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at

  10. Enrichment of Thermophilic Syntrophic Anaerobic Glutamate-Degrading Consortia using a Dialysis Membrane Reactor

    NARCIS (Netherlands)

    Plugge, C.M.; Stams, A.J.M.

    2002-01-01

    A dialysis cultivation system was used to enrich slow-growing moderately thermophilic anaerobic bacteria at high cell densities. Bicarbonate buffered mineral salts medium with 5 mM glutamate as the sole carbon and energy source was used and the incubation temperature was 55 degrees C. The reactor

  11. Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen form an anaerobic reactor fed with methanol

    NARCIS (Netherlands)

    Jiang, B.; Parshina, S.N.; Doesburg, van W.C.J.; Lomans, B.P.; Stams, A.J.M.

    2005-01-01

    A novel thermophilic, obligately methylotrophic, methanogenic archaeon, strain L2FAWT, was isolated from a thermophilic laboratory-scale upflow anaerobic sludge blanket reactor fed with methanol as the carbon and energy source. Cells of strain L2FAWT were non-motile, irregular cocci, 0·7¿1·5 µm in

  12. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D I [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R L [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  13. Hydrodynamic and biological study of a methanogenic bio-film process: the inverse turbulent bed reactor; Etude hydrodynamique et biologique d'un procede de methanisation a biofilm: le reacteur a lit turbule inverse

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, S.

    2001-11-01

    This work deals with the operation and start-up of a turbulent bed reactor with ExtendospheresO as a support, for the anaerobic treatment of a food process wastewater. An hydrodynamic study was carried out to characterise the liquid flow and mixing with this carrier of small size (147 {mu}m) and density (0.7). Phase behaviour during fluidizing gas injection can be described by an homogeneous liquid-solid pseudo-fluid whose apparent viscosity depends on the solid concentration. A biological study showed that the initial contact between cells and particles caused a physiological adaptation of microorganisms to the presence of solid after a transitory inhibition of methane production. The methane yield has been showed to be an interesting parameter to monitor bio-film formation and detachment. A low hydraulic retention time during the start-up period has been decisive to reduce the lag-period during carrier colonization. A robust continuous operation of the reactor has been obtained using a pH-controlled feeding. Gas velocity has been shown to be an important parameter to control cells concentration, density and durability of the bio-film. (author)

  14. The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Taparaviciute, L.; Khiewwijit, R.; Janoska, A.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An increasing number of wastewater treatment plants require post-treatment to remove residual nitrogen and phosphorus. This study investigated various harvesting regimes that would achieve consistent low effluent concentrations of nitrogen and phosphorus in a phototrophic biofilm reactor.

  15. Comparative performance of UASB and anaerobic hybrid reactors for the treatment of complex phenolic wastewater.

    Science.gov (United States)

    Ramakrishnan, Anushuya; Surampalli, Rao Y

    2012-11-01

    The performance of an upflow anaerobic sludge blanket (UASB) reactor and an anaerobic hybrid reactor (AHR) was investigated for the treatment of simulated coal wastewater containing toxic phenolics at different hydraulic retention times (0.75-0.33d). Fast start-up and granulation of biomass could be achieved in an AHR (45d) than UASB (58d) reactor. Reduction of HRT from 1.5 to 0.33d resulted in a decline in phenolics removal efficiency from 99% to 77% in AHR and 95% to 68% in UASB reactor respectively. AHR could withstand 2.5 times the selected phenolics loading compared to UASB reactor that could not withstand even 1.2 times the selected phenolics loading. Residence time distribution (RTD) study revealed a plug flow regime in the AHR and completely mixed regime in UASB reactor respectively. Energy economics of the reactors revealed that 12,159MJd(-1) more energy can be generated using AHR than UASB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  17. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  18. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols......-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking...

  19. Kinetic evaluation of an anaerobic fluidised-bed reactor treating slaughterhouse wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    An anaerobic fluidised-bed reactor for purification of slaughterhouse wastewater was modelled as a continuous-flow, completely-mixed homogeneous microbial system, with the feed COD as the limiting-substrate concentration. The average microbial residence time in the reactor was defined in terms of conventional sludge-retention-time. The experimental data obtained indicated that the Michaelis-Menten expression was applicable to a description of substrate utilisation (i.e. COD removal) in the anaerobic fluidised-bed system. The maximum substrate utilisation rate, k, and the Michaelis constant, K{sub s}, were determined to be 1.2/day and 0.039 g/l. The observed biomass yield in the reactor decreased with increasing sludge-retention-time. The specific methane production rate observed was a linear function of the specific substrate-utilisation rate. (Author)

  20. Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles.

    Science.gov (United States)

    Xu, Heng; Wang, Cuiping; Yan, Kun; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2016-09-01

    Syngas based co-digestion is not only more economically attractive than separate syngas methanation but also able to upgrade biogas and increase overall CH4 amount simultaneously. However, high H2 concentration in the syngas could inhibit syntrophic degradation of propionate, resulting in propionate accumulation and even failure of the co-digestion system. In an attempt to reduce propionate accumulation via enhancing both H2 interspecies transfer (HIT) and direct interspecies electron transfer (DIET) pathways, layered granule-based biofilms induced by conductive carbon felt particles (CCFP) was employed. The results showed that propionate accumulation was effectively reduced with influent COD load up to 7gL(-1)d(-1). Two types of granule-based biofilms, namely biofilm adhered to CCFP (B-CCFP) and granules formed by self-immobilization (B-SI) were formed in the reactor. Clostridium, Syntrophobacter, Methanospirillum were possibly involved in HIT and Clostridium, Geobacter, Anaerolineaceae, Methanosaeta in DIET, both of which might be responsible for the high-rate propionate degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    International Nuclear Information System (INIS)

    Sumantri, Indro; Purwanto,; Budiyono

    2015-01-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration

  2. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  3. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  4. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  5. Shock resistance characteristic of a spiral symmetry stream anaerobic bio-reactor.

    Science.gov (United States)

    Chen, Xiaoguang; Dai, Ruobin; Xiang, Xinyi; Li, Gang; Xu, Zhengqi; Hu, Tao; Abdelgadir, Awad

    2016-01-01

    The shock resistance characteristic (SRC) of an anaerobic bioreactor characterizes the ability of the anaerobic community in the reactor to withstand violent change in the living environment. In comparison with an upflow anaerobic sludge blanket reactor (UASBR), the SRC of a spiral symmetry stream anaerobic bio-reactor (SSSAB) was systematically investigated in terms of removal efficiency, adsorption property, settling ability, flocculability and fluctuations in these parameters. A quantitative assessment method for SRC was also developed. The results indicated that the SSSAB showed better SRC than the UASBR. The average value (m value) of chemical oxygen demand removal rates of the SSSAB was 86.0%. The contact angle of granules in the SSSAB present gradient distribution, that is the m value of contact angle increasing from bottom (84.5°) to top (93.9°). The m value of the density at the upper and lower sections of the SSSAB were 1.0611 g·cm(-3) and 1.0423 g·cm(-3), respectively. The surface mean diameter of granules in the SSSAB increased from 1.164 to 1.292 mm during operation. The absolute m value of zeta potential of granular sludge at the upper and lower sections of the SSSAB were 40.4 mV and 44.9 mV, respectively. The weighted mean coefficient variance (C̅V̅) value indicated SSSAB was more stable than the UASBR.

  6. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  7. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  8. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  9. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor.

    Science.gov (United States)

    Liu, Tao; Mao, Yan-Jun; Shi, Yan-Ping; Quan, Xie

    2017-03-01

    Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

  10. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F J; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  11. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  12. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  13. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  14. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E

    2010-07-01

    The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems

    International Nuclear Information System (INIS)

    Schmidt, Thomas; Pröter, Jürgen; Scholwin, Frank; Nelles, Michael

    2013-01-01

    In this study the anaerobic digestion of grain stillage in three different reactor systems (continuous stirred tank reactor, anaerobic sequencing batch reactor, fixed bed reactor) with and without immobilization of microorganisms was investigated to evaluate the performance during increase of the organic loading rate (OLR) from 1 to 10 g of volatile solids (VS) per liter reactor volume and day and decrease of the hydraulic retention time (HRT) from 40 to 6 days. No significant differences have been observed between the performances of the three examined reactor systems. The changes in OLR and HRT caused a reduction of the specific biogas production (SBP) of about 25% from about 650 to 550 L kg −1 of VS but would also diminish the necessary digester volume and investment costs of about 75% compared to the state of the art. -- Highlights: ► It was shown that without immobilization of microorganisms low HRT's are possible. ► No significant differences have been observed between different digester designs. ► Trace element supplementation is obligatory with grain stillage as substrate

  16. Multiscale hydrodynamic investigation to intensify the biogas production in upflow anaerobic reactors.

    Science.gov (United States)

    Jiang, Jiankai; Wu, Jing; Zhang, Jinbai; Poncin, Souhila; Li, Huai Z

    2014-03-01

    Hydrodynamics plays a main role for the performance of an anaerobic reactor involving three phases: wastewater, sludge granules and biogas bubbles. The present work was focused on an original approach to investigate the hydrodynamics at different scales and then to intensify the performance of such complex reactors. The experiments were carried out respectively in a 3D reactor at macroscale, a 2D reactor at mesoscale and a 1D anaerobic reactor at microscale. A Particle Image Velocimetry (PIV), a micro-PIV and a high-speed camera were employed to quantify the liquid flow fields and the relative motion between sludge granules and bubbles. Shear rates exerted on sludge granules were quantified from liquid flow fields. The optimal biogas production is obtained at mean shear rate varying from 28 to 48s(-1), which is controlled by two antagonistic mechanisms. The multiscale approach demonstrates pertinent mechanisms proper to each scale and allows a better understanding of such reactors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was

  18. Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. [Upflow Anaerobic Sludge Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; de Zeeuw, W.; Lettinga, G.

    1984-01-01

    This study was carried out to assess the feasibility of using the upflow anaerobic sludge blanket (UASB) process for the one-step anaerobic treatment of slaughterhouse waste, which contains approximately 50% insoluble suspended COD. Batch experiments, as well as continuous experiments, were conducted. The continuous experiments were carried out in a 30 cubic m UASB pilot-plant with digested sewage sludge from the municipal sewage treatment plant of Ede, The Netherlands (Ede-2 sludge), used as seed. Initially the UASB pilot-plant was operated at a temperature of 30 degrees C, but, 20 weeks after the start-up, the temperature was reduced to 20 degrees C, because application of the process at this lower temperature might be quite attractive for economic reasons. The process can be started up at an organic space load of 1 kg COD/m/sup 3/ day (sludge load, 0.11 kg/COD kg VSSday) and at a liquid detention time of 35 h at a process temperature of 30 degrees C. Once started up, the system can satisfactorily handle organic space loads up to 3.5 kg COD/m/sup 3/ day at a liquid detention time of 8 hours at temperatures as low as 20 degrees C. A treatment efficiency up to 70% on a COD tot basis, 90% on a COD sol basis and 95% on a BOD5 sol basis was smoothly approached. Temporary shock loads up to 7 kg COD/m/sup 3/ day during the daytime at a liquid detention time of 5 h can well be accommodated provided such a shock load is followed by a period of underloading, e.g. at night. The methane yield amounted to 0.28 NM/sup 3/ per kilogram of COD removed: the methane content of the biogas from the wastewater varied between 65 and 75%. 19 references.

  19. Modelling the competition of planktonic and sessile aerobic heterotrophs for complementary nutrients in biofilm reactor.

    Science.gov (United States)

    Lu, T; Saikaly, P E; Oerther, D B

    2007-01-01

    A comprehensive, simplified microbial biofilm model was developed to evaluate the impact of bioreactor operating parameters on changes in microbial population abundance. Biofilm simulations were conducted using three special cases: fully penetrated, internal mass transfer resistance and external mass transfer resistance. The results of model simulations showed that for certain operating conditions, competition for growth limiting nutrients generated oscillations in the abundance of planktonic and sessile microbial populations. These oscillations resulted in the violation of the competitive exclusion principle where the number of microbial populations was greater than the number of growth limiting nutrients. However, the operating conditions which impacted microbial community diversity were different for the three special cases. Comparing the results of model simulations for dispersed-growth, biofilms and bioflocs showed that oscillations and microbial community diversity were a function of competition as well as other key features of the ecosystem. The significance of the current study is that it is the first to examine competition as a mechanism for controlling microbial community diversity in biofilm reactors.

  20. The microbial community of a biofilm contact reactor for the treatment of winery wastewater.

    Science.gov (United States)

    de Beer, D M; Botes, M; Cloete, T E

    2018-02-01

    To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.

  1. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...... tolerant methanogenic culture as potential bioaugmentation inoculum in a continuous stirred tank reactor (CSTR) operating under “inhibited steady-state”, triggered by high ammonia levels (5 g NH4+-N L-1). The results of the current study established for the first time that bioaugmentation of an enriched...

  2. Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.

    Science.gov (United States)

    Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R

    2006-06-01

    Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.

  3. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  4. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...

  5. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor.

    Directory of Open Access Journals (Sweden)

    Kyohei Kuroda

    Full Text Available Upflow anaerobic sludge blanket (UASB reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a "macro"-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA-degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. "Candidatus Aminicenantes" and Methanosaeta are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach.

  6. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  7. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield and a hi......Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...

  8. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    Science.gov (United States)

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  9. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  10. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  11. Low-temperature anaerobic digestion of swine manure in a plug-flow reactor.

    Science.gov (United States)

    Massé, Daniel I; Gilbert, Yan; Saady, N M C; Liu, Charle

    2013-01-01

    A low-temperature (25 degrees C) anaerobic eight-compartment (PF01 to PF08) cascade reactor simulating a plug-flow reactor (PFR) treating pig manure was monitored for a year. The bioreactor was fed at an average loading rate of 2.4 +/- 0.2 g of total chemical oxygen demand (TCOD) per litre of reactor per day for a theoretical hydraulic retention time (HRT) of 67 +/- 7 d. An average of 79% of TCOD was removed from pig manure (converted into biogas and in sediments), whereas specific methane yields ranging from 397 to 482 NL CH4 kg(-1) VS (148.6 to 171.4 NL CH4 kg(-1) TCOD) were obtained. After 150 d, fluctuating performances of the process were observed, associated with solids accumulation in the upstream compartments, preventing the complete anaerobic digestion of swine manure in the compartments PF01 to PF04. Low-temperature anaerobic PFR represents an interesting alternative for the treatment of pig manure and recovery of green energy. Further investigations regarding a modified design, with better accumulating solids management, are needed to optimize the performance of this low-temperature PFR treating pig manure.

  12. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion.

    Science.gov (United States)

    Dreher, Teal M; Mott, Henry V; Lupo, Christopher D; Oswald, Aaron S; Clay, Sharon A; Stone, James J

    2012-12-01

    The effects of antimicrobial chlortetracycline (CTC) on the anaerobic digestion (AD) of swine manure slurry using anaerobic sequencing batch reactors (ASBRs) was investigated. Reactors were loaded with manure collected from pigs receiving CTC and no-antimicrobial amended diets at 2.5 g/L/d. The slurry was intermittently fed to four 9.5L lab-scale anaerobic sequencing batch reactors, two with no-antimicrobial manure, and two with CTC-amended manure, and four 28 day ASBR cycles were completed. The CTC concentration within the manure was 2 8 mg/L immediately after collection and 1.02 mg/L after dilution and 250 days of storage. CTC did not inhibit ASBR biogas production extent, however the volumetric composition of methane was significantly less (approximately 13% and 15% for cycles 1 and 2, respectively) than the no-antimicrobial through 56 d. CTC decreased soluble chemical oxygen demand and acetic acid utilization through 56 d, after which acclimation to CTC was apparent for the duration of the experiment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  14. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingxin [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan); Feng, Chuanping, E-mail: fengchuangping@gmail.com [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2011-09-15

    Highlights: {yields} Intensified biofilm-electrode reactor using cooperative denitrification is developed. {yields} IBER combines heterotrophic and autotrophic denitrification. {yields} CO{sub 2} formed by heterotrophic denitrification is used by autotrophic bacteria. {yields} Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. {yields} A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO{sub 3}{sup -}N50 mg L{sup -1}) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO{sub 3}{sup -}N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO{sub 2} produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  15. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  16. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.

    Science.gov (United States)

    Helness, H; Melin, E; Ulgenes, Y; Järvinen, P; Rasmussen, V; Odegaard, H

    2005-01-01

    Many cities around the world are looking for compact wastewater treatment alternatives since space for treatment plants is becoming scarce. In this paper development of a new compact, high-rate treatment concept with results from experiments in lab-scale and pilot-scale are presented. The idea behind the treatment concept is that coagulation/floc separation may be used to separate suspended and colloidal matter (resulting in > 70% organic matter removal in normal wastewater) while a high-rate biofilm process (based on Moving Bed biofilm reactors) may be used for removing low molecular weight, easily biodegradable, soluble organic matter. By using flotation for floc/biomass separation, the total residence time for a plant according to this concept will normally be treatment) and sufficient P-removal.

  17. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    Science.gov (United States)

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  18. Biodegradation of Methylene Blue Dye by Sequential Treatment Using Anaerobic Hybrid Reactor and Submerged Aerobic Fixed Film Bioreactor

    Science.gov (United States)

    Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika

    2017-12-01

    Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.

  19. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor.

    Science.gov (United States)

    Zhao, Yingxin; Feng, Chuanping; Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio

    2011-09-15

    An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO(3)(-)-N50 mg L(-1)) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO(3)(-)-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO(2) produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  1. Natural genetic transformation in Acinetobacter sp. BD413 Biofilms: introducing natural genetic transformation as a tool for bioenhancement of biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, L

    2002-07-01

    This study focussed on the localization and quantification of natural genetic transformation using neutral and disadvantageous genes in monoculture biofilms to investigate gene transfer and expression of the transferred genes in the absence of a selective advantage. Data obtained by this investigation were regarded as initial steps for evaluating the applicability of adding catabolic traits into the indigenous bacterial community of biofilm reactors by in situ natural genetic transformation. Because Acinetobacter spp. strains are readily found in waste water treatment plants and because Acinetobacter sp. BD413 possesses a high effective level of competence, natural genetic transformation was investigated in monoculture Acinetobacter sp. BD413 biofilms. The genes used for transformation encoded for the green fluorescent protein (GFP) and its variants. Monitoring of transformation events were performed with the use of automated confocal laser scanning microscopy (CLSM) and semi automated digital image processing and analysis. (orig.)

  2. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    International Nuclear Information System (INIS)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping; Liao, Li

    2014-01-01

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH 4 –N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production

  3. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  4. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  5. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  6. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  7. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.; Melo, L.F. [University of Minho, Braga (Portugal). Dept. Bioengineering; Lazarova, V.; Manem, J. [Centre of International Research for Water and Environment (CIRSEE), Lyonnaise des Eaux, Le Pecq (France)

    1998-12-01

    The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5-2 gO{sub 2}/gN-NH{sub 4}{sup +} for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k{sub L}a) determined in the laboratory scale reactor was 0.017 s{sup -1} for a superficial air velocity of 0.02 m s{sup -1}, and the one determined in the pilot scale reactor was 0.040 s{sup -1} for a superficial air velocity of 0.031 m s{sup -1}. The k{sub L}a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm. (orig.) With 7 figs., 5 tabs., 24 refs.

  8. Feasibility of an Anaerobic Baffled Reactor (ABR In Treating Starch Industry Wastewater

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2007-03-01

    Full Text Available The anaerobic baffled reactor (ABR includes a mixed anaerobic culture separated into compartments and a novel process with a series of vertical baffles at each compartment. It dose not require granulation for its operation, resulting in shorter start-up time. In this study, the feasibility of the ABR process was investigated for the treatment of wheat flour starch wastewater. Simple gravity settling was used to remove suspended solids from the starch wastewater and used as feed. Start-up of a reactor (13.5L with five compartments using a diluted feed of approximately 4500 mg/L chemical oxygen demand (COD was accomplished in about 9 weeks using seed sludge from the anaerobic digester of a municipal wastewater treatment plant. The reactor with a hydraulic retention time (HRT of 72 h at 35°C and an initial organic loading rate (OLR of 1.2 kgCOD/m3.d showed a removal efficiency of 61% COD. The best reactor performance was observed with an organic loading rate of 2.5 kgCOD/m3.d (or hydraulic retention time of 2.45 d when a COD conversion of 67% was achieved. The main advantage of using an ABR comes from its compartmentalized structure. The first compartment of an ABR may act as a buffer zone to all toxic and inhibitory materials in the feed and, thus, allows the later compartments to be loaded with a relatively harmless, more uniform, and mostly acidified influent. In this respect, the later compartments would be more likely to support active populations of the relatively sensitive methanogenic bacteria.

  9. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  10. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.

    Science.gov (United States)

    von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko

    2003-03-01

    A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor.

  11. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials

    Directory of Open Access Journals (Sweden)

    G. P. Sancinetti

    2012-03-01

    Full Text Available The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC. The reactors were operated with a hydraulic retention time (HRT of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

  12. Responses of biofilm characteristics to variations in temperature and NH4(+)-N loading in a moving-bed biofilm reactor treating micro-polluted raw water.

    Science.gov (United States)

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Wu, Min; Xing, Meiyan; Yang, Jian; Gao, Naiyun; Yin, Daqiang

    2013-03-01

    A pilot-scale moving-bed biofilm reactor (MBBR) for biological treatment of micro-polluted raw water was operated over 400days to investigate the responses of biofilm characteristics and nitrification performance to variations in temperature and NH4(+)-N loading. The mean removal efficiency of NH4(+)-N in the MBBR reached 71.4±26.9%, and batch experiments were performed to study nitrification kinetics for better process understanding. Seven physical-chemical parameters, including volatile solids (VS), polysaccharides (PS) and phospholipids (PL) increased firstly, and then rapidly decreased with increasing temperature and NH4(+)-N loading, and properly characterized the attached biomass during biofilm development and detachment in the MBBR. The biofilm compositions were described by six ratios, e.g., PS/VS and PL/VS ratios showed different variation trends, indicating different responses of PS and PL to the changes in temperature and NH4(+)-N loading. Furthermore, fluorescent in situ hybridization (FISH) analysis revealed that increased NH4(+)-N loadings caused an enrichment of the nitrifying biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates

    Institute of Scientific and Technical Information of China (English)

    Soon-An Ong; Eiichi Toorisaka; Makoto Hirata; Tadashi Hano

    2012-01-01

    We investigated the decolorization of Orange Ⅱ with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR).The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange H-containing wastewater enhanced color removal from 27% to 81% to 89%,respectively.In the absence of co-substrates and nutrients,more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange Ⅱ.The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR,which was important for the reduction of the Orange Ⅱ azo bond that caused decolorization.The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.

  14. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...... the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed...

  15. The anaerobic and anoxic treatment of wastewater in a rotating disc reactor

    International Nuclear Information System (INIS)

    Breithaupt, T.; Thelitz, A.; Zhang Yicheng; Wiesmann, U.

    1994-01-01

    A new rotation disc reactor for anaerobic and anoxic treatment of wastewater is presented. The discs are covered with a structured textile material for immobilization of bacteria. In contrast to the wellknown rotating disc contactor the discs are completely flooded. A slow rotation causes a flow into the gaps which are formed by the parallel discs and increases the mass transfer rate. For a mean residence time of 45 min and a revolution of 38 min -1 the distribution of residence times corresponds with that of a cascade with four or five steps. This has a favourable effect on mean reaction rate if the reaction is limitted by substrate concentration. For the anaerobic treatment of a wastewater produced by the dewatering of sewage sludge (10 000 mg/l COD) and for the denitrification of a synthetic wastewater (1000 mg/l NO 3 -N) high removal rates could be obtained resulting from a high concentration of immobilized bacteria. (orig.) [de

  16. Optimization and control of a novel upflow anaerobic solid-state (UASS) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mumme, J.; Linke, B. [Leibniz Inst. for Agricultural Engineering, Potsdam (Germany); Tolle, R. [Humboldt Univ., Berlin (Germany). Dept. of Biosystems Technology

    2010-07-01

    Optimization and control strategies for a newly developed upflow anaerobic solid-state (UASS) reactor equipped with liquor recirculation were investigated. The UASS reactor converts solid biomass into biogas while the particulate organic matter (POM) ascends in the form of a solid-state bed (SSB) driven by the adherence of self-produced micro gas bubbles. Performance data and technical characteristics were obtained from a technical scale semi-automatic 400 L UASS reactor that operated for 117 days with maize silage under thermophilic conditions at 55 degrees C. The process liquor was continuously recirculated through separate methanogenic reactors in order to prevent an accumulation of volatile fatty acids. Emphasis was placed on determining the gas and metabolite production. The volatile solids (VS) loading rate was fixed at 5 g per litre per day. The methane production rate of the UASS reactor stabilized between 1.5 and 2.0 L per litre per day. The average volatile solids (VS) methane yield of the maize silage was 380 L per kg. The liquor exchange was found to play an important role in the performance and stability of the digestion process. Although low exchange rates can cause process failure by acidification, high exchange rates have the risk of clogging inside the SSB. It was concluded that the UASS reactor is a viable solution for the digestion of various organic matter.

  17. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    Gregor Drago Zupančič

    2017-01-01

    Full Text Available Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day, and with a maximum achieved organic loading rate of 13.6 kg/(m3·day in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD inserted, and total COD removal efficiencies of over 90 % were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8 % (by volume. By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50 %.

  18. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  19. Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques

    Science.gov (United States)

    Fouad, Moharram; Bhargava, Renu

    2018-05-01

    A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.

  20. Removal of triazine herbicides from aqueous systems by a biofilm reactor continuously or intermittently operated.

    Science.gov (United States)

    Sánchez-Sánchez, R; Ahuatzi-Chacón, D; Galíndez-Mayer, J; Ruiz-Ordaz, N; Salmerón-Alcocer, A

    2013-10-15

    The impact of pesticide movement via overland flow or tile drainage water on the quality of receiving water bodies has been a serious concern in the last decades; thus, for remediation of water contaminated with herbicides, bioreaction systems designed to retain biomass have been proposed. In this context, the aim of this study was to evaluate the atrazine and terbutryn biodegradation capacity of a microbial consortium, immobilized in a biofilm reactor (PBR), packed with fragments of porous volcanic stone. The microbial consortium, constituted by four predominant bacterial strains, was used to degrade a commercial formulation of atrazine and terbutryn in the biofilm reactor, intermittently or continuously operated at volumetric loading rates ranging from 44 to 306 mg L(-1) d(-1). The complete removal of both herbicides was achieved in both systems; however, higher volumetric removal rates were obtained in the continuous system. It was demonstrated that the adjuvants of the commercial formulation of the herbicide significantly enhanced the removal of atrazine and terbutryn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Simultaneous denitrification and anaerobic digestion in GRAnular Bed Baffled Reactor (GRABBR)

    International Nuclear Information System (INIS)

    Baloch, M.I.; Akunna, J.C.

    2002-01-01

    This study elucidates the characteristics of compartmentalised anaerobic system seeded with UASB granules, called GRAanular Bed Baffled Reactor (GRABBR), for combined denitrification and anaerobic digestion processes. The reactor was used for the treatment of glucose enriched synthetic wastewater with various nitrate concentrations. The study was carried out with a 10 litre working volume GRABBR divided into 5 equal compartments operating at organic loading rate (OLR) of 20 kg COD/m 3 .d with a hydraulic retention time (HRT) of 6 hours. At these conditions, phase separation (between acidogenesis and methanogenesis) was created in the system and then the effect of varying nitrate concentrations (50-200 mg/l NO 3 -N) in the acidogenic zone (i.e. first compartment) was studied. Due to its unique compartmentalised design, denitrification was the major pathway for nitrate reduction with no noticeable dissimilatory nitrate reduction to ammonia (DNRA). More than 84% of all added nitrates were removed in the acidogenic zone, showing that acidogens possess high denitrifying capabilities. The denitrification rate increased with increase in nitrate concentration, with maximum value estimated as 175 mg NO 3 -N/l.h at influent nitrate concentration of 200 mg/l NO 3 -N in the acidogenic zone. Although nitrate addition resulted in lower methane production, COD removal efficiencies improved by up to 8% when compared with the reactor performance before nitrate addition. Furthermore, the alkalinity produced during denitrification improved the stability of the system by controlling the decrease in pH resulting from acidogenesis. The system encouraged simultaneous denitrification and anaerobic digestion in a single unit by accommodating denitrifiers in the early compartments and allowing methanogenesis to flourish in the downstream compartments of the system, thus minimising inhibition to methane producing bacteria by nitrates. (author)

  2. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mal, Joyabrata, E-mail: joyabrata2006@gmail.com [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Nancharaiah, Yarlagadda V. [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu (India); Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai 400094 (India); Maheshwari, Neeraj [CNRS UMR 7338, BMBI University de Technologie Compiegne, 60200 Compiegne (France); Hullebusch, Eric D. van [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454, Marne-la-Vallée (France); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere (Finland)

    2017-04-05

    Highlights: • Tellurite bioreduction coupled to recovery of biogenic Te(0) nanocrystals. • First report on continuous tellurite removal in a UASB reactor. • Biogenic Te(0) was mainly associated with loosely-bound EPS of granular sludge. • Repeated exposure to tellurite caused compositional changes in the EPS matrix. - Abstract: Continuous removal of tellurite (TeO{sub 3}{sup 2−}) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30 °C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6 g COD L{sup −1} d{sup −1}. After establishing efficient and stable COD removal, the reactor was fed with 10 mg TeO{sub 3}{sup 2−} L{sup −1} for 42 d before increasing the influent concentration to 20 mg TeO{sub 3}{sup 2−} L{sup −1}. Tellurite removal (98 and 92%, respectively, from 10 and 20 mg Te L{sup −1}) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.

  3. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor

    International Nuclear Information System (INIS)

    Mal, Joyabrata; Nancharaiah, Yarlagadda V.; Maheshwari, Neeraj; Hullebusch, Eric D. van; Lens, Piet N.L.

    2017-01-01

    Highlights: • Tellurite bioreduction coupled to recovery of biogenic Te(0) nanocrystals. • First report on continuous tellurite removal in a UASB reactor. • Biogenic Te(0) was mainly associated with loosely-bound EPS of granular sludge. • Repeated exposure to tellurite caused compositional changes in the EPS matrix. - Abstract: Continuous removal of tellurite (TeO 3 2− ) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30 °C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6 g COD L −1 d −1 . After establishing efficient and stable COD removal, the reactor was fed with 10 mg TeO 3 2− L −1 for 42 d before increasing the influent concentration to 20 mg TeO 3 2− L −1 . Tellurite removal (98 and 92%, respectively, from 10 and 20 mg Te L −1 ) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.

  4. Effect of temperature on two-phase anaerobic reactors treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    Simone Beux

    2007-11-01

    Full Text Available The effectiveness of the anaerobic treatment of effluent from a swine and bovine slaughterhouse was assessed in two sets of two-phase anaerobic digesters, operated with or without temperature control. Set A, consisting of an acidogenic reactor with recirculation and an upflow biological filter as the methanogenic phase, was operated at room temperature, while set B, consisting of an acidogenic reactor without recirculation and an upflow biological filter as the methanogenic phase, was maintained at 32°C. The methanogenic reactors showed COD (Chemical Demand of Oxygen removal above 60% for HRT (Hydraulic Retention Time values of 20, 15, 10, 8, 6, 4, and 2 days. When the HRT value in those reactors was changed to 1 day, the COD percentage removal decreased to 50%. The temperature variations did not have harmful effects on the performance of reactors in set A.Avaliou-se a eficiência do tratamento anaeróbio de efluente de matadouro de suínos e bovinos em dois conjuntos de biodigestores anaeróbios de duas fases, operados com e sem controle de temperatura. O conjunto A, formado por um reator acidogênico com recirculação e um filtro biológico de fluxo ascendente, foi operado a temperatura ambiente e o conjunto B, formado por um reator de fluxo ascendente e um filtro biológico de fluxo ascendente, foi mantido a 32°C. Os reatores metanogênicos apresentaram remoção de DQO acima de 60 % para os TRHs de 20, 15, 10, oito, seis, quatro e dois dias. Quando o TRH destes reatores foi mudado para um dia observou-se uma queda da porcentagem de remoção de DQO para 50 %. As variações de temperatura parecem não ter prejudicado o desempenho dos reatores do conjunto A.

  5. The fluidized bed reactor in the anaerobic treatment of wine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Converti, A; Zilli, M; Del Borghi, M; Ferraiolo, G [Genoa Univ. (Italy). Inst. of Chemical Engineering Science and Technology

    1990-02-13

    The aim of the present work is the performance evaluation of a fluidized bed reactor in the anaerobic treatment of a wastewater deriving from the washing operations of the wine industry. The results are in agreement with the ones obtained using a mixture of municipal and food processing waste waters containing high organic contents. A comparison with other liquid wastes shows that no subtrate inhibition phenomenon occurs with the above substrates. A saturation kinetic model is also presented for describing the dependence of the COD removal rate on the organic loading rate. (orig.).

  6. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    lysis. ECP contents of 41 to 92 mg · g−1 volatile suspended solids of granules were found depending on the type of granular sludge examined. The content of polysaccharides, protein and lipids in the extracted ECP was quantified. Furthermore, the different methyl esters of the lipids were determined...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  7. Anaerobic up flow fluidized bed reactor performance as a primary treatment unit in domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    M.A. Moharram

    2016-04-01

    The efficiencies of Total nitrogen removal ranged between 2.23 and 10.83% with an apparent decrease during the low temperature high rate stages. Nitrite removal was in the range of (23.08–77% with up to the 2 mg/L in the effluent water when obtaining high organic loading and warm temperature. These results demonstrated that the domestic wastewater could be anaerobically treated in a fluidized bed UASB reactor with very low HRT reaching 2.5 h.

  8. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  9. Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor.

    Science.gov (United States)

    Hatamoto, Masashi; Yamamoto, Hiroki; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2010-03-01

    Anaerobic wastewater treatment plants discharge dissolved methane, which is usually not recovered. To prevent emission of methane, which is a greenhouse gas, we utilized an encapsulated down-flow hanging sponge reactor as a post-treatment to biologically oxidize dissolved methane. Within 3 weeks after reactor start-up, methane removal efficiency of up to 95% was achieved with a methane removal rate of 0.8 kg COD m(-3) day(-1) at an HRT of 2 h. After increasing the methane-loading rate, the maximum methane removal rate reached 2.2 kg COD m(-3) day(-1) at an HRT of 0.5 h. On the other hand, only about 10% of influent ammonium was oxidized to nitrate during the first period, but as airflow was increased to 2.5 L day(-1), nitrification efficiency increased to approximately 70%. However, the ammonia oxidation rate then decreased with an increase in the methane-loading rate. These results indicate that methane oxidation occurred preferentially over ammonium oxidation in the reactor. Cloning of the 16S rRNA and pmoA genes as well as phylogenetic and T-RFLP analyses revealed that type I methanotrophs were the dominant methane oxidizers, whereas type II methanotrophs were detected only in minor portion of the reactor. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Stability of an anaerobic single reactor filled with dolomitic limestone with increased organic load of sugarcane

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ribas Döll

    2017-12-01

    Full Text Available The anaerobic single-stage reactor was evaluated to treat vinasse and to evaluate its stability. This bench reactor was filled with dolomitic limestone with a horizontal plug flow to simulate a drainage channel. The experiment lasted 129 days while the reactor was submitted to different applied organic concentrations (chronologically applied: 3.0; 5.0; 12.0; 9.0 and 7.5 g L-1 as COD, chemical oxygen demand. COD removals were 50% and 9% with 3.0 and 7.5 g L-1, respectively. With 12.0 g L-1, reactor efficiency increased to 33%, with an abrupt drop to 3% on the 84th day. Therefore, in order to avoid reactor collapse, a remedial measure was necessary. The system remained in batch without feeding for 19 days (from the 85th to the 104th day with 9.0 g L-1. Afterwards, it was observed that the performance of the system tended to stabilize, reaching 47% with 7.5 g L-1 in the 118th day. At the end of the experiment, the potassium content of the wastewater decreased from 800 mg L-1 to 594 mg L-1 (on an average 25% and calcium and magnesium increased within the reactor liquor. The dissolution of the limestone inside the liquor reactor probably caused this result. After the treatment with limestone, the average pH value of the effluent increased from 4.9 to over 6.0 in all organic concentrations. It could be concluded that the reactor filled with dolomitic limestone in these operational conditions assured a low efficiency in COD removal, potassium reduction, increasing values of pH, alkalinity, calcium and magnesium. The instability was observed when there was increase in organic load to 12 g L-1 with subsequent recovery.

  11. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  12. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  13. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  14. Two Stage Anaerobic Reactor Design and Treatment To Produce Biogas From Mixed Liquor of Vegetable Waste

    Science.gov (United States)

    Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.

    2018-01-01

    Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.

  15. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    Directory of Open Access Journals (Sweden)

    Anna Doloman

    2017-01-01

    Full Text Available Anaerobic digestion (AD is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment.

  16. ANAEROBIC EFFLUENT POST-TREATMENT APPLYING PHOTOLYTIC REACTOR PRIOR TO AGRICULTURAL USE IN BRAZILIAN'S SEMIARID REGION

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2013-01-01

    Full Text Available This work applied a Compact System consisting of a Reactor Up flow Sludge Blanket (UASB in conjunction with s Submerged Anaerobic Filter containing polyurethane cubes as support media, followed by a Solar Photolytic R eactor. The compact anaerobic system produced a clarified effluent with low concentration of organic matter, especially dissolved (20 mg .VSS/L, and free of helminthes eggs. These low concentrations of suspended solids facilitated photolytic disinfection process producing a good quality final effluent, of which 90% of the samples were thoroughly disinfected, while the other fraction showed concentration of Thermotolerant Coliform (TTC at or below 100 CFU/100 mL and high concentrations of nutrients (48 mg . NH 4 + -N/L and 6,4mg PO 4 -3 - P/L enabling the use of irrigation for productive purposes. Another advantages of the compact anaerobic treatment consisted of low sludge production, and relatively simple operation without energy consumption. These advantages results in a significant reduction in operational costs of sewage treatment, and, indeed, an outlet for developing countries in tropical climate.

  17. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    Science.gov (United States)

    Doloman, Anna; Soboh, Yousef; Walters, Andrew J.; Sims, Ronald C.

    2017-01-01

    Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment. PMID:29259629

  18. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  19. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and

  20. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    Science.gov (United States)

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  1. Antibiotic Fermentation Broth Treatment by a pilot upflow anaerobic sludge bed reactor and kinetic modeling.

    Science.gov (United States)

    Coskun, T; Kabuk, H A; Varinca, K B; Debik, E; Durak, I; Kavurt, C

    2012-10-01

    In this study, an upflow anaerobic sludge blanket (UASB) mesophilic reactor was used to remove antibiotic fermentation broth wastewater. The hydraulic retention time was held constant at 13.3 days. The volumetric organic loading value increased from 0.33 to 7.43 kg(COD)m(-3)d(-1) using antibiotic fermentation broth wastewater gradually diluted with various ratios of domestic wastewater. A COD removal efficiency of 95.7% was obtained with a maximum yield of 3,700 L d(-1) methane gas production. The results of the study were interpreted using the modified Stover-Kincannon, first-order, substrate mass balance and Van der Meer and Heertjes kinetic models. The obtained kinetic coefficients showed that antibiotic fermentation broth wastewater can be successfully treated using a UASB reactor while taking COD removal and methane production into account. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Hydrogen production from anaerobic treatment of vinasse using a UASB reactor

    International Nuclear Information System (INIS)

    Gonzalez Ugalde, Cesar Antonio

    2012-01-01

    Production of hydrogen in a UASB reactor is assessed in the laboratory through anaerobic fermentation of vinasses. Physico-chemical characterization of vinasse was made, through which it was determined that the same has an acid pH, high concentration of dissolved solids, low amount of total suspended solids and high organic load; likewise, potassium, nitrogen, calcium and iron contained within of the macro and micronutrients with higher concentrations, while copper and zinc are found in low concentrations. All these features have made the vinasse a substrate feasible for hydrogen fermentative production. The sulfate was found as the second compound in higher concentration, which can promote the growth of sulfate-reducing bacteria, which consume H 2 and generate hydrogen sulfide (H 2 S). Heat treatment was conducted to the anaerobic sludges in a water bath at 100 degrees for 30 minutes, which was achieved inhibit the growth of methanogenic bacteria. Likewise, total nonviable or viable matter growth curves were generated, with which it was determined that the exponential growth phase of bacteria in mixed culture thermally pretreated was found between 20 and 120 h. A CSTR reactor was used to decrease the time of formation of Hydrogen Producing Granules (GPH), which has resulted successful. Granules with an average size of 1,28 mm long and 1,18 mm wide after 7 days of operation were obtained. Under mesophilic conditions, operating pH of about 5,50 and substrate concentration of 20,000 mg COD/L, the hydrogen quantity produced in the UASB reactor was influenced by Hydraulic retention time (HRT). HRT for 12 hours was obtained a maximum of 2,31 mL/h of H 2 (0,789 mL/h/L reaccion ) whereas for HRT of 6 hours the maximum amount of hydrogen obtained has been 12,0 mL/h (13,4 mL/h/L reaction ); however, without possibility to assert that the average values of these variables has been statistically different. After 45 days of operation GHP were achieved with an average size of 0

  3. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eyluel University, Buca Kaynaklar Campus, Tinaztepe, 35160 Izmir (Turkey); Demirden, Pinar, E-mail: pinar.demirden@kozagold.com [Environmental Engineer, Koza Gold Company, Environmental Department, Ovacik, Bergama Izmir (Turkey)

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  4. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-01-01

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  5. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    Science.gov (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  6. Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    International Nuclear Information System (INIS)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2016-01-01

    The effects of CeO 2 nanoparticles (CeO 2 NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO 2 NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce 3+ and Ce 4+ , which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO 2 NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO 2 NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce 3+ . - Highlights: • CeO 2 NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  7. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    Science.gov (United States)

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  8. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Andrade Lima

    2005-09-01

    Full Text Available This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.Este trabalho apresenta um estudo morfológico de microrganismos aderidos à espuma de poliuretano em reator anaeróbio horizontal de leito fixo (RAHLF, aplicado ao tratamento de esgoto sanitário. O processo de colonização do suporte pela biomassa anaeróbia e as características morfológicas das células aderidas foram monitorados durante o período de partida do reator. Bacilos e cocos não fluorescentes foram predominantes no processo de aderência direta à espuma de poliuretano. Aumento na diversidade biológica foi observado a partir da 10ª semana de operação do reator, com predominância de bacilos, cocos e arqueas metanogênicas semelhantes a Methanosaeta. Problemas hidrodinâmicos, tais como formação de

  9. Experimental study of hydrodynamic and operation start of a baffled anaerobic reactor treating sewage

    Directory of Open Access Journals (Sweden)

    Ana Carolina Silveira Perico

    2009-12-01

    Full Text Available It is important to provide individual sanitation systems for sewage peri-urban communities or rural areas to minimize impacts on the environment and human health caused by sewage discharge in natura into water resources. In this context, the anaerobic digestion of effluent has been one of the main considered technologies due to easy implementation, material minimization and reduction in waste production. The objective of this work was to study a Baffled Anaerobic Reactor (BAR including its hydrodynamic characteristics, percentile of inoculum to be applied and reactor operation start. It was concluded that the flow is dispersed with 3.84% of dead spaces and that 20% of the cow manure provided best results; however, due to the high fiber content of the manure, its use is not recommended as inoculum. The BAR system, composed of four chambers, presented good performance for sewage treatment of a rural community in terms of organic substance removal (COD, turbidity and solids meeting effluent disposal standards of these parameters considering the Federal and Minas Gerais State legislation, in Brazil, even in a transient phase of operation, at temperatures below 20°C. However, the effluents from the BAR can’t be released into water bodies without other parameters such as nitrogen, phosphorus, fecal coliforms, and others are investigated to be conforming to those standards.

  10. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    Science.gov (United States)

    Miguez, Carlos B.; Shen, Chun F.; Bourque, Denis; Guiot, Serge R.; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants. PMID:9925557

  11. Single-stage anaerobic treatment of non-settled slaughterhouse waste water using a fixed-bed reactor. Einstufige anaerobe Behandlung von nicht abgesetztem Schlachthofabwasser in einem Festbettreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, W.P. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Technologie); Meyer-Jacob, H.

    1992-01-01

    Along with the determination of the degree of acidification during an intermediate storage of the crude slaughterhouse wastewater and deriving a single-stage or two-stage process, the start-up behaviour of the fixed-bed reactor, its degradation rates in upflow and downflow operation is descirbed. With regard to a subsequent biological denitrification the COD/N ratio of anaerobically treated wastewater is given. (orig.).

  12. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-10-17

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts.

  14. Optimization of a horizontal-flow biofilm reactor for the removal of methane at low temperatures.

    Science.gov (United States)

    Clifford, E; Kennelly, C; Walsh, R; Gerrity, S; Reilly, E O; Collins, G

    2012-10-01

    Three pilot-scale, horizontal-flow biofilm reactors (HFBRs 1-3) were used to treat methane (CH4)-contaminated air to assess the potential of this technology to manage emissions from agricultural activities, waste and wastewater treatment facilities, and landfills. The study was conducted over two phases (Phase 1, lasting 90 days and Phase 2, lasting 45 days). The reactors were operated at 10 degrees C (typical of ambient air and wastewater temperatures in northern Europe), and were simultaneously dosed with CH4-contaminated air and a synthetic wastewater (SWW). The influent loading rates to the reactors were 8.6 g CH4/m3/hr (4.3 g CH4/m2 TPSA/hr; where TPSA is top plan surface area). Despite the low operating temperatures, an overall average removal of 4.63 g CH4/m3/day was observed during Phase 2. The maximum removal efficiency (RE) for the trial was 88%. Potential (maximum) rates of methane oxidation were measured and indicated that biofilm samples taken from various regions in the HFBRs had mostly equal CH4 removal potential. In situ activity rates were dependent on which part of the reactor samples were obtained. The results indicate the potential of the HFBR, a simple and robust technology, to biologically treat CH4 emissions. The results of this study indicate that the HFBR technology could be effectively applied to the reduction of greenhouse gas emissions from wastewater treatment plants and agricultural facilities at lower temperatures common to northern Europe. This could reduce the carbon footprint of waste treatment and agricultural livestock facilities. Activity tests indicate that methanotrophic communities can be supported at these temperatures. Furthermore, these data can lead to improved reactor design and optimization by allowing conditions to be engineered to allow for improved removal rates, particularly at lower temperatures. The technology is simple to construct and operate, and with some optimization of the liquid phase to improve mass

  15. Scale-up and design optimisation of anaerobic immobilised cell reactors for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Melidis, P.; Georgiou, D.; Aivasidis, A. [Department of Environmental Engineering, Demokritos University of Thrace, Xanthi (Greece)

    2003-07-01

    The legitimacy of model transfer in process technology has to date found no noteworthy influence on the design and dimensioning of immobilized cell bioreactors for anaerobic wastewater treatment. The latter still takes place solely on the basis of purely empirical rather than scientific considerations. However, it is possible to carry out design dimensioning on the basis of model theory considerations founded on process technology, as the examples of the design of fixed-bed-loop reactors and that of fluidized-bed reactors demonstrate. Together with the spatial separation of fermentative acid formation and methanogenesis (through a two-stage biology with two different microbial populations), a multi-stage design of methanisation through cascade connection of fixed-bed-loop reactors (for the narrowing of the residence time distribution) has proved particularly advantageous when applied to highly loaded and complex constituted wastewater. Technical reaction investigations on appropriately configured variants showed that for a COD conversion of 80-90% (wastewater from the foodstuffs industry), the reactor volume of the two-stage methanisation cascade could be reduced by 40-50% compared to that of the simply performed methanisation stage. (author)

  16. Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor

    Science.gov (United States)

    Pratiwi, R.; Notodarmojo, S.; Helmy, Q.

    2018-01-01

    The desizing and dyeing processes in the textile industries produces wastewaster containing high concentration of organic matter and colour, so it needs treatment before released to environment. In this research, removal of azo dye (Remazol Black 5/RB 5) and organic as COD was performed using Moving Bed Biofilm Reactor (MBBR). MBBR is biological treatment process with attached growth media system that can increase removal of organic matter in textile wastewater. The effectiveness of ozonation as pre-treatment process to increase the removal efficiency in MBBR was studied. The results showed that in MBBR batch system with detention time of 1 hour, pre-treatment with ozonation prior to MBBR process able to increase the colour removal efficiency of up to 86.74%. While on the reactor without ozone pre-treatment, the colour removal efficiency of up to 68.6% was achieved. From the continuous reactor experiments found that both colour and COD removal efficiency depends on time detention of RB-5 dyes in the system. The higher of detention time, the higher of colour and COD removal efficiency. It was found that optimum removal of colour and COD was achieved in 24 hour detention time with its efficiency of 96.9% and 89.13%, respectively.

  17. Effect of Molasses on Phenol Removal Rate Using Pilot-Scale Anaerobic Reactors

    Directory of Open Access Journals (Sweden)

    Abdollah Dargahi

    2014-10-01

    Full Text Available With the growing industrial and social development through time, toxic substances such as phenol and its derivatives are increasingly released into the environment from a variety of sources. The present study aims to investigate the effects of molasses on phenol removal. For this purpose, five pilot scale batch reactors (5 Erlenmeyer flasks equipped with the air and gas diffusion control system were used in the laboratory scale. The volumes of the reactors were kept constant with a final volume content of 550 ml in each reactor. Phenol with a fixed concentration of 100 mg/l was tested under anaerobic conditions in each reactor in contact with beet molasses (organic matter used as the auxiliary substrate with COD concentrations of 10000, 5000, 2000, 1000, and 500 mg/l over 5 retention times (10, 20, 30, 40, and 50 days. All the sampling and testing procedures wer e performed according to the standard methods. The results showed that in all the five experimental reactors, increasing retention time was accompanied by a continuous decline in initial phenol and COD concentrations. However, for each retention time, increasing COD concentration led to a decrease in COD removal efficiency such that increasing the initial COD concentration up to a certain level was associated with an increase in chemical oxygen demanding materials, but beyond this range, COD removal decreased slowly. It was also found that phenol removal increased with increasing retention time but it was not proportional to the concentration of the biodegradable COD. After 50 days of contact with 1000 mg/l of the supporting substrate, phenol removal in the reactors reached 98.62%. Another finding of the study was the fact that the highest phenol removal was achieved when 1000-2000 mg/l of biodegradable COD was used over 50 days of retention time

  18. Treatment of chemical-pharmaceutical wastewater in packed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nacheva, P.M.; Pena-Loera, B.; Moralez-Guzman, F. [Mexican Institute for Water Technology, Jiutepec (Mexico)

    2006-07-01

    Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23-31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80-98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m{sup -3} d{sup -1}. The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17kg m{sup -3} d{sup -1} and higher than 80% with loads up to 26 kg m{sup -3} d{sup -1}. Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m{sup -3} d{sup -1}. The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m{sup -3} d{sup -1} in the GAC-reactor and at loads higher than 3.6 kg m{sup -3} d{sup -1} in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m{sup 33}CH4/kg CODremoved.

  19. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    Science.gov (United States)

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  20. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  1. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors.

    Science.gov (United States)

    Alvarino, T; Suarez, S; Lema, J M; Omil, F

    2014-08-15

    The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biological Phosphorus Release and Uptake Under Alternating Anaerobic and Anoxic Conditions In a Fixed-Film Reactor

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens; Strube, Rune

    1994-01-01

    Biological phosphorus removal was investigated in a fixed-film reactor with alternating anaerobic and anoxic conditions. The tests showed that biological phosphorus removal can be obtained in a fixed-film reactor with nitrate as oxidising agent. In the anaerobic period, 0.52 mg of PO4-P...... was released per mg of acetate taken up on an average. In the anoxic period, 2.0 mg of PO4-P was taken up per mg of NO3-N reduced on an average. The relationship between potassium released and phosphate released in the anaerobic phase was determined to be 0.37 mg K/mg P, while the relationship between...

  3. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  4. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  5. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  6. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  7. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater.

    Science.gov (United States)

    Christgen, Beate; Yang, Ying; Ahammad, S Z; Li, Bing; Rodriquez, D Catalina; Zhang, Tong; Graham, David W

    2015-02-17

    Effective domestic wastewater treatment is among our primary defenses against the dissemination of infectious waterborne disease. However, reducing the amount of energy used in treatment processes has become essential for the future. One low-energy treatment option is anaerobic-aerobic sequence (AAS) bioreactors, which use an anaerobic pretreatment step (e.g., anaerobic hybrid reactors) to reduce carbon levels, followed by some form of aerobic treatment. Although AAS is common in warm climates, it is not known how its compares to other treatment options relative to disease transmission, including its influence on antibiotic resistance (AR) in treated effluents. Here, we used metagenomic approaches to contrast the fate of antibiotic-resistant genes (ARG) in anaerobic, aerobic, and AAS bioreactors treating domestic wastewater. Five reactor configurations were monitored for 6 months, and treatment performance, energy use, and ARG abundance and diversity were compared in influents and effluents. AAS and aerobic reactors were superior to anaerobic units in reducing ARG-like sequence abundances, with effluent ARG levels of 29, 34, and 74 ppm (198 ppm influent), respectively. AAS and aerobic systems especially reduced aminoglycoside, tetracycline, and β-lactam ARG levels relative to anaerobic units, although 63 persistent ARG subtypes were detected in effluents from all systems (of 234 assessed). Sulfonamide and chloramphenicol ARG levels were largely unaffected by treatment, whereas a broad shift from target-specific ARGs to ARGs associated with multi-drug resistance was seen across influents and effluents. AAS reactors show promise for future applications because they can reduce more ARGs for less energy (32% less energy here), but all three treatment options have limitations and need further study.

  8. Adsorption effect on the dynamic response of a biochemical reaction in a biofilm reactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Inoue, Y.; Auresenia, J.; Hirata, A. [Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2003-09-01

    The dynamic behavior of a completely mixed, three-phase, fluidized bed biofilm reactor treating simulated domestic wastewater was studied with step changes in inlet concentration. It was found that the response curves showed second order characteristics, i.e., as the inlet concentration was increased, the outlet concentration also increased, reached a peak value and then decreased until it leveled to a new steady-state value corresponding to the new inlet concentration level. Nonlinear regression analysis was performed using Monod-type rate equations with and without an adsorption term. As a result, the theoretical curve of the kinetic model that incorporates the adsorption term has best fit to the actual response in most cases. Thus, it was concluded that the adsorption of a substrate onto the biofilm and carrier particles has a significant effect on the dynamic response in biofilm processes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  9. Continuous reduction of tellurite to recoverable tellurium nanoparticles using an upflow anaerobic sludge bed (UASB) reactor.

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Sesma-Martin, Juan; Sierra-Alvarez, Reyes; Field, Jim A

    2017-01-01

    According to the U.S. Department of Energy and the European Union, tellurium is a critical element needed for energy and defense technology. Thus methods are needed to recover tellurium from waste streams. The objectives of this study was to determine the feasibility of utilizing upflow anaerobic sludge bed (UASB) reactors to convert toxic tellurite (Te IV ) oxyanions to non-toxic insoluble elemental tellurium (Te 0 ) nanoparticles (NP) that are amendable to separation from aqueous effluents. The reactors were supplied with ethanol as the electron donating substrate to promote the biological reduction of Te IV . One reactor was additionally amended with the redox mediating flavonoid compound, riboflavin (RF), with the goal of enhancing the bioreduction of Te IV . Its performance was compared to a control reactor lacking RF. The continuous formation of Te 0 NPs using the UASB reactors was found to be feasible and remarkably improved by the addition of RF. The presence of this flavonoid was previously shown to enhance the conversion rate of Te IV by approximately 11-fold. In this study, we demonstrated that this was associated with the added benefit of reducing the toxic impact of Te IV towards the methanogenic consortium in the UASB and thus enabled a 4.7-fold higher conversion rate of the chemical oxygen demand. Taken as a whole, this work demonstrates the potential of a methanogenic granular sludge to be applied as a bioreactor technology producing recoverable Te 0 NPs in a continuous fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

    Directory of Open Access Journals (Sweden)

    Seung-Gun Won

    2015-06-01

    Full Text Available Milking center wastewater (MCW has a relatively low ratio of carbon to nitrogen (C/N ratio, which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR of 0.14, 0.28, 0.43, and 0.58 kg m−3 d−1 and aeration rate of 0.06, 0.12, and 0.24 m3 h−1 were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of 0.45 kg m−3 d−1 was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of 0.12 m3 h−1 showed the best performance of NH4-N removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ~0.5 mg DO L−1. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

  11. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  13. Treatment of acid mine drainage with anaerobic solid-substrate reactors

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J.

    1999-10-01

    Anaerobic solid-substrate reactors were used in a laboratory study of acid mine drainage treatment. Parallel systems were run continuously for 23 months, both containing a solid substrate of 2:1 (weight) cow manure and sawdust. One system had cheese whey added with the mine drainage to provide an additional electron donor source to simulate sulfate-reducing bacteria activity. Effluent pH from the reactor with whey addition was relatively constant at 6.5. Effluent pH from the reactor without whey addition dropped over time from 6.7 to approximately 5.5. Whey addition increased effluent alkalinity [550 to 700 mg/L as calcium carbonate (CaCO{sub 3}) versus 50 to 300 mg/L as CaCO{sub 3}] and sulfate removal (98 to 80% versus 60 to 40%). Sulfate removal rate with whey addition decreased over time from 250 to 120 mmol/m{sup 3}{center{underscore}dot}d, whereas it decreased from 250 to 40 mmol/m{sup 3}{center{underscore}dot}d without whey addition. Whey addition increased removal of dissolved iron, dissolved manganese, and dissolved zinc in the second part of the experiment. Copper and cadmium removals were greater than 99%, and arsenic removal was 84% without whey addition and 89% with whey addition. Effluent sulfide concentrations were approximately 1 order of magnitude greater with whey addition. A 63-day period of excessive loading permanently decreased treatment efficiency without whey addition.

  14. Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge

    Science.gov (United States)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik; Ahring, Birgitte K.

    1998-01-01

    Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 μM PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules. PMID:9572963

  15. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption

  16. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  17. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.

    Science.gov (United States)

    Hage, J C; Van Houten, R T; Tramper, J; Hartmans, S

    2004-06-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 micro M. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.

  18. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  19. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  20. Development and validation of a microfluidic reactor for biofilm monitoring via optical methods

    International Nuclear Information System (INIS)

    Meyer, Mariana T; Roy, Varnika; Bentley, William E; Ghodssi, Reza

    2011-01-01

    We present the design, fabrication, and verification of a microfluidic platform for optical monitoring of bacterial biofilms. Biofilm formation characterizes the majority of infections caused by bacteria that are developing increased resistance to traditional antibiotic treatment, necessitating the development of reliable tools not only for study of biofilm growth, but also for in situ examination of the response to applied stimuli. The presented platform was used to continuously and non-invasively observe the dependence of Escherichia coli biofilm formation on bacterial signaling by monitoring the change in biofilm optical density over the growth period. Results were corroborated by measurement of biofilm morphological properties via confocal microscopy, and statistical analysis was applied to verify the repeatability of observed optical and morphological differences in the biofilms formed. The presented platform will be used to characterize biofilm formation and response in drug discovery applications

  1. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  2. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    International Nuclear Information System (INIS)

    Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F.

    2014-01-01

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v up , biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion

  3. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino, T., E-mail: teresa.alvarino@usc.es; Suarez, S., E-mail: Sonia.suarez@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es

    2014-08-15

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v{sub up}, biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion.

  4. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  5. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    KAUST Repository

    Gonzalez-Gil, Graciela

    2015-09-22

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates.

  6. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    KAUST Repository

    Gonzalez-Gil, Graciela; Thomas, Ludivine; Emwas, Abdul-Hamid M.; Lens, Piet N. L.; Saikaly, Pascal

    2015-01-01

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates.

  7. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    OpenAIRE

    Trojanowicz Karol; Wojcik Wlodzimierz

    2016-01-01

    Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of par...

  8. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  9. Interactive effect of trivalent iron on activated sludge digestion and biofilm structure in attached growth reactor of waste tire rubber.

    Science.gov (United States)

    Sharafat, Iqra; Saeed, Dania Khalid; Yasmin, Sumera; Imran, Asma; Zafar, Zargona; Hameed, Abdul; Ali, Naeem

    2018-01-01

    Waste tire rubber (WTR) has been introduced as an alternative, novel media for biofilm development in several experimental systems including attached growth bioreactors. In this context, four laboratory-scale static batch bioreactors containing WTR as a support material for biofilm development were run under anoxic condition for 90 days using waste activated sludge as an inoculum under the influence of different concentrations (2.5, 6.5, 8.5 mg/l) of trivalent ferric iron (Fe 3+ ). The data revealed that activated sludge with a Fe 3+ concentration of 8.5 mg/l supported the maximum bacterial biomass [4.73E + 10 CFU/ml cm 2 ]; besides, it removed 38% more Chemical oxygen demand compared to Fe 3+ free condition from the reactor. Biochemical testing and 16S rDNA phylogenetic analysis of WTR-derived biofilm communities further suggested the role of varying concentrations of Fe 3+ on the density and diversity of members of Enterobacteria(ceae), ammonium (AOB) and nitrite oxidizing bacteria. Furthermore, Fluorescent in situ hybridization with phylogenetic oligonucleotide probes and confocal laser scanning microscopy of WTR biofilms indicated a significant increase in density of eubacteria (3.00E + 01 to.05E + 02 cells/cm 2 ) and beta proteobacteria (8.10E + 01 to 1.42E + 02 cells/cm 2 ), respectively, with an increase in Fe 3+ concentration in the reactors, whereas, the cell density of gamma proteobacteria in biofilms decreased.

  10. Immobilization of biogenic Pd(0) in anaerobic granular sludge for the biotransformation of recalcitrant halogenated pollutants in UASB reactors.

    Science.gov (United States)

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2015-10-19

    The capacity of anaerobic granular sludge to reduce Pd(II), using ethanol as electron donor, in an upflow anaerobic sludge blanket (UASB) reactor was demonstrated. Results confirmed complete reduction of Pd(II) and immobilization as Pd(0) in the granular sludge. The Pd-enriched sludge was further evaluated regarding biotransformation of two recalcitrant halogenated pollutants: 3-chloro-nitrobenzene (3-CNB) and iopromide (IOP) in batch and continuous operation in UASB reactors. The superior removal capacity of the Pd-enriched biomass when compared with the control (not exposed to Pd) was demonstrated in both cases. Results revealed 80 % of IOP removal efficiency after 100 h of incubation in batch experiments performed with Pd-enriched biomass whereas only 28 % of removal efficiency was achieved in incubations with biomass lacking Pd. The UASB reactor operated with the Pd-enriched biomass achieved 81 ± 9.5 % removal efficiency of IOP and only 61 ± 8.3 % occurred in the control reactor lacking Pd. Regarding 3-CNB, it was demonstrated that biogenic Pd(0) promoted both nitro-reduction and dehalogenation resulting in the complete conversion of 3-CNB to aniline while in the control experiment only nitro-reduction was documented. The complete biotransformation pathway of both contaminants was proposed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis evidencing a higher degree of nitro-reduction and dehalogenation of both contaminants in the experiments with Pd-enriched anaerobic sludge as compared with the control. A biotechnological process is proposed to recover Pd(II) from industrial streams and to immobilize it in anaerobic granular sludge. The Pd-enriched biomass is also proposed as a biocatalyst to achieve the biotransformation of recalcitrant compounds in UASB reactors.

  11. Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor

    International Nuclear Information System (INIS)

    Wang Zhijun; Wang Wei; Zhang Xihui; Zhang Guangming

    2009-01-01

    Laboratory experiments were conducted to investigate the performance of an anaerobic sequencing batch reactor (ASBR) for the digestion of thermally hydrolyzed sewage sludge. Both mesophilic ASBR and continuous-flow stirred tank reactors (CSTR) were evaluated with an equivalent loading rate of 2.71 kg COD/m 3 day at 20-day hydraulic retention time (HRT) and 5.42 kg COD/m 3 day at 10-day HRT. The average total chemical oxygen demand (TCOD) removals of the ASBR at the 20-day and 10-day HRT were 67.71% and 61.66%, respectively. These were 12.38% and 27.92% higher than those obtained by CSTR. As a result, the average daily gas production of ASBR was 15% higher than that of the CSTR at 20-day HRT, and 31% higher than that of the CSTR at 10-day HRT. Solids in thermally hydrolyzed sludge accumulated within ASBR were able to reach a high steady state with solid content of 65-80 g/L. This resulted in a relatively high solid retention time (SRT) of 34-40 days in the ASBR at 10-day HRT. However, too much solid accumulation resulted in the unsteadiness of the ASBR, making regular discharge of digested sludge from the bottom of the ASBR necessary to keep the reactor stable. The evolution of the gas production, soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFAs) in an operation cycle of ASBR also showed that the ASBR was steady and feasible for the treatment of thermally hydrolyzed sludge

  12. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bekmezci, Ozan K.; Ucar, Deniz [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Kaksonen, Anna H. [CSIRO Land and Water, Underwood Avenue, Floreat, WA 6014 (Australia); Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey)

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L{sup -1}) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32 {sup o}C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L{sup -1}, COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD.

  13. Role of Fusobacterium nucleatum and Coaggregation in Anaerobe Survival in Planktonic and Biofilm Oral Microbial Communities during Aeration

    OpenAIRE

    Bradshaw, David J.; Marsh, Philip D.; Watson, G. Keith; Allison, Clive

    1998-01-01

    Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligate...

  14. Development of a dynamic model of a Upflow Anaerobic Sludge Blanket (UASB) reactor

    International Nuclear Information System (INIS)

    Peters, D.A.; Al-Zybaidy, S.; Bridge, J.

    2002-01-01

    'Full text:' The Upflow Anaerobic Sludge Blanket Reactor has been modeled in this paper using a semi-empirical correlation. The main objective of the modeling exercise was to examine the dynamics (hydrodynamics and transformation) of critical variables that are important for the reactor process design, performance and operation. These factors include some microbiological variables such as soluble (as COD) and biodegradable organics (as BOD), suspended solids (SS), and biomass concentration (as VSS). The hydraulic variables such as the upflow velocity of the liquid and by extension, upflow velocity of the solids and the volumetric fractions of the liquid (voidage) are also given considerations. The dynamics of external mass transfer of organics and inorganics and the transformation reactions within the reactor are modeled by five non-linear partial differential equations (PDE's), which define dependent variables in one-dimensional temporal and spatial planes, one integrand equation for the gas rate of flow and six algebraic equations that define the reactor performance (conversion rates and removal efficiencies). The PDE's are solved using backward finite differencing method. The discretized equations are computed using a simulation program that was written in the Borland C++ programming language. The model defines the dynamics of the UASB in a simplistic way but which, nonetheless, can be useful for engineering designs where the interest is in qualitative results and not quantitative outcomes. The simulation was validated with data derived from the operation of a pilot model UASB. The pilot model was operated using raw domestic wastewater as substrate, which had an average total COD of 492 mg/L, soluble COD of 172 mg/L, BOD of 220 mg/L, suspended solid of 0.235 g/L and a high sulphate content of 108 mg/L. The average nutrient concentrations were, NH3-N 20 mg/L and PO4 15 mg/L. The UASB was operated at HRT's of 10.968, 8.326 and 5.51 hours The average removal

  15. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    Science.gov (United States)

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  16. A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae.

    Science.gov (United States)

    Zune, Q; Delepierre, A; Gofflot, S; Bauwens, J; Twizere, J C; Punt, P J; Francis, F; Toye, D; Bawin, T; Delvigne, F

    2015-08-01

    Fungal biofilm is known to promote the excretion of secondary metabolites in accordance with solid-state-related physiological mechanisms. This work is based on the comparative analysis of classical submerged fermentation with a fungal biofilm reactor for the production of a Gla::green fluorescent protein (GFP) fusion protein by Aspergillus oryzae. The biofilm reactor comprises a metal structured packing allowing the attachment of the fungal biomass. Since the production of the target protein is under the control of the promoter glaB, specifically induced in solid-state fermentation, the biofilm mode of culture is expected to enhance the global productivity. Although production of the target protein was enhanced by using the biofilm mode of culture, we also found that fusion protein production is also significant when the submerged mode of culture is used. This result is related to high shear stress leading to biomass autolysis and leakage of intracellular fusion protein into the extracellular medium. Moreover, 2-D gel electrophoresis highlights the preservation of fusion protein integrity produced in biofilm conditions. Two fungal biofilm reactor designs were then investigated further, i.e. with full immersion of the packing or with medium recirculation on the packing, and the scale-up potentialities were evaluated. In this context, it has been shown that full immersion of the metal packing in the liquid medium during cultivation allows for a uniform colonization of the packing by the fungal biomass and leads to a better quality of the fusion protein.

  17. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    Science.gov (United States)

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Stabilization of fine fraction from landfill mining in anaerobic and aerobic laboratory leach bed reactors.

    Science.gov (United States)

    Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A

    2015-11-01

    Fine fraction (FF, mined landfill was stabilized in four laboratory-scale leach bed reactors (LBR) over 180 days. The aim was to study feasibility of biotechnological methods to treat FF and if further stabilization of FF is possible. Four different stabilization methods were compared and their effects upon quality of FF were evaluated. Also during the stabilization experiment, leachate quality as well as gas composition and quantity were analyzed. The methods studied included three anaerobic LBRs (one without water addition, one with water addition, and one with leachate recirculation) and one aerobic LBR (with water addition). During the experiment, the most methane was produced in anaerobic LBR without water addition (18.0 L CH4/kg VS), while water addition and leachate recirculation depressed methane production slightly, to 16.1 and 16.4 L CH4/kg VS, respectively. Organic matter was also removed via the leachate and was measured as chemical oxygen demand (COD). Calculated removal of organic matter in gas and leachate was highest in LBR with water addition (59 g COD/kg VS), compared with LBR without water addition or with leachate recirculation (51 g COD/kg VS). Concentrations of COD, ammonium nitrogen and anions in leachate decreased during the experiment, indicating washout mechanism caused by water additions. Aeration increased sulfate and nitrate concentrations in leachate due to oxidized sulfide and ammonium. Molecular weight distributions of leachates showed that all the size categories decreased, especially low molecular weight compounds, which were reduced the most. Aerobic stabilization resulted in the lowest final VS/TS (13.1%), lowest respiration activity (0.9-1.2 mg O2/g TS), and lowest methane production after treatment (0.0-0.8 L CH4/kg VS), with 29% of VS being removed from FF. Anaerobic stabilization methods also reduced organic matter by 9-20% compared with the initial amount. Stabilization reduced the quantity of soluble nitrogen in FF and did

  19. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  20. Pengolahan Lindi Menggunakan Moving Bed Biofilm Reactor dengan Proses Anaerobik-Aerobik-Anoksik

    Directory of Open Access Journals (Sweden)

    Nuriflalail Rio Jusepa

    2017-01-01

    Full Text Available Lindi mengandung konsentrasi organik, Total Kjeldahl Nitrogen, amonium, nitrit dan nitrat yang tinggi sehingga lindi yang tidak diolah dapat mencemari lingkungan. Pengolahan biologis dengan sistem fluidized attached growth seperti Moving Bed Biofilm Reactor (MBBR dapat digunakan untuk menurunkan senyawa organik dan senyawa nitrogen. Konsentrasi organik dan nitrogen yang tinggi pada lindi dapat diolah dengan mengatur proses aerobik-anaerobik-anoksik di dalam MBBR. Kapasitas pengolahan MBBR yang digunakan sebesar 10 L dan media Kaldness (K1 sebanyak 2 L. MBBR dioperasikan dengan sistem batch, dengan kondisi aerobik yang berasal dari aerator dan pompa submersible, kondisi anaerobik berasal dari pompa submersible saja, dan kondisi anoksik yang berasal dari pompa submersible dan aerator. Hasil penelitian ini menunjukkan bahwa MBBR dapat digunakan untuk menurunkan senyawa nitrogen dan senyawa organik. Efisiensi penyisihan optimum senyawa organik sebesar 87% pada proses anaerobik baik pada sistem fluidized attached growth maupun suspended growth. Efisiensi penyisihan optimum senyawa nitrogen sebesar 72% pada proses anoksik baik pada sistem fluidized attached growth maupun suspended growth.

  1. Treatment of Rural Wastewater Using a Spiral Fiber Based Salinity-Persistent Sequencing Batch Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    Ying-Xin Zhao

    2017-12-01

    Full Text Available Differing from municipal wastewater, rural wastewater in salinization areas is characterized with arbitrary discharge and high concentration of salt, COD, nitrogen and phosphorus, which would cause severe deterioration of rivers and lakes. To overcome the limits of traditional biological processes, a spiral fiber based salinity-persistent Sequencing Biofilm Batch Reactor (SBBR was developed and investigated with synthetic rural wastewater (COD = 500 mg/L, NH4+-N = 50 mg/L, TP = 6 mg/L under different salinity (0.0–10.0 g/L of NaCl. Results indicated that a quick start-up could be achieved in 15 days, along with sufficient biomass up to 7275 mg/L. During operating period, the removal of COD, NH4+-N, TN was almost not disturbed by salt varying from 0.0 to 10.0 g/L with stable efficiency reaching 92%, 82% and 80%, respectively. Although TP could be removed at high efficiency of 90% in low salinity conditions (from 0.0 to 5.0 g/L of NaCl, it was seriously inhibited due to nitrite accumulation and reduction of Phosphorus Accumulating Organisms (PAOs after addition of 10.0 g/L of salt. The behavior proposed in this study will provide theoretical foundation and guidance for application of SBBR in saline rural wastewater treatment.

  2. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process

    International Nuclear Information System (INIS)

    Lai Peng; Zhao Huazhang; Zeng Ming; Ni Jinren

    2009-01-01

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications

  3. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor.

    Science.gov (United States)

    André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T

    2016-02-01

    The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    OpenAIRE

    Lima,Cláudio Antonio Andrade; Ribeiro,Rogers; Foresti,Eugenio; Zaiat,Marcelo

    2005-01-01

    This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the p...

  5. Upflow anaerobic sludge reactors for the treatment of combined industrial effluent in subtropical conditions: a comparison between UASB and UASF reactors

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.; Masood, T.; Yaqub, A.

    2005-01-01

    The performance of anaerobic biological process is heavily process conditions dependent. In this study, an attempt has been made to investigate the influence of process conditions like temperature, sludge age and hydraulic retention time (HRT) on the efficiency of an upflow anaerobic sludge blanket (UASB) reactor and upflow anaerobic sludge filter (UASF) to treat combined industrial wastewater. Reactors were operated at easing ambient temperatures (38, 30, 20 and 14 deg. C) and correspondingly increasing sludge ages (60, 90, 120 and 150 days). At temperature 38 deg. C and sludge age of 60 days, UASF showed better performance than VASE reactor. This mainly due to the enhanced filtration through well-graded sand filter and fairly good biological activity in UASF. At this stage, lack of sludge granulation in VASE reactor resulted in poor biological activity; hence, relatively poor performance. At temperatures 30 and 20 deg. C with sludge ages of 90 and 120 days, respectively, UASB gave better results than UASF. The reason was rapid biological degradation due to proper sludge granulation and favorable temperature. At temperature 14 deg. C, a substantial decrease in the efficiency of UASB reactor as compared to the UASF was evident. Drop in efficiency was because of inhabitation of methanogenic bacteria and liquidation of sludge granules. These factors mounted to a decrease in biological activity, stoppage as production and an increase in total suspended solids (TSS) in the effluent. The influence of hydraulic retention time (ranging between 3-12 hours at an increment of 3 hours) on the removal efficiency of both UASB and UASF was not significant. At favorable temperature (20 to 30 deg. C) and sludge age (90 to 120 days) UASB reactor appeared to be more efficient than UASF.(author)

  6. Immobilization patterns and dynamics of acetate-utilizing methanogens in sterile granular sludge from upflow anaerobic sludge blanket (UASB) reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After......, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps, The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor....

  7. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fea upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After......, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps, The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor....

  8. Efficiency comparison of different biofilm carriers concerning the P- and N-elimination in a fluidized bed system under alternating anaerobic/anoxic conditions; Leistungsvergleich verschiedener Traegermaterialien - hinsichtlich ihrer Eignung zur N- und P-Elimination in einem alternierend anaerob/anoxisch betriebenen Wirbelbettverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, D.; Hegemann, W. [Techn. Univ. Berlin, Fachgebiet Siedlungswasserwirtschaft, Berlin (Germany)

    2001-09-01

    Objective of the depicted research was the selection of a carrier material that is suitable for the the use in the Sorption-Denitrification-P-Removal-process (S-DN-P-process) realized in a Fluidized-Bed-Biofilm-Reactor. The S-DN-P-process is a biofilmprocess which combines denitrification and biological P-removal in a new way. The biomass is exposed to a sequential change of anaerobic, substrate-rich wastewater and anoxic, substrate-poor wastewater. Under these conditions phosphate-accumulating organisms (PAO) are enriched which are able to use nitrate as electron acceptor. Consequently, the readily biodegradable wastewater components are used simultaneously for denitrification and biological P-removal. In the described investigations special carriers were compared which were especially developed for fluidized-bed-processes and moving-bed-processes. With one exception, it was established that all materials had similar performances although they had different specific surfaces. Therefore the material costs will be crucially for a particular application case. At the moment the costs per m{sup 3} carrier material range between 450 and 1000 DM. (orig.)

  9. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.

    Science.gov (United States)

    Rodríguez, Elisa; Lopes, Alexandre; Fdz-Polanco, María; Stams, Alfons J M; García-Encina, Pedro A

    2012-03-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.

  10. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen Sheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)]. E-mail: hitchensheng@126.com; Sun Dezhi [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chung, J.-S. [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2007-06-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe{sup 2+} concentration of 40 mmol/L and H{sub 2}O{sub 2} dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH){sub 2} was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD{sub 5}) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m{sup 2} carrier day)

  11. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    International Nuclear Information System (INIS)

    Chen Sheng; Sun Dezhi; Chung, J.-S.

    2007-01-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe 2+ concentration of 40 mmol/L and H 2 O 2 dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH) 2 was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD 5 ) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m 2 carrier day)

  12. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  13. Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Sukru [Cumhuriyet University, Department of Environmental Engineering, 58140 Sivas (Turkey)], E-mail: saslan@cumhuriyet.edu.tr; Dahab, Mohamed [Department of Civil Engineering, University of Nebraska-Lincoln, W348 Nebraska Hall, Lincoln, NE 68588 (United States)

    2008-08-15

    Fluidized-bed biofilm nitritation and denitritation reactors (FBBNR and FBBDR) were operated to eliminate the high concentrations of nitrogen by nitritation and denitritation process. The dissolved oxygen (DO) concentration was varied from 1.5 to 2.5 g/m{sup 3} at the top of the reactor throughout the experiment. NH{sub 4}-N conversion and NO{sub 2}-N accumulation in the nitritation reactor effluent was over 90 and 65%, respectively. The average NH{sub 4}-N removal efficiency was 99.2 and 90.1% at the NLR of 0.9 and 1.2 kg NH{sub 4}-N/m{sup 3} day, respectively. Increasing the NLR from 1.1 to 1.2 kg NH{sub 4}-N/m{sup 3} day decreased the NH{sub 4}-N elimination approximately two-fold while NH{sub 4}-N conversion to NO{sub 2}-N differences were negligible. The NO{sub 2}-N/NO{sub x}-N ratios corresponded to 0.74, 0.73, 0.72, and 0.69, respectively, indicating the occurrence of partial nitrification. An average free ammonia concentration in the FBBNR was high enough to inhibit nitrite oxidizers selectively, and it seems to be a determining factor for NO{sub 2}-N accumulation in the process. In the FBBDR, the NO{sub x}-N (NO{sub 2}-N + NO{sub 3}-N) concentrations supplied were between 227 and 330 mg N/l (NLR was between 0.08 and 0.4 kg/m{sup 3} day) and the influent flow was increased as long as the total nitrogen removal was close to 90%. The NO{sub 2}-N and NO{sub 3}-N concentrations in the effluent were 3.0 and 0.9 mg/l at 0.08 kg/m{sup 3} day loading rate. About 98% removal of NO{sub x}-N was achieved at the lowest NLR in the FBBDR. The FBBDR exhibited high nitrogen removal up to the NLR of 0.25 kg/m{sup 3} day. The NO{sub x}-N effluent concentration never exceeded 15 mg/l. The total nitrogen removal efficiency in the FBBRs was higher than 93% at 21 {+-} 1 deg. C.

  14. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues.

    Science.gov (United States)

    Hirano, Shin-Ichi; Matsumoto, Norio

    2018-02-01

    A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Treatment and Energy Valorisation of an Agro-Industrial Effluent in Upflow Anaerobic Sludge Reactor (UASB)

    Science.gov (United States)

    Martins, Ramiro; Boaventura, Rui; Paulista, Larissa

    2017-12-01

    The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.

  16. Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor.

    Science.gov (United States)

    Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang

    2018-03-01

    A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.

  17. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert; Wen, Zhiyou

    2014-01-01

    Highlights: • Syngas fermentation process is limited by gas-to-liquid mass transfer. • A novel monolithic biofilm reactor (MBR) for efficient mass transfer was developed. • MBR with slug flow resulted in higher k L a than bubble column reactor (BCR). • MBR enhanced ethanol productivity by 53% compared to BCR. • MBR was demonstrated as a promising reactor configuration for syngas fermentation. - Abstract: Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (k L a) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The k L a values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance – measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid – depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300 mL/min of syngas flow rate, 500 mL/min of liquid flow rate, and 0.48 day −1 of dilution rate, the MBR produced much higher

  18. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  20. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    Science.gov (United States)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-29

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  1. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  2. Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration.

    Science.gov (United States)

    Cavallini, Grasiele Soares; de Sousa Vidal, Carlos Magno; de Souza, Jeanette Beber; de Campos, Sandro Xavier

    2016-04-01

    This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90% and close to 100% removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65% recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing.

  3. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  4. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  6. Biodegradation of pharmaceuticals from hospital wastewater in staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola, Monica; Kumar Chhetri, Ravi; Ooi, Gordon

    2015-01-01

    on biofilms that are grown on plastic-chips which are suspended and aerated in a treatment tank. Such biofilm systems have shown a clear (but slow) biodegradation of some compounds that are recalcitrant in activated sludge. This study investigated the performance of a pilot MBBR-plant for the removal...

  7. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  8. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  9. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert C.; Wen, Zhiyou

    2017-01-01

    Highlights: • A novel a horizontal rotating packed bed (h-RPB) reactor for syngas fermentation was reported. • The h-RPB reactor enhanced ethanol productivity by 3.3-folds compared to continuous stirred tank reactor (CSTR). • The h-RPB reactor has a unique feature of transfer gas from both bulk liquid phase and headspace phase. • The mass transfer in the headspace of h-PRB played an important role for enhanced ethanol production. - Abstract: Gasification of lignocellulosic biomass followed by syngas fermentation is a promising process for producing fuels and chemicals. Syngas fermentation, however, is commonly limited by low mass transfer rates. In this work, a horizontally oriented rotating packed bed (h-RPB) reactor was developed to improve mass transfer and enhance ethanol production. In the h-RPB reactor, cell attachment materials were packed in the reactor and half submerged in the liquid and half exposed to the headspace. With continuous rotation of the packing materials, the cells in biofilm were alternately in contact with liquid and headspace; thus, transport of syngas to the cells occurred in both the liquid phase and headspace. The volumetric mass transfer coefficient (k_La) of the h-RPB reactor was lower than that in a traditional continuous stirred tank reactor (CSTR), indicating the mass transfer in the liquid phase of h-PRB was lower than CSTR, and the mass transfer in the headspace phase played an important role in syngas fermentation. The syngas fermentation of Clostridium carboxidivorans P7 in h-RPB resulted in a 7.0 g/L titer and 6.7 g/L/day productivity of ethanol, respectively, 3.3 times higher than those obtained in a CSTR under the same operational conditions. The results demonstrate that the h-RPB reactor is an efficient system for syngas fermentation, making cellulosic ethanol biorefinery one step closer to technical and economic feasibility.

  10. Survey of Basic Red 18 Dye Removal Using Biofilm Formed on Granular Bagass in Continuous Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2015-12-01

    Full Text Available Dyes comprising a major pollutant in the effluent from textile plants are mostly toxic, carcinogenic, mutagenic, and non-biodegradable. This experimental-laboratory study was carried out using a biofilm formed on a granular bagass bed in a continuous aerobic reactor to investigate the kinetic coefficients of the aerobic reactor as well as the effects of color concentration (30-200 mg/l, hydraulic retention time (2-8 h, and BOD concentration (200-100 mg /l on the removal of Basic Red (18 from textile effluents. The results revealed a maximum removal efficiency of 90% for an initial color concentration of 30 mg/l and a hydraulic retention time of 8 hours. A color removal efficiency of 86% was recorded for an influent BOD concentration of 200 mg/l. Also, maximum substrate utilization rate (K for organic loadings of 100 and 200 mg/L were 0.23 and 1.41 while the half velocity constant values were 44.85 and 19.39, respectively. Moreover, for the same organic loadings, the values of 0.35 and 0.5 were recorded for decay coefficient (Kd and 37.36, 4.83 for maximum specific growth rate coefficient (μm, respectively. Based on the findings of this study, it may be claimed that the biofilm formed on a granular bagass bed in a continuous aerobic reactor has a good Basic Red (18 removal efficiency.

  11. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.

    Science.gov (United States)

    Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent

    2004-02-01

    The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of acetate at 55 degrees C was

  12. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    Science.gov (United States)

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  13. Effect of hydraulic retention time on hydrodynamic behavior of anaerobic-aerobic fixed bed reactor treating cattle slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Daiane Cristina de Freitas

    2017-09-01

    Full Text Available The study of the hydrodynamic behavior in reactors provides characteristics of the flow regime and its anomalies that can reduce biological processes efficiency due to the decrease of the useful volume and the hydraulic retention time required for the performance of microbial activity. In this study, the hydrodynamic behavior of an anaerobic-aerobic fixed bed reactor, operated with HRT (hydraulic retention time of 24, 18 and 12 hours, was evaluated in the treatment of raw cattle slaughterhouse wastewater. Polyurethane foam and expanded clay were used as support media for biomass immobilization. Experimental data of pulse type stimulus-response assays were performed with eosin Y and bromophenol blue, and adjusted to the single-parameter theoretical models of dispersion and N-continuous stirred tank reactors in series (N-CSTR. N-CSTR model presented the best adjustment for the HRT and tracers evaluated. RDT (residence time distribution curves obtained with N-CSTR model in the assays with bromophenol blue resulted in better adjustment compared to the eosin Y. The predominant flow regime in AAFBR (anaerobic aerobic fixed bed reactor is the N-CSTR in series, as well as the existence of preferential paths and hydraulic short-circuiting.

  14. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  15. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    International Nuclear Information System (INIS)

    Vergara-Fernandez, Alberto; Vargas, Gisela; Alarcon, Nelson; Velasco, Antonio

    2008-01-01

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4(±1.5) mL g -1 dry algae d -1 , with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system

  16. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    Science.gov (United States)

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  17. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    Saddoud, Ahlem; Sayadi, Sami

    2007-01-01

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m -3 d -1 with gradual increase to an average of 13.27 kg TCOD m -3 d -1 . At stable conditions, the treatment efficiency was high with an average COD and BOD 5 reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m -3 d -1 . The removal efficiencies of SCOD and BOD 5 were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines

  18. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  19. Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum.

    Science.gov (United States)

    Yangin-Gomec, Cigdem; Pekyavas, Goksen; Sapmaz, Tugba; Aydin, Sevcan; Ince, Bahar; Akyol, Çağrı; Ince, Orhan

    2017-10-01

    Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Acetate conversion in anaerobic biogas reactors: Traditional and molecular tools for studying this important group of anaerobic microorganisms

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Mladenovska, Zuzana; Lange, Marianne

    2000-01-01

    Different methods were applied to study the role of aceticlastic methanogens in biogas reactors treating solid waste and wastewater. We used traditional microbiological methods, immunological and 16S rRNA ribosomal probes for detection of the methanogens. Using this approach we identified the met...

  1. Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goebloes, Sz.; Portoero, P.; Bordas, D.; Kalman, M.; Kiss, I. [Institute for Biotechnology, Bay Zoltan Foundation for Applied Research, H-6726 Szeged (Hungary)

    2008-05-15

    The performances of anaerobic sequencing batch reactors fed with two different substrates were studied. The substrates were raw acid whey and acid whey fermented with Kluyveromyces lactis in order to investigate the suitability of ethanol for biogas production. The organic loading rates (OLRs) during the experiment ranged from 1.6 to 12.8 g COD dm{sup -3} d{sup -1} and the corresponding decreasing hydraulic retention times from 40 to 5 days for both reactor systems. The efficiency of each system depended on the OLR: the highest COD removal rate was observed at the lowest OLR applied (about 100% in both systems), and at maximum OLR the COD removal efficiency was 68% for the reactors fed with the raw whey and 80% for those fed with the pre-fermented whey. Under the same high OLR conditions the methane yield was 0.122 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for the anaerobic digesters fed with the untreated whey, and 0.197 dm{sup -3} CH{sub 4} g{sup -1} COD{sub degraded} for those fed with the pre-fermented whey. The digesters functioned without pH control. At the maximum OLR the pH in the reactors fed with the raw acid whey was 5.1, while in those fed with the pre-fermented whey it was 7.15. The results demonstrate that the use of the pre-fermented acid whey as substrate for anaerobic digestion without pH control is feasible, especially at high OLR levels. This substrate is preferable to the raw acid whey, because of the ethanol formed as a non-acidic fermentation product of the yeast. (author)

  2. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    Directory of Open Access Journals (Sweden)

    L. H. P. Garbossa

    2005-12-01

    Full Text Available The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to its characteristics and the fixed polyurethane foam bed arrangement in concentric chambers. Partial denitrification of the liquid also took place in the RAAIB. The reactor achieved an organic matter removal efficiency of 84%, expressed as chemical oxygen demand (COD, and a total Kjeldahl nitrogen (TKN removal efficiency of 96%. Average COD, nitrite and nitrate values for the final effluent were 54 mg.L-1, 0.3 mg.L-1 and 22.1 mg.L-1, respectively.

  3. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater.

    Science.gov (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun

    2018-01-02

    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  4. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors.

    Science.gov (United States)

    Ontiveros-Valencia, Aura; Tang, Youneng; Zhao, He-Ping; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2014-07-01

    We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.

  5. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  6. Effects of operational shocks on key microbial populations for biogas production in UASB (Upflow Anaerobic Sludge Blanket) reactors

    International Nuclear Information System (INIS)

    Couras, C.S.; Louros, V.L.; Grilo, A.M.; Leitão, J.H.; Capela, M.I.; Arroja, L.M.; Nadais, M.H.

    2014-01-01

    This work compares the overall performance and biogas production of continuous and intermittent UASB (Upflow Anaerobic Sludge Blanket) reactors treating dairy wastewater and subjected to fat, hydraulic and temperature shocks. The systems were monitored for methane production, effluent concentration, volatile fatty acids, and microbial populations of the Eubacteria, Archaea and Syntrophomonadaceae groups. This last microbial group has been reported in literature as being determinant for the degradation of fatty substrates present in the wastewater and subsequent biogas production. Results show that both continuous and intermittent systems supported the applied shocks. However, the intermittent systems exhibited better performance than the continuous systems in biogas production and physical-chemical parameters. Syntrophomonadaceae microbial group was present in the intermittent systems, but was not detected in the biomass from the continuous systems. Hydraulic and temperature shocks, but not the fat shock, caused severe losses in the relative abundance of the Syntrophomonadaceae group in intermittent systems, leading to undetectable levels during the temperature shock. The severity of the effects of the applied shocks on the key microbial group Syntrophomonadaceae, were classified as: fats < hydraulic < temperature. Results from a full-scale anaerobic reactor confirm the effect of intermittent operation on the presence of Syntrophomonadaceae and the effect on reactor performance. - Highlights: • We compared intermittent and continuous UASB reactors upon operational shocks. • Syntrophomonadaceae key microbial group for maximizing biogas was quantified by FISH. • Syntrophomonadaceae is present in intermittent but not in continuous UASB reactors. • Syntrophomonadaceae abundance increases with fat shock in intermittent UASB reactor. • Syntrophomonadaceae abundance decreases with hydraulic or temperature shock

  7. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  8. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions.

    Science.gov (United States)

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W; Browne, Tristan; Cox, Kevin; Paul, Andrew T; Ko, Seung-Hyun B; Mortensen, Joel E; Lam, Joseph S; Muruve, Daniel A; Hassett, Daniel J

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite ([Formula: see text], pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to [Formula: see text]. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to [Formula: see text], but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with [Formula: see text] plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM [Formula: see text], and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to [Formula: see text] in biofilms. [Formula: see text] sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, [Formula: see text] as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.

  9. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Maria Octoviane Dyan

    2015-01-01

    Full Text Available Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor. The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7

  10. Effects of variation of flow and accumulation of suspended solids on the performance of anaerobic/aerobic biofilm system applied to grey water treatment. kenkiter dot koki roshoho no shori seino ni oyobosu ryuryo hendo oyobi kendaku busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, T; Sagehashi, M; Otsuka, N; Okada, M; Murakami, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1991-04-10

    In this study, effects of variation of flow and accumulation of suspended solids (SS) on the performance of anaerobic/aerobic biofilm system were investigated through the laboratory test using synthetic wastewater and the field test using grey water. Effects of flow variation scarcely appeared on the time change of effluent quality in both cases where daily average hydraulic retention time (HRT) in anaerobic filter was 20h and that of aerobic filter was 6.7h. In the field test, however, removal rate of organic substances was lower (20-30%) than that of the laboratory test (90%), since SS content in grey water accumulated in the anaerobic filter which led dissolution of organic substances from accumulated SS, blocking, and short-circuit flow. Moreover, it was confirmed by the batch test that constituent of grey water has lower resolution for microorganisms and is more difficult to nitrate than synthetic waste water. 24 refs., 11 figs., 4 tabs.

  11. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Directory of Open Access Journals (Sweden)

    Lei Xiong

    2013-01-01

    Full Text Available The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system.

  12. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  13. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Yun-Yan; Tang, Chong-Jian; Chai, Li-Yuan; Xu, Kang-Que; Song, Yu-Xia

    2013-01-01

    The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d) and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system. PMID:24455691

  14. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Wijetunga, Somasiri; Li Xiufen; Jian Chen

    2010-01-01

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels (∼1000 mg/L, ∼2000 mg/L, ∼3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  15. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    Science.gov (United States)

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  16. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    Ammonia is the major inhibitor of anaerobic digestion (AD) process leading to suboptimal utilisation of the biogas potential of the feedstocks and causing economical losses to the biogas plants. However, ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow...

  17. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    Science.gov (United States)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  18. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.

    Science.gov (United States)

    Rademacher, Antje; Zakrzewski, Martha; Schlüter, Andreas; Schönberg, Mandy; Szczepanowski, Rafael; Goesmann, Alexander; Pühler, Alfred; Klocke, Michael

    2012-03-01

    DNAs of two biofilms of a thermophilic two-phase leach-bed biogas reactor fed with rye silage and winter barley straw were sequenced by 454-pyrosequencing technology to assess the biofilm-based microbial community and their genetic potential for anaerobic digestion. The studied biofilms matured on the surface of the substrates in the hydrolysis reactor (HR) and on the packing in the anaerobic filter reactor (AF). The classification of metagenome reads showed Clostridium as most prevalent bacteria in the HR, indicating a predominant role for plant material digestion. Notably, insights into the genetic potential of plant-degrading bacteria were determined as well as further bacterial groups, which may assist Clostridium in carbohydrate degradation. Methanosarcina and Methanothermobacter were determined as most prevalent methanogenic archaea. In consequence, the biofilm-based methanogenesis in this system might be driven by the hydrogenotrophic pathway but also by the aceticlastic methanogenesis depending on metabolite concentrations such as the acetic acid concentration. Moreover, bacteria, which are capable of acetate oxidation in syntrophic interaction with methanogens, were also predicted. Finally, the metagenome analysis unveiled a large number of reads with unidentified microbial origin, indicating that the anaerobic degradation process may also be conducted by up to now unknown species. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions

    DEFF Research Database (Denmark)

    Zhu, Xinyu; Treu, Laura; Kougias, Panagiotis

    2017-01-01

    Upflow anaerobic sludge blanket (UASB) technology refers to reactor technology where granules, i.e. self-immobilised microbial associations, are the biological catalysts involved in the anaerobic digestion process. During the start-up period, UASB reactors operate at relatively long HRT and there......Upflow anaerobic sludge blanket (UASB) technology refers to reactor technology where granules, i.e. self-immobilised microbial associations, are the biological catalysts involved in the anaerobic digestion process. During the start-up period, UASB reactors operate at relatively long HRT...... and therefore the liquid phase of the reactor becomes a favourable environment for microbial growth. The current study aimed to elucidate the dynamicity of the suspended microbial community in UASB reactors, during the transition from mesophilic to thermophilic conditions. High throughput 16S rRNA amplicon...... sequencing was used to characterize the taxonomic composition of the microbiome. The results showed that the microbial community was mainly composed by hydrolytic and fermentative bacteria. Results revealed relevant shifts in the microbial community composition, which is mainly determined by the operational...

  20. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover.

    Science.gov (United States)

    Li, YuQian; Liu, ChunMei; Wachemo, Akiber Chufo; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Li, XiuJin

    2017-07-01

    Several completely stirred tank reactors (CSTR) connected in series for anaerobic digestion of corn stover were investigated in laboratory scale. Serial anaerobic digestion systems operated at a total HRT of 40days, and distribution of HRT are 10+30days (HRT10+30d), 20+20days (HRT20+20d), and 30+10days (HRT30+10d) were compared to a conventional one-step CSTR at the same HRT of 40d. The results showed that in HRT10+30d serial system, the process became very unstable at organic load of 50gTS·L -1 . The HRT20+20d and HRT30+10d serial systems improved methane production by 8.3-14.6% compared to the one-step system in all loads of 50, 70, 90gTS·L -1 . The conversion rates of total solid, cellulose, and hemicellulose were increased in serial anaerobic digestion systems compared to single system. The serial systems showed more stable process performance in high organic load. HRT30+10d system showed the best biogas production and conversions among all systems. Copyright © 2017. Published by Elsevier Ltd.

  1. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  2. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun

    2017-09-01

    This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Application of a Loop-Type Laboratory Biofilm Reactor to the Evaluation of Biofilm for Some Metallic Materials and Polymers such as Urinary Stents and Catheters

    Directory of Open Access Journals (Sweden)

    Hideyuki Kanematsu

    2016-10-01

    Full Text Available A laboratory biofilm reactor (LBR was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni, along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly—cultured solution with E-coli formed over 48–72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

  4. A side-by-side comparison of two systems of sequencing coupled reactors for anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Alzate-Gaviria, Liliana M; Pérez-Hernández, Antonino; Nevarez-Morillón, Virginia G; Rinderknecht-Seijas, Noemí

    2005-06-01

    The objective of this work was to compare the performance of two laboratory-scale, mesophilic systems aiming at the anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The first system consisted of two coupled reactors packed with OFMSW (PBR1.1-PBR1.2) and the second system consisted of an upflow anaerobic sludge bed reactor (UASB) coupled to a packed reactor (UASB2.1-PBR2.2). For the start-up phase, both reactors PBR 1.1 and the UASB 2.1 (also called leading reactors) were inoculated with a mixture of non-anaerobic inocula and worked with leachate and effluent full recirculation, respectively. Once a full methanogenic regime was achieved in the leading reactors, their effluents were fed to the fresh-packed reactors PBR1.2 and PBR2.2, respectively. The leading PBR 1.1 reached its full methanogenic regime after 118 days (Tm, time to achieve methanogenesis) whereas the other leading UASB 2.1 reactor reached its full methanogenesis regime after only 34 days. After coupling the leading reactors to the corresponding packed reactors, it was found that both coupled anaerobic systems showed similar performances regarding the degradation of the OFMSW. Removal efficiencies of volatile solids and cellulose and the methane pseudo-yield were 85.95%, 80.88% and 0.109 NL CH4 g(-1) VS(fed) in the PBR-PBR system; and 88.75%, 82.61% and 0.115 NL CH4 g(-1) VS(fed0 in the UASB-PBR system [NL, normalized litre (273 degrees K, 1 ata basis)]. Yet, the second system UASB-PBR system showed a faster overall start-up.

  5. Influence of CeO{sub 2} NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi; Wang, Chao [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Hou, Jun, E-mail: hhuhjyhj@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang, E-mail: pfwang2005@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2016-11-15

    The effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO{sub 2} NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P release rate was caused by the reversible states of Ce{sup 3+} and Ce{sup 4+}, which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO{sub 2} NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO{sub 2} NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce{sup 3+}. - Highlights: • CeO{sub 2} NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.

  6. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/gVS-added. Ana......In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g...

  7. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    Science.gov (United States)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  8. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Saddoud, Ahlem [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia); Sayadi, Sami [Laboratoire des Bio-procedes, Centre de Biotechnologie de Sfax, BP: K, Sfax 3038 (Tunisia)], E-mail: sami.sayadi@cbs.rnrt.tn

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m{sup -3} d{sup -1} with gradual increase to an average of 13.27 kg TCOD m{sup -3} d{sup -1}. At stable conditions, the treatment efficiency was high with an average COD and BOD{sub 5} reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m{sup -3} d{sup -1}. The removal efficiencies of SCOD and BOD{sub 5} were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  9. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7g-N/L during 30days, resulting in an average recovery rate of 80g-N/m2/d. Meanwhile, a maximum power density of 0.71±0.5W/m2 was generated at 2.85A/m2. Both current driven NH4+ migration...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

  10. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste.

    Science.gov (United States)

    Angenent, Largus T; Sung, Shihwu; Raskin, Lutgarde

    2002-11-01

    Changes in methanogenic population levels were followed during startup of a full-scale, farm-based anaerobic sequencing batch reactor (ASBR) and these changes were linked to operational and performance data. The ASBR was inoculated with anaerobic digester sludge from a municipal wastewater treatment facility. During an acclimation period of approximately 3 months, the ASBR content was diluted to maintain a total ammonia-N level of approximately 2000mg l(-1). After this acclimation period, the volatile solids loading rate was increased to its design value of 1.7g l(-1) day(-1) with a 15-day hydraulic retention time, which increased the total ammonia-N level in the ASBR to approximately 3,600 mg l(-1). The 16S ribosomal RNA (rRNA) levels of the acetate-utilizing methanogens of the genus Methanosarcina decreased from 3.8% to 1.2% (expressed as a percentage of the total 16S rRNA levels) during this period, while the 16S rRNA levels of Methanosaeta concilii remained low (below 2.2%). Methane production and reactor performance were not affected as the 16S rRNA levels of the hydrogen-utilizing methanogens of the order Methanomicrobiales increased from 2.3% to 7.0%. Hence, it is likely that during operation with high ammonia levels, the major route of methane production is through a syntrophic relationship between acetate-oxidizing bacteria and hydrogen-utilizing methanogens. Anaerobic digestion at total ammonia-N levels exceeding 3500mg l(-1) was sustainable apparently due to the acclimation of hydrogen-utilizing methanogens to high ammonia levels.

  13. Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    Aerobic biodegradation of toluene in a biofilm system was investigated. Toluene is easily biodegradable, like several other aromatic compounds. The degradation was first order at bulk concentrations lower than 0.14 mg/l and zero order above 6–8 mg/l. An average yield coefficient of 1 mg biomass...

  14. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers.

    Science.gov (United States)

    Tang, Bing; Song, Haoliang; Bin, Liying; Huang, Shaosong; Zhang, Wenxiang; Fu, Fenglian; Zhao, Yiliang; Chen, Qianyu

    2017-10-01

    The work aims at illustrating the profile of DO and its mass transferring process in a biofilm reactor packed with a novel semi-suspended bio-carrier, and further revealing the main factors that influence the mass transferring coefficient of DO within the biofilm. Results showed that the biofilm was very easy to attach and grow on the semi-suspended bio-carrier, which obviously changed the DO profile inside and outside the biofilm. The semi-suspended bio-carrier caused three different mass transfer zones occurring in the bioreactor, including the zones of bulk solution, boundary layer and biofilm, in which, the boundary layer zone had an obvious higher mass transfer resistance. Increasing the aeration rate might improve the hydrodynamic conditions in the bioreactor and accelerate the mass transfer of DO, but it also detached the biofilm from the surface of bio-carrier, which reduced the consumption of DO, and accordingly, decreased the DO gradient in the bioreactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  16. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5......After 10 years of pilot and full-scale studies, completely autotrophic nitrogen via coupled aerobic and anaerobic ammonium oxidation is now firmly established in the wastewater treatment community. The reasons for the popularization of the technology are numerous, but the most attractive....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  17. Kraft pulp and paper mill wastewater treatment using fixed bed anaerobic reactors

    International Nuclear Information System (INIS)

    Damianovic, M. H. R. Z; Ruas, D.; Pires, E. C.; Foresti, E.

    2009-01-01

    The effluents of pulp mills contain a myriad of toxic compounds, biodegradable organic matter and sulfur compounds. to decrease the amount of fresh water required for pulp and paper production closed circuits are in use, however, higher concentrations of slat, as oxidized sulfur compounds, are encountered in the wastewaters. energy costs and new environmental concerns are motivating the use of anaerobic pretreatment as a way to decrease energy expenditure in the treatment plant together with lower sludge production. In anaerobic environment, the organic matter removal can follow methanogenic or sulfidogenic paths and with the latter simultaneous reduction of the oxidized sulfur compounds also occurs. (Author)

  18. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Bester, Kai

    2015-01-01

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m 3 m 2 h −1 the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds

  19. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  20. De-mercurization of wastewater by Bacillus cereus (JUBT1): Growth kinetics, biofilm reactor study and field emission scanning electron microscopic analysis

    International Nuclear Information System (INIS)

    Ghoshal, Sanjukta; Bhattacharya, Pinaki; Chowdhury, Ranjana

    2011-01-01

    Graphical abstract: The assembly of biofilm reactor, based on attached growth of Bacillus cereus (JUBT1) on rice husk packing, and an activated carbon filter has been able to ensure the removal of mercury up to near-zero level. Highlights: → A new mercury resistant bacterial strain, Bacillus cereus (JUBT1), has been isolated. → Growth kinetics has been determined. → Biofilm reactor using attached growth of bacteria ensures near-zero level of mercury. → Confinement of mercury is confirmed through energy dispersive spectrometric analysis. - Abstract: Removal of mercuric ions by a mercury resistant bacteria, called Bacillus cereus (JUBT1), isolated from the sludge of a local chlor-alkali industry, has been investigated. Growth kinetics of the bacteria have been determined. A multiplicative, non-competitive relationship between sucrose and mercury ions has been observed with respect to bacterial growth. A combination of biofilm reactor, using attached growth of Bacillus cereus (JUBT1) on rice husk packing, and an activated carbon filter has been able to ensure the removal of mercury up to near-zero level. Energy dispersive spectrometry analysis of biofilm and the activated carbon has proved the transformation of Hg 2+ to Hg 0 and its confinement in the system.

  1. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  2. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages.

    Science.gov (United States)

    Razaviarani, Vahid; Buchanan, Ian D

    2014-11-01

    Linkage between reactor performance and microbial community dynamics was investigated during mesophilic anaerobic co-digestion of restaurant grease waste (GTW) with municipal wastewater sludge (MWS) using 10L completely mixed reactors and a 20day SRT. Test reactors received a mixture of GTW and MWS while control reactors received only MWS. Addition of GTW to the test reactors enhanced the biogas production and methane yield by up to 65% and 120%, respectively. Pyrosequencing revealed that Methanosaeta and Methanomicrobium were the dominant acetoclastic and hydrogenotrophic methanogen genera, respectively, during stable reactor operation. The number of Methanosarcina and Methanomicrobium sequences increased and that of Methanosaeta declined when the proportion of GTW in the feed was increased to cause an overload condition. Under this overload condition, the pH, alkalinity and methane production decreased and VFA concentrations increased dramatically. Candidatus cloacamonas, affiliated within phylum Spirochaetes, were the dominant bacterial genus at all reactor loadings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Monitoring and modeling of nitrogen conversions in membrane-aerated biofilm reactors: Effects of intermittent aeration

    DEFF Research Database (Denmark)

    Ma, Yunjie

    Nitrogen can be removed from sewage by a variety of physicochemical and biological processes. Due to the high removal efficiency and relatively low costs, biological processes have been widely adopted for treating nitrogen-rich wastewaters. Among the biological technologies, biofilm processes show...... the membrane, whilst NH4+ is provid-ed from the bulk liquid phase. The counter substrate supply not only offers flexible aeration control, but also supports the development of a unique mi-crobial community and spatial structure inside the biofilm. In this study, lab-scale MABRs were operated under two types...... relevant biological N2O production pathways. Sensitive kinetic parameters were estimated with long-term bulk performance data. With the calibrated model, roles of HB and AnAOB were discussed and evaluated in mitigating N2O emissions in auto-trophic nitrogen removal MABRs. Moreover, I developed a 1-D...

  4. Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system

    NARCIS (Netherlands)

    Lindeboom, R.E.F.; Fermoso, F.G.; Weijma, J.; Zagt, K.; Lier, van J.B.

    2011-01-01

    Conventional anaerobic digestion is a widely applied technology to produce biogas from organic wastes and residues. The biogas calorific value depends on the CH4 content which generally ranges between 55 and 65%. Biogas upgrading to so-called ‘green gas’, with natural gas quality, generally proceeds

  5. Conversion of methanogenic substrates in anaerobic reactors : metals, mass transport, and toxicity

    NARCIS (Netherlands)

    Gonzalez-Gil, G.

    2000-01-01

    The EGSB systems represents an attractive option to extend further the use of anaerobic technology for wastewater treatment, particularly with respect to waste streams originating from chemical industries. Frequently chemical waste streams are unbalanced with respect to nutrients and/or

  6. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An evaluation of the performance and optimization of a new wastewater treatment technology: the air suction flow-biofilm reactor.

    Science.gov (United States)

    Forde, P; Kennelly, C; Gerrity, S; Collins, G; Clifford, Eoghan

    2015-01-01

    In this laboratory study, a novel wastewater treatment technology, the air suction flow-biofilm reactor (ASF-BR) - a sequencing batch biofilm reactor technology with a passive aeration mechanism - was investigated for its efficiency in removing organic carbon, nitrogen and phosphorus, from high-strength synthetic wastewaters. A laboratory-scale ASF-BR comprising 2 reactors, 350 mm in diameter and 450 mm in height, was investigated over 2 studies (Studies 1 and 2) for a total of 430 days. Study 1 lasted a total of 166 days and involved a 9-step sequence alternating between aeration, anoxic treatment and settlement. The cycle time was 12.1 h and the reactors were operated at a substrate loading rate of 3.60 g filtered chemical oxygen demand (CODf)/m2 media/d, 0.28 g filtered total nitrogen (TNf)/m2 media/d, 0.24 g ammonium-nitrogen (NH4-N)/m2 media/d and 0.07 g ortho-phosphate (PO4-P)/m2 media/d. The average removal rates achieved during Study 1 were 98% CODf, 88% TNf, 97% NH4-N and 35% PO4-P. During Study 2 (264 days), the unit was operated at a loading rate of 2.49 g CODf/m2 media/d, 0.24 g TNf/m2 media/d, 0.20 g NH4-N/m2 media/d and 0.06 PO4-P/m2 media/d. The energy requirement during this study was reduced by modifying the treatment cycle in include fewer pumping cycles. Removal rates in Study 2 averaged 97% CODf, 86% TNf, 99% NH4-N and 76% PO4-P. The excess sludge production of the system was evaluated and detailed analyses of the treatment cycles were carried out. Biomass yields were estimated at 0.09 g SS/g CODf, removed and 0.21 g SS/g CODf, removed for Studies 1 and 2, respectively. Gene analysis showed that the use of a partial vacuum did not affect the growth of ammonia-oxidizing bacteria. The results indicate that the ASF-BR and passive aeration technologies can offer efficient alternatives to existing technologies.

  8. Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    NARCIS (Netherlands)

    deBest, JH; Jongema, H; Weijling, A; Doddema, HJ; Janssen, DB; Harder, W

    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 mu M.

  9. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content.

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zhou, Qi

    2009-06-01

    Cassava stillage is a high strength organic wastewater with high suspended solids (SS) content. The efficiency of cassava stillage treatment using an anaerobic sequencing batch reactor (ASBR) was significantly enhanced by discharging settled sludge to maintain a lower sludge concentration (about 30 g/L) in the reactor. Three hydraulic retention times (HRTs), namely 10 d, 7.5 d, 5 d, were evaluated at this condition. The study demonstrated that at an HRT of 5 d and an organic loading rate (OLR) of 11.3 kg COD/(m(3) d), the total chemical oxygen demand (TCOD) and soluble COD (SCOD) removal efficiency can still be maintained at above 80%. The settleability of digested cassava stillage was improved significantly, and thus only a small amount of settled sludge needed to be discharged to maintain the sludge concentration in the reactor. Furthermore, the performance of ASBR operated at low and high sludge concentration (about 79.5 g/L without sludge discharged) was evaluated at an HRT of 5 d. The TCOD removal efficiency and SS in the effluent were 61% and 21.9 g/L respectively at high sludge concentration, while the values were 85.1% and 2.4 g/L at low sludge concentration. Therefore, low sludge concentration is recommended for ASBR treating cassava stillage at an HRT 5 d due to lower TCOD and SS in the effluent, which could facilitate post-treatment.

  10. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    Directory of Open Access Journals (Sweden)

    Xiao-Shuang Shi

    2017-01-01

    Full Text Available Three semicontinuous continuous stirred-tank reactors (CSTR operating at mesophilic conditions (35°C were used to investigate the effect of hydraulic retention time (HRT on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.

  11. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan

    2012-01-01

    . The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due......The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic...

  12. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors.

    Science.gov (United States)

    Wilkinson, A; Kennedy, K J

    2012-01-01

    Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.

  13. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria

    International Nuclear Information System (INIS)

    Georgiou, D.; Aivasidis, A.

    2006-01-01

    Textile wastewater was treated by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. The main target of this treatment was decoloration of the wastewater and transformation of the non-biodegradable azo-reactive dyes to the degradable, under aerobic biological conditions, aromatic amines. Special porous beads (Siran'' (registered)) were utilized as the microbial carriers. Acetic acid solution, enriched with nutrients and trace elements, served both as a pH-regulator and as an external substrate for the growth of methanogenic bacteria. The above technique was firstly applied on synthetic wastewater (an aqueous solution of a mixture of different azo-reactive dyes). Hydraulic residence time was gradually decreased from 24 to 6 h over a period of 3 months. Full decoloration of the wastewater could be achieved even at such a low hydraulic residence time (6 h), while methane-rich biogas was also produced. The same technique was then applied on real textile wastewater with excellent results (full decoloration at a hydraulic residence time of 6 h). Furthermore, the effluent proved to be highly biodegradable by aerobic microbes (activated-sludge). Thus, the above-described anaerobic/aerobic biological technique seems to be a very attractive method for treating textile wastewater since it is cost-effective and environment-friendly

  14. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: Use of fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Montero, B.; Garcia-Morales, J.L.; Sales, D.; Solera, R.

    2009-01-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x) + 2.667] (R 2 0.8866). The total methanogenic activity increased from 0.04 x 10 -8 mLCH 4 cell -1 day -1 to 0.38 x 10 -8 mLCH 4 cell -1 day -1 while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H 2 -utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64 x 10 -8 mLCH 4 cell -1 day -1 and 0.33 x 10 -8 mLCH 4 cell -1 day -1 , respectively. The methanogenic activity of H 2 -utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process

  15. Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder.

    Science.gov (United States)

    Carosia, Mariana Fronja; Okada, Dagoberto Yukio; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2014-09-01

    The aim of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) in an anaerobic fluidized bed reactor (AFBR) treating wastewater containing soap powder as LAS source. At Stage I, the AFBR was fed with a synthetic substrate containing yeast extract and ethanol as carbon sources, and without LAS; at Stage II, soap powder was added to this synthetic substrate obtaining an LAS concentration of 14 ± 3 mg L(-1). The compounds of soap powder probably inhibited some groups of microorganisms, increasing the concentration of volatile fatty acids (VFA) from 91 to 143 mg HAc L(-1). Consequently, the LAS removal rate was 48 ± 10% after the 156 days of operation. By sequencing, 16S rRNA clones belonging to the phyla Proteobacteria and Synergistetes were identified in the samples taken at the end of the experiment, with a remarkable presence of Dechloromonas sp. and Geobacter sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor process...... ammonium bicarbonate additions. Dilution of SS-OFMSW with fresh water showed a stable performance with volatile fatty acids of solids (VS). Use of recirculated process water after stripping ammonia showed even better performance with a methane yield...... of 0.43 m(3) kg(-1)VS. Recirculation of process water alone on the other hand, resulted in process inhibition at both TAN levels of 3.5 and 5.5 g-N l(-1). However, after a short period, the process recovered and adapted to the tested TAN levels. Thus, use of recirculated process water after stripping...

  17. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    Science.gov (United States)

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.

  18. Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor.

    Science.gov (United States)

    Galíndez-Nájera, S P; Llamas-Martínez, M A; Ruiz-Ordaz, N; Juárez-Ramírez, C; Mondragón-Parada, M E; Ahuatzi-Chacón, D; Galíndez-Mayer, J

    2009-02-01

    Cyanuric acid (1,3,5-triazine-2,4,6-triol [OOOT]) is a common biodegradation byproduct of triazinic herbicides, frequently accumulated in soils or water when supplementary carbon sources are absent. A binary bacterial culture able to degrade OOOT was selected through a continuous selection process accomplished in a chemostat fed with a mineral salt (MS) medium containing cyanuric acid as the sole carbon and nitrogen source. By sequence comparison of their 16S rDNA amplicons, bacterial strains were identified as Agrobacterium tumefaciens, and Acinetobacter sp. When the binary culture immobilized in a packed bed reactor (PBR) was fed with MS medium containing OOOT (50 mg L(-1)), its removal efficiencies were about 95%; when it was fed with OOOT plus glucose (120 mg L(-1)) as a supplementary carbon source, its removal efficiencies were closer to 100%. From sessile cells, attached to PBR porous support, or free cells present in the outflowing medium, DNA was extracted and used for Random Amplification of Polymorphic DNA analysis. Electrophoretic patterns obtained were compared to those of pure bacterial strains, a clear predominance of A. tumefaciens in PBR was observed. Although in continuous suspended cell culture, a stable binary community could be maintained, the attachment capability of A. tumefaciens represented a selective advantage over Acinetobacter sp. in the biofilm reactor, favoring its predominance in the porous stone support.

  19. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  20. Kinetics of anaerobic digestion of labaneh whey in a batch reactor

    African Journals Online (AJOL)

    SAM

    2014-04-16

    Apr 16, 2014 ... kinetic constants were determined for labaneh whey and for diluted whey .... reactor has a pH and temperature control system. ... Variable power electric heater was used to heat the reactor. ..... by gas chromatography, Annual book of ASTM Standard, Vol. ... Thesis, The University of Jordan, Amman, Jordan.

  1. Volatile fatty acid formation and utilization in anaerobic sulphidogenic batch reactors

    CSIR Research Space (South Africa)

    Greben, HA

    2006-05-01

    Full Text Available four stirred batch-test reactors (2 l) were operated, fed with artificial SO4 rich (1700 mg/l) feed water and tap water (controls). The reactors received sulphate reducing bacteria, compost bacteria and grass cuttings. The experimental period was 25...

  2. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse

    International Nuclear Information System (INIS)

    Fuess, Lucas Tadeu; Kiyuna, Luma Sayuri Mazine; Ferraz, Antônio Djalma Nunes; Persinoti, Gabriela Felix

    2017-01-01

    Highlights: • An innovative fixed-film anaerobic reactor was applied to sugarcane vinasse. • Stable operation was observed for OLRs as high as 30 kg COD m"−"3 day"−"1. • Propionate buildup did not impact the stability of the structured-bed reactor. • Enhanced bioenergy recovery was estimated from biodigestion with phase separation. • Energy extraction was over 20% higher compared to single-phase systems. - Abstract: This study considered the application of anaerobic digestion (AD) with phase separation combined with the use of an anaerobic structured-bed reactor (ASTBR) as the methanogenic phase for the treatment of sugarcane vinasse, a high-strength wastewater resulting from ethanol production. Two combined thermophilic acidogenic-methanogenic systems formed by one single acidogenic reactor followed by two methanogenic reactors operated in parallel were compared, namely, a conventional UASB reactor and an upflow ASTBR reactor. Increasing organic loading rate (OLR) conditions (15–30 kg COD m"−"3 d"−"1) were applied to the methanogenic reactors. The results highlighted the feasibility of applying the ASTBR to vinasse, indicating a global COD removal higher than 80%. The ASTBR exhibited a stable long-term operation (240 days), even for OLR values as high as 30 kg COD m"−"3 d"−"1. The application of similar conditions to the UASB reactor indicated severe performance losses, leading to the accumulation of acids for every increase in the OLR. An energetic potential of 181.5 MJ for each cubic meter of vinasse was estimated from both hydrogen and methane. The provision of bicarbonate alkalinity proved to be a key factor in obtaining stable performance, offsetting the limitations of relatively low hydraulic retention times (<24 h).

  3. Removal of absorbable organic halides (aox) from recycled paper mill effluent using granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR)

    International Nuclear Information System (INIS)

    Mohamad, A.B.; Rahman, R.A.; Kadhum, A.A.H.; Abdullah, S.R.S.; Shaari, S.

    2006-01-01

    Paper mills generate varieties of pollutants depending upon the type of the pulping process. Paper mill wastewaters have high chemical oxygen demand (COD) and colour, indicating high concentrations of recalcitrant organics. The study was conducted employing a Granular Activated Carbon - Sequencing Batch Biofilm Reactor (GAC-SBBR), containing 3.0 L working volume, operated in aerobic condition and packed with 200 g/L of 2-3 mm granular activated carbon (coconut shells) as a medium for biofilm growth. For the first couple of month, the HRT was 36 hours and the HRT of this reactor was adjusted to 24 hours in order to evaluate the performance of the system. The treated wastewater sample for these studies came from a recycle paper factory from MNI Sdn Bhd with 4 different samples characteristics. The adsorbable organic halides (AOX) to be determined and treated were Pentachlorophenol (PCP), 2,3,4,5-Tetrachlorophenol (2,3,4,5-TeCP), 2,4,6-Trichlorophenol (2,4,6-TCP), 2,4-Dichlorophenol ( 2,4-DCP), 2-Chlorophenol (CP) and phenol. Results showed that, the biofilm attached onto granular activated carbon (GAC) could substantially remove these recalcitrant in the wastewater. More over, results from the studies showed that high removal was achieved by the biofilm SBR with 10-100% removal of AOX and depending on HRT. (Author)

  4. Dynamic study of an anaerobic reactor in pilot plant scale using radioactive tracer

    International Nuclear Information System (INIS)

    Pinto, A.M.F.; Moreira, R.M.; Chernicharo, C.A.L.

    1995-01-01

    The use of flow traces is a common practice in hydrodynamic studies. However chemical tracers have some shortcomings, such as the need of sampling, analysis and possible interferences with the delicate biological processes taking place within the reactor. Thus a radiotracer, Br 82 has been chosen for this purpose. The advantages of this radioisotope are its energetic gamma emission which can be easily detected outside the reactor walls, its solubility and lack of adsorption, besides having a convenient half-life and being easily produced is small nuclear reactors. The tracer responses to instantaneous injections at the reactor entrance were used to determine the resistance time and the mixing patterns of the reactors. The normalized residence time distributions were fitted to mathematical models by a least-squares subroutine. The axial dispersion model and the tanks-in-series model have been used, thus allowing the determination of the dispersion coefficient and the Peclet Number. (author). 5 refs, 4 figs, 1 tab

  5. Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH

    DEFF Research Database (Denmark)

    Falkentoft, C.M.; Müller, E.; Arnz, P.

    2002-01-01

    as in the first run was seen after one month, although the phase lengths had not been varied. Hence, the decrease after 1 month in the first and second run should be seen as a start-up phenomenon. FISH could detect a noticeable shift in the microbial population mainly within the first 2 weeks ofoperation. Almost...... hybridised to the dominant bacterial groups in the reactors investigated. No noticeable changes were detected in the aerobic bench-scale reactor during this period, indicating that the observed changes in the lab-scale reactor were caused by the changed environment. r 2002 Elsevier Science Ltd. All rights...

  6. Microbial community composition of a down-flow hanging sponge (DHS) reactor combined with an up-flow anaerobic sludge blanket (UASB) reactor for the treatment of municipal sewage.

    Science.gov (United States)

    Kubota, Kengo; Hayashi, Mikio; Matsunaga, Kengo; Iguchi, Akinori; Ohashi, Akiyoshi; Li, Yu-You; Yamaguchi, Takashi; Harada, Hideki

    2014-01-01

    The microbial community composition of a down-flow hanging sponge (DHS) reactor in an up-flow anaerobic sludge blanket (UASB)-DHS system used for the treatment of municipal sewage was investigated. The clone libraries showed marked differences in microbial community composition at different reactor heights and in different seasons. The dominant phylotypes residing in the upper part of the reactor were likely responsible for removing organic matters because a significant reduction in organic matter in the upper part was observed. Quantification of the amoA genes revealed that the proportions of ammonia oxidizing bacteria (AOB) varied along the vertical length of the reactor, with more AOB colonizing the middle and lower parts of the reactor than the top of the reactor. The findings indicated that sewage treatment was achieved by a separation of microbial habitats responsible for organic matter removal and nitrification in the DHS reactor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Simultaneous Production of Hydrogen and Methane from Sugar Beet Molasses in a Two Phase Anaerobic Digestion System in UASB Reactors under Thermophilic Temperature (55 Deg C)

    Energy Technology Data Exchange (ETDEWEB)

    Kongjan, P.; Villafa, S.; Beltran, P.; Min, B.; Angelidaki, I. (Dept. of Environmental Engineering, Technical Univ. of Denmark, DK-2800, Lyngby (Denmark)). e-mail: pak@env.dtu.dk

    2008-10-15

    Simultaneous production of hydrogen and methane in two sequential stages of acidogenic and methanogenic step was investigated in two serial operated up-flow anaerobic sludge bed (UASB) reactors at thermophilic temperature (55 deg C). Hydrogen production from molasses was carried out in the first reactor at the hydraulic retention time (HRT) of 1 day. Molasses were converted into hydrogen with the yield of 1.3 mole-H{sub 2}/mole-hexose{sub added} or 82.7 ml- H{sub 2}/g-VS{sub added} of molasses, and the hydrogen productivity was 2696 ml-H{sub 2}/dxl{sub reactor}. The effluent (mainly butyrate, acetate and lactate) after the acidogenic process was subsequently fed to the second reactor for methane production at HRT of 3 days. Methane production yield of 255 ml-H{sub 2}/g-VS{sub added} of influent or 130.1 ml-H{sub 2}/g-VS{sub added} of molasses and methane production rate of 1056 ml/dxl{sub reactor} were obtained. Significant decrease of volatile fatty acids (VFAs) was also observed in the effluent of the second reactor. A two phase anaerobic digestion was successfully demonstrated for molasses as a potential substrate to produce hydrogen and subsequent methane in the UASB reactors

  9. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    Science.gov (United States)

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  10. Anaerobic stabilization and conversion of transformed intermediates of antibiotic pharmaceutical effluent in a fluidized bed reactor.

    Science.gov (United States)

    Tamijevendane, S; Saravanane, R; Rajesh, R; Sivacoumar, R

    2011-07-01

    The formulation and implementation of regulatory standards for the ultimate disposal and reuse of transformed products of antibiotic drugs and solvents have been a pending issue in the waste management of pharmaceutical industries especially in the developing countries like India. A case study has been identified and the current issues in one of the major pharmaceutical industry (manufacturing cephalosporin drugs) located in Chennai, India, has been discussed for the possible implementation of anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge. The objective of the study was to determine the effect of bioaugmentation on the convertibility of anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge into residuals and biocompost. Cephalosporin is a common name refers to cephradine (C16H19N3O4S) and cephalexin (C16H17N3O4S.H2O). Based on the critical examination of results, the industry is looking for the alternatives of either direct disposal of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and phenyl acetic acid or for further degradation and disposal, which will essentially require additional cost and maintenance. The present regulatory standard implemented in India does not envisage such disposal alternatives and hence this would invite suggestions and recommendations of the expertise for the possible implementation on the pending issue in the antibiotic based pharmaceutical industries. The presence of cephalosporin increases total strength (Chemical Oxygen Demand) of the effluent and indirectly increases the cost of the treatment. Hence the biotransformation of cephalosporin either alone or in combination with other energetic compounds, offers the potential for an economical and environment friendly disposal alternative for the anaerobically transformed intermediates of antibiotic pharmaceutical waste sludge.

  11. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    OpenAIRE

    Zupančič, Gregor Drago; Panjičko, Mario; Zelić, Bruno

    2017-01-01

    Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy v...

  12. Effect of organic loading rate on anaerobic treatment of slaughterhouse wastewater in a fluidised-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borja, R. [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de la Grasa; Banks, C.J.; Zhengjian Wang [Manchester Univ. (United Kingdom). Inst. of Science and Technology

    1995-09-01

    COD removal efficiencies in the range 75.0-98.9% were achieved in an aerobic fluidised-bed reactor treating slaughterhouse wastewater, when evaluated at organic loading rates (OLR) of between 2.9 and 54.0 g COD/l.d, hydraulic retention times (HRT) of between 0.5 and 8 h and feed COD concentrations of between 250 and 4500 mg/l. More than 94% of feed COD could be removed up to OLR of about 27 g COD/l.d. Up to 0.320 litres of methane were produced per gram of COD removed and this methane production rate was independent of the OLR applied in this investigation. Volatile fatty acid (VFA) concentration in the reactor increased sharply at an OLR of about 30 g COD/l.d and, therefore, sufficient alkalinity should be provided to prevent pH from dropping to an undesirable level. The anaerobic fluidised-bed system can be operated at a significantly higher liquid throughput than other previously reported systems while maintaining its excellent efficiency. (Author)

  13. Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeongdong [University of Alberta, Alberta (Canada); Jung, Sokhee [Samsung SDS, Seoul (Korea, Republic of); Ahn, Young-Ho [Yeungnam University, Gyungsan (Korea, Republic of)

    2013-06-15

    The optimal balance of ammonium and nitrite is essential for successful operation of the subsequent anammox process. We conducted a partial nitritation experiment using an upflow air-lift reactor to provide operational parameters for achieving the optimal ratio of ammonium to nitrite, by feeding supernatant of anaerobic digester effluent, high-nitrogen containing rejection water. Semi-continuous operation results show that HRT should be set between 15 and 17 hours to achieve the optimum ration of 1.3 of NO{sub 2}-N/NH{sub 4}-N. In the UAR, nitritation was the dominant reaction due to high concentration of ammonia and low biodegradable organics. The influent contained low concentrations of hydroxylamine and hydrazine. However, hydrazine increased during partial nitritation by ⁓60-130% although there was no potential anammox activity in the reactor. The partial nitritation process successfully provided the ratio of nitrogen species for the anammox reaction, and relived the nitrite restraint on the anammox activity by increasing hydrazine concentration.

  14. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante de Amorim, Eduardo Lucena [Department of Hydraulic and Sanitation, University of Sao Paulo. Av. Trabalhador Saocarlense, 400 Centro, CEP 13566-590 Sao Carlos, SP (Brazil); Barros, Aruana Rocha; Rissato Zamariolli Damianovic, Marcia Helena; Silva, Edson Luiz [Department of Chemical Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235, CEP 13565-905 Sao Carlos, SP (Brazil)

    2009-01-15

    This study evaluated hydrogen production in an anaerobic fluidized bed reactor (AFBR) fed with glucose-based synthetic wastewater. Particles of expanded clay (2.8-3.35 mm) were used as a support material for biomass immobilization. The reactor was operated with hydraulic retention times (HRT) ranging from 8 to 1 h. The hydrogen yield production increased from 1.41 to 2.49 mol H{sub 2} mol{sup -1} glucose as HRT decreased from 8 to 2 h. However, when HRT was 1 h, there was a slight decrease to 2.41 mol H{sub 2} mol{sup -1} glucose. The biogas produced was composed of H{sub 2} and CO{sub 2}, and the H{sub 2} content increased from 8% to 35% as HRT decreased. The major soluble metabolites during H{sub 2} fermentation were acetic acid (HAc) and butyric acid (HBu), accounting for 36.1-53.3% and 37.7-44.9% of total soluble metabolites, respectively. Overall, the results demonstrate the potential of using expanded clay as support material for hydrogen production in AFBRs. (author)

  15. EFFECT OF SULFATE LOADING RATE AND ORGANIC LOADING RATE ON ANAEROBIC BAFFLED REACTORS USED FOR TREATMENT OF SANITARY LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    O. Burbano-Figueroa

    2015-06-01

    Full Text Available AbstractThis study investigated the effect of organic loading rate (OLR and sulfate loading rate (SLR on landfill leachate treatment by a lab-scale anaerobic baffled reactor (ABR. Landfill leachate contained a concentration of organic matter between 3966 and 5090 mg COD.L-1 and no detectable amounts of sulfate. Reactors were started-up by feeding them with iron-sulfate at a SLR of 0.05 g SO42-.L-1.day-1 (4 weeks. Factorial design and response surface techniques were used to evaluate and optimize the effects of these operating variables on COD removal. ABRs were operated at OLRs ranging from 0.30 up to 6.84 g COD.L-1.day-1 by changes in influent volumetric flow. SO42- was added to the influent at a SRL from 0.06 to 0.13 g SO42-.L-1.day-1. The highest value of COD removal (66% was reached at an OLR of 3.58 g COD.L-1.day-1 and SLR of 0.09 g SO4-2.L-1.day-1 with a COD/SO4-2 ratio of 40. Under these conditions sulfate is mainly used for molecular hydrogen consumption while organic matter is preferentially degraded via methanogesis.

  16. Applying moving bed biofilm reactor for removing linear alkylbenzene sulfonate using synthetic media

    Directory of Open Access Journals (Sweden)

    Jalaleddin Mollaei

    2015-01-01

    Full Text Available Detergents and problems of their attendance into water and wastewater cause varied difficulties such as producing foam, abnormality in the growth of algae, accumulation and dispersion in aqueous environments. One of the reactors was designated with 30% of the media with the similar conditions exactly same as the other which had filling rate about 10 %, in order to compare both of them together. A standard method methylene blue active substance was used to measure anionic surfactant. The concentrations of linear alkylbenzene sulfonate which examined were 50, 100, 200, 300 and 400 mg/l in HRT 72, 24 and 8 hrs. The removal percentage for both of reactors at the beginning of operating at50 mg/l concentration of pollutant had a bit difference and with gradually increasing the pollutant concentration and decreasing Hydraulic retention time, the variation between the removal percentage of both reactors became significant as the reactor that had the filling rate about 30 %, showed better condition than the other reactor with 10 % filling rate. Ideal condition in this experiment was caught at hydraulic retention time about 72 hrs and 200 mg/l pollutants concentration with 99.2% removal by the reactor with 30% filling rate. While the ideal condition for the reactor with 10% filling rate with the same hydraulic retention time and 100 mg/l pollutants concentrations was obtained about 99.4% removal. Regarding anionic surfactant standard in Iran which is 1.5 mg/l for surface water discharge, using this process is suitable for treating municipal wastewater and industrial wastewater which has a range of the pollutant between 100-200 mg/l. but for the industries that produce detergents products which make wastewater containing more than 200 mg/l surfactants, using secondary treatment process for achieving discharge standard is required.

  17. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    Science.gov (United States)

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors.

    Science.gov (United States)

    Huang, Haining; Zheng, Xiong; Chen, Yinguang; Liu, Hui; Wan, Rui; Su, Yinglong

    2017-02-15

    Alkaline fermentation has been reported to be an effective method to recover valuable products from waste sludge. However, to date, the potential effect of alkaline pH on the fate of antibiotic resistance genes (ARGs) during anaerobic fermentation of sludge has never been documented. In this study, the target ARGs in sludge was observed to be removed effectively and stably when sludge was anaerobically fermented at pH10. Compared with the control (without pH adjustment), the abundances of target ARGs at pH10 were reduced by 0.87 (sulI), 1.36 (sulII), 0.42 (tet(O)), 1.11 (tet(Q)), 0.79 (tet(C)) and 1.04 (tet(X)) log units. Further investigations revealed that alkaline fermentation shifted the community structures of potential ARGs hosts. Moreover, alkaline fermentation remarkably decreased the quantities and the ARGs-possessing ability of genetic vectors (plasmid DNA, extracellular DNA and phage DNA), which might limit the transfer of ARGs via conjugation, transformation and transduction. These results suggest that the shifted compositions of gene hosts and restricted gene transfer potential might be the critical reasons for the attenuation of ARGs at pH10. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of the temperature and of the organic load in two-stage up flow anaerobic sludge blanket reactors treating of swine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bichuette, Alexandre Abud; Duda, Rose Maria; Oliveira, Roberto Alves de [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil). Dept. de Engenharia Rural], E-mail: oliveira@fcav.unesp.br

    2008-07-01

    In this work the acting of two-stage up flow anaerobic sludge blanket reactors (UASB) was evaluated, installed in series, in pilot scale (volumes of 908 L and 350 L, respectively) in the treatment swine wastewater, with concentrations of total solids suspended (TSS) around 10000 mg L{sup -1}. The organic loading rates (OLR) applied in first UASB were of 5,2 and of 8,6 g total COD (Ld){sup -1}. The medium efficiencies of removal of the chemical demand of total oxygen (total COD), TSS and TKN were higher than 89; 80 and 55%, respectively, for the system of anaerobic treatment composed by the reactors UASB in two apprenticeships. The rate of volumetric methane production in the system of anaerobic treatment with the reactors UASB were 0,08 and 0,16 m{sup 3}CH{sub 4} (m{sup 3} CH{sub 4} reactor d){sup -1}. The number of total coliforms was reduced to 2,6x10{sup 4} NMP/100 mL. (author)

  20. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment--a state-of-the-art review.

    Science.gov (United States)

    Chong, Siewhui; Sen, Tushar Kanti; Kayaalp, Ahmet; Ang, Ha Ming

    2012-07-01

    Nowadays, carbon emission and therefore carbon footprint of water utilities is an important issue. In this respect, we should consider the opportunities to reduce carbon footprint for small and large wastewater treatment plants. The use of anaerobic rather than aerobic treatment processes would achieve this aim because no aeration is required and the generation of methane can be used within the plant. High-rate anaerobic digesters receive great interests due to their high loading capacity and low sludge production. Among them, the upflow anaerobic sludge blanket (UASB) reactors have been most widely used. However, there are still unresolved issues inhibiting the widespread of this technology in developing countries or countries with climate temperature fluctuations (such as subtropical regions). A large number of studies have been carried out in order to enhance the performance of UASB reactors but there is a lack of updated documentation. In face of the existing limitations and the increasing importance of this technology, the authors present an up-to-date review on the performance enhancements of UASB reactors over the last decade. The important aspects of this article are: (i) enhancing the start-up and granulation in UASB reactors, (ii) coupling with post-treatment unit to overcome the temperature constraint, and (iii) improving the removal efficiencies of the organic matter, nutrients and pathogens in the final effluent. Finally the authors have highlighted future research direction based on their critical analysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  2. Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor.

    Science.gov (United States)

    Park, Seongjun; Chung, Jinwook; Rittmann, Bruce E; Bae, Wookeun

    2015-01-01

    To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2-4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate. © 2014 Wiley Periodicals, Inc.

  3. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    International Nuclear Information System (INIS)

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-01-01

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L −1 d −1 . • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L −1 d −1 , methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L −1 d −1 ), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g −1 COD removed, which was higher than that at 38 °C (0.016 g VSS g −1 COD removed )

  4. Modeling Lab-sized Anaerobic Fluidized Bed Reactor (AFBR) for Palm Oil Mill Effluent (POME) treatment: from Batch to Continuous Reactors

    Science.gov (United States)

    Mufti Azis, Muhammad; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2018-03-01

    Indonesia is aiming to produce 30 million tones/year of crude palm oil (CPO) by 2020. As a result, 90 million tones/year of POME will be produced. POME is highly polluting wastewater which may cause severe environmental problem due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Due to the limitation of open pond treatment, the use of AFBR has been considered as a potential technology to treat POME. This study aims to develop mathematical models of lab-sized Anaerobic Fluidized Bed Reactor (AFBR) in batch and continuous processes. In addition, the AFBR also utilized natural zeolite as an immobilized media for microbes. To initiate the biomass growth, biodiesel waste has been used as an inoculum. In the first part of this study, a batch AFBR was operated to evaluate the COD, VFA, and CH4 concentrations. By comparing the batch results with and without zeolite, it showed that the addition of 17 g/gSCOD zeolite gave larger COD decrease within 20 days of operation. In order to elucidate the mechanism, parameter estimations of 12 kinetic parameters were proposed to describe the batch reactor performance. The model in general could describe the batch experimental data well. In the second part of this study, the kinetic parameters obtained from batch reactor were used to simulate the performance of double column AFBR where the acidogenic and methanogenic biomass were separated. The simulation showed that a relatively long residence time (Hydraulic Residence Time, HRT) was required to treat POME using the proposed double column AFBR. Sensitivity analyses was conducted and revealed that μm1 appeared to be the most sensitive parameter to reduce the HRT of double column AFBR.

  5. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  6. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    Science.gov (United States)

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  7. Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater.

    Science.gov (United States)

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang

    2017-10-28

    Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

  8. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Janning, K.F.; Mesterton, K.; Harremoës, P.

    1997-01-01

    Two experiments were performed in order to investigate the anoxic and the aerobic degradation of filtrated organic matter in a biofilter. In submerged lab: scale reactors with Biocarbone media as filter material, accumulated particulate organic matter from pre-settled wastewater served as the only...

  9. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  10. Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, S.; Campen, L.V.; Lettinga, G.

    1987-01-01

    This study was carried out to assess the feasibility of the upflow granular anaerobic sludge blanket (UASB) process for one-stage anaerobic treatment of unsettled slaughterhouse wastewater, which contains approximately 50% insoluble coarse suspended COD. The experiments used continuous feeding (24 h day) during the working days combined with weekend feed interruptions at 30 degrees C and 20 degrees C. An organic space load up to 11 and 7 kg COD/cubic m/day was satisfactorily accommodated at process temperatures of 30 degrees C and 20 degrees C, respectively, with a treatment efficiency up to 55% on COD total basis and 85% on COD filtered basis. The system was less effective in the removal of the coarse Suspended Solids than the removal of the colloidal and soluble fractions. The data indicate that a proper application of a one-stage granular UASB system treating unsettled wastewater, such as slaughterhouse waste, strongly depends on the processes involved in the removal of the colloidal and soluble fraction from the waste and on its conversion into methane. Under the optimal loading conditions of 11 kg COD/cubic m/day (30 degrees C) and 7 kg COD/cubic m/day (20 degrees C) the conversion of removed colloidal and soluble materials into methane was up to 87% and 82%. However, the system still performed very satisfactorily in the removal of the colloidal and soluble pollutants up to loading rates of 15 and 9 kg COD/cubic m/day at 30 degrees C and 20 degrees C, respectively, although the conversion of the removed organic matter into methane dropped dramatically, rendering the application of the process under these conditions unattractive, if not impossible. (Refs. 16).

  11. Carbonaceous materials in petrochemical wastewater before and after treatment in an aerated submerged fixed-bed biofilm reactor

    Directory of Open Access Journals (Sweden)

    Trojanowicz Karol

    2016-09-01

    Full Text Available Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR are presented and discussed. The method of chemical oxygen demand (COD fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

  12. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.

    Science.gov (United States)

    Jiang, Yongxiang; Tang, Bao; Xu, Zongqi; Liu, Kun; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2016-10-01

    The production of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2 using a moving bed biofilm reactor (MBBR) system was tested for the first time in this study. Polypropylene TL-2 was chosen as a suitable carrier, and γ-PGA concentration of 42.7±0.86g/L and productivity of 0.59±0.06g/(Lh) were obtained in batch fermentation. After application of the strategy of dissolved oxygen (DO)-stat feeding, higher γ-PGA concentration and productivity were achieved than with glucose feedback feeding. Finally, the repeated fed-batch cultures implemented in the MBBR system showed high stability, and the maximal γ-PGA concentration and productivity of 74.2g/L and 1.24g/(Lh) were achieved, respectively. In addition, the promotion of oxygen transfer by an MBBR carrier was well explained by a computational fluid dynamics (CFD) simulation. These results suggest that an MBBR system could be applied to large-scale γ-PGA production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of Electrical Stimulation on the Degradation of Azo Dye in Three-Dimensional Biofilm Electrode Reactors

    Directory of Open Access Journals (Sweden)

    Xian Cao

    2017-04-01

    Full Text Available Three-dimensional biofilm electrode reactors (3D-BERs were constructed to degrade the azo dye Reactive Brilliant Red (RBR X-3B. The 3D-BERs with different influent concentrations and external voltages were individually studied to investigate their influence on the removal of X-3B. Experimental results showed that 3D-BERs have good X-3B removal efficiency; even when the influent concentration was 800 mg/L, removal efficiency of 73.4% was still achieved. In addition, the X-3B removal efficiency stabilized shortly after the influent concentration increased. In 3D-BERs, the average X-3B removal efficiency increased from 52.8% to 85.4% when the external voltage rose from 0 to 2 V. We further identified the intermediate products via UV-Vis and gas chromatography-mass spectrometry (GC-MS analyses, and discussed the potential mechanism of degradation. After the conjugate structure of X-3B was destroyed, all of the substances generated mainly consisted of lower-molecular-weight organics.

  14. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor

    International Nuclear Information System (INIS)

    Remoundaki, Emmanouela; Kousi, Pavlina; Joulian, Catherine; Battaglia-Brunet, Fabienne; Hatzikioseyian, Artin; Tsezos, Marios

    2008-01-01

    The characteristics of the biofilm and the solids formed during the operation of a sulphate-reducing fixed-bed reactor, fed with a moderately acidic synthetic effluent containing zinc and iron, are presented. A diverse population of δ-Proteobacteria SRB, affiliated to four distinct genera, colonized the system. The morphology, mineralogy and surface chemistry of the precipitates were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The XRD patterns observed are characteristic of amorphous solid phases. Peaks corresponding to crystalline iron sulphide, marcasite, sphalerite and wurtzite were also identified. SEM-EDX results confirm the predominance of amorphous phases appearing as a cloudy haze. EDX spectra of spots on the surface of these amorphous phases reveal the predominance of iron, zinc and sulphur indicating the formation of iron and zinc sulphides. The predominance of these amorphous phases and the formation of very fine particles, during the operation of the SRB column, are in agreement and can be explained by the formation pathways of metal sulphides at ambient temperature, alkaline pH and reducing conditions. Solids are precipitated either as (i) amorphous phases deposited on the bed material, as well as on surface of crystals, e.g. Mg 3 (PO 4 ) 2 and (ii) as rod-shaped solids characterized by a rough hazy surface, indicating the encapsulation of bacterial cells by amorphous metal sulphides

  15. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    Science.gov (United States)

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  16. Deciphering the microbial ecology in bio- gas reactors for optimizing the anaerobic digestion process

    DEFF Research Database (Denmark)

    Zhu, Xinyu

    of the basic microbial metabolism and ecology, methanogenic microbial communities were enriched in a lab-scale continuous stirred-tank reactor (CSTR) fed with synthetic feedstocks. In the experiment, the substrates used were stepwise simplified (i.e. polysaccharide, monosaccharide, short chain fatty acids...

  17. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  18. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    International Nuclear Information System (INIS)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W.C.

    2014-01-01

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH 4 /g VS added in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO 2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste

  19. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor.

    OpenAIRE

    Schmidt, J E; Ahring, B K

    1993-01-01

    Degradation of propionate and butyrate in whole and disintegrated granules from a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor fed with acetate, propionate, and butyrate as substrates was examined. The propionate and butyrate degradation rates in whole granules were 1.16 and 4.0 mumol/min/g of volatile solids, respectively, and the rates decreased 35 and 25%, respectively, after disintegration of the granules. The effect of adding different hydrogen-oxidizing bacteria (...

  20. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment

    OpenAIRE

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (OHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2 h and volumetric air supply rate of 12.95 m(3)-air...

  1. Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor.

    Science.gov (United States)

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian

    2018-02-01

    To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    International Nuclear Information System (INIS)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-01-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  3. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-07-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  4. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor.

    Science.gov (United States)

    Liu, Wenhui; Yuan, Linjiang; Wei, Bo

    2016-09-01

    In the present study, a new type of interior optical fiber illuminating reactor was developed for H2 production to solve the problem of luminous intensity attenuation at the center portion of a reactor, and an immobilization technique was used to enhance the stability of a continuous hydrogen production process with attached photosynthetic bacteria, using glucose as a sole carbon substrate for the indigenous photosynthetic bacteria (PSB) Rhodopseudomonas palustris SP-6. Results of the experiments showed that the interior optical fiber illuminating reactor produces H2 more efficiently and productively than the exterior light source reactor, with the cumulative H2 production, the maximum H2 production rate and H2 yield increased by 813ml, 11.3ml l-1 h-1 and 22.3%, respectively. The stability of the product of continuous hydrogen was realized by immobilizing PSB on the surface of powder active carbon(PAC). After adding the dosage of 2.0g l-1 PAC, the continuous steady operation of H2 production gave a high H2 yield of 1.398 mol H2 mol-1 glucose and an average H2 production rate of 35.1ml l-1 h-1 illuminating with a single interior optical fiber light source. Meanwhile, a higher H2 yield of 1.495 mol H2 mol-1 glucose and an average H2 production rate of 38.7ml l-1 h-1 were attained illuminating with a compound lamp in the continuous H2 production for 20 days.

  5. Anaerobic expanded granular sludge bed (EGSB) reactor for the removal of sulphide by autotrophic denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Dinamarca, Carlos [Department of Process, Energy and Environment, Faculty of Technology, Telemark University College Kjolnes ring 56, 3918 Porsgrunn (Norway)

    2013-07-01

    The Removal efficiency, load and N/S molar ratio, of an EGSB reactor for autotrophic sulphide denitrification operated for 96 days, were studied. The reactor was operated at high inlet sulphide concentrations between 0.25 to 3.00 g HS--S/L equivalents to loads between 5 to 250 g HS--S/m3-h. Sulphide removals higher than 99 % were achieved. At a N/S molar ratio of 0.3 and 12 hours HRT the process was stable even during transition periods of influent sulphide concentration and pH (9.0-12.1). At N/S molar ratio of 1.3, granules lost some of their sedimentation properties and appeared to disintegrate. On average 94 ± 4 % of the equivalent inlet sulphur ended as elemental sulphur.

  6. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    Science.gov (United States)

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  7. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  8. Tratamiento de las excretas de cerdo mediante un