WorldWideScience

Sample records for anaerobic biofilm reactors

  1. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  2. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  3. Biohydrogen production from diary processing wastewater by anaerobic biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rios-Gonzalez, L.J.; Moreno-Davila, I.M.; Rodriguez-Martinez, J.; Garza-Garcia, Y. [Universidad Autonoma de Coahuila, Saltillo, Coahuila (Mexico)]. E-mail: leopoldo.rios@mail.uadec.mx

    2009-09-15

    This article describes biological hydrogen production from diary wastewater via anaerobic fermentation using pretreated heat shock (100 degrees Celsius, 30 min.) and acid (pH 3.0, 24 h) treatment procedures to selectively enrich the hydrogen producing mixed consortia prior to inoculation to batch reactors. Bioreactor used for immobilization consortia was operated at mesophilic (room) temperature (20{+-}3 degrees Celsius), under acidophilic conditions (pH 4.0-4.5), HRT (2h), and a natural support for generate hydrogen producing mixed consortia biofilm: Opuntia imbricata. Reactor was initially operated with sorbitol (5g/L) for 60 days of operation. Batch tests were conducted using 20{+-}0.02g of natural support with biofilm. Batch experiments were conducted to investigate the effect of COD (2.9-21.1 g-COD/L), at initial pH of 7.0, 32{+-}1 degrees Celsius. Maximum hydrogen yield was obtained at 21.1 g-COD/L. Experiments of pH effect were conducted using the optimal substrate concentration (21.2 g-COD/L), at pH 4 to 7 and 11.32 (pH diary wastewater) ,and 32{+-}1 degrees Celsius. Experiments results indicate the optimum initial cultivation was pH 4.0, but we can consider also a stable hydrogen production at pH 11.32 (pH diary wastewater), so we can avoid to fit the pH, and use diary wastewater as it left the process of cheese manufacture. The operational pH of 4.0 is 1.5 units below that of previously reported hydrogen producing organisms. The influence of the effect of temperature were conducted using the optimal substrate concentration (21.2 g-COD/L), two pH levels: 4.0 and 11.32, and four different temperatures: 16{+-}3 degrees Celsius (room temperature), 3 C, 45{+-}1 degrees Celsius y 55{+-}1 degrees Celsius.Optimal temperature for hydrogen production from diary wastewater at pH 4.0 was 55{+-}1 degrees Celsius, and for pH 11.32 was 16{+-}3 degrees Celsius.Therefore, the results suggests biofilm reactors in a natural support like Opuntia imbricata have good potential

  4. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    Science.gov (United States)

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  5. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  6. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  7. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed.

  8. Performance evaluation of cigarette filter rods as a biofilm carrier in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2012-01-01

    Biocarriers are an important component of anaerobic moving bed biofilm reactors (AMBBRs). In this study, the capability of cigarette filter rods (CFRs) as a biocarrier in an anaerobic moving bed biofilm reactor was evaluated. Two similar lab-scale anaerobic moving bed biofilm reactors were undertaken using Kaldnes-K3 plastic media and cigarette filter rods (wasted filters from tobacco factories) as biofilm attachment media for wastewater treatment. Organic substance and total posphours (TP) removal was investigated over 100 days. Synthetic wastewater was prepared with ordinary water and glucose as the main sources of carbon and energy, plus balanced macro- and micro-nutrients. Process performance was studied by increasing the organic loading rate (OLR) in the range of 1.6-4.5 kg COD/m3 x d. The COD average removal efficiency were 61.3% and 64.5% for AMBBR with cigarette filter rods (Reactor A) and AMBBR with Kaldnes plastic media (Reactor B), respectively. The results demonstrate that the performance of the AMBBR containing 0.25 litres of cigarette filters was comparable with a similar reactor containing 1.5 litres of Kaldnes plastic media. An average phosphorus removal of 67.7% and 72.9% was achieved by Reactors A and B, respectively.

  9. Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.

    Science.gov (United States)

    Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri

    2013-09-01

    Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors.

  10. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    Science.gov (United States)

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  11. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  12. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    Science.gov (United States)

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-01-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.

  13. Mixing characteristics and whey wastewater treatment of a novel moving anaerobic biofilm reactor.

    Science.gov (United States)

    Rodgers, Michael; Zhan, Xin-Min; Dolan, Brian

    2004-01-01

    A novel moving anaerobic biofilm reactor was used to treat whey wastewater. In this process, biofilm was grown on a plastic biofilm media module, which was vertically moved up and down in the bulk fluid. The objectives of the study were to investigate the mixing and performance characteristics of the new process in treating whey wastewater. The mixing efficiency was indicated by a dispersion number, D(L)/uL. D(L)/uL was up to 1.34, showing that the anaerobic reactor can be taken as a completely mixed reactor. At mesophilic conditions (35+/-2 degrees C), the admissible volumetric COD loading rate up to 11.6kg COD m(-3) day(-1) was achieved with the COD removal efficiency of 89% and the hydraulic retention time (HRT) of 1 day. When the HRT was 0.6 days, the volumetric COD loading rate was 15.2 kg COD m(-3) day(-1), but COD removal efficiency decreased to 81%. The percentage of methane (CH4) in the biogas was 63% on average and the yield of methane was 333.4 L CH4 kg(-1) COD removal at ambient conditions.

  14. [Treatment of landfill leachate using sequential anaerobic/aerobic moving-bed biofilm reactor].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Chen, Gui-xia; Jong, Shik Chung

    2006-10-01

    A sequential anaerobic-aerobic moving-bed biofilm reactor (MBBR) was employed to treat landfill leachate produced from disposal of municipal solid waste. The affecting operation conditions were investigated, and the affecting mechanism was also analyzed. The results showed that the HRT and organic loading rate (OLR) could greatly influence the treat efficiency. When the influent OLR was in the range of 4.01 - 7.87 kg/(m3 x d), the average total COD removal efficiency was 94.2%, and the contribution of anaerobic stage to total COD removal efficiency was 87.95% - 92.76%; while the influent OLR was in the range of 10.23-16.14 kg/(m3 x d), the average total COD removal efficiency was still 92.64%, and the contribution of anaerobic stage to total COD removal efficiency was 79.05% - 86.56%. As long as HRT of aerobic MBBR was longer than 1.25 d, the total HN4+ -N removal efficiency was persistently more than 97%; while the HRT was 0.75 d, the total HN4+ -N removal efficiency was only about 20%. The sequential anaerobic-aerobic MBBR can endure strong loading impact, even though the OLR was sharply increased 4 times and lasted for 24 h; the system could recover the normal treat efficiency in 3 d.

  15. Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange.

    Science.gov (United States)

    Murali, V; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian

    2013-09-01

    This study was to investigate the mineralization of wastewater containing methyl orange (MO) in integrated anaerobic-aerobic biofilm reactor with coconut fiber as bio-material. Different aeration periods (3h in phase 1 and 2; 3, 6 and 15 h in phase 3; 24 h in phase 4 and 5) in aerobic chamber were studied with different MO concentration 50, 100, 200, 200 and 300 mg/L as influent from phase 1-5. The color removals estimated from the standard curve of dye versus optical density at its maximum absorption wavelength were 97%, 96%, 97%, 97%, and 96% and COD removals were 75%, 72%, 63%, 81%, and 73% in phase 1-5, respectively. The MO decolorization and COD degradation followed first-order kinetic model and second-order kinetic model, respectively. GC-MS analysis indicated the symmetrical cleavage of azo bond and the reduction in aromatic peak ensured the partial mineralization of MO.

  16. Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater.

    Science.gov (United States)

    Kim, Hyun-Chul; Shin, Jaewon; Won, Seyeon; Lee, Jung-Yeol; Maeng, Sung Kyu; Song, Kyung Guen

    2015-03-15

    A fermentative strategy with an anaerobic moving bed biofilm reactor (AMBBR) was used for the treatment of domestic wastewater. The feasibility of using a membrane separation technique for post-treatment of anaerobic bio-effluent was evaluated with emphasis on employing a membrane distillation (MD). Three different hydrophobic 0.2 μm membranes made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) were examined in this study. The initial permeate flux of the membranes ranged from 2.5 to 6.3 L m(-2) h(-1) when treating AMBBR effluent at a temperature difference between the feed and permeate streams of 20 °C, with the permeate flux increasing in the order PP distillation, while a flux decline in MD with either the PVDF or PP membrane was not found under the identical distillation conditions. During long-term distillation with the PVDF membrane, total phosphorus was completely rejected and >98% rejection of dissolved organic carbon was also achieved. The characterization of wastewater effluent organic matter (EfOM) using an innovative suite of analytical tools verified that almost all of the EfOM was rejected via the PVDF MD treatment.

  17. Central treatment of different emulsion wastewaters by an integrated process of physicochemically enhanced ultrafiltration and anaerobic-aerobic biofilm reactor.

    Science.gov (United States)

    Zhang, Weijun; Xiao, Ping; Wang, Dongsheng

    2014-05-01

    The feasibility of an integrated process of ultrafiltration (UF) enhanced by combined chemical emulsion breaking with vibratory shear and anaerobic/aerobic biofilm reactor for central treatment of different emulsion wastewaters was investigated. Firstly, it was found that calcium chloride exhibited better performance in oil removal than other inorganic salts. Chemical demulsification pretreatment could efficiently improve oil removal and membrane filtration in emulsion wastewater treatment by VSEP. According to aerobic batch bioassay, UF permeate exhibited good biodegradability and could be further treated with biological process. Additionally, pilot test indicated that anaerobic-aerobic biofilm exhibited an excellent ability against rise in organic loading and overall chemical oxygen demand (COD) removal efficiency of biological system was more than 93% of which 82% corresponded to the anaerobic process and 11% to the aerobic degradation. The final effluent of integrated process could meet the "water quality standards for discharge to municipal sewers" in China.

  18. Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor.

    Science.gov (United States)

    Hultberg, Malin; Olsson, Lars-Erik; Birgersson, Göran; Gustafsson, Susanne; Sievertsson, Bertil

    2016-05-01

    Nutrient removal from the effluent of an anaerobic moving bed biofilm reactor (AnMBBR) treated with microalgae was evaluated. Algal treatment was highly efficient in removal of nutrients and discharge limits were met after 3days. Extending the cultivation time from 3 to 5days resulted in a large increase in biomass, from 233.3±49.3 to 530.0±72.1mgL(-1), despite nutrients in the water being exhausted after 3days (ammonium 0.04mgL(-1), orthophosphate <0.05mgL(-1)). Biomass productivity, lipid content and quality did not differ in microalgal biomass produced in wastewater sampled before the AnMBBR. The longer cultivation time resulted in a slight increase in total lipid concentration and a significant decrease in linolenic acid concentration in all treatments. Differences were observed in chemical oxygen demand, which decreased after algal treatment in wastewater sampled before the AnMBBR whereas it increased after algal treatment in the effluent from the AnMBBR.

  19. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.

    Science.gov (United States)

    Tawfik, A; El-Gohary, F; Temmink, H

    2010-02-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for COD(total); 51-73% for COD(colloidal) and 20-55% for COD(soluble) was found at a total HRT of 5-10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of COD(total), COD(colloidal) and COD(soluble) increased up to 92, 89 and 80%, respectively. However, the removal efficiency of COD(suspended) in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of COD(suspended) was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m(-2) day(-1). The removal efficiency was decreased by a value of 34 and 43% at a higher OLR's of 7.4 and 17.8 g COD m(-2) day(-1), respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 x 10(4) MPN per 100 ml at a HRT of 13.3 h, 4.9 x 10(5) MPN per 100 ml at a HRT of 10 h and 9.4 x 10(5) MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log(10) reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB-MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB-MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.

  20. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  1. Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling.

    Science.gov (United States)

    Wu, Jun; Zhang, Yue

    2017-01-01

    The simultaneous nitrogen and methane removal by the combined nitritation, anaerobic ammonium oxidation (anammox), and nitrite dependent anaerobic methane oxidation (n-damo) processes in the membrane aerated biofilm reactor (MABR) offers clear advantages in term of energy saving and greenhouse gas emission mitigation. The rejected water from sludge digestion usually contained high ammonium, COD, and dissolved methane. The impact of influent COD on the anaerobic methane and ammonium removal in an MABR was evaluated in the model based study. The results indicated that the influent COD did not reduce the methane and ammonium removal efficiency at C/N ratio (influent COD/NH4(+)-N) less than 0.1. At high C/N ratio, the oxygen transfer coefficient needed to be increased to achieve high methane and nitrogen removal. Substrate flux analysis indicated that heterotrophic denitrification in the outside layer of biofilm reduced the impact of influent COD. Heterotrophic growth needed to be limited at the outside layer by using NO3(-) as electron acceptor; otherwise, the heterotrophic bacteria would compete NO2(-) and space with anammox and n-damo bacteria in the inner layers and reduce the nitrogen and methane removal efficiency.

  2. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process.

  3. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    Science.gov (United States)

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.

  4. Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Ramanaiah, S.V.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2008-01-15

    Biohydrogen (H{sub 2}) production with simultaneous wastewater treatment was studied in anaerobic sequencing batch biofilm reactor (AnSBBR) using distillery wastewater as substrate at two operating pH values. Selectively enriched anaerobic mixed consortia sequentially pretreated with repeated heat-shock (100{sup o}C; 2 h) and acid (pH -3.0; 24 h) methods, was used as parent inoculum to startup the bioreactor. The reactor was operated at ambient temperature (28{+-}2 {sup circle} C) with detention time of 24 h in periodic discontinuous batch mode. Experimental data showed the feasibility of hydrogen production along with substrate degradation with distillery wastewater as substrate. The performance of the reactor was found to be dependent on the operating pH. Adopted acidophilic microenvironment (pH 6.0) favored H{sub 2} production (H{sub 2} production rate - 26 mmol H{sub 2}/day; specific H{sub 2} production - 6.98 mol H{sub 2}/kg COD{sub R}-day) over neutral microenvironment (H{sub 2} production rate - 7 mmol H{sub 2}/day; specific H{sub 2} production - 1.63 mol H{sub 2}/kg COD{sub R}-day). However, COD removal efficiency was found to be effective in operated neutral microenvironment (pH 7 - 69.68%; pH 6.0 - 56.25%). The described process documented the dual benefit of renewable energy generation in the form of H{sub 2} with simultaneous wastewater treatment utilizing it as substrate. (author)

  5. Kinetic analysis of microbial sulfate reduction by desulfovibrio desulfuricans in an anaerobic upflow porous media biofilm reactor.

    Science.gov (United States)

    Chen, C I; Mueller, R F; Griebe, T

    1994-02-20

    An anaerobic upflow porous media biofilm reactor was designed to study the kinetics and stoichiometry of hydrogen sulfide production by the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans (ATCC 5575) as the first step for the modeling and control of formation souring (H(2)S) in oil field porous media. The reactor was a packed bed (50 x 5.5 cm) tubular reactor. Sea sand (140 to 375 mum) was used as the porous media. The initial indication of souring was the appearance of well-separated black spots (precipitates of iron sulfide) in the sand bed. The blackened zones expanded radially and upward through the column. New spots also appeared and expanded into the cone shapes. Lactate (substrate) was depleted and hydrogen sulfide appeared in the effluent.Analysis of the pseudo-steady state column shows that there were concentration gradients for lactate and hydrogen sulfide along the column. The results indicate that most of the lactate was consumed at the front part of the column. Measurements of SRB biomass on the solid phase (sand) and in the liquid phase indicate that the maximum concentration of SRB biomass resided at the front part of the column while the maximum in the liquid phase occurred further downstream. The stoichiometry regarding lactate consumption and hydrogen sulfide production observed in the porous media reactor was different from that in a chemostat. After analyzing the radial dispersion coefficient for the SRB in porous media and kinetics of microbial growth, it was deduced that transport phenomena dominate the souring process in our porous media reactor system. (c) 1994 John Wiley & Sons, Inc.

  6. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m(2)/day) and 26 mg N/L/day (43 mg N/m(2)/day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  7. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  8. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    Science.gov (United States)

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-06

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology.

  9. Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Raghavulu, S. Veer; Goud, R. Kannaiah; Srikanth, S.; Babu, V. Lalit; Sarma, P.N. [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology (IICT), Hyderabad 500 607 (India)

    2010-11-15

    This communication provides an insight into the composition of the microbial community survived in the biofilm configured anaerobic reactor operated for biohydrogen (H{sub 2}) production using wastewater as substrate under diverse conditions for past four years. PCR amplified 16S rDNA product (at variable V3 region using universal primers 341F and 517R) was separated by using denaturing gradient gel electrophoresis (DGGE) to identify the diversity in microbial population survived. The phyologenetic profile of the bioreactor showed significant diversity in the microbial community where major nucleotide sequences were affiliated to Class Clostridia followed by Bacteroidetes, Deltaproteobacteria and Flavobacteria. Clostridium were found to be dominant in the microbial community observed. The controlled growth conditions, application of pre-treatment to biocatalyst, operation with specific pH and variation in substrate composition are reasoned for the robust acidogenic culture identified in the bioreactor. Most of the operational taxonomic units (OTUs) observed in the bioreactor are capable to undergo acetate producing pathway, feasible for effective H{sub 2} production. (author)

  10. Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey.

    Science.gov (United States)

    Damasceno, Leonardo H S; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio

    2007-12-01

    An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.

  11. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  12. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  13. Effect of sulfide inhibition and organic shock loading on anaerobic biofilm reactors treating a low-temperature, high-sulfate wastewater.

    Science.gov (United States)

    McDonald, Heather B; Parkin, Gene F

    2009-03-01

    To assess the long-term treatment of sulfate- and carbon-rich wastewater at low temperatures, anaerobic biofilm reactors were operated for over 900 days at 20 degrees C and fed wastewater containing lactate and sulfate. Results showed the reactors could be operated at 20 degrees C with a load rate of 1.3 g-chemical oxygen demand (COD)/L x d or less and a sulfur loading rate (SLR) of 0.2 g-S/L x d, with no significant deterioration in performance. With acclimation periods, load rates of 3.4 g-COD/L x d and SLR of 0.3 g/L x d could be tolerated. Effluent dissolved sulfide and hydrogen sulfide levels were approximately 600 and 150 mg-S/L, respectively, during this period. The effect of organic shock loading was also assessed. Reactors appeared to recover from one, but not two, lactate spikes of approximately 5000 mg-COD/L. Long-term stability was achieved in reactors containing large, stable populations of lactate- and propionate-degrading sulfate-reducing bacteria and aceticlastic methanogens.

  14. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  15. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure.

  16. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  17. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  18. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  19. Development of biofilm in anaerobic reactors treating wastewater from coffee grain processing Desenvolvimento de biofilme em reatores anaeróbios tratando água residuária do processamento dos frutos do cafeeiro

    Directory of Open Access Journals (Sweden)

    Fátima R. L. Fia

    2010-02-01

    Full Text Available In recent decades the use of anaerobic fixed bed reactors has been established in Brazil for the treatment of different effluents. As the capability of retaining microorganisms by support media (fixed bed is a factor influencing the performance of these reactors, the present study aims at evaluating the influence of three fixed bed on the effectiveness of treating an effluent with high pollution potential: wastewater from coffee grain processing (WCP, with organic matter concentrations varying from 812 to 5320 mg L-1 in the form of chemical oxygen demand (COD. Support media used for the immobilization of biomass were: blast furnace slag, polyurethane foam and #2 crushed stone with porosities of 53, 95 and 48%, respectively. The mean efficiency of COD removal in the reactor filled with polyurethane foam was 80%, attributed to its higher porosity index, which also provided greater retention and fixation of biomass which, when quantified as total volatile solids, was found to be 1301 mg g-1 of foam. The biofilm was made up of various microorganisms, including rod, curved rods, cocci, filaments and morphologies similar to Methanosaeta sp. and Methanosarcina sp.Nas últimas décadas tem-se registrado, no Brasil, o uso de reatores anaeróbios de leito fixo para o tratamento de diversos tipos de efluentes. Uma vez que a capacidade de retenção de micro-organismos pelo meio suporte (leito fixo é fator de influência no desempenho desses reatores, buscou-se, com a realização do presente estudo, avaliar a influência do leito fixo na eficiência de três unidades tratando um efluente com elevado potencial poluidor: água residuária do processamento dos frutos do cafeeiro (ARC, com concentração de matéria orgânica variando entre 812 e 5.320 mg L-1 na forma de DQO. Os tipos de suporte utilizados na imobilização da biomassa foram: escória de alto-forno, espuma de poliuretano e brita nº 2, com índice de vazios de 53, 95 e 48%, respectivamente. A

  20. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Directory of Open Access Journals (Sweden)

    Karcher Patrick

    2005-08-01

    Full Text Available Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent or form flocs/aggregates (also called granules without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR, packed bed reactor (PBR, fluidized bed reactor (FBR, airlift reactor (ALR, upflow anaerobic sludge blanket (UASB reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.

  1. Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degrading gelatin

    Directory of Open Access Journals (Sweden)

    Tommaso G.

    2002-01-01

    Full Text Available This work reports on a preliminary study of anaerobic degradation of gelatin with emphasis on the development of the proteolytic biofilm in polyurethane foam matrices in differential reactors. The evolution of the biofilm was observed during 22 days by optical and scanning electron microscopy (SEM analyses. Three distinct immobilization patterns could be observed in the polyurethane foam: cell aggregates entrapped in matrix pores, thin biofilms attached to inner polyurethane foam surfaces and individual cells that have adhered to the support. Rods, cocci and vibrios were observed as the predominant morphologies of bacterial cells. Methane was produced mainly by hydrogenothrophic reactions during the operation of the reactors.

  2. Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor.

    Science.gov (United States)

    Popat, Sudeep C; Deshusses, Marc A

    2011-02-15

    Anaerobic bioreactors containing Dehalococcoides spp. can be effective for the treatment of trichloroethene (TCE) contamination. However, reductive dehalogenation of TCE often results in partial conversion to harmless ethene, and significant production of undesired cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) is frequently observed. Here, a detailed modeling study was conducted focusing on the determination of biokinetic constants for the dechlorination of TCE and its reductive dechlorination intermediates cis-DCE and VC as well as any biokinetic inhibition that may exist between these compounds. Dechlorination data from an anaerobic biotrickling filter containing Dehalococcoides spp. fed with single compounds (TCE, cis-DCE, or VC) were fitted to the model to determine biokinetic constants. Experiments with multiple compounds were used to determine inhibition between the compounds. It was found that the Michaelis-Menten half-saturation constants for all compounds were higher than for cells grown in suspended cultures, indicating a lower enzyme affinity in biofilm cells. It was also observed that TCE competitively inhibited the dechlorination of cis-DCE and had a mild detrimental effect on the dechlorination of VC. Thus, careful selection of biotreatment conditions, possibly with the help of a model such as the one presented herein, is required to minimize the production of partially dechlorinated intermediates.

  3. Oral cavity anaerobic pathogens in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Bertl, Kristina; Zijnge, Vincent; Zatorska, Beata; Leonhard, Matthias; Schneider-Stickler, Berit; Harmsen, Hermie J. M.

    2015-01-01

    BACKGROUND: A polymerase chain reaction (PCR)-based method has been used to identify oral anaerobic pathogens in biofilms on voice prostheses. The purpose of the present study was to determine the location of those pathogens inside the biofilms. METHODS: Biofilms of 15 voice prostheses were sampled

  4. Effect of calcium on moving-bed biofilm reactor biofilms.

    Science.gov (United States)

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  5. Biofilm architecture in a novel pressurized biofilm reactor.

    Science.gov (United States)

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  6. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    OpenAIRE

    2011-01-01

    Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR) and sequencing batch reactors (SBR) were investigated. During all experiments, the efficiency of SBR ...

  7. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...

  8. Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox.

    Science.gov (United States)

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-29

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  9. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Directory of Open Access Journals (Sweden)

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  10. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  11. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  12. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    control approaches that have been used are comprehensively described. These include simple and adaptive controllers, as well as more recent developments such as fuzzy controllers, knowledge-based controllers and controllers based on neural networks.......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  13. Treatment of leachate from the anaerobic fermentation of solid wastes using two biofilm support media.

    Science.gov (United States)

    Comett, I; González-Martinez, S; Wilderer, P

    2004-01-01

    Biofilms growing on different carrier media have a different response to the nutrients contained in wastewater. Biofilms have proven to be an alternative to the treatment of wastewater containing higher concentrations of contaminants. The main objective of this research was to compare two biofilm support media for the treatment of leachate from the anaerobic fermentation of solid wastes. The removal of organic matter and ammonia was achieved in two fixed bed biofilm reactors containing Kaldnes and Linpor support materials with specific surface areas of 490 and 270 m2/m3, respectively, and operating under the sequencing batch procedure during 204 days. The Linpor reactor achieved higher total COD removal than the Kaldnes reactor (47% and 39%, respectively). Linpor was shown to be less sensitive to influent COD changes than Kaldnes. The effluent total COD values of Kaldnes were higher than Linpor. The dissolved COD removal was 21% for both reactors. The average ammonia removal for Linpor was 72% and 42% for Kaldnes. The matrix of Linpor allows higher concentrations of microorganisms (as dry mass) than Kaldnes. The dry mass concentration was related to the "active" exposed surface area of the biofilm. This is considered to be the cause for the better performance of Linpor when compared with Kaldnes.

  14. Essential metal depletion in an anaerobic reactor

    NARCIS (Netherlands)

    Osuna, M.B.; Iza, J.M.; Zandvoort, M.H.; Lens, P.N.L.

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. E

  15. Essential metal depletion in an anaerobic reactor.

    NARCIS (Netherlands)

    Osuna, M.B.; Iza, J.M.; Zandvoort, M.H.; Lens, P.N.L.

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. E

  16. Monitoring and control of anaerobic reactors

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær;

    2003-01-01

    measurements are reviewed in detail. In the sequel, possible manipulated variables, such as the hydraulic retention time, the organic loading rate, the sludge retention time, temperature, pH and alkalinity are evaluated with respect to the two main reactor types: high-rate and low-rate. Finally, the different......The current status in monitoring and control of anaerobic reactors is reviewed. The influence of reactor design and waste composition on the possible monitoring and control schemes is examined. After defining the overall control structure, and possible control objectives, the possible process...

  17. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)--anaerobic reactor.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2013-10-01

    Adding Fe(III) into a MEC - anaerobic reactor enhanced the degradation of organic matters. To clarify the respective effects of combining Fe(III) dosage and a MEC and Fe(III) dosage only on strengthening anaerobic digestion, three anaerobic reactors were operated in parallel: a MEC - anaerobic reactor with dosing Fe(OH)3 (R1), an anaerobic reactor with dosing Fe(OH)3 (R2) and a common anaerobic reactor (R3). With increasing influent COD from 1500 to 4000 mg/L, the COD removal in R1 was maintained at 88.3% under a voltage of 0.8 V, which was higher than that in reactor R2 and R3. When the power was cut off, the COD removal in R1 decreased by 5.9%. The addition of Fe(OH)3 enhanced both anaerobic digestion and anodic oxidation, resulting in the effective mineralization of volatile fatty acids (VFAs). The reduced Fe(II) combined with electric field resulted more extracellular polymeric substances (EPS) production. Quantitative real - time PCR showed a higher abundance of bacteria in the anodic biofilm and R1. Pyrosequencing and denaturing gradient gel electrophoresis (DGGE) analysis revealed that the dominant bacteria and archaea communities were richer and more abundant in the anode biofilm and R1.

  18. Improved Denitrification of Municipal Sludge in Biofilm-electrode Reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Le-hua; JIA Jin-ping; WANG Ya-lin; YANG Ji

    2004-01-01

    The denitrification of municipal sludge was improved by combining biofilm process with the electrochemical effect in a single novel reactor. Experiments in this reactor[electric current 60 mA, hydraulic retention time (HRTs) 6.0 h] showed that the removal of CODCr, ammonia nitrogen and total nitrogen in the biofilm-electrode reactor were 2.5%, 1.2%, 14.9%, respectively, higher than those in a traditional biofilm reactor.

  19. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment.

    Science.gov (United States)

    Mburu, Njenga; Rousseau, Diederik P L; Stein, Otto R; Lens, Piet N L

    2014-02-15

    In this study, a mathematical biofilm reactor model based on the structure of the Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor compartment has been used to reproduce the sequence of transformation and degradation of organic matter, nitrogen and sulphur observed in a set of constructed wetland mesocosms and to elucidate the development over time of microbial species as well as the biofilm thickness of a multispecies bacterial biofilm in a subsurface constructed wetland. Experimental data from 16 wetland mesocosms operated under greenhouse conditions, planted with three different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control were used in the calibration of this mechanistic model. Within the mesocosms, a thin (predominantly anaerobic) biofilm was simulated with an initial thickness of 49 μm (average) and in which no concentration gradients developed. The biofilm density and area, and the distribution of the microbial species within the biofilm were evaluated to be the most sensitive biofilm properties; while the substrate diffusion limitations were not significantly sensitive to influence the bulk volume concentrations. The simulated biofilm density ranging between 105,000 and 153,000 gCOD/m(3) in the mesocosms was observed to vary with temperature, the presence as well as the species of macrophyte. The biofilm modeling was found to be a better tool than the suspended bacterial modeling approach to show the influence of the rhizosphere configuration on the performance of the constructed wetlands.

  20. Vinasses treatment in anaerobic fludized bed reactor.

    Directory of Open Access Journals (Sweden)

    Francisco J. C. Terán

    2009-03-01

    Full Text Available The agricultural use of vinasse produced by the sugar industry has gone through many changes over the years. Coupled with concern over the increased agronomic efficiency and optimizing the management of the use of such waste, you can highlight the major global ecological awareness, developed after 90s. This study aims at the construction and operation of a reactor anaerobic cracker (RALF on pilot scale to verify the burden of chemical demand of oxygen (DQO of vinasse, under mesophilic. The stillage used for feeding the reactor was from a sugar cane processing plant, located in the city of Regente Feijó, São Paulo State. The inoculum was anaerobic sludge from a reactor and upward flow anaerobic sludge blanket (UASB treating wastewater from a factory of soda. The concentrations of vinasse to be treated ranged 17,239 mg DQO L-1 up to 28,174 mg DQO L-1. The effluent pH was maintained between 6.4 and 8.6 during the research. The productivity of biogas in the reactor has not achieved the expected rates, reaching only 46 mL day-1. Maximum efficiency attained during operation was 51.1 %, corresponding to a 14-day operation time, vinasses organic loading of 19.5 kg DQO m-3 dia-1 and to an hydraulic detention time of one day.

  1. Conversion of Methanogenic Substrates in Anaerobic Reactors

    OpenAIRE

    Gonzalez-Gil, G.

    2000-01-01

    The EGSB systems represents an attractive option to extend further the use of anaerobic technology for wastewater treatment, particularly with respect to waste streams originating from chemical industries. Frequently chemical waste streams are unbalanced with respect to nutrients and/or micronutrients and furthermore these streams may contain toxic-biodegradable compounds. To reduce toxicity high recycle ratios may be applied as in the case of EGSB reactors however, this at the same time may ...

  2. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2017-03-15

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m(2). The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  3. Transformation products of clindamycin in moving bed biofilm reactor (MBBR)

    DEFF Research Database (Denmark)

    Ooi, Gordon Tze Hoong; Escola Casas, Monica; Andersen, Henrik Rasmus

    2017-01-01

    treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs...... using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h-1 than the reactor with polishing biofilm (k = 0...... of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent....

  4. Essential metal depletion in an anaerobic reactor.

    Science.gov (United States)

    Osuna, M B; Iza, J; Zandvoort, M; Lens, P N L

    2003-01-01

    The effect of the absence of trace elements on the conversion of a mixture of volatile fatty acids by a distillery anaerobic granular sludge was investigated. Two UASB reactors were operated under identical operational conditions except for the influent trace metal concentrations, during 140 days. Experiments were carried out in three periods, where different organic loading rates (OLR) were applied to the reactors. The total trace metal concentration steadily decreased at a rate of 48 microg metal/g TS.d in the deprived reactor (down to 35% of their initial value). In contrast, trace metals accumulated in granules present in the control reactor. At the end of the experiment, the COD removal efficiencies were 99% and 77% for the control and deprived reactors, respectively, due to the lack of propionate conversion. Cobalt sorption experiments were carried out in order to study its speciation, and its effects on the speciation of other metals as well. A paper mill wastewater treating granular sludge was also included in the study as a comparison. Results obtained showed that the principal metal forms normally associated with any sludge are a function of each soluble metal concentration in the system, and the characteristics of the particular sludge.

  5. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  6. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  7. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Koupaie, E., E-mail: ehssan.hosseini.k@gmail.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Hashemi, S.H., E-mail: h_hashemi@sbu.ac.ir [Environmental Science Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. {yields} More than 65% of the dye total metabolites was completely mineralized. {yields} Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. {yields} Inhibition of biofilm growth was increased with increasing the initial dye concentration. {yields} Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  8. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines.

    Science.gov (United States)

    Koupaie, E Hosseini; Moghaddam, M R Alavi; Hashemi, S H

    2011-11-15

    The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  9. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    OpenAIRE

    Joe A Lemire; Demeter, Marc A.; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  10. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major......). Results indicate that the continuous inoculation strategy was more rapid and effective to achieve nitrogen removal than the sequential inoculation approach. Nitrogen loss in the reactor continuously inoculated with AnAOB was observed after 120 day operation, with an average NH4+-N and TN removal rate of 3...

  11. Citric acid application for denitrification process support in biofilm reactor.

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Dabrowska, Dorota; Ciesielski, Slawomir; Thornton, Arthur; Struk-Sokołowska, Joanna

    2017-03-01

    The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L(-1) h(-1) and 17.81 mgN L(-1) h(-1), respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L(-1) h(-1) and 24.38 mgN L(-1) h(-1)). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre(-1) (0.22 ± 0.09 mgTSS mgNre(-1)). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).

  12. Kinetic evaluation and process performance of an upflow anaerobic filter reactor degrading terephthalic acid.

    Science.gov (United States)

    Davutluoglu, Orkun I; Seckin, Galip

    2014-01-01

    The anaerobic degradation of terephthalic acid (TA) as the sole organic carbon source was studied in an upflow anaerobic filter (UAF) reactor. The reactor was seeded with biomass obtained from a full-scale upflow anaerobic sludge bed (UASB) reactor and was used to treat wastewater from a petrochemical facility producing dimethyl terephthalate. The UAF reactor was operated for 252 d with a constant hydraulic retention time of 24 h, and the organic loading rate (OLR) was gradually increased from 1 to 10 g-chemical oxygen demand (COD)/L d. After a lag period of approximately 40 d, the COD removal efficiency increased exponentially and high removal rate values (≈90%) were obtained, except for at highest OLR (10 g-COD/L d). The high removal rates and the robustness of the reactor performance could be attributed to the formation of biofilm as well as granular sludge. The methane production rates (0.22 to 2.15 L/d) correlated well with the removed OLRs (0.3 to 6.8 g-COD/L d) during the various phases of treatment, indicating that the main mechanism of TA degradation occurs via methanogenic reactions. The average methane content of the produced biogas was 70.3%. The modified Stover-Kincannon model was found to be applicable for the anaerobic degradation of TA in UAFs (Umax = 64.5, KB = 69.1 g-COD/L d and Ymax = 0.27 L-CH4/g-CODremoved). These results suggest that UAF reactors are among the most effective reactor configurations for the anaerobic degradation of TA.

  13. Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    OpenAIRE

    2010-01-01

    An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS). The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC) and operated with a hydraulic retention time (HRT) of 18 h. The LAS concentration was gradually...

  14. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  15. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Directory of Open Access Journals (Sweden)

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  16. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  17. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  18. Degradation of Non-Diffusible Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Rohold, Lars Erik; Harremoës, Poul

    1993-01-01

    A simple laboratory test has been developed in order to demonstrate qualitatively, that the removal of non-diffusible organics in a biofilm reactor requires hydrolysis by extracellular enzymes in the bulk water of the reactor. The results demonstrate the effect of changing volume of bulk water...

  19. Tar water digestion in an upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Angelidaki, I.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The water from the gasification and wet oxidised tar water has been digested anaerobically in UASB reactors and were digested in respectively 10 and 50% in batches. Though the tar water show inhibition at very low concentrations to aerobic microorganisms, the granular sludge used in UASB reactors degrades tar water in concentrations that reveal total inhibition of e.g. bacteria conducting the nitrification process. The value of waste waters are determined, showing that the tar water produces more biogas in the anaerobic digestion. A wide range of xenobiotics, especially phenolic compounds can be transformed in the anaerobic digestion process. Seven phenolic are followed in batch experiments and UASB reactor experiments, and their particular fate in the anaerobic systems embody large differences in the transformation pattern. (au) 24 refs.

  20. Design of A solar Thermophilic Anaerobic Reactor for Small Farms

    NARCIS (Netherlands)

    Mashad, El H.; Loon, van W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G.

    2004-01-01

    A 10 m(3) completely stirred tank reactor has been designed for anaerobic treatment of liquid cow manure under thermophilic conditions (50degreesC), using a solar heating system mounted on the reactor roof. Simulation models for two systems have been developed. The first system consists of loose com

  1. Degradation Mechanisms of Colloidal Organic Matter in Biofilm Reactors

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    The degradation mechanisms of colloidal organic matter in biofilm reactors have been studied in an idealized laboratory reactor system with soluble starch as a model substrate. Batch tests and experiments with different reactor configurations have shown that for this specific substrate, bulk liquid...... hydrolysis is the mechanism for transforming non-diffusible organic matter into biofilm diffusible substrate. A simplified mathematical description has led to the identification of the degree of hydrolysis, DH, as the parameter expressing the major difference between degradation of diffusible and non......-diffusible organic matter in a biofilm reactor. DH depends on the combined volumetric and surface hydraulic loading rate, Q2/(AV). In full-scale wastewater treatment plants, the degradation mechanism presented in this paper can explain important differences between the performance of trickling filters and RBC...

  2. Aging biofilm from a full-scale moving bed biofilm reactor: characterization and enzymatic treatment study.

    Science.gov (United States)

    Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju; Xu, Ke; Zhang, Yan

    2014-02-01

    Effective removal of aging biofilm deserves to receive more attention. This study aimed to characterized aging biofilm from a full-scale moving bed biofilm reactor treating pharmaceutical wastewater and evaluate the hydrolysis effects of biofilm by different enzymatic treatments. Results from FTIR and biochemical composition analyses showed that it was a predominately organic-based biofilm with the ratio of total protein (PN) to polysaccharide (PS) of 20.17. A reticular structure of extracellular polymeric matrix (EPM) with filamentous bacteria as the skeleton was observed on the basal layer through SEM-EDS test. Among the four commercial proteases and amylases from Genencor®, proteases were shown to have better performances than amylases either on the removal of MLSS and PN/MLSS or on DOC (i.e., dissolved organic carbon)/MLSS raising of biofilm pellets. Difference of dynamic fluorescence characteristics of dissolved organic matters after treated by the two proteases indicated distinguishing mechanisms of the treating process.

  3. Characterization of Biofilm in 200W Fluidized Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more

  4. Characterization of biofilm in 200W fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michelle H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saurey, Sabrina D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Parker, Kent E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Eisenhauer, Emalee E. R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cordova, Elsa A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry

  5. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms.

    Science.gov (United States)

    Batstone, D J; Picioreanu, C; van Loosdrecht, M C M

    2006-09-01

    Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) Is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical co-location of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 microm), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 microm). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.

  6. Anammox transited from denitrification in upflow biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2004-01-01

    Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m3·d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L, respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.

  7. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  8. Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses

    OpenAIRE

    Ghaniyari-Benis, Saeid; Martín, Antonio; Borja Padilla, Rafael; M. A. Martín; Hedayat, N.

    2012-01-01

    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modificati...

  9. Removal of micropollutants in Moving Bed Biofilm reactors (MBBRs)

    DEFF Research Database (Denmark)

    Torresi, Elena

    focuses on the enhancement of conventional WWTPs via physical-chemical and biological treatment processes. Biofilm-based treatment processes, such as the Moving Bed Biofilm Reactor (MBBR), were shown to harbour bio-catalytic potential that can enhance the biotransformation of a number of micropollutants...... compared to conventional activated sludge. In MBBRs, biofilm grow on plastic carriers kept in suspension in the reactor basin via mechanical mixing or aeration, offering a suit of benefits, amongst all comparably small footprint. Despite few existing evidences in aerobic MBBR, an in-depth understanding...... of denitrification and biotransformation kinetics in the three MBBR sub-reactors. The highest and lowest biotransformation kinetics were found in the first and the last stage, respectively (up to 4-fold decrease for selected compounds), suggesting a possible a correlation of micropollutant biotransformation...

  10. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  11. Transformation products of clindamycin in moving bed biofilm reactor (MBBR).

    Science.gov (United States)

    Ooi, Gordon T H; Escola Casas, Monica; Andersen, Henrik R; Bester, Kai

    2017-04-15

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs applied in the effluent of conventional wastewater treatment plants to remove clindamycin. First, a batch experiment was executed with a high initial concentration of clindamycin to identify the transformation products. It was shown that clindamycin can be removed from wastewater by MBBR and the treatment process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h(-1) than the reactor with polishing biofilm (k = 0.0161 h(-1)) which again has a much higher biological activity for removal of clindamycin than of the suspended bacteria (biofilm-free control). Clindamycin sulfoxide was the main transformation product which was found in concentrations exceeding 10% of the initial clindamycin concentration after 1 day of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent.

  12. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  13. Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation-anammox at low temperatures.

    Science.gov (United States)

    Persson, Frank; Sultana, Razia; Suarez, Marco; Hermansson, Malte; Plaza, Elzbieta; Wilén, Britt-Marie

    2014-02-01

    It is a challenge to apply anaerobic ammonium oxidation (anammox) for nitrogen removal from wastewater at low temperatures. Maintenance of anammox- and aerobic ammonia oxidizing bacteria (AOB) and suppression of nitrite oxidizing bacteria (NOB) are key issues. In this work, a nitritation-anammox moving bed biofilm pilot reactor was operated at 19-10°C for 300 d. Nitrogen removal was decreasing, but stable, at 19-13°C. At 10°C removal became unstable. Quantitative PCR, fluorescence in situ hybridization and gene sequencing showed that no major microbial community changes were observed with decreased temperature. Anammox bacteria dominated the biofilm (0.9-1.2 × 10(14) 16S rRNA copies m(-2)). Most anammox bacteria were similar to Brocadia sp. 40, but another smaller Brocadia population was present near the biofilm-water interface, where also the AOB community (Nitrosomonas) was concentrated in thin layers (1.8-5.3 × 10(12) amoA copies m(-2)). NOB (Nitrobacter, Nitrospira) were always present at low concentrations (<1.3 × 10(11) 16S rRNA copies m(-2)).

  14. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system.

    Science.gov (United States)

    Li, Yeqing; Liu, Hong; Yan, Fang; Su, Dongfang; Wang, Yafei; Zhou, Hongjun

    2017-01-01

    To obtain high calorific biogas via anaerobic digestion without additional upgrading equipment, a two-phase pressurized biofilm system was built up, including a conventional continuously stirred tank reactor and a pressurized biofilm anaerobic reactor (PBAR). Four different pressure levels (0.3, 0.6, 1.0 and 1.7MPa) were applied to the PBAR in sequence, with the organic loading rate maintained at 3.1g-COD/L/d. Biogas production, gas composition, process stability parameters were measured. Results showed that with the pressure increasing from 0.3MPa to 1.7MPa, the pH value decreased from 7.22±0.19 to 6.98±0.05, the COD removal decreased from 93.0±0.9% to 79.7±1.2% and the methane content increased from 80.5±1.5% to 90.8±0.8%. Biogas with higher calorific value of 36.2MJ/m(3) was obtained at a pressure of 1.7MPa. Pressure showed a significant effect on biogas production and gas quality in methanogenesis reactor.

  15. A modular reactor to simulate biofilm development in orthopedic materials.

    Science.gov (United States)

    Barros, Joana; Grenho, Liliana; Manuel, Cândida M; Ferreira, Carla; Melo, Luís F; Nunes, Olga C; Monteiro, Fernando J; Ferraz, Maria P

    2013-09-01

    Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants.

  16. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  17. Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor.

    Science.gov (United States)

    Duarte, I C S; Oliveira, L L; Saavedra, N K; Fantinatti-Garboggini, F; Menezes, C B A; Oliveira, V M; Varesche, M B A

    2010-01-01

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant widely used to manufacture detergents and found in domestic and industrial wastewater. LAS removal was evaluated in a horizontal anaerobic immobilized biomass reactor. The system was filled with polyurethane foam and inoculated with sludge that was withdrawn from an up flow anaerobic sludge blanket reactor that is used to treat swine wastewater. The reactor was fed with easily degradable substrates and a solution of commercial LAS for 313 days. The hydraulic retention time applied was 12h. The system was initially operated without detergent and resulted to 94% reduction of demand. The mass balance in the system indicated that the LAS removal efficiency was 45% after 18 0days. From the 109 th day to the 254 th day, a removal efficiency of 32% was observed. The removal of LAS was approximately 40% when 1500 mg of LAS were applied in the absence of co-substrates suggesting that the LAS molecules were used selectively. Microscopic analyses of the biofilm revealed diverse microbial morphologies and denaturing gradient gel electrophoresis profiling showed variations in the total bacteria and sulfate-reducing bacteria populations. 16S rRNA sequencing and phylogenetic analyses demonstrated that members of the order Clostridiales were the major components of the bacterial community in the last step of the reactor operation.

  18. Kinetics of biodegradation of phenolic wastewater in a biofilm reactor.

    Science.gov (United States)

    Lin, Yen-Hui; Hsien, Tzu-Yang

    2009-01-01

    This work presents a mathematical model to describe the biodegradation of phenolic wastewater in a fixed-biofilm process. The model incorporates diffusive mass transport and Haldane kinetics mechanisms. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to verify the model. Batch kinetic tests were conducted independently to determine biokinetic parameters for the model simulation with the initial biofilm thickness assumed. The model simulated the phenol effluent concentration results well. Removal efficiency for phenol was approximately 94-96.5% for different hydraulic retention times at a steady-state condition. Model simulations results are in agreement with experimental results. The approaches of model and experiments presented in this paper could be used to design a pilot-scale or full-scale fixed-biofilm reactor system for the biodegradation of phenolic wastewater from petrochemical and oil refining plants.

  19. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...

  20. Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Sanz, José L; Culubret, Elayne; de Ferrer, Juan; Moreno, Alfonso; Berna, José L

    2003-01-01

    The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4-5 mg-LAS/l x day and a hydraulic retention time of one day. The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64-85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.

  1. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed...

  2. Conversion of Methanogenic Substrates in Anaerobic Reactors

    NARCIS (Netherlands)

    Gonzalez-Gil, G.

    2000-01-01

    The EGSB systems represents an attractive option to extend further the use of anaerobic technology for wastewater treatment, particularly with respect to waste streams originating from chemical industries. Frequently chemical waste streams are unbalanced with respect to nutrients and/or micronutrien

  3. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  4. Start up of an anaerobic inverse turbulent bed reactor fed with wine distillery wastewater using pre-colonised bioparticles.

    Science.gov (United States)

    Amaiz, C; Elmaleh, S; Lebrato, J; Moletta, R

    2005-01-01

    The long start-up period of fluidized bed biofilm reactors is a serious obstacle for their wide installation in the anaerobic treatment of industrial wastewater. This paper presents the results of an anaerobic inverse turbulent bioreactor treating distillery wastewater during 117 days of operation at a laboratory scale. The pre-colonized bioparticles for this work were obtained from a similar reactor processing the same wastewater and which had a start-up period of 3 months. The system attained carbon removal efficiency rates between 70 and 92%, at an organic loading rate of 30.6 kg m(-3) d(-1) (chemical oxygen demand) with a hydraulic retention time of 11.1 h. The results obtained showed that the start-up period of this kind of reactors can be reduced by 3 using pre-colonized bioparticles.

  5. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Directory of Open Access Journals (Sweden)

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  6. Transformation of tetrachloroethene in an upflow anaerobic sludgeblanket reactor

    DEFF Research Database (Denmark)

    Christiansen, N.; Christensen, S.R.; Arvin, E.;

    1997-01-01

    Reductive dechlorination of tetrachloroethene was studied in a mesophilic upflow anaerobic sludge blanket reactor. Operating the reactor in batch mode the dynamic transformation of tetrachloroethene, trichloroethene and dichloroethene (DCE) was monitored. Tetrachloroethene was reductively...... dechlorinated to trichloroethene, which again was dechlorinated at the same rate as DCE was produced. DCE showed a lag period of 40 h before transformation was observed. During normal reactor operation trans-1,2-DCE was the major DCE isomer, followed by cis-1,2-DCE. Small amounts of 1,1-DCE but no vinyl...

  7. Anaerobic treatment of wastewater containing methanol in upflow anaerobic sludge bed (UASB) reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The direct conversion of methanol into methane is the main process in anaerobic treatment of methanol containing wastewater.However,acetic acid can also be produced from methanol theoretically,which may probably result in an abrupt pH drop and deteriorate the anaerobic process.Therefore,it is interesting to know what would really happen in an anaerobic reactor treating methanol wastewater.In this study,an up-flow anaerobic sludge bed (UASB) reactor treating methanol wastewater was operated.The chemical oxygen demand (COD),acetic acid and pH of the effluent were monitored at different loadings and influent alkalinity.The results showed that the anaerobic reactor could be operated steadily at as low as 119 mg/L of influent alkalinity and high organic loading rate with no obvious pH drops.Volatile fatty acids accumulation was not observed even at strong shock loadings.The microorganisms in the sludge at the end of the test became homogeneous in morphology,which were mainly spherical or spheroidal in shape.

  8. Achieving nitritation and anammox enrichment in a single moving-bed biofilm reactor treating reject water.

    Science.gov (United States)

    Zekker, I; Rikmann, E; Tenno, T; Saluste, A; Tomingas, M; Menert, A; Loorits, L; Lemmiksoo, Vallo; Tenno, T

    2012-01-01

    A biofilm with high nitrifying efficiency was converted into a nitritating and thereafter a nitritating-anammox biofilm in a moving-bed biofilm reactor at 26.5 (+/- 0.5) degrees C by means of a combination of intermittent aeration, low dissolved oxygen concentration, low hydraulic retention time, free ammonia and furthermore, also by elevated HCO3- concentration. Nitrite-oxidizing bacteria (NOB) were more effectively suppressed by an enhanced HCO3- concentration range of 1200-2350 mg/L as opposed to free-ammonia-based process control where NOBs recovered from inhibition; the respective total-nitrogen removal rates were 0.3 kg N/(m3 x d) and 0.2 kg N/(m3 x d). The biofilm modification strategies resulted in a shift in bacterial community as the NOB Nitrobacter spp. were replaced with NOB belonging to the genus Nitrospira spp. and were closely related to Candidatus Nitrospira defluvii. A community of anaerobic ammonium-oxidizing microorganisms -uncultured Planctomycetales bacterium clone P4 (closely related to Candidatus Brocadia fulgida)--was developed.

  9. Adapting Dynamic Mathematical Models to a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    F. Haugen, R. Bakke, and B. Lie

    2013-04-01

    Full Text Available A dynamic model has been adapted to a pilot anaerobic reactor fed diarymanure. Both steady-state data from online sensors and laboratory analysis anddynamic operational data from online sensors are used in the model adaptation.The model is based on material balances, and comprises four state variables,namely biodegradable volatile solids, volatile fatty acids, acid generatingmicrobes (acidogens, and methane generating microbes (methanogens. The modelcan predict the methane gas flow produced in the reactor. The model may beused for optimal reactor design and operation, state-estimation and control.Also, a dynamic model for the reactor temperature based on energy balance ofthe liquid in the reactor is adapted. This model may be used for optimizationand control when energy and economy are taken into account.

  10. Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2010-12-01

    Full Text Available An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC and operated with a hydraulic retention time (HRT of 18 h. The LAS concentration was gradually increased from 8.2±1.3 to 45.8±5.4 mg.L-1. The COD removal was 91%, on average, when the influent COD was 645±49 mg.L-1. The results obtained by chromatographic analysis showed that the reactor removed 93% of the LAS after 270 days of operation.

  11. Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials.

    Science.gov (United States)

    de Oliveira, Lorena Lima; Costa, Rachel Biancalana; Okada, Dagoberto Yukio; Vich, Daniele Vital; Duarte, Iolanda Cristina Silveira; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2010-07-01

    Four anaerobic fluidized bed reactors filled with activated carbon (R1), expanded clay (R2), glass beads (R3) and sand (R4) were tested for anaerobic degradation of LAS. All reactors were inoculated with sludge from a UASB reactor treating swine wastewater and were fed with a synthetic substrate supplemented with approximately 20 mg l(-1) of LAS, on average. To 560 mg l(-1) COD influent, the maximum COD and LAS removal efficiencies were mean values of 97+/-2% and 99+/-2%, respectively, to all reactors demonstrating the potential applicability of this reactor configuration for treating LAS. The reactors were kept at 30 degrees C and operated with a hydraulic retention time (HRT) of 18h. The use of glass beads and sand appear attractive because they favor the development of biofilms capable of supporting LAS degradation. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of samples from reactors R3 and R4 revealed that these reactors gave rise to broad microbial diversity, with microorganisms belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, indicating the role of microbial consortia in degrading the surfactant LAS.

  12. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    Science.gov (United States)

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (Pbiofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.

  13. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    Science.gov (United States)

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.

  14. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment.

    Science.gov (United States)

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Xing, Meiyan; Wu, Min; Yang, Jian; Gao, Naiyun; Sheng, Guangyao; Yin, Daqiang; Liu, Shanhu

    2013-10-01

    Biofilm physiology was characterized by four biofilm constituents, i.e., polysaccharides, proteins (PN), humic-like substances and phospholipids (PL), for the first time to explore the relationships between biofilm characteristics and nitrification performance in moving-bed biofilm reactors (MBBRs) designed for pretreatment of polluted raw surface water for potable supply. The biofilm compositions depended highly on the balance of microbial decay and nitrification processes. The increased ammonia loading greatly regulated the community structure, promoting the dominance of nitrifiers and their proportions in the nitrifying biofilm. Nitrification rate and activity correlated linearly with the fractions of volatile solids (VS), PN and PL, which were related to nitrification processes in the biofilm. The specific biofilm activity demonstrated an exponential-asymptotic relationship with ratios of PN/VS and PL/VS. Thus, analyzing biofilm characteristics can be valid for estimating nitrification performance in MBBRs, and may offer engineers with basis to optimize MBBR design and operation.

  15. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  16. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR).

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Lemmiksoo, Vallo; Menert, Anne; Loorits, Liis; Vabamäe, Priit; Tomingas, Martin; Tenno, Taavo

    2012-07-01

    The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100 days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180 days in both 20 l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000 g-N/m(3)/day, achieved by 308 days) and in MBBR2 85% (1,100 g-N/m(3)/day, achieved by 266 days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.

  17. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Peng; Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University (Singapore); Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Show, Kuan-Yeow [Faculty of Science, Engineering and Technology, University Tunku Abdul Rahman, 31900 Kampar, Perak (Malaysia); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan-Ze University, Taoyuan 320 (China)

    2008-10-15

    An approach of acidification was examined on formation of hydrogen-producing granules and biofilms in upflow column-shaped reactors. The reactors were fed with synthetic glucose wastewater and operated at 37 C and pH 5.5. The acclimated anaerobic culture was inoculated in four reactors designated R1, R2, R3 and R4, with R3 and R4 filled with granular activated carbon as support medium. To unveil the roles of acidification, microbial culture in R2 and R3 was subject to an acid incubation for 24 h by shifting the culture pH from 5.5 to 2.0. The experimental results suggested that the acidification substantially accelerated microbial granulation, but not biofilm formation. Microbial activities were inhibited by the acid incubation for about 78 h, resulting in the retarded formation of biofilms of the acidified culture. Reducing culture pH resulted in improvement in cell surface physicochemical properties favoring microbial adhesion and immobilization. Zeta potential increased from -25.3 mV to 11.9 mV, hydrophobicity in terms of contact angle improved from 31 to 38 and production of extracellular polymers increased from 66 mg/g-VSS to 136 mg/g-VSS. As a result of the formation of granules and biofilms, high hydrogen production rates of 6.98 and 7.49 L/L h were achieved in granule-based and biofilm-based reactors, respectively. It is concluded that acid incubation is an efficient means to initiate the rapid formation of granules by regulating the surface characteristics of microbial culture. The use of support media as starting nuclei may result in rapid formation of biofilms without the acidification. (author)

  18. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  19. Moving bed biofilm reactor technology: process applications, design, and performance.

    Science.gov (United States)

    McQuarrie, James P; Boltz, Joshua P

    2011-06-01

    The moving bed biofilm reactor (MBBR) can operate as a 2- (anoxic) or 3-(aerobic) phase system with buoyant free-moving plastic biofilm carriers. These systems can be used for municipal and industrial wastewater treatment, aquaculture, potable water denitrification, and, in roughing, secondary, tertiary, and sidestream applications. The system includes a submerged biofilm reactor and liquid-solids separation unit. The MBBR process benefits include the following: (1) capacity to meet treatment objectives similar to activated sludge systems with respect to carbon-oxidation and nitrogen removal, but requires a smaller tank volume than a clarifier-coupled activated sludge system; (2) biomass retention is clarifier-independent and solids loading to the liquid-solids separation unit is reduced significantly when compared with activated sludge systems; (3) the MBBR is a continuous-flow process that does not require a special operational cycle for biofilm thickness, L(F), control (e.g., biologically active filter backwashing); and (4) liquid-solids separation can be achieved with a variety of processes, including conventional and compact high-rate processes. Information related to system design is fragmented and poorly documented. This paper seeks to address this issue by summarizing state-of-the art MBBR design procedures and providing the reader with an overview of some commercially available systems and their components.

  20. Biometanation of Distillery Wastewater in an Anaerobic Baffled Reactor System

    Directory of Open Access Journals (Sweden)

    Lalov I. G.

    2007-12-01

    Full Text Available Anaerobic digestion is an established technology for distillery effluent treatment witch seems to be a promising alternative for Bulgarian industry. In this study the methanogenic activity of two different naturally formed microbial consortiums was compared. The better one was used to start continuous anaerobic digestion of high-strength distillery wastewater (COD 85 520 mgO2 . l-1 in laboratory scale anaerobic baffled reactor system. The average applied organic loading rate and hydraulic retention time were 4.28 kg COD m-3 . d-1 and 20 d respectively. A COD reduction of about 98 % and specific methane production of 0.39 m3 . kg-1 CODremoved were reached. Effects of different inhibitory factors such as low pH and presence of oxygen were investigated. In spite of unfavorable factors were applied simultaneously after an adaptation period the reactor showed stable response. The results obtained show the feasibility of this anaerobic process for distillery effluent treatment, representing a valid option to up-grade the existing wastewater treatment processes.

  1. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  2. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providi

  3. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    Science.gov (United States)

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-10-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42‑ ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation.

  4. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure.

    Science.gov (United States)

    Ma, Jingwei; Yu, Liang; Frear, Craig; Zhao, Quanbao; Li, Xiujin; Chen, Shulin

    2013-03-01

    In this study, a new strategy, improving biomass retention with fiber material present within the dairy manure as biofilm carriers, was evaluated for treating flushed dairy manure in a psychrophilic anaerobic sequencing batch reactor (ASBR). A kinetic study was carried out for process control and design by comparing four microbial growth kinetic models, i.e. first order, Grau, Monod and Chen and Hashimoto models. A volumetric methane production rate of 0.24L/L/d of and a specific methane productivity of 0.19L/gVSloaded were achieved at 6days HRT. It was proved that an ASBR using manure fiber as support media not only improved methane production but also reduced the necessary HRT and temperature to achieve a similar treating efficiency compared with current technologies. The kinetic model can be used for design and optimization of the process.

  5. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne

    2009-01-01

    A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O-2, NH3) co......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...... results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO

  6. Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis.

    Science.gov (United States)

    Machado, António; Cerca, Nuno

    2015-12-15

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder among women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, but BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum, and Peptoniphilus species. Currently, the role of G. vaginalis in the etiology of BV remains a matter of controversy. However, it is known that, in patients with BV, a biofilm is usually formed on the vaginal epithelium and that G. vaginalis is typically the predominant species. So, the current paradigm is that the establishment of a biofilm plays a key role in the pathogenesis of BV. This review provides background on the influence of biofilm formation by G. vaginalis and other anaerobes, from the time of their initial adhesion until biofilm formation, in the polymicrobial etiology of BV and discusses the commensal and synergic interactions established between them to understand the phenotypic shift of G. vaginalis biofilm formation to BV establishment.

  7. Nitrate removal by nitrate-dependent Fe(II) oxidation in an upflow denitrifying biofilm reactor.

    Science.gov (United States)

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Sun, Yuchong; Tian, Jun

    2015-01-01

    A continuous upflow biofilm reactor packed with ceramsite was constructed for nitrate removal under an anaerobic atmosphere without an organic carbon source. Denitrifying bacteria, Pseudomonas sp. W1, Pseudomonas sp. W2 and Microbacterium sp. W5, were added to the bioreactor as inocula. Nitrate concentration, nitrite accumulation and nitrogen removal efficiency in the effluent were investigated under various conditions set by several parameters including pH, hydraulic retention time (HRT), ratios of carbon to nitrogen (C/N) and temperature. The results illustrated that the maximum removal efficiency of nitrogen was 85.39%, under optimum reaction parameters, approximately pH 6.5-7, HRT = 48 hours and C/N = 13.1:1 at temperature of 30 °C, which were determined by experiment.

  8. Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater.

    Science.gov (United States)

    Tang, Yue-Qin; Fujimura, Yutaka; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2007-10-01

    Distillery wastewater from awamori making was anaerobically treated for one year using thermophilic upflow anaerobic filter (UAF) reactors packed with pyridinium group-containing nonwoven fabric material. The microbial structure and spatial distribution of microorganisms on the support material were characterized using molecular biological methods. The reactor steadily achieved a high TOC loading rate of 18 g/l/d with approximately 80% TOC removal efficiency when non-diluted wastewater was fed. The maximum TOC loading rate increased to 36 g/l/d when treating thrice-diluted wastewater. However, the TOC removal efficiency and gas evolution rate decreased compared with that when non-diluted wastewater was used. Methanogens closely related to Methanosarcina thermophila and Methanoculleus bourgensis and bacteria in the phyla Firmicutes and Bacteroidetes were predominant methanogens and bacteria in the thermophilic UFA reactor, as indicated by 16S rRNA gene clone analysis. Fluorescence in situ hybridization (FISH) results showed that a large quantity of bacterial cells adhered throughout the whole support, and Methanosarcina-like methanogens existed mainly in the relative outside region while Methanoculleus cells were located in the relative inner part of the support. The support material used proved to be an excellent carrier for microorganisms, and a UAF reactor using this kind of support can be used for high-rate treatment of awamori/shochu distillery wastewater.

  9. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease of b...... also demonstrated that the biofilm formed on the membrane only contributed 22-36 % to the H2 consumption, while most of the H2 was consumed by the microorganisms in the liquid phase....

  10. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Science.gov (United States)

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes.

  11. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  12. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.

    Science.gov (United States)

    Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P

    2003-01-01

    Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.

  13. Anaerobic methanethiol degradation in upflow anaerobic sludge bed reactors at high salinity (> 0.5 M Na+)

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bok, de F.A.M.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2007-01-01

    The feasibility of anaerobic methanethiol (MT) degradation at elevated sodium concentrations was investigated in a mesophilic (30°C) lab-scale upflow anaerobic sludge bed (UASB) reactor, inoculated with estuarine sediment originating from the Wadden Sea (The Netherlands). MT was almost completely de

  14. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Kroon, Kristel; Rikmann, Ergo; Tenno, Toomas; Tomingas, Martin; Vabamäe, Priit; Vlaeminck, Siegfried E; Tenno, Taavo

    2012-09-01

    In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N₂H₄ and NH₂OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L⁻¹ of each NH₂OH and N₂H₄, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO₂⁻. Various combinations of N₂H₄, NH₂OH, NH₄⁺, and NO₂⁻ were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N₂H₄ concentration (4.38 mg N L⁻¹) present in these batches was 5.43 mg N g⁻¹ TSS h⁻¹, whereas equimolar concentrations of N₂H₄ and NH₂OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.

  15. BIODEGRADATION OF AROMATIC AMINE COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    M. Delnavaz ، B. Ayati ، H. Ganjidoust

    2008-10-01

    Full Text Available Three moving bed biofilm reactors were used to treat synthesized wastewater of aromatic amine compounds including aniline, para-diaminobenzene and para-aminophenol that are found in many industrial wastewaters. The reactors with cylindrical shape had an internal diameter and an effective depth of 10 and 60 cm, respectively. The reactors were filled with light expanded clay aggregate as carriers and operated in an aerobic batch and continuous conditions. Evaluation of the reactors' efficiency was done at different retention time of 8, 24, 48 and 72 h with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. The maximum obtained removal efficiencies were 90% (influent COD=2000 mg/L, 87% (influent COD=1000 mg/L and 75% (influent COD=750 mg/L for aniline, para-diaminobenzene and para-aminophenol, respectively. In the study of decrease in filling ratio from 50 to 30 percent, 6% decrease for both para-diaminobenzene and para-aminophenol and 7% increase for aniline degradation were obtained. The removal efficiency was decreased to about 10% after 15 days of continuous loading for each of the above three substrates. In the shock loading test, initially the COD removal rate was decreased in all reactors, but after about 10 days, it has been approached to the previous values. Finally, biodegradability of aromatic amines has been proved by nuclear magnetic resonance system.

  16. Experimental studies and mathematical modeling of an up-flow biofilm reactor treating mustard oil rich wastewater.

    Science.gov (United States)

    Chakraborty, Chandrima; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2011-05-01

    Bioremediation of lipid-rich model wastewater was investigated in a packed bed biofilm reactor (anaerobic filter). A detailed study was conducted about the influence of fatty acid concentration on biomethanation of the high-fat liquid effluent of edible oil refineries. The biochemical methane potential (BMP) of the liquid waste was reported and maximum cumulative methane production at the exit of the reactor is estimated to be 785 ml CH(4) (STP)/(gVSS added). The effects of hydraulic retention time (HRT), organic loading rate (OLR) and bed porosity on the cold gas efficiency or energy efficiency of the bioconversion process were also investigated. Results revealed that the maximum cold gas efficiency of the process is 42% when the total organic load is 2.1 g COD/l at HRT of 3.33 days. Classical substrate uninhibited Monod model is used to generate the differential system equations which can predict the reactor behavior satisfactorily.

  17. Formation of nitrifying biofilms on small suspended particles in airlift reactors.

    Science.gov (United States)

    Tijhuis, L; Huisman, J L; Hekkelman, H D; van Loosdrecht, M C; Heijnen, J J

    1995-09-05

    For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.

  18. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bing; SUN Ying-lan; LI Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.

  19. Dairy wastewater treatment in a moving bed biofilm reactor.

    Science.gov (United States)

    Andreottola, G; Foladori, P; Ragazzi, M; Villa, R

    2002-01-01

    Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m-2 d-1 (corresponding to 5 kgCOD m-3d-1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.

  20. Characteristics of biofilm attaching to carriers in moving bed biofilm reactor used to treat vitamin C wastewater.

    Science.gov (United States)

    Hu, Xiao-bing; Xu, Ke; Wang, Zhao; Ding, Li-li; Ren, Hong-qiang

    2013-01-01

    In order to investigate characteristics of biofilm attaching firmly to carriers in the moving bed biofilm reactor (MBBR) used for vitamin C wastewater treatment, experiments were undertaken with instrumental analysis methods. Scanning electron microscopy (SEM) micrographs of MBBR biofilms revealed that there were rod-shaped microbes and cocci in the biofilm, and microbes were embedded within medium substances and the biofilm matrix adhered firmly to carriers, leading to the formation of a smooth compacted surface at the base of the biofilm. Transmission electron microscopy (TEM) analysis revealed that extracellular polymeric substances (EPS) layer surrounded cell, sequestered inorganics to form a mixed structure, which ensured firm attachment of the biofilm to the carrier. X-ray diffraction (XRD) experiments and thermogravimetry analysis revealed that (i) the biofilm contained many inorganic substances, about 70.5%, and the inorganic substances contained multiple classes of inorganic with a high boiling point; (ii) inorganic elements such as calcium and phosphorous were selectively absorbed and accumulated in the biofilm as insoluble compounds with amorphous phases, rendering the biofilm highly resistant to detachment. Fourier-transform infrared (FTIR) spectroscopy showed carbohydrates were the main EPS.

  1. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    characteristics and lead to different reactor behaviour. A dynamic mathematical model has been developed for the anaerobic digestion of a glucose based synthetic wastewater in UASB reactors. Cellular automata (CA) theory has been applied to simulate the granule development process. The model takes...... into consideration that granule diameter and granule microbial composition are functions of the reactor operational parameters and is capable of predicting the UASB performance and the layer structure of the granules....

  2. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.

    Science.gov (United States)

    Garcia-de-Lomas, Juan; Corzo, Alfonso; Carmen Portillo, M; Gonzalez, Juan M; Andrades, Jose A; Saiz-Jimenez, Cesáreo; Garcia-Robledo, Emilio

    2007-07-01

    The role of the nitrate-reducing, sulfide-oxidising bacteria (NR-SOB) in the nitrate-mediated inhibition of sulfide net production by anaerobic wastewater biofilms was analyzed in two experimental bioreactors, continuously fed with the primary effluent of a wastewater treatment plant, one used as control (BRC) and the other one supplemented with nitrate (BRN). This study integrated information from H(2)S and pH microelectrodes, RNA-based molecular techniques, and the time course of biofilm growth and bioreactors water phase. Biofilms were a net source of sulfide for the water phase (2.01 micromol S(2-)(tot)m(-2)s(-1)) in the absence of nitrate dosing. Nitrate addition effectively led to the cessation of sulfide release from biofilms despite which a low rate of net sulfate reduction activity (0.26 micromol S(2-)(tot)m(-2)s(-1)) persisted at a deep layer within the biofilm. Indigenous NR-SOB including Thiomicrospira denitrificans, Arcobacter sp., and Thiobacillus denitrificans were stimulated by nitrate addition resulting in the elimination of most sulfide from the biofilms. Active sulfate reducing bacteria (SRB) represented comparable fractions of total metabolically active bacteria in the libraries obtained from BRN and BRC. However, we detected changes in the taxonomic composition of the SRB community suggesting its adaptation to a higher level of NR-SOB activity in the presence of nitrate.

  3. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures

    Energy Technology Data Exchange (ETDEWEB)

    Hanqing Yu; Zhenhu Zhu [University of Science and Technology, Hefei, Anhui (China). School of Chemistry and Materials; Wenrong Hu [Shandong Univ., Jinan (China). School of Resources and Environmental Engineering; Haisheng Zhang [Jingzi Wine Distillery Company, Shandong (China)

    2002-12-01

    Continuous production of hydrogen from the anaerobic acidogenesis of a high-strength rice winery wastewater by a mixed bacterial flora was demonstrated. The experiment was conducted in a 3.0-l upflow reactor to investigate individual effects of hydraulic retention time (HRT) (2-24 h), chemical oxygen demand (COD) concentration in wastewater (14-36 g COD/l), pH (4.5-6.0) and temperature (20-55{sup o}C) on bio-hydrogen production from the wastewater. The biogas produced under all test conditions was composed of mostly hydrogen (53-61%) and carbon dioxide (37-45%), but contained no detectable methane. Specific hydrogen production rate increased with wastewater concentration and temperature, but with a decrease in HRT. An optimum hydrogen production rate of 9.33 lH{sub 2}/gVSSd was achieved at an HRT of 2 h, COD of 34 g/l, pH 5.5 and 55{sup o}C. The hydrogen yield was in the range of 1.37-2.14 mol/mol-hexose. In addition to acetate, propionate and butyrate, ethanol was also present in the effluent as an aqueous product. The distribution of these compounds in the effluent was more sensitive to wastewater concentration, pH and temperature, but was less sensitive to HRT. This upflow reactor was shown to be a promising biosystem for hydrogen production from high-strength wastewaters by mixed anaerobic cultures. (Author)

  4. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    Science.gov (United States)

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  5. A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors.

    Science.gov (United States)

    Tang, Youneng; Ontiveros-Valencia, Aura; Feng, Liang; Zhou, Chen; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2013-03-01

    This work presents a multispecies biofilm model that describes the co-existence of nitrate- and sulfate-reducing bacteria in the H(2)-based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate-reducing bacteria that use H(2) as their electron donor. To evaluate the model, the simulated effluent H(2), UAP (substrate-utilization-associated products), and BAP (biomass-associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real-time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate-reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction.

  6. Effects of aerobic-anaerobic transient conditions on sulfur and metal cycles in sewer biofilms

    NARCIS (Netherlands)

    Nielsen, A.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between sulfur and metals were studied in aerobic and anaerobic biofilms grown on domestic waste water at 15°C. The dominant metals in the waste water were iron, zinc and copper, which were present in average concentrations of 0.5mg/l, 0.6mg/l and 0.1m/l, respectively. Copper and zinc w

  7. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    Science.gov (United States)

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.

  8. Treatemnt of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removel of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor,The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purifeid water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%,Application of this feeding and draining mode leads to the reduction of the cycle time,the increase of the utilization of the reactor volume and the simplification of the reactor structure.The treatment of a synthetic wastewater containing COD and nitrogen was investigated.The operation mode of F(D)-O(i.e.,simultaneous feeding and draining followed by the aerobic condition)was adopted.It was found that COD was degraded very fast in the initial reaction period of time,then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively,while the nitrite nitrogen level increased first and then reduced.The relationship between the COD or ammonia nitrogen loading and its removal rate was examined,and the removal of COD,ammonia nitrogen and total nitrogen could exceed 95%,90%and 80% respectively,The fact that nitrogen could e removed more completely under constant aeration(aerobic condition)of the SBBR operation mode is very interesting and could be explained in several respects.

  9. Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors.

    Science.gov (United States)

    Arnaiz, C; Buffiere, P; Elmaleh, S; Lebrato, J; Moletta, R

    2003-11-01

    This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m2m(-3)) and their low energy requirements for fluidization (gas velocity of 1.5 mm s(-1), 5.4 m h(-1)). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kgCOD m(-3) d(-1), respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass.

  10. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  11. Comparative Kinetic Studies and Performance Evaluation of Biofilm and Biomass Characteristics of Pseudomonas fluorescens in Degrading Synthetic Phenolic Effluent in Inverse Fluidized Bed Biofilm Reactor.

    Science.gov (United States)

    Begum, S Sabarunisha; Radha, K V

    2016-05-01

    The bioremediation potential of Pseudomonas fluorescens was studied in an Inverse Fluidized Bed Biofilm Reactor under batch recirculation conditions using synthetic phenolic effluent of various concentrations (400, 600, 800, 1000 and 1200 mg/l). The performance of the reactor was investigated and the characteristics of biomass and biofilm were determined by evaluating biofilm dry density and thickness, bioparticle density, suspended and attached biomass concentration, chemical oxygen demand and phenol removal efficiency. Biodegradation kinetics had been studied for suspended biomass culture and biofilm systems with respect to its specific growth and substrate consumption rates. Suspended biomass followed substrate inhibition kinetics and the experimental data fitted well with the Haldane model. The degradation kinetic behavior of biofilm revealed that a well adapted biofilm system with effective control of biofilm thickness in an inverse fluidized bed biofilm reactor overcomes substrate inhibition effects by tolerating higher phenol concentration and fitted well to the Monod model.

  12. Sterilization of swine wastewater treated by anaerobic reactors using UV photo-reactors

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2014-09-01

    Full Text Available The use of ultraviolet radiation is an established procedure with growing application forthe disinfection of contaminated wastewater. This study aimed to evaluate the efficiency of artificial UV radiation, as a post treatment of liquid from anaerobic reactors treating swine effluent. The UV reactors were employed to sterilize pathogenic microorganisms. To this end, two photo-reactors were constructed using PVC pipe with100 mm diameter and 1060 mmlength, whose ends were sealed with PVC caps. The photo-reactors were designed to act on the liquid surface, as the lamp does not get into contact with the liquid. To increase the efficiency of UV radiation, photo-reactors were coated with aluminum foil. The lamp used in the reactors was germicidal fluorescent, with band wavelength of 230 nm, power of 30 Watts and manufactured by Techlux. In this research, the HRT with the highest removal efficiency was 0.063 days (90.6 minutes, even treating an effluent with veryhigh turbidity due to dissolved solids. It was concluded that the sterilization method using UV has proved to be an effective and appropriate process, among many other procedures.

  13. Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Kroon, Kristel; Vabamäe, Priit; Salo, Erik; Loorits, Liis; Rubin, Sergio S C dC; Vlaeminck, Siegfried E; Tenno, Taavo

    2013-01-01

    Deammonification via intermittent aeration in biofilm process for the treatment of sewage sludge digester supernatant (reject water) was started up using two opposite strategies. Two moving-bed biofilm reactors were operated for 2.5 years at 26 (+/- 0.5 degree C with spiked influent(and hence free ammonia (FA)) addition. In the first start-up strategy, an enrichment of anammox biomass was first established, followed by the development of nitrifying biomass in the system (R1). In contrast, the second strategy aimed at the enrichment of anammox organisms into a nitrifying biofilm (R2). The first strategy was most successful, reaching higher maximum total nitrogen (TN) removal rates over a shorter start-up period. For both reactors, increasing FA spiking frequency and increasing effluent concentrations of the anammox intermediate hydrazine correlated to decreasing aerobic nitrate production (nitritation). The bacterial consortium of aerobic and anaerobic ammonium oxidizing bacteria in the bioreactor was determined via denaturing gel gradient electrophoresis, polymerase chain reaction and pyrosequencing. In addition to a shorter start-up with a better TN removal rate, nitrite oxidizing bacteria (Nitrospira) were outcompeted by spiked ammonium feeding from R1.

  14. Development of anammox process for removal of nitrogen from wastewater in a novel self-sustainable biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2016-10-01

    Effluent of an upflow anaerobic sludge blanket reactor was treated in a downflow rope-bed-biofilm-reactor (RBBR) to remove residual organic matter and nitrogen. Nitrogen removal was observed in phase 1 and phase 2 with and without aeration, respectively for 320days each. Organic matter, ammonia and total nitrogen removal efficiencies of 78±2%, 95±1% and 79±11% were obtained in phase 1 and 78±2%, 93±9% and 87±6% in phase 2, respectively. In phase 2, anammox bacteria had a specific anammox activity of 3.35gNm(-2)day(-1). Heme c concentration, sludge characteristics and reaction ratios of dissolved oxygen, alkalinity and pH corroborated contribution of anammox process. Using experimental results kinetic coefficients required for design of RBBR were estimated. Anammox gave more stable performance under varying nitrogen loading and this option is more sustainable for solving problem of nitrogen removal from sewage.

  15. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    Science.gov (United States)

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.

  16. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB...... to the membrane, while AnAOB were localized next to them in areas where no oxygen was available. NOB were detected in very low amounts. Results proved the feasibility of developing biofilm structures for high-rate completely autotrophic nitrogen removal....... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  17. Use of an anaerobic sequencing batch reactor for parameter estimation in modelling of anaerobic digestion.

    Science.gov (United States)

    Batstone, D J; Torrijos, M; Ruiz, C; Schmidt, J E

    2004-01-01

    The model structure in anaerobic digestion has been clarified following publication of the IWA Anaerobic Digestion Model No. 1 (ADM1). However, parameter values are not well known, and uncertainty and variability in the parameter values given is almost unknown. Additionally, platforms for identification of parameters, namely continuous-flow laboratory digesters, and batch tests suffer from disadvantages such as long run times, and difficulty in defining initial conditions, respectively. Anaerobic sequencing batch reactors (ASBRs) are sequenced into fill-react-settle-decant phases, and offer promising possibilities for estimation of parameters, as they are by nature, dynamic in behaviour, and allow repeatable behaviour to establish initial conditions, and evaluate parameters. In this study, we estimated parameters describing winery wastewater (most COD as ethanol) degradation using data from sequencing operation, and validated these parameters using unsequenced pulses of ethanol and acetate. The model used was the ADM1, with an extension for ethanol degradation. Parameter confidence spaces were found by non-linear, correlated analysis of the two main Monod parameters; maximum uptake rate (k(m)), and half saturation concentration (K(S)). These parameters could be estimated together using only the measured acetate concentration (20 points per cycle). From interpolating the single cycle acetate data to multiple cycles, we estimate that a practical "optimal" identifiability could be achieved after two cycles for the acetate parameters, and three cycles for the ethanol parameters. The parameters found performed well in the short term, and represented the pulses of acetate and ethanol (within 4 days of the winery-fed cycles) very well. The main discrepancy was poor prediction of pH dynamics, which could be due to an unidentified buffer with an overall influence the same as a weak base (possibly CaCO3). Based on this work, ASBR systems are effective for parameter

  18. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling.

  19. Detoxification of tar water by anaerobic treatment in an UASB reactor - A study of the degradation of phenolic compounds in a combined denitrifying and anaerobic UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The digestion of pyrolysis condensate (PC) in two combined anaerobic and denitrifying upflow anaerobic sludge blanket (UASB) reactors was studied. A COD removal of 80% was achieved with an influent concentration of 1.43% PC{sub pH}. When the reactor was fed with 100% PC during a period of 10 days good reactor operation was observed. Despite less than one retention time of operation, the results indicated clearly, that PC could be used as substrate in the biogas process, even in very high concentrations. A combined anaerobic and denitrifying UASB reactor was successfully digesting 5.5% of wet oxidised PC, but further loading increments deteriorated the anaerobic digestion process. The detoxification of PC was studied by determining the degradation of phenols during reactor operation and the toxicity of PC was decreased more than 77 times witnessed through decreased inhibition of the nitrification process. Phenol, methyl and dimethyl phenols along with methoxyphenols were shown to be degraded within the reactor systems. Degradation rates for phenol and substituted phenols were determined by the reactor experiment indicating that the biomass was selective towards the substrates. Maximum growth rates and half saturation constants for phenol, 4-Methylphenol and 2-Methoxy-4-methylphenol were determined in batch experiments. The degradation rates of phenols determined in batches were significantly higher compared to degradation rates observed in the reactor systems digesting pyrolysis condensate. Determination of the population of methanogens revealed, that Methanosarcina was found only in one reactor, while Methanobacterium and Methanosaeta were found in reactors and inoculum. A UASB reactor was designed for the treatment of pyrolysis condensate at the gasification plant at Harbooere, Denmark. (au) 35 refs.

  20. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    Science.gov (United States)

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  1. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2012-05-15

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 mL/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery ( [Formula: see text] ) and overall systemic coulombic efficiency (CE(os)) were 93% and 28%, respectively, and the systemic hydrogen yield ( [Formula: see text] ) peaked at 1.27 mol-H(2)/mol-acetate. The hydrogen production increased along with acetate and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and [Formula: see text] of 1.43 mol-H(2)/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens. Furthermore, 16S rRNA genes analysis showed that this special operation strategy resulted same microbial community structures in the anodic biofilms of the two cell units. The simple, compact and in situ applicable SMEC offers new opportunities for reactor design for a microbial electricity-assisted biohydrogen production system.

  2. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging.

  3. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function.

    Science.gov (United States)

    Tsushima, Ikuo; Ogasawara, Yuji; Shimokawa, Masaki; Kindaichi, Tomonori; Okabe, Satoshi

    2007-01-01

    The anaerobic ammonium oxidation (Anammox) process is a new efficient and cost effective method of ammonium removal from wastewater. Under strictly anoxic condition, ammonium is directly oxidised with nitrite as electron acceptor to dinitrogen gas. However, it is extremely difficult to cultivate Anammox bacteria due to their low growth rate. This suggests that a rapid and efficient start-up of Anammox process is the key to practical applications. To screen appropriate seeding sludge with high Anammox potential, a real-time quantitative PCR assay with newly designed primers has been developed. Thereafter, the seeding sludge with high abundance of Anammox bacteria (1.7 x 10(8) copies/mg-dry weight) was selected and inoculated into an upflow anaerobic biofilters (UABs). The UABs were operated for more than 1 year and the highest nitrogen removal rate of 24.0 kg-N m-3 day(-1) was attained. In addition, the ecophysiology of Anammox bacteria (spatial distribution and in situ activity) in biofilms was analysed by combining a full-cycle 16S rRNA approach and microelectrodes. The microelectrode measurement clearly revealed that a successive vertical zonation of the partial nitrification (NH4+ to NO2-), Anammox reaction and denitrification was developed in the biofilm in the UAB. This result agreed with the spatial distribution of corresponding bacterial populations in the biofilm. We linked the micro-scale information (i.e. single cell and/or biofilm levels) with the macro-scale information (i.e. the reactor level) to understand the details of Anammox reaction occurring in the UABs.

  4. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications.

    Science.gov (United States)

    Choudhary, Poonam; Prajapati, Sanjeev Kumar; Kumar, Pushpendar; Malik, Anushree; Pant, Kamal K

    2017-01-01

    A modified algal biofilm reactor (ABR) was developed and assessed for high biomass productivity and treatment potential using variable strength wastewaters with accumulation of specialized bio-products. The nonwoven spun bond fabric (70GSM) was selected as suitable biofilm support on the basis of attachment efficiency, durability and ease of harvesting. The biomass productivity achieved by ABR biofilms were 4gm(-2)d(-1), 3.64gm(-2)d(-1) and 3.10gm(-2)d(-1) when grown in livestock wastewater (LSW), domestic grey water (DGW) and anaerobically digested slurry (ADS), respectively. Detailed characterization of wastewater grown biomass showed specific distribution of biomolecules into high lipid (38%) containing biomass (DGW grown) and high protein (44%) biomass (LSW and ADS grown). The feasibility assessment of ABR in terms of net energy return (>1) favored its application in an integrated system for treatment and recycling of rural wastewaters with simultaneous production of biomethane, livestock feed supplement and bio fertilizers.

  5. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  6. Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor

    OpenAIRE

    Alves, C. F.; Melo, L. F.; Vieira, M. J.

    2002-01-01

    The influence of the ratio carbon/nitrogen and phosphorus concentration on the performance of a biofilm fluidised bed reactor used for denitrification and on the properties of the biofilm was studied. Although the removal efficiencies of C and N reached steady-state values, the thickness of the biofilm steadily increased. The dry density of the biofilm did not seem to be dependent on the loading conditions, although a denser biofilm was obtained when there was no nutrient limitation ...

  7. Magnetic resonance microscopy analysis of advective transport in a biofilm reactor.

    Science.gov (United States)

    Gjersing, Erica L; Codd, Sarah L; Seymour, Joseph D; Stewart, Philip S

    2005-03-30

    In this article we present magnetic resonance microscopy (MRM) characterization of the advective transport in a biofilm capillary reactor. The biofilm generates non-axial flows that are up to 20% of the maximum axial velocity. The presence of secondary velocities of this magnitude alters the mass transport in the bioreactor relative to non-biofilm fouled reactors and questions the applicability of empirical mass transfer coefficient approaches. The data are discussed in the context of simulations and models of biofilm transport and conceptual aspects of transport modeling in complex flows are also discussed. The variation in the residence time distribution due to biofilm growth is calculated from the measured propagator of the motion. Dynamical systems methods applied to model fluid mixing in complex flows are indicated as a template for extending mass transport theory to quantitatively incorporate microscale data on the advection field into macroscale mass transfer models.

  8. The efficiency of two anaerobic reactor components; Eficiencias de dos componentes de un reactor anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A. [Facultad de Ingenieria. Universidad de Yucatan (Mexico); Martinez Pereda, P.; Fernandez Villagomez, G. [Universidad Nacional Autonoma de Mexico. Division de Estudios de posgrado de la Facultad de Ingenieria. Mexico (Mexico)

    1997-09-01

    This study examined the behaviour of an anaerobic digester in treating pig farm sewage. The experimental model consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total capacity of 534 litres. The digester was installed on a pig farm and its performance under different operating conditions was determined, with hydraulic retention time (HRT) as the critical parameter for evaluating the anaerobic system`s efficiency. The results obtained during the experiment to establish the critical operating parameters are reported. The organic loads applied for a HRT of 1 day were 7.3 kg/m``3/day of total DQO and 3 kg/m``3/day of soluble DQO, following organic matter removal rates (as total DQO) of 36% and 49% respectively and removal rates (as soluble DQO) of 74% in the UASB and 8% in the sedimentator. The efficiency of the reactor as a whole at this HRT time was a removal rate of 74% of total DQO and 75% of soluble DQO. (Author) 25 refs.

  9. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: bifurcational and dynamical analysis.

    Science.gov (United States)

    Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2011-01-01

    A mathematical model of an aerobic biofilm reactor is presented to investigate the bifurcational patterns and the dynamical behavior of the reactor as a function of different key operating parameters. Suspended cells and biofilm are assumed to grow according to double limiting kinetics with phenol inhibition (carbon source) and oxygen limitation. The model presented by Russo et al. is extended to embody key features of the phenomenology of the granular-supported biofilm: biofilm growth and detachment, gas-liquid oxygen transport, phenol, and oxygen uptake by both suspended and immobilized cells, and substrate diffusion into the biofilm. Steady-state conditions and stability, and local dynamic behavior have been characterized. The multiplicity of steady states and their stability depend on key operating parameter values (dilution rate, gas-liquid mass transfer coefficient, biofilm detachment rate, and inlet substrate concentration). Small changes in the operating conditions may be coupled with a drastic change of the steady-state scenario with transcritical and saddle-node bifurcations. The relevance of concentration profiles establishing within the biofilm is also addressed. When the oxygen level in the liquid phase is <10% of the saturation level, the biofilm undergoes oxygen starvation and the active biofilm fraction becomes independent of the dilution rate. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.

  10. Design of Upelow Anaerobic Sludge Blanket reactor for treatment of organic wastewaters.

    Science.gov (United States)

    Ghangrekar, M M; Kahalekar, U J; Takalkar, S V

    2003-04-01

    The Upflow Anaerobic Sludge Blanket (UASB) Reactor is widely applied anaerobic wastewater treatment method all over the world. Uniform distribution of wastewater at reactor bottom is necessary to establish proper contact between sludge and wastewater. In addition, proper functioning of Gas-Liquid-Solid (GLS) separator is crucial to ensure maximum sludge retention in the reactor and to achieve maximum COD removal rate in the reactor. Hence, proper design of reactor is necessary for appropriate functioning of various components for a given wastewater flow rate and COD concentration. The design procedure for UASB reactor taking due consideration to the GLS design and design of inlet arrangement is discussed in this paper for various wastewater strength and flow rates. A software is developed to make economical design of UASB reactor for different type of wastewater by adopting maximum loading conditions, based on literature recommendations, and at the same time to satisfy all design recommendation, as far as possible.

  11. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    Science.gov (United States)

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  12. Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Reti Hai; Yiqun He; Xiaohui Wang; Yuan Li

    2015-01-01

    In this study, the performance of a sequencing batch biofilm reactor (SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5%throughout the exper-iment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L−1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) was 98.2%, 95.7%, 95.6%, and 96.2%at effluent concentrations of COD 85.6 mg·L−1, NH4+-N 35.22 mg·L−1, TN 44.64 mg·L−1, and TP 1.13 mg·L−1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L−1 and TN 34 mg·L−1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the fil er surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment (15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.

  13. Stability of anaerobic reactors under micro-aeration conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Polanco, M.; Perez, S.; Diaz, I.; Fernandez-Polanco, F.

    2009-07-01

    Oxidation of sulphide in anaerobic bioreactors by introducing limited amounts of oxygen provides a relatively simple strategy for reducing the levels of sulphite in anaerobic digesters (biogas and effluent). The introduction of limited amounts of air is a general practice in agricultural anaerobic digesters, it is estimated that worldwide over 3.000 units are operated under such conditions. (Author)

  14. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    XU Zhengyong; YANG Zhaohui; ZENG Guangming; XIAO Yong; DENG Jiuhua

    2007-01-01

    The nitrogen removal mechanism was studied and analyzed when treating the ammonium-rich landfill leachate by a set of sequencing batch biofilm reactors(SBBRs),which was designed independently.At the liquid temperature of(32±0.4)℃,and after a 58-days domestication period and a 33-days stabilization period.the efficiency of ammonium removal in the SBBR went up to 95%.Highly frequent intermittent aeration suppressed the activity of nitratebacteria.and also eliminated the influence on the activity of anaerobic ammonium oxidation(ANAMMOX)bacteria and nitritebacteria.This influence was caused by the accumulation of nitrous acid and the undulation of pH.During the aeration stage,the concentration of dissolved oxygen was controlled at 1.2-1.4 mg/L.The nitritebacteria became dominant and nitrite accumulated gradually.During the anoxic stage,along with the concentration debasement of the dissolved oxygen,ANAMMOX bacteria became dominant;then,the nitrite that was accumulated in the aeration stage was wiped off with ammonium simultaneously.

  15. A test study on treatment of high-strength polyester wastewater with anaerobic reactor

    Institute of Scientific and Technical Information of China (English)

    韩洪军; 陈秀荣; 徐春艳

    2002-01-01

    The treatment of polyester wastewater using Up-flow activated sludge bed anaerobic filer ( UASB-AF), demonstrated that UASB-AF reactors has a high efficiency, its volume loading is 10 ~ 12 kgCOD/( m3 @d) ,HRT is 22 ~24 h, and the removal of COD is about 80%. The reactor has advantage of fast starting andenduring pulse loading.

  16. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bilgili, M. Sinan [Yildiz Technical University, Environmental Engineering Department, 34349 Besiktas, Istanbul (Turkey)], E-mail: mbilgili@yildiz.edu.tr; Demir, Ahmet [Yildiz Technical University, Environmental Engineering Department, 34349 Besiktas, Istanbul (Turkey)], E-mail: ahmetd@yildiz.edu.tr; Akkaya, Ebru [Yildiz Technical University, Environmental Engineering Department, 34349 Besiktas, Istanbul (Turkey)], E-mail: ekoca@yildiz.edu.tr; Ozkaya, Bestamin [Yildiz Technical University, Environmental Engineering Department, 34349 Besiktas, Istanbul (Turkey)], E-mail: bozkaya@yildiz.edu.tr

    2008-10-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits.

  17. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using on

  18. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment

    NARCIS (Netherlands)

    Van Lier, J.B.; Van der Zee, F.P.; Frijters, C.T.M.J.; Ersahin, M.E.

    2015-01-01

    In the last 40 years, anaerobic sludge bed reactor technology evolved from localized lab-scale trials to worldwide successful implementations at a variety of industries. High-rate sludge bed reactors are characterized by a very small foot print and high applicable volumetric loading rates. Best perf

  19. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.

    Science.gov (United States)

    Hoang, V; Delatolla, R; Abujamel, T; Mottawea, W; Gadbois, A; Laflamme, E; Stintzi, A

    2014-02-01

    This study aims to investigate moving bed biofilm reactor (MBBR) nitrification rates, nitrifying biofilm morphology, biomass viability as well as bacterial community shifts during long-term exposure to 1 °C. Long-term exposure to 1 °C is the key operational condition for potential ammonia removal upgrade units to numerous northern region treatment systems. The average laboratory MBBR ammonia removal rate after long-term exposure to 1 °C was measured to be 18 ± 5.1% as compared to the average removal rate at 20 °C. Biofilm morphology and specifically the thickness along with biomass viability at various depths in the biofilm were investigated using variable pressure electron scanning microscope (VPSEM) imaging and confocal laser scanning microscope (CLSM) imaging in combination with viability live/dead staining. The biofilm thickness along with the number of viable cells showed significant increases after long-term exposure to 1 °C. Hence, this study observed nitrifying bacteria with higher activities at warm temperatures and a slightly greater quantity of nitrifying bacteria with lower activities at cold temperatures in nitrifying MBBR biofilms. Using DNA sequencing analysis, Nitrosomonas and Nitrosospira (ammonia oxidizers) as well as Nitrospira (nitrite oxidizer) were identified and no population shift was observed between 20 °C and after long-term exposure to 1 °C.

  20. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor.

    Science.gov (United States)

    Bassin, João P; Dezotti, Marcia; Sant'anna, Geraldo L

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  1. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bassin, Joao P. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Dezotti, Marcia, E-mail: mdezotti@peq.coppe.ufrj.br [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil); Sant' Anna, Geraldo L. [Programa de Engenharia Quimica/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco G - sala 116, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-01-15

    Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl{sup -}/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.

  2. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India); Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in [Centre for Nanobiotechnology, Nano Bio-Medicine Laboratory School of Bio Sciences and Technology VIT University, Vellore - 632014 (India)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Effective bioremoval of Cr(III) using bacterial biofilms. Black-Right-Pointing-Pointer Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. Black-Right-Pointing-Pointer Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 Degree-Sign C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 Multiplication-Sign 10{sup 7}, 4.5 Multiplication-Sign 10{sup 7} and 3.5 Multiplication-Sign 10{sup 5} CFU/cm{sup 2}), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  3. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.

    Science.gov (United States)

    Thabet, Olfa Ben Dhia; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-08-15

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO(4)(2-)) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO(4)(2-)) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO(4)(2-)) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  4. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  5. A modified CDC biofilm reactor to produce mature biofilms on the surface of peek membranes for an in vivo animal model application.

    Science.gov (United States)

    Williams, Dustin L; Woodbury, Kassie L; Haymond, Bryan S; Parker, Albert E; Bloebaum, Roy D

    2011-06-01

    Biofilm-related infections have become a major clinical concern. Typically, animal models that involve inoculation with planktonic bacteria have been used to create positive infection signals and examine antimicrobial strategies for eradicating or preventing biofilm-related infection. However, it is estimated that 99.9% of bacteria in nature dwell in established biofilms. As such, open wounds have significant potential to become contaminated with bacteria that reside in a well-established biofilm. In this study, a modified CDC biofilm reactor was developed to repeatably grow mature biofilms of Staphylococcus aureus on the surface of polyetheretherketone (PEEK) membranes for inoculation in a future animal model of orthopaedic implant biofilm-related infection. Results indicated that uniform, mature biofilms repeatably grew on the surface of the PEEK membranes.

  6. Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Buffiere, P.; Elmaleh, S.; Lebrato, J.; Moletta, R.

    2003-11-01

    This paper describes the application of the inverse fluidization technology to the anaerobic digestion of dairy wastewater. Two reactors were investigated: the inverse fluidized bed reactor and the inverse turbulent reactor. In these reactors, a granular floating solid is expanded by a down-flow current of effluent or an up-flow current of gas, respectively. The carrier particles (Extendospheres) were chosen for their large specific surface area (20,000 m{sup 2} m{sup -3}) and their low energy requirements for fluidization (gas velocity of 1.5 mm s{sup -1}, 5.4 m h{sup -1}). Organic load was increased stepwise by reducing hydraulic retention time from more than 60 days to 3 days, while maintaining constant the feed COD concentration. Both reactors achieved more than 90% of COD removal, at an organic loading rate of 10-12 kg{sub COD} m{sup -3} d{sup -1}, respectively. The performances observed were similar or even higher than that of other previously tested fluidized bed technologies treating the same wastewater. It was found that the main advantages of this system are: low energy requirement, because of the low fluidization velocities required; there is no need of a settling device, because solids accumulate at the bottom of the reactor, so they can be easily drawn out and particles with high-biomass content can be easily recovered. Lipid phosphate concentration has been revealed as a good method for biomass estimation in biofilms since it only includes living biomass. (Author)

  7. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  8. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  9. Feasibility of hydraulic separation in a novel anaerobic-anoxic upflow reactor for biological nutrient removal.

    Science.gov (United States)

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Volcke, Eveline I P; Tejero, Iñaki

    2015-01-01

    This contribution deals with a novel anaerobic-anoxic reactor for biological nutrient removal (BNR) from wastewater, termed AnoxAn. In the AnoxAn reactor, the anaerobic and anoxic zones for phosphate removal and denitrification are integrated in a single continuous upflow sludge blanket reactor, aiming at high compactness and efficiency. Its application is envisaged in those cases where retrofitting of existing wastewater treatment plants for BNR, or the construction of new ones, is limited by the available surface area. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. The capability of the AnoxAn configuration to establish two hydraulically separated zones inside the single reactor was assessed by means of hydraulic characterization experiments and model simulations. Residence time distribution (RTD) experiments in clean water were performed in a bench-scale (48.4 L) AnoxAn prototype. The required hydraulic separation between the anaerobic and anoxic zones, as well as adequate mixing in the individual zones, were obtained through selected mixing devices. The observed behaviour was described by a hydraulic model consisting of continuous stirred tank reactors and plug-flow reactors. The impact of the denitrification process in the anoxic zone on the hydraulic separation was subsequently evaluated through model simulations. The desired hydraulic behaviour proved feasible, involving little mixing between the anaerobic and anoxic zones (mixing flowrate 40.2 % of influent flowrate) and negligible nitrate concentration in the anaerobic zone (less than 0.1 mgN L(-1)) when denitrification was considered.

  10. Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH

    DEFF Research Database (Denmark)

    Falkentoft, C.M.; Müller, E.; Arnz, P.

    2002-01-01

    , phosphate removing biofilm belonged to the beta subclass of Proteobacteria. The applied set ofgene probes had been selected based on existing literature on biological phosphate removing organisms and included a recently published probe for a Rhodocyclus-like clone. However, none ofthe specific probes......Induction ofdenitrification was investigated for a lab-scale phosphate removing biofilm reactor where oxygen was replaced with nitrate as the electron acceptor. Acetate was used as the carbon source. The original biofilm (acclimatised with oxygen) was taken from a well-established large...

  11. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers....... With the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model...

  12. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  13. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins.

    Directory of Open Access Journals (Sweden)

    Nancy J Phillips

    Full Text Available Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13C(6-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H planktonic and light (L biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not

  14. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  15. Optimization of the purification process of wine lees through anaerobic filter reactors. Optimizacion del proceso de depuracion de vinazas de vino mediante reactores tipo filtro anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Nebot Sanz, E.; Romero Garcia, L.I.; Quiroga Alonso, J.M.; Sales Marquez, D. (Departamento de Ingenieria Quimica, Universidad de Cadiz, Cadiz (Spain))

    1994-01-01

    In this work, the optimization of thermophilic anaerobic process, using Anaerobic Filter technology was studied. Feed of the Anaerobic Filter was wine-distillery wastewaters. The experiments developed were carried out at lab-scale downflow anaerobic filter reactors. Reactors were filled with a high porous plastic media (Flocor-R). The media support entities have a high surface/volume ratio. Test were run to determine the maximum organic load attainable in the system for wich both, the depurative efficiency and the methane production were optimum. Likewise, the effect of organic load on the anaerobic filter performance were studied. (Author) 15 refs. (Author)

  16. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sinan Bilgili, M. [Yildiz Technical University, Environmental Engineering Department, 34349 Yildiz, Besiktas, Istanbul (Turkey)]. E-mail: mbilgili@yildiz.edu.tr; Demir, Ahmet [Yildiz Technical University, Environmental Engineering Department, 34349 Yildiz, Besiktas, Istanbul (Turkey)]. E-mail: ahmetd@yildiz.edu.tr; Ince, Mahir [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)]. E-mail: mahirince@gyte.edu.tr; Ozkaya, Bestamin [Yildiz Technical University, Environmental Engineering Department, 34349 Yildiz, Besiktas, Istanbul (Turkey)]. E-mail: bozkaya@yildiz.edu.tr

    2007-06-25

    Leachate and solid waste samples from aerobic and anaerobic simulated landfill reactors operated with and without leachate recirculation were characterized in terms of metals such as Fe, Ca, K, Na, Cd, Cr, Cu, Pb, Ni, and Zn. Metal concentrations of aerobic landfill reactor leachate samples are always below the regulation limits. The higher concentrations in anaerobic landfill leachate samples decreased to regulation limits after the landfill becomes methanogenic. The effect of leachate recirculation is determined in anaerobic landfills more clearly than aerobic landfills. Metal precipitation resulted in a decrease in leachate metal content and an increase in solid waste metal content as expected. Result of the study show that the metal content of landfill leachate samples is not a major concern for both aerobic and anaerobic landfills.

  17. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2012-01-01

    the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO2 to CH4...... by PCR–DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree......Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using...

  18. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    Science.gov (United States)

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-01-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater.

  19. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  20. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  1. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    . Furthermore, 16S rRNA genes analysis showed that this special operation strategy resulted same microbial community structures in the anodic biofilms of the two cell units. The simple, compact and in situ applicable SMEC offers new opportunities for reactor design for a microbial electricity...

  2. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    Science.gov (United States)

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  3. Kinetic and stoichiometric characterization of a fixed biofilm reactor by pulse respirometry

    OpenAIRE

    Ordaz, Alberto; Oliveira, Catarina S.; Quijano, Guilhermo; Ferreira, E. C.; Alves, M.M.; Thalasso, Frédéric

    2012-01-01

    An in situ respirometric technique was applied to a sequential biofilm batch reactor treating a synthetic wastewater containing acetate. In this reactor, inoculated with mixed liquor from a wastewater plant, unglazed ceramic tiles were used as support media while maintaining complete mixing regime. A total of 8 kinetic and stoichiometric parameters were determined by pulse respirometry, namely substrate oxidation yield, biomass growth yield, storage yield, storage growth yield, substrate affi...

  4. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    Science.gov (United States)

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  5. KINETIC MODELLING OF CONTINUOUS-MIX ANAEROBIC REACTORS OPERATING UNDER DIURNALLY CYCLIC TEMPERATURE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    E. A. Echiegu

    2014-01-01

    Full Text Available A two-culture dynamic model which incorporated the effects of diurnally cyclic temperature was developed and used to predict the dynamic response of anaerobic reactors operated on dairy manure under two diurnally cyclic temperature ranges of 20-40°C and 15-25°C which represent the summer and winter in Nigeria. The digesters were operated at various hydraulic retention times and solid concentrations and some useful kinetic parameters were determined. The model predicted biogas production, volatile solid reduction, methane yield and treatment efficiency with reasonable accuracy (R2 = 0.70 to 0.90. The model, however, under-predicted the cell mass concentration in the reactor probably because the Volatile Suspended Solid (VSS, which was used as the estimator of the actual cell mass concentration in the reactor, was not a good indicator of the active cell mass concentration in anaerobic reactors operating on dairy manure.

  6. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.

    Science.gov (United States)

    Picioreanu, C; van Loosdrecht, M C M; Katuri, K P; Scott, K; Head, I M

    2008-01-01

    This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power-current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  7. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Psoma, Aikaterini K.;

    2017-01-01

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers...

  8. Moving Bed Biofilm Reactor -A New Perspective In Pulp And Paper Waste Water Treatment

    Directory of Open Access Journals (Sweden)

    K.Vaidhegi

    2016-06-01

    Full Text Available The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. In this work, experiments were conducted to treat the pulp and paper mill effluent using moving bed biofilm reactor (MBBR.The wastewater generated by these industries contains high COD, BOD, colour, organic substances and toxic chemicals. This study was carried out on laboratory scale Moving Bed Biofilm Reactor with proflex type biocarriers, where the biofilm grows on small, free floating plastic elements with a large surface area and a density slightly less than 1.0 g/cm3 . The reactor was operated continuously at 50% percentages filling of biocarriers. During the filling percentage, the removal efficiencies of COD & BOD were monitored at the time period of 2h, 4h, 6h and 8h. The result showed that the maximum COD and BOD removal of 87% were achieved for the 50 percent filling of biocarriers at the HRT of 8 h. From the experimental results, the moving bed biofilm reactor could be used as an ideal and efficient option for the organic and inorganic removal from the wastewater of pulp and paper industry

  9. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems.

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.In this the

  10. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  11. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  12. Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale.

    Science.gov (United States)

    Omil, Francisco; Garrido, Juan M; Arrojo, Belén; Méndez, Ramón

    2003-10-01

    The wastewaters discharged by raw milk quality control laboratories are more complex than the ones commonly generated by dairy factories because of the presence of certain chemicals such as sodium azide or chloramphenicol, which are used for preserving milk before analysis. The treatment of these effluents has been carried out in a full-scale plant comprising a 12 m(3) anaerobic filter (AF) reactor and a 28 m(3) sequential batch reactor (SBR). After more than 2 years of operation, a successful anaerobic treatment of these effluents was achieved, without fat removal prior to the anaerobic reactor. The organic loading rates maintained in the AF reactor were 5-6 kg COD/m(3) d, with COD removal being higher than 90%. No biomass washout was observed, and most of the fat contained in the wastewaters was successfully degraded. The addition of alkalinity is crucial for the maintenance of a proper buffer medium to ensure pH stability. The effluent of the AF reactor was successfully treated in the SBR reactor, and a final effluent with a COD content below 200 mg/l and total nitrogen below 10mg N/l was obtained.

  13. ATP content and biomass activity in sequential anaerobic/aerobic reactors

    Institute of Scientific and Technical Information of China (English)

    陈红

    2004-01-01

    Specific ATP content of volatile solids was measured to characterize the sludge activity in a sequential anaerobic/aerobic wastewater treatment system, with an upflow anaerobic sludge blanket (UASB) reactor and a three-phase aerobic fluidized bed (AFB) reactor. The wastewater COD level was 2000(3000 mg/L in simulation of real textile wastewater. The ATP content and the specific ATP contents of volatile solids at different heights of the UASB reactor and those of the suspended and immobilized biomass in the AFB reactor were measured. In the UASB reactor, the maximum value of specific ATP (0.85 mg ATP/g VS) was obtained at a hydraulic retention time (HRT) 7.14 h in the blanket solution. In the AFB reactor, the specific ATP content of suspended biomass was higher than that of immobilized biomass and increased with hydraulic retention time reaching a maximum value of 1.6 mg ATP/g VS at hydraulic retention time 4.35 h. The ATP content of anaerobes in the UASB effluent declined rapidly under aerobic conditions following a 2nd-order kinetic model.

  14. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    Science.gov (United States)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2016-02-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  15. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  16. COMPARISON OF PHENOL REMOVAL IN ANAEROBIC FLUIDIZED BED REACTORS WITH SAND AND GAC MEDIA

    Directory of Open Access Journals (Sweden)

    A.R. Yazdanbakhsh; A.R. Mesdaghinia; A. Torabian; M. Shariat

    1997-08-01

    Full Text Available In this study two identical anaerobic completely mixed fluidized bed reactors with GAC and sand media were employed for COD & phenol removal. At loading rate of 1.6 g phenol L-1d-1, the efficiency of phenol removal in GAC & sand reactors were 97.7% & 74%, respectively. At high loading rate of phenol (6.09 g phenol I: 1d1 the efficiency of phenol removal in GAC reactor was better than 95%. In GAC reactor, the main mechanism for phenol removal at steady state condition was biological process; this was concluded through balance of gas production and COD removal. Better efficiency of GAC reactor comparing with sand reactor was because of resistance to fluctuations, higher surface for biomass growth and adsorption capacity of activated carbon.

  17. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan;

    2011-01-01

    . The methane production rate of the reactor with H2 addition was 22% higher, compared to the control reactor only fed with manure. The CO2 content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due......The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic...... mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition...

  18. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.

    Science.gov (United States)

    Zhang, Yaobin; Jing, Yanwen; Quan, Xie; Liu, Yiwen; Onu, Pascal

    2011-01-01

    Waste scrap iron was packed into an upflow anaerobic sludge blanket (UASB) reactor to form a zero valent iron (ZVI) - UASB reactor system for treatment of azo dye wastewater. The ZVI acted as a reductant to decrease ORP in the reactor by more than 40 mv and functioned as an acid buffer to increase the pH in the reactor from 5.44 to 6.29, both of which improved the performance of the anaerobic reactor. As a result, the removal of color and COD in this reactor was 91.7% and 53%, respectively, which was significantly higher than that of a reference UASB reactor without ZVI. The UV-visible spectrum demonstrated that absorption bands of the azo dye from the ZVI-UASB reactor were substantially reduced. The ZVI promoted methanogenesis, which was confirmed by an increase in CH(4) content in the biogas from 47.9% to 64.8%. The ZVI bed was protected well from rusting, which allowed it to function stably. The effluent could be further purified only by pH adjustment because the Fe(2+) released from ZVI served as a flocculent.

  19. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate

    NARCIS (Netherlands)

    Calli, B.; Mertoglu, B.; Roest, C.; Inanc, B.

    2006-01-01

    Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD conce

  20. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  1. Psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D.I. [Agriculture Canada, Ottawa, ON (Canada). Food Research Branch; Droste, R.L. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    This work presents preliminary results of an ongoing laboratory study to evaluate the feasibility of psychrophilic anaerobic digestion in sequencing batch reactors (SBR) for stabilizing, deodorizing and adding value to swine manure. Preliminary results show that the process is feasible. (author). 14 refs., 7 tabs.

  2. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors

    NARCIS (Netherlands)

    Lenz, M.; Hullebusch, van E.D.; Hommes, G.; Corvini, P.F.X.; Lens, P.N.L.

    2008-01-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH = 7.0) to remove selenium oxyanions from contaminated waters (790 mu g Se L-1) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at dif

  3. Chain elongation in anaerobic reactor microbiomes to recover resources from waste

    NARCIS (Netherlands)

    Spirito, C.M.; Richter, H.; Rabaey, K.; Stams, A.J.M.; Angenent, L.T.

    2014-01-01

    Different microbial pathways can elongate the carbon chains of molecules in open cultures of microbial populations (i.e. reactor microbiomes) under anaerobic conditions. Here, we discuss three such pathways: 1. homoacetogenesis to combine two carbon dioxide molecules into acetate; 2. succinate forma

  4. Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate.

    Science.gov (United States)

    Duarte, I C S; Oliveira, L L; Saavedra, N K D; Fantinatti-Garboggini, F; Oliveira, V M; Varesche, M B A

    2008-06-01

    The purpose of this work was to assess the degradation of linear alkylbenzene sulfonate (LAS) in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. The reactor was filled with polyurethane foam where the sludge from a sanitary sewage treatment was immobilized. The hydraulic detention time (HDT) used in the experiments was of 12 h. The reactor was fed with synthetic substrate (410 mg l(-1) of meat extract, 115 mg l(-1) of starch, 80 mg l(-1) of saccharose, 320 mg l(-1) of sodium bicarbonate and 5 ml l(-1) of salt solution) in the following stages of operation: SI-synthetic substrate, SII-synthetic substrate with 7 mg l(-1) of LAS, SIII-synthetic substrate with 14 mg l(-1) of LAS and SIV-synthetic substrate containing yeast extract (substituting meat extract) and 14 mg l(-1) of LAS, without starch. At the end of the experiment (313 days) a degradation of approximately 35% of LAS was achieved. The higher the concentration of LAS, the greater the amount of foam for its adsorption. This is necessary because the isotherm of LAS adsorption in the foam is linear for the studied concentrations (2 to 50 mg l(-1)). Microscopic analyses of the biofilm revealed diverse microbial morphologies, while Denaturing Gradient Gel Eletrophoresis (DGGE) profiling showed variations in the population of total bacteria and sulphate-reducing bacteria (SRB). The 16S rRNA gene sequencing and phylogenetic analyses revealed that the members of the order Clostridiales were the major components of the bacterial community in the last reactor operation step.

  5. Ammonia tolerant enriched methanogenic cultures as bioaugmentation inocula to alleviate ammonia inhibition in continuous anaerobic reactors

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Wang, Han; Angelidaki, Irini

    Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... of ammonia-rich organic waste in full-scale continuous reactors.......Ammonia is the most common inhibitor of anaerobic digestion (AD) process, resulting in suboptimal exploitation of the biogas potential of the feedstocks, causing significant economic losses to the biogas plants. Ammonia is mainly inhibiting the aceticlastic methanogens, while the hydrogenotrophic...... methanogens are more robust to ammonia toxicity effect. It has been shown that bioaugmentation of a pure strain of a hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) in an ammonia inhibited continuous anaerobic reactor can improve methane production more than 30%. Nevertheless, cultivation...

  6. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    The modelling of aerobic biodegradation of toluene and the associated biofilm growth in a fixed biofilm system is presented. The model includes four biomass fractions, three dissolved components, and seven processes. It is assumed that part of the active biomass is composed of filamentous bacteria...... which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach......, they are primarily responsible for the biofilm growth. The active biomass decays into biodegradable and ``inert'' dead biomass which is hydrolyzed into soluble products at two different rates. These products are partly degradable by the biomass and constitute the endogenous respiration. The dynamic growth phase...

  7. Advances in high rate anaerobic treatment: staging of reactor systems.

    NARCIS (Netherlands)

    Lier, van J.B.; Zee, van der F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R.

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptan

  8. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong;

    2015-01-01

    for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted...... to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase could be attributed to de-conjugation or formation from other metabolites....

  9. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production.

    Science.gov (United States)

    Sambusiti, C; Ficara, E; Malpei, F; Steyer, J P; Carrère, H

    2013-09-01

    The assessment of the pretreatment effect on the anaerobic digestion process is generally based on the results of batch tests, which may fail in truly predicting full-scale anaerobic reactors performance. Therefore, in this study, the effect of alkaline pretreatment on the anaerobic digestion of ensiled sorghum forage was evaluated by comparing the results of two semi-continuous CSTR (Continuously Stirred Tank Reactor) anaerobic reactors. Results showed that an alkaline pretreatment step, prior to the anaerobic digestion of ensiled sorghum forage, can have a beneficial effect both in enhancing methane production (an increase of 25% on methane production was observed, if compared to that of untreated sorghum) and in giving more stability to the anaerobic digestion process.

  10. A new VFA sensor technique for anaerobic reactor systems

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    to its small size it can be placed in lab-scale reactors without disturbing the process. Using this filtration technique together with commercially available membrane filters we have constructed a VFA sensor system that can perform automatic analysis of animal slurry at a frequency as high as every 15...... to monitor VFA online in one of the most difficult media: animal slurry or manure. A novel in situ filtration technique has made it possible to perform microfiltration inside a reactor system. This filter enables sampling from closed reactor systems without large-scale pumping and filters. Furthermore, due...... filtration technique are being presented is this article....

  11. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis

    DEFF Research Database (Denmark)

    Cai, Weiwei; Han, Tingting; Guo, Zechong

    2016-01-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic...... AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m3 CH4/m3/d). And COD removal is increased ~15% over AD control. When changing to sludge...... indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid....

  12. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  13. Tertiary nitrification using moving-bed biofilm reactor: a case study in Tunisia.

    Science.gov (United States)

    Houda, Nasr; Abdelwaheb, Chatti; Asma, Ben Rajeb; Ines, Mehri; Ahmed, Landoulsi; Abdennaceur, Hassen

    2015-04-01

    In this study, the effect of operational conditions on biofilm development and nitrification in moving-bed biofilm reactor (MBBR) was investigated. The reactor was operated in a continuously fed regime during 170 days and with theoretical hydraulic retention time of 7 h, respectively. The presence of chemical oxygen demand (COD) increased the time required to form stable nitrifying. Subsequent stepwise increase of influent COD caused an increment in total polysaccharide (PS) and protein (PN) content, which was accompanied by an attachment of the biofilm, as shown by atomic force microscope (AFM). PS and PN concentrations proved to be good indicators of biomass development and attachment in MBBR system. Reactor was operated and water quality was characterized before and after treatment. Parameters including pH, 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS) (COD), PN, PS, and fecal bacteria in both raw and treated wastewater were monitored during the treatment. The removal rates of ammonium-nitrogen (NH4 (+)-N), BOD5, COD, and TSS are 95, 67.5, 69.2, and 73.33 %, respectively. The average bacterial reduction between the inlet and the outlet was of the order of 5 ± 1 logarithmic units for fecal coliforms. AFM showed that distinct biofilm and extracellular polymeric substances were formed in biofilm was thicker in the 70 days than in the 30 days. These results showed that the consumption rate for each substrate increased parabolically with biofilm thickness due to the increased amount of biomass Thus, MBBR can serve as a promising technology for wastewater treatment and can be scaled up for small communities in the developing countries.

  14. Improvement through low cost biofilm carrier in anaerobic tubular digestion in cold climate regions.

    Science.gov (United States)

    Martí-Herrero, J; Alvarez, R; Rojas, M R; Aliaga, L; Céspedes, R; Carbonell, J

    2014-09-01

    The aim of this research is to evaluate the increase of biogas production with low cost tubular digesters in cold climates using PET rings inside the reactor. Two similar digesters have been operated and monitored in cold weather conditions and have been fed with cow manure. Digester 1 was filled with PET - rings as a biofilm carrier, Digester 2 was kept as a reference. Through the PET - rings the functional surface could be increased by a factor 4.2. The results show that 44% more biogas per Kg SV has been produced with the biofilm carrier in use (0.33 m(3)/kg SV) (reference digester -0.23 m(3)/kg SV), at an organic load rate of 0.26 kg SV/m(3)/d. The thermal performance shows that with an adaptation of the low cost tubular digester the slurry temperature can be raised up to 16.6°C (average) by surrounding temperature of 6.1°C (average) without using any active heating system.

  15. Anaerobic biodegradation of spent sulphite liquor in a UASB reactor

    DEFF Research Database (Denmark)

    Jantsch, T.G.; Angelidaki, Irini; Schmidt, Jens Ejbye

    2002-01-01

    Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments with dilu......Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l1). Batch experiments...... such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations. 2002 Elsevier Science Ltd. All rights reserved....

  16. Removal of anaerobic soluble microbial products in a biological activated carbon reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Dong; Weili Zhou; Shengbing He

    2013-01-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable.Focusing on the biodegradation of anaerobic SMP,the biological activated carbon (BAC) was introduced into the anaerobic system.The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors.The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2,i.e.,BAC) functioned as a polishing step to remove SMP produced in UASB1.The results showed that 90% of the SMP could be removed before granular activated carbon was saturated.After the saturation,the SMP removal decreased to 60% on the average.Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation.A strain of SMP-degrading bacteria,which was found highly similar to Klebsiella sp.,was isolated,enriched and inoculated back to the BAC reactor.When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3·day),the effluent from the BAC reactor could meet the discharge standard without further treatment.Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective,cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  17. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  18. Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm.

    Science.gov (United States)

    Ontiveros-Valencia, Aura; Penton, Christopher R; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2016-08-01

    Remediation of selenate (SeO4 (2-) ) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 (2-) ), which can lead to competition for the electron donor and the co-production of toxic H2 S. Microbial reduction of SeO4 (2-) in the presence of SO4 (2-) was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 (2-) -reducing conditions and gradually shifted to SeO4 (2-) reduction. The second MBfR was developed with a SeO4 (2-) -reducing biofilm, followed by SO4 (2-) introduction. Biofilms within both MBfRs achieved greater than 90% SeO4 (2-) reduction, even though the SeO4 (2-) concentration ranged from 1,000-11,000 μg/L, more than 20-200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 (2-) loading. Specifically, high SeO4 (2-) loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 (2-) was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 (2-) or SO4 (2-) -reducing conditions attained high SeO4 (2-) removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736-1744. © 2016 Wiley Periodicals, Inc.

  19. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2011-07-01

    Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads reactor R2 had a 61% lower volumetric specific nitrogen removal rate than reactor R1. The low pH and the associated low free ammonia (FA) concentrations were found to be critical to stable anammox activity in the MBBR. Nitrite enhanced the nitrogen removal rate in the conditions of low pH, all the way up to the investigated level of 50mg NO(2)-N/L. At low FA levels nitrite concentrations up to 250 mg NO(2)-N/L did not cause inactivation of anammox consortia over a 2-days exposure time.

  20. Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems II: evaluation.

    Science.gov (United States)

    Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah

    2009-06-01

    A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.

  1. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Science.gov (United States)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  2. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sumantri, Indro; Purwanto,; Budiyono [Chemical Engineering Department, Faculty of Engineering, Diponegoro University Jl. Prof. H. Soedarto, SH, Kampus Baru Tembalang, Semarang (Indonesia)

    2015-12-29

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  3. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols, chlorophe......This study has shown that microorganisms can adapt to degrade mixtures of aromatic pollutants at relatively high rates in the μg/l concentration range. The biodegradation rates of the following compounds were investigated in biofilm systems: aromatic hydrocarbons, phenol, methylphenols......-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking...

  4. Toluene removal in a biofilm reactor for waste gas treatment

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1997-01-01

    A lab-scale trickling filter for treatment of toluene-containing waste gas was investigated. The filter performance was investigated for various loads of toluene. Two levels of the gas flow were examined, 322 m d(-1) and 707 m d(-1). The gas inlet concentrations were varied in the range from 0.6 ...... showed an almost even biofilm growth over the filter height, which was in accordance with a constant liquid concentration throughout the column. (C) 1997 IAWQ. Published by Elsevier Science Ltd....... and the surface removal rates estimated by parameter fitting corresponded to previously observed values. The effect of the gas flow on the mass transfer coefficient and the biological removal rate may be explained by different flow patterns of the gas and the liquid phases. A characterisation of the biofilm...

  5. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    Science.gov (United States)

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).

  6. Coupled anaerobic-aerobic treatment of whey wastewater in a sequencing batch reactor: proof of concept.

    Science.gov (United States)

    Frigon, J C; Bruneau, T; Moletta, R; Guiot, S R

    2007-01-01

    A proof of concept was performed in order to verify if the coupling of anaerobic and aerobic conditions inside the same digester could efficiently treat a reconstituted whey wastewater at 21 degrees C. The sequencing batch reactor (SBR) cycles combined initial anaerobic phase and final aerobic phase with reduced aeration. A series of 24 h cycles in 0.5 L digesters, with four different levels of oxygenation (none, 54, 108 and 182 mgO2 per gram of chemical oxygen demand (COD)), showed residual soluble chemical oxygen demand (sCOD) of 683 +/- 46, 720 +/- 33, 581 +/- 45, 1239 +/- 15 mg L(-1), respectively. Acetate and hydrogen specific activities were maintained for the anaerobic digester, but decreased by 10-25% for the acetate and by 20-50% for the hydrogen, in the coupled digesters. The experiment was repeated using 48 h cycles with limited aeration during 6 or 16 hours at 54 and 108 mgO2gCODinitial(-1), displaying residual sCOD of 177 +/- 43, 137 +/- 38, 104 +/- 22 and 112 +/- 9 mgL(-1) for the anaerobic and the coupled digesters, respectively. The coupled digesters recovered after a pH shock with residual sCOD as low as 132 mg L(-1) compared to 636 mg L(-1) for the anaerobic digester. With regard to the obtained results, the feasibility of the anaerobic-aerobic coupling in SBR digesters for the treatment of whey wastewater was demonstrated.

  7. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  8. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focu

  9. Degradation of Phenolic Compounds in Coal Gasification Wastewater by Biofilm Reactor with Isolated Klebsiella sp

    Institute of Scientific and Technical Information of China (English)

    Fang Fang; HongJun Han; ChunYan Xu; Qian Zhao; LingHan Zhang

    2014-01-01

    This study was conducted to evaluate the degradation of phenolic compounds by one strain isolated from coal gasification wastewater ( CGW ) . 16S rRNA gene sequences homology and phylogenetic analysis showed that the isolate is belonged to the genus Klebsiella sp. The effect of different phenolic compounds on the isolate was investigated by determining OD600 and phenoloxidase activity, of which the results showed that the isolate can utilize phenol, 4-methyl phenol, 3, 5-dimethyl phenol and resorcinol as carbon resources. The biofilm reactor ( formed by the isolate) can resist the influent concentration of phenolic compounds as high as 750 mg/L when fed with synthetic CGW and incubated at optimum conditions. The capacity of improving the biodegradability of CGW through degrading phenolic compounds was testified with fed the biofilm reactor with real CGW. Thus, it might be an effective strain for bioaugmentation of CGW treatment.

  10. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material.

    Science.gov (United States)

    Walters, Evelyn; Hille, Andrea; He, Mei; Ochmann, Clemens; Horn, Harald

    2009-10-01

    Simultaneous nitrification and denitrification in one reactor has been realized with different methods in the past. The usage of biodegradable biocompounds as biofilm carriers is new. The biocompounds were designed out of two polymers having different degradability. Together with suspended autotrophic biomass the biocompound particles were fluidized in an airlift reactor. Process water from sludge dewatering with a mean ammonium nitrogen concentration of 1150 mg L(-1) was treated in a two stage system which achieved a nitrogen removal of 75%. Batch experiments clearly indicate that nitrification can be localized in the suspended biomass and denitrification in the pore structure of the slowly degraded biocompounds. Images taken with CLSM prove the concept of the pore structure within the biocompounds, which provide both a heterotrophic biofilm and carbon source.

  11. Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor.

    Science.gov (United States)

    Zhang, Fang; Ding, Jing; Zhang, Yan; Chen, Man; Ding, Zhao-Wei; van Loosdrecht, Mark C M; Zeng, Raymond J

    2013-10-15

    Gasification of waste to syngas (H2/CO2) is seen as a promising route to a circular economy. Biological conversion of the gaseous compounds into a liquid fuel or chemical, preferably medium chain fatty acids (caproate and caprylate) is an attractive concept. This study for the first time demonstrated in-situ production of medium chain fatty acids from H2 and CO2 in a hollow-fiber membrane biofilm reactor by mixed microbial culture. The hydrogen was for 100% utilized within the biofilms attached on the outer surface of the hollow-fiber membrane. The obtained concentrations of acetate, butyrate, caproate and caprylate were 7.4, 1.8, 0.98 and 0.42 g/L, respectively. The biomass specific production rate of caproate (31.4 mmol-C/(L day g-biomass)) was similar to literature reports for suspended cell cultures while for caprylate the rate (19.1 mmol-C/(L day g-biomass)) was more than 6 times higher. Microbial community analysis showed the biofilms were dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium kluyveri. This study demonstrates a potential technology for syngas fermentation in the hollow-fiber membrane biofilm reactors.

  12. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  13. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    Science.gov (United States)

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor.

  14. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  15. Biological treatment of phenolic wastewater in an anaerobic continuous stirred tank reactor

    Directory of Open Access Journals (Sweden)

    Firozjaee Taghizade Tahere

    2013-01-01

    Full Text Available In the present study, an anaerobic continuous stirred tank reactor (ACSTR with consortium of mixed culture was operated continuously for a period of 110 days. The experiments were performed with three different hydraulic retention times and by varying initial phenol concentrations between 100 to 1000 mg/L. A maximum phenol removal was observed at a hydraulic retention time (HRT of 4 days, with an organic loading rate (OLR of 170.86 mg/L.d. At this condition, phenol removal rate of 89% was achieved. In addition, the chemical oxygen demand (COD removal corresponds to phenol removal. Additional operating parameters such as pH, MLSS and biogas production rate of the effluents were also measured. The present study provides valuable information to design an anaerobic ACSTR reactor for the biodegradation of phenolic wastewater.

  16. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  17. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor.

    Science.gov (United States)

    Zhang, Xinbo; Chen, Xun; Zhang, Chunqing; Wen, Haitao; Guo, Wenshan; Ngo, Huu Hao

    2016-11-01

    Cubic-shaped polyurethane sponges (15×15×15mm) in the form of biofilm carriers were used in a moving bed biofilm reactor (MBBR) for treating synthetic domestic wastewater. Results indicated there was no significant difference in total organic carbon (TOC) and ammonia (NH4(+)-N) removal at different filling fractions. Three reactors exhibited high removal efficiencies of over 93% TOC and 95% NH4(+)-N on average at an HRT of 12h and aeration flow of 0.09m(3)/h. However, total nitrogen (TN) removal and simultaneous nitrification and denitrification (SND) increased with increasing the filling fraction. TN removal averaged at 77.2, 85.5% and 86.7% in 10%, 20% and 30% filling fraction reactor, respectively. Correspondingly, SND were 85.5±8.7%, 91.3±9.4% and 93.3±10.2%. Moreover, it was observed that sponge carriers in the 20% filling fraction reactor achieved the maximum biomass amount per gram sponge, followed by the 10% and 30% filling fraction reactors.

  18. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries

    DEFF Research Database (Denmark)

    Lackner, Susanne; Smets, Barth F.

    2012-01-01

    The effect of biokinetics on nitritation was investigated in two biofilm geometries, the Membrane Aerated Biofilm Reactor (MABR) and a conventional biofilm system. A 1D biofilm model was used and evaluated by global sensitivity analysis using the variance based Sobol method. The main focus...... strongly depends on the chosen kinetic parameters of AOB and NOB. The maximum specific growth rates (μmax,AOB and μmax,NOB) had the strongest impact on nitritation efficiency (NE). In comparison, the counter-diffusion geometry yielded more parameter combinations (27.5%) that resulted in high NE than the co...

  19. Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR).Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carried out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested.

  20. Anaerobic tapered fluidized bed reactor for starch wastewater treatment and modeling using multilayer perceptron neural network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.

  1. Rational Basis for Designing Horizontal-Flow Anaerobic Immobilized Sludge (HAIS Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M. Zaiat

    1997-03-01

    Full Text Available The conception and development on a rational basis of a new configuration of anaerobic fixed-bed bioreactor for wastewater treatment, the horizontal-flow anaerobic immobilized sludge (HAIS reactor, is presented. Such a reactor containing immobilized sludge in polyurethane foam matrices was first assayed for treating paper industry wastewater. A very short start-up period was observed and the reactor achieved stable operation by the eighth day. Afterwards, fundamental aspects of the process were investigated in order to obtain a rational basis for HAIS reactor design. A sequence of experiments was carried out for evaluating the cell wash-out from polyurethane foam matrices, the liquid-phase mass transfer coefficient and the intrinsic kinetic parameters, besides the hydrodynamic flow pattern of the reactor. The knowledge of such fundamental phenomena is useful for improving the reactor’s design and operation. Besides, these fundamental studies are essential to provide parameters for simulation and optimization of processes that make use of immobilized biomass

  2. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor.

    Science.gov (United States)

    de Amorim, Eduardo Lucena Cavalcante; Sader, Leandro Takano; Silva, Edson Luiz

    2012-03-01

    The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L(-1) showed satisfactory H(2) production performance, but the reactor fed with 25 g L(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L(-1). The AFBRs operated with glucose concentrations of 2 and 4 g L(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

  3. Biological nutrient removal from municipal wastewater in sequencing batch biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Arnz, P.

    2001-07-01

    Enhanced biological phosphorus removal (EBPR) has only been put into practice in activated sludge systems. In recent years, the Sequencing Batch Biofilm Reactor (SBBR) has emerged as an alternative allowing EBPR to be achieved in a biofilm reactor. High efficiency of phosphate removal was demonstrated in a SBBR fed with synthetic wastewater containing acetate. The aim of this study was to investigate EBPR from municipal wastewater in semi full-scale and laboratory-scale SBBRs. The focus of the investigation in the semi full-scale reactor was on determination of achievable reaction rates and effluent concentrations under varying influent conditions throughout all seasons of a year. Interactions between nitrogen and phosphorus removal and the influence of backwashing on the reactor performance was examined. Summing up, it can be stated that the SBBR proved to be an attractive alternative to activated sludge systems. Phosphorus elimination efficiency was comparable to common systems but biomass sedimentation problems were avoided. In order to further exploit the potential of the SBBR and to achieve reactor performances superior to those of existing systems designing a special biofilm carrier material may allow to increase the phenomenon of simultaneous nitrification/denitrification while maintaining EBPR activity. (orig.) [German] Die vermehrte biologische Phosphorelimination (Bio-P) aus Abwasser wurde bisher nur in Belebtschlammsystemen praktiziert. In den letzten Jahren konnte jedoch gezeigt werden, dass sich durch die Anwendung des Sequencing Batch Biofilm Reactor (SBBR) - Verfahrens auch in Biofilmreaktoren Bio-P verwirklichen laesst. Versuche in Laboranlagen haben ergeben, dass sich eine weitgehende Phosphorelimination aufrecht erhalten laesst, wenn die Reaktoren mit einem ideal zusammengesetzten, synthetischen Abwasser beschickt werden. Ziel dieser Arbeit war es, Bio-P aus kommunalem Abwasser in SBBR-Versuchsanlagen im halbtechnischen und im Labormassstab zu

  4. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  5. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor.

    Science.gov (United States)

    Liu, Tao; Mao, Yan-Jun; Shi, Yan-Ping; Quan, Xie

    2017-03-01

    Partial nitrification (PN) has been considered as one of the promising processes for pretreatment of ammonium-rich wastewater. In this study, a kind of novel carriers with enhanced hydrophilicity and electrophilicity was implemented in a moving bed biofilm reactor (MBBR) to start up PN process. Results indicated that biofilm formation rate was higher on modified carriers. In comparison with the reactor filled with traditional carriers (start-up period of 21 days), it took only 14 days to start up PN successfully with ammonia removal efficiency and nitrite accumulation rate of 90 and 91%, respectively, in the reactor filled with modified carriers. Evident changes of spatial distributions and community structures had been detected during the start-up. Free-floating cells existed in planktonic sludge, while these microorganisms trended to form flocs in the biofilm. High-throughput pyrosequencing results indicated that Nitrosomonas was the predominant ammonia-oxidizing bacterium (AOB) in the PN system, while Comamonas might also play a vital role for nitrogen oxidation. Additionally, some other bacteria such as Ferruginibacter, Ottowia, Saprospiraceae, and Rhizobacter were selected to establish stable footholds. This study would be potentially significant for better understanding the microbial features and developing efficient strategies accordingly for MBBR-based PN operation.

  6. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    Science.gov (United States)

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  7. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    Science.gov (United States)

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  8. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  9. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    Science.gov (United States)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  10. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  11. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  12. Pseudomonas aeruginosa exhibits deficient biofilm formation in the absence of class II and III ribonucleotide reductases due to hindered anaerobic growth.

    Directory of Open Access Journals (Sweden)

    Anna eCrespo

    2016-05-01

    Full Text Available Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments.Ribonucleotide reductases (RNRs are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II and III. Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development.In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the

  13. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  14. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading

    DEFF Research Database (Denmark)

    Wang, Wen; Xie, Li; Luo, Gang;

    2013-01-01

    (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema......A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane...

  15. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Bouallagui, Hassib; Rachdi, Boutheina; Gannoun, Hana; Hamdi, Moktar

    2009-06-01

    Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g(-1) total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).

  16. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhiyong, E-mail: bluemanner@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Lu, Mang [School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi Province (China); Huang, Wenhui [School of Energy Resources, China University of Geosciences, Beijing 100083 (China); Xu, Xiaochun [School of Geosciences and Resources, China University of Geosciences, Beijing 100083 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer We invented a novel suspended ceramic carrier. Black-Right-Pointing-Pointer The suspended ceramic carrier is modified with sepiolite. Black-Right-Pointing-Pointer The carriers were used in MBBR to remediate wastewater. - Abstract: In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10 h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10 h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier.

  17. An Innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunxia; ZHOU Jiti; ZHANG Jinsong; YUAN Shouzhi

    2009-01-01

    An innovative shortcut biological nitrogen removal system, consisting of an aerobic submerged membrane bioreactor (MBR) and an anaerobic packed-bed biofilm reactor (PBBR), was evaluated for treating high strength ammonium-bearing wastewater. The system was seeded with enriched ammonia-oxidizing bacteria (AOB) and operated without sludge purge with a decreased hydraulic retention time (HRT) through three phases. The MBR was successful in both maintaining nitrite ratio over 0.95 and nitrification efficiency higher than 98% at a HRT of 24 h. The PBBR showed satisfactory denitrification efficiency with very low effluent nitrite and nitrate concentration (both below 3 mg/L). By examining the nitrification activity of microorganism, it was found that the specific ammonium oxidization rate (SAOR) increased from 0.17 to 0.51 g N/(g VSS·d) and then decreased to 0.22 g N/(g VSS·d) at the last phase, which resulted from the accumulation of extracellular polymers substances (EPS) and inert matters enwrapped around the zoogloea. In contrast, the average specific nitrite oxidization rate (SNOR) is 0.002 g N/(g VSS·d), only 1% of SAOR. Because very little Nitrobactor has been detected by fluorescence in situ hybridization (FISH), it is confirmed that the stability of high nitrite accumulation in MBR is caused by a large amount of AOB.

  18. An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures.

    Science.gov (United States)

    Hoang, Valerie; Delatolla, Robert; Laflamme, Edith; Gadbois, Alain

    2014-01-01

    Biological treatment is the most common and economical means of ammonia removal in wastewater; however, nitrification rates can become completely impeded at cold temperatures. Attached growth processes and, specifically, moving bed biofilm reactors (MBBRs) have shown promise with respect to low-temperature nitrification. In this study, two laboratory MBBRs were used to investigate MBBR nitrification rates at 20, 5, and 1 degree C. Furthermore, the solids detached by the MBBR reactors were investigated and Arrhenius temperature correction models used to predict nitrification rates after long-term low-temperature exposure was evaluated. The nitrification rate at 5 degrees C was 66 +/- 3.9% and 64 +/- 3.7% compared to the rate measured at 20 degrees C for reactors 1 and 2, respectively. The nitrification rates at 1 degree C over a 4-month exposure period compared to the rate at 20 degrees C were 18.7 +/- 5.5% and 15.7 +/- 4.7% for the two reactors. The quantity of solids detached from the MBBR biocarriers was low and the mass of biofilm per carrier did not vary significantly at 20 degrees C compared to that after long-term exposure at 1 degree C. Lastly, a temperature correction model based on exposure time to cold temperatures showed a strong correlation to the calculated ammonia removal rates relative to 20 degrees C following a gradual acclimatization period to cold temperatures.

  19. Reaction Kinetics of Aniline Synthetic Wastewater Treatment by Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    H Ganjidoust

    2009-07-01

    Full Text Available "n "nBackground and Objectives: Experiments were conducted to investigate the behavior of Moving Bed Biofilm Reactor (MBBR as a novel aerobic process for treatment of aniline synthetic wastewater as a hard biodegradable compound is commonly used in number of industrial processes. The objective of this paper is evaluation of MBBR in different conditions for treatment of aniline and determination of reaction kinetics."nMaterials and Methods: In the MBBRs, different carriers are used to maximize the active biofilm surface area in the reactors. In this study, the reactor was filled with Light Expanded Clay Aggregate (LECA as carriers. Evaluation of the reactor efficiency was done at different retention time of 8, 24, 48 and 72 hours with an influent COD from 100 to 3500 mg/L (filling ratio of 50%. After obtaining removal efficiencies, effluent concentration of aniline was measured by adsorption spectrum and maladaptive municipal wastewater treatment plant sludge in batch conditions for confidence of aniline biodegradation and its adsorption to the sludge mass. "nResults:The maximum obtained removal efficiencies were 91% (influent COD=2000 mg/L after 72 hours. Biodegradation of aniline in MBBR has been also approved by NMR spectrum tests. Finally experimental data has indicated that Grau second order model and Stover-Kincannon were the best models to describe substrate loading removal rate for aniline."nConclusion:biological treatment of aniline wastewater compared to other researchers methods.

  20. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    Science.gov (United States)

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid.

  1. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor.

    Science.gov (United States)

    Mal, Joyabrata; Nancharaiah, Yarlagadda V; Maheshwari, Neeraj; van Hullebusch, Eric D; Lens, Piet N L

    2017-04-05

    Continuous removal of tellurite (TeO3(2-)) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30°C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6g CODL(-1)d(-1). After establishing efficient and stable COD removal, the reactor was fed with 10mg TeO3(2-)L(-1) for 42 d before increasing the influent concentration to 20mg TeO3(2-)L(-1). Tellurite removal (98 and 92%, respectively, from 10 and 20mg TeL(-1)) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.

  2. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge.

    Science.gov (United States)

    Bousková, A; Dohányos, M; Schmidt, J E; Angelidaki, I

    2005-04-01

    Thermophilic anaerobic digestion presents an advantageous way for stabilization of sludge from wastewater treatment plants. Two different strategies for changing operational process temperature from mesophilic (37 degrees C) to thermophilic (55 degrees C) were tested using two continuous flow stirred tank reactors operated at constant organic loading rate of 1.38 g VS/l reactor/day and hydraulic retention time of 20 days. In reactor A, the temperature was increased step-wise: 37 degrees C-->42 degrees C-->47 degrees C-->51 degrees C-->55 degrees C. While in reactor B, the temperature was changed in one-step, from 37 degrees C to the desired temperature of 55 degrees C, The results showed that the overall adaptation of the process for the step-wise temperature increment took 70 days in total and a new change was applied when the process was stabilized as indicated by stable methane production and low volatile fatty acids concentrations. Although the one-step temperature increase caused a severe disturbance in all the process parameters, the system reached a new stable operation after only 30 days indicating that this strategy is the best in changing from mesophilic to thermophilic operation in anaerobic digestion plants.

  3. Carrier effects on tertiary nitrifying moving bed biofilm reactor: An examination of performance, biofilm and biologically produced solids.

    Science.gov (United States)

    Forrest, Daina; Delatolla, Robert; Kennedy, Kevin

    2016-01-01

    Increasingly stricter ammonia and nitrogen release regulations with respect to wastewater effluents are creating a need for tertiary treatment systems. The moving bed biofilm reactor (MBBR) is being considered as an upgrade option for an increasing number of wastewater treatment facilities due to its small footprint and ease of operation. Despite the MBBRs creation as a system to remove nitrogen, recent research on MBBR systems showing that the system's performance is directly related to carrier surface area and is irrespective of carrier shape and type has been performed exclusively on chemical oxygen demand (COD) removal systems. Furthermore, the influence of carrier type on the solids produced by MBBR systems has also been exclusively studied for COD removal systems. This work investigates the effects of three specific carrier types on ammonia removal rates, biofilm morphology, along with solids production and settleability of tertiary nitrifying MBBR systems. The study concludes that carrier type has no significant effect on tertiary nitrifying MBBR system performance under steady, moderate loading conditions. The research does however highlight the propensity of greater surface area to volume carriers to become clogged under high loading conditions and that the high surface area carriers investigated in this study required longer adjustment periods to changes in loading after becoming clogged.

  4. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...... with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70°C, and fed...... with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H2/mol glucose consumed) but required longer start up time (1 month), while...

  5. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  6. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials

    Directory of Open Access Journals (Sweden)

    G. P. Sancinetti

    2012-03-01

    Full Text Available The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC. The reactors were operated with a hydraulic retention time (HRT of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

  7. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    OpenAIRE

    Cristiane Marques dos Reis; Edson Luiz Silva

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1–8 h). Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1) were operated at different total upflow velocities: 0.30 cm s−1 (R030) and 0.60 cm s−1 (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at...

  8. Electrochemically assisted methane production in a biofilm reactor

    Science.gov (United States)

    Villano, Marianna; Monaco, Gianluca; Aulenta, Federico; Majone, Mauro

    Microbial electrolysis is a new technology for the production of value-added products, such as gaseous biofuels, from waste organic substrates. This study describes the performance of a methane-producing microbial electrolysis cell (MEC) operated at ambient temperature with a Geobacter sulfurreducens microbial bioanode and a methanogenic microbial biocathode. The cell was initially operated at a controlled cathode potential of -850 mV (vs. standard hydrogen electrode, SHE) in order to develop a methanogenic biofilm capable of reducing carbon dioxide to methane gas using abiotically produced hydrogen gas or directly the polarized electrode as electron donors. Subsequently, G. sulfurreducens was inoculated at the anode and the MEC was operated at a controlled anode potential of +500 mV, with acetate serving as electron donor. The rate of methane production at the cathode was found to be primarily limited by the acetate oxidation kinetics and in turn by G. sulfurreducens concentration at the anode of the MEC. Temperature had also a main impact on acetate oxidation kinetics, with an apparent activation energy of 58.1 kJ mol -1.

  9. Startup of anaerobic fluidized bed reactors with acetic acid as the substrate.

    Science.gov (United States)

    Hsu, Y; Shieh, W K

    1993-02-05

    The startup of anaerobic fluidized bed reactors, which use Manville R-633 beads as the growth support media, acetate enriched bacterial culture as the inoculum, and acetic acid as the sole substrate, is studied. Tow startup strategies are evaluated: one based on maximum and stable substrate utilization and another based on maximum substrate loading controlled by reactor pH. The startup process is characterized using a number of operational parameters.The reactors again excellent total organic carbon (TOC) removal (i.e., > 97% at a feed concentration of 5000 mg TOC/L) and stable methane production (i.e., 0.90 L CH(4)/g TOC, where TOC(r) is TOC removed) at a early stage of the startup process, regardless of the strategies applied. The loading can be increased rapidly without the danger of being overloaded. Significant losses of growth support media and biomass caused by gas effervescence at higher loadings limits the maximum loading that can be safely applied during startup process.A high reactor immobilized biomass inventory is achievable using the porous growth support media (e.g., Manville 633 beads). A rapid increase in loading creates a substrate rich environment that yields more viable reactor biomass. Both substrate utilization rate (batch and continuous) and immobilized biomass inventory stabilize concomitantly at the late stage of the startup process, indicating the attainment of steady-state conditions in reactors. Therefore, they are better parameters that TOC removal and methane production for characterizing the entire startup process of aerobic fluidized bed reactor.The strategy based on maximum substrate loading controlled by reactor pH significantly shortens the startup time. In this case, the reactor attains steady-state conditions approximately 140 days after startup. On the other hand, a startup time of 200 days is required when the strategy based maximum substrate utilization is adopted.

  10. Oxygen air enrichment through composite membrane: application to an aerated biofilm reactor

    Directory of Open Access Journals (Sweden)

    A. C. Cerqueira

    2013-12-01

    Full Text Available A highly permeable composite hollow-fibre membrane developed for air separation was used in a membrane aerated biofilm reactor (MABR. The composite membrane consisted of a porous support layer covered with a thin dense film, which was responsible for oxygen enrichment of the permeate stream. Besides oxygen enrichment capability, dense membranes overcome major operational problems that occur when using porous membranes for oxygen transfer to biofilms. Air flow rate and oxygen partial pressure inside the fibres were the variables used to adjust the oxygen transfer rate. The membrane aerated biofilm reactor was operated with hydraulic retention times (HRT ranging from 1 to 4 hours. High organic load removal rates, like 6.5 kg.m-3.d-1, were achieved due to oxygen transfer rates as high as 107 kg.m-3.d-1. High COD removals, with improved oxygen transfer efficiency, indicate that a MABR is a compact alternative to the conventional activated sludge process and that the selected membrane is suitable for further applications.

  11. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency.

  12. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.

    Science.gov (United States)

    Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2012-04-01

    The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis.

  13. Optimization of Moving Bed Biofilm ReactorUsing Taguchi Method

    Directory of Open Access Journals (Sweden)

    R Nabizadeh Nodehi

    2009-07-01

    Full Text Available "n "nBackgrounds and Objectives: in recent years, mobile bed biological reactors have been used progressively for municipal and industrial wastewaters treatment. Dissented experiment is a trial that significant changes will accrue for influent variables in the process, and generally used for identification of the effective factors and optimization of the process. The scope of this study was determination of the optimized conditions for the MBBR process by using of Taguchi method. "nMaterials and Methods: Reactor start up was done by using of the recycled activated sludge from Ahwaz wastewater treatment plant. After that and passing the acclimation period, with hydraulic residence time equal to 9 hours matched for 1000, 2000 and 3000 mg/l based on COD respectively, for optimization determination of the acclimated microbial growth, the variables change (pH, nitrogen source, chemical oxygen demand and salinity were determined in 9 steps, and all of the results were analyzed by Qualitek -4 (w32b."nResults:In this study, organic load removal based on COD was 97% and best optimized condition for MBBR were (inf. COD=1000 mg/l, pH= 8, salinity = 5% and the Nitrogen source= NH4CL"nConclusion: Based on our finding, we may conclude that Taguchi method is on of the appropriate procedure in determination the optimized condition for increasing removal efficiency of MBBR.

  14. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater.

    Science.gov (United States)

    Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In

    2016-11-01

    Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal.

  15. Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.

    Science.gov (United States)

    Panicker, Soosan J; Philipose, M C; Haridas, Ajit

    2008-01-01

    The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.

  16. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    Science.gov (United States)

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified.

  17. Biodegradation of linear alkylbenzene sulfonate in commercial laundry wastewater by an anaerobic fluidized bed reactor.

    Science.gov (United States)

    Braga, Juliana K; Motteran, Fabrício; Macedo, Thaís Z; Sakamoto, Isabel K; Delforno, Tiago P; Okada, Dagoberto Y; Silva, Edson L; Varesche, Maria Bernadete A

    2015-01-01

    The biodegradation of linear alkylbenzene sulfonate (LAS) from commercial laundry wastewater was evaluated in an anaerobic fluidized bed reactor (FBR) fed with synthetic substrate (598 mg L(-1) to 723 mg L(-1) of organic matter) supplemented with 9.5±3.1 mg L(-1) to 27.9±9.6 mg L(-1) of LAS. The average chemical oxygen demand (COD) removal efficiency was 89% and the biodegradation of LAS was 57% during the 489 days of anaerobic FBR. Higher levels of volatile fatty acids (VFA) were observed in the effluent at the stage with the best LAS removal performance. Increasing the surfactant concentration did not increase the VFA production in the effluent. The predominant VFAs after the addition of LAS were as follows: isovaleric acid and valeric acid, followed by propionic acid, caproic acid and formic acid. The similarities of 64% and 45% to Archaea and Bacteria domains were observed in the samples taken in the operating period of anaerobic FBR fed with 23.6±10 mg L(-1) and 27.9±10 mg L(-1) of LAS. During the operation stages in the reactor, Gemmatimonas, Desulfobulbus and Zoogloea were determined as the most abundant genera related to surfactant degradation using 454-Pyrosequencing.

  18. The Denitrifying Biological Phosphorus Removal Performance in Anaerobic/Anoxic Sequencing Batch Reactor: The Effect of Carbon Source

    OpenAIRE

    Gürtekin, Engin; ŞEKERDAĞ, Nusret

    2015-01-01

    In this study, the effect of carbon source on denitrifying biological phosphorus removal performance in acetate and glucose fed two anaerobic/anoxic sequencinq batch reactor (SBR) was investigated. Glucose and acetate were used as the substrates. In acetate and glucose fed reactors, the COD (Chemical Oxygen Demand) removal efficiencies were 91,90% and PO4-P removal efficiencies were 87,51% respectively. These results shows that the phosphorus removal efficiency is lower in glucose fed reactor.

  19. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    Science.gov (United States)

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  20. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    Science.gov (United States)

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions.

  1. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiaofeng; Zhu, Shuangyan; Zhong, Delai; Zhu, Jingping, E-mail: jpzhuhust@163.com; Liao, Li, E-mail: liaoli2003@126.com

    2014-11-15

    Highlights: • Anaerobic co-digestion strategy for food waste treatment at OLR 41.8 g VS/L. • A certain amount of raw leachate effectively relieved acidic inhibition. • The study showed that food waste was completely degraded. - Abstract: In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH{sub 4}–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded. We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.

  2. Hydrolysis and degradation of filtrated organic particulates in a biofilm reactor under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Janning, K.F.; Mesterton, K.; Harremoës, P.

    1997-01-01

    carbon to the bulk liquid was observed as an indication of hydrolysis taking place. The second experiment was designed as a series of on-line OUR batch experiments in a biofilm reactor with recirculation, in order to investigate further the degradation of particulate organic matter. After the biofilm had...... been starved in order to remove the original organic matter, particulate organic matter was added and the degradation kinetics recorded. The initial removal rate was high, r(A.O2) = 2.1 g O-2/(m(2)d) though fast declining towards endogenous respiration. The respiration ratio between removed oxygen...... and produced carbon dioxide was declining from 1.3 to 1.0 g O-2/g CO2 during the degradation of organic particulates. The respiration ratio during endogenous respiration was determined to be 0.7 g O-2/g CO2 indicating a thorough mineralisation of biomass. (C) 1997 IAWQ. Published by Elsevier Science Ltd....

  3. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors.

    Science.gov (United States)

    Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J

    2017-03-01

    Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts.

  4. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm

    Directory of Open Access Journals (Sweden)

    L. L. Oliveira

    2013-09-01

    Full Text Available A fluidized bed reactor was used to study the degradation of the surfactant linear alkylbenzene sulfonate (LAS. The reactor was inoculated with anaerobic sludge and was fed with a synthetic substrate supplemented with LAS in increasing concentrations (8.2 to 45.8 mg l-1. The removal efficiency of 93% was obtained after 270 days of operation. Subsequently, 16S rRNA gene sequencing and phylogenetic analysis of the sample at the last stage of the reactor operation recovered 105 clones belonging to the domain Bacteria. These clones represented a variety of phyla with significant homology to Bacteroidetes (40%, Proteobacteria (42%, Verrucomicrobia (4%, Acidobacteria (3%, Firmicutes (2%, and Gemmatimonadetes (1%. A small fraction of the clones (8% was not related to any phylum. Such phyla variety indicated the role of microbial consortia in degrading the surfactant LAS.

  5. Kinetic and stoichiometric characterization of a fixed biofilm reactor by pulse respirometry.

    Science.gov (United States)

    Ordaz, Alberto; Oliveira, Catarina S; Quijano, Guillermo; Ferreira, Eugenio C; Alves, Madalena; Thalasso, Frédéric

    2012-01-01

    An in situ respirometric technique was applied to a sequential biofilm batch reactor treating a synthetic wastewater containing acetate. In this reactor, inoculated with mixed liquor from a wastewater plant, unglazed ceramic tiles were used as support media while maintaining complete mixing regime. A total of 8 kinetic and stoichiometric parameters were determined by in situ pulse respirometry; namely substrate oxidation yield, biomass growth yield, storage yield, storage growth yield, substrate affinity constant, storage affinity constant, storage kinetic constant and maximum oxygen uptake rate. Additionally, biofilm growth was determined from support media sampling showing that the colonization process occurred during the first 40 days, reaching an apparent steady-state afterward. Similarly, most of the stoichiometric and kinetic parameters were changing over time but reached steady values after day 40. During the experiment, the respirometric method allowed to quantify the amount of substrate directed to storage, which was significant, especially at substrate concentration superior to 30mg CODL(-1). The Activated Sludge Model 3 (ASM3), which is a model that takes into account substrate storage mechanisms, fitted well experimental data and allowed confirming that feast and famine cycles in SBR favor storage. These results also show that in situ pulse respirometry can be used for fixed-bed reactors characterization.

  6. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater.

    Science.gov (United States)

    Shore, Jennifer L; M'Coy, William S; Gunsch, Claudia K; Deshusses, Marc A

    2012-05-01

    This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp.

  7. Decolorization of Orange Ⅱ using an anaerobic sequencing batch reactor with and without co-substrates

    Institute of Scientific and Technical Information of China (English)

    Soon-An Ong; Eiichi Toorisaka; Makoto Hirata; Tadashi Hano

    2012-01-01

    We investigated the decolorization of Orange Ⅱ with and without the addition of co-substrates and nutrients under an anaerobic sequencing batch reactor (ASBR).The increase in COD concentrations from 900 to 1750 to 3730 mg/L in the system treating 100 mg/L of Orange H-containing wastewater enhanced color removal from 27% to 81% to 89%,respectively.In the absence of co-substrates and nutrients,more than 95% of decolorization was achieved by the acclimatized anaerobic microbes in the bioreactor treating 600 mg/L of Orange Ⅱ.The decrease in mixed liquor suspended solids concentration by endogenous lysis of biomass preserved a high reducing environment in the ASBR,which was important for the reduction of the Orange Ⅱ azo bond that caused decolorization.The maximum decolorization rate in the ASBR was approximately 0.17 g/hr in the absence of co-substrates and nutrients.

  8. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor.

    Science.gov (United States)

    Li, Lin; Feng, Lu; Zhang, Ruihong; He, Yanfeng; Wang, Wen; Chen, Chang; Liu, Guangqing

    2015-06-01

    Anaerobic digestion (AD) of vinegar residue was investigated in continuously stirred tank reactor (CSTR). The influence of organic loading rate (OLR) and effluent recirculation on AD performance of vinegar residue was tested. Five OLRs, 1.0, 1.5, 2.0, 2.5, and 3.0 g(vs) L(-1) d(-1), were used. The highest volumetric methane productivity of 581.88 mL L(-1) was achieved at OLR of 2.5 g(vs) L(-1) d(-1). Effluent reflux ratio was set as 50%, the results showed that effluent recirculation could effectively neutralize the acidity of vinegar residue, raise the pH of the feedstock, and enhance the buffering capacity of the AD system. Anaerobic digestion of vinegar residue could be a promising way not only for converting this waste into gas energy but also alleviating environmental pollution which might be useful for future industrial application.

  9. Effect of temperature on two-phase anaerobic reactors treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    Simone Beux

    2007-11-01

    Full Text Available The effectiveness of the anaerobic treatment of effluent from a swine and bovine slaughterhouse was assessed in two sets of two-phase anaerobic digesters, operated with or without temperature control. Set A, consisting of an acidogenic reactor with recirculation and an upflow biological filter as the methanogenic phase, was operated at room temperature, while set B, consisting of an acidogenic reactor without recirculation and an upflow biological filter as the methanogenic phase, was maintained at 32°C. The methanogenic reactors showed COD (Chemical Demand of Oxygen removal above 60% for HRT (Hydraulic Retention Time values of 20, 15, 10, 8, 6, 4, and 2 days. When the HRT value in those reactors was changed to 1 day, the COD percentage removal decreased to 50%. The temperature variations did not have harmful effects on the performance of reactors in set A.Avaliou-se a eficiência do tratamento anaeróbio de efluente de matadouro de suínos e bovinos em dois conjuntos de biodigestores anaeróbios de duas fases, operados com e sem controle de temperatura. O conjunto A, formado por um reator acidogênico com recirculação e um filtro biológico de fluxo ascendente, foi operado a temperatura ambiente e o conjunto B, formado por um reator de fluxo ascendente e um filtro biológico de fluxo ascendente, foi mantido a 32°C. Os reatores metanogênicos apresentaram remoção de DQO acima de 60 % para os TRHs de 20, 15, 10, oito, seis, quatro e dois dias. Quando o TRH destes reatores foi mudado para um dia observou-se uma queda da porcentagem de remoção de DQO para 50 %. As variações de temperatura parecem não ter prejudicado o desempenho dos reatores do conjunto A.

  10. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.

    Science.gov (United States)

    Sponza, Delia Teresa; Demirden, Pinar

    2010-04-15

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  11. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR).

    Science.gov (United States)

    Casas, Mònica Escolà; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments.

  12. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor.

    Science.gov (United States)

    Marsolek, Michael D; Torres, César I; Hausner, Martina; Rittmann, Bruce E

    2008-09-01

    Coupling advanced oxidative pretreatment with subsequent biodegradation demonstrates potential for treating wastewaters containing biorecalcitrant and inhibitory organic constituents. However, advanced oxidation is indiscriminate, producing a range of products that can be too oxidized, unavailable for biodegradation, or toxic themselves. This problem could be overcome if advanced oxidation and biodegradation occurred together, an orientation called intimate coupling; then, biodegradable organics are removed as they are formed, focusing the chemical oxidant on the non-biodegradable fraction. Intimate coupling has seemed impossible because the conditions of advanced oxidation, for example, hydroxyl radicals and sometimes UV-light, are severely toxic to microorganisms. Here, we demonstrate that a novel photocatalytic circulating-bed biofilm reactor (PCBBR), which utilizes macro-porous carriers to protect biofilm from toxic reactants and UV light, achieves intimate coupling. We demonstrate the viability of the PCBBR system first with UV only and acetate, where the carriers grew biofilm and sustained acetate biodegradation despite continuous UV irradiation. Images obtained by scanning electron microscopy and confocal laser scanning microscopy show bacteria living behind the exposed surface of the cubes. Second, we used slurry-form Degussa P25 TiO2 to initiate photocatalysis of inhibitory 2,4,5-trichlorophenol (TCP) and acetate. With no bacterial carriers, photocatalysis and physical processes removed TCP and COD to 32% and 26% of their influent levels, but addition of biofilm carriers decreased residuals to 2% and 4%, respectively. Biodegradation alone could not remove TCP. Photomicrographs clearly show that biomass originally on the exterior of the carriers was oxidized (charred), but biofilm a short distance within the carriers was protected. Finally, we coated TiO2 directly onto the carrier surface, producing a hybrid photocatalytic-biological carrier. These carriers

  13. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  14. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems.

  15. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions.

    Science.gov (United States)

    Mogensen, A S; Ahring, B K

    2002-03-05

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 micromol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon atoms. The reactor was operated with a hydraulic retention time of 12 h with effluent recirculation in an effluent to influent ratio of 5 to 1. A sterile reactor operated in parallel revealed that sorption to sludge particles initially accounted for a major LAS removal. After 8 days of reactor operation, the removal of LAS in the reactor inoculated with active granular biomass exceeded the removal in the sterile reactor inoculated with sterile granular biomass. The effect of sorption ceased after 185 to 555 h depending on the LAS homologs. 40% of the LAS was biodegraded, and the removal rate was 0.5 x 10(-6) mol/h/mL granular biomass. Acidified effluent from the reactor was subjected to dichloromethane extraction followed by gas chromatography/mass spectrometry. Benzenesulfonic acid and benzaldehyde were detected in the reactor effluent from the reactor with active granular biomass but not in the sterile and unamended reactor effluent. Benzenesulfonic acid and benzaldehyde are the first identified degradation products in the anaerobic degradation of LAS.

  16. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2012-11-01

    Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO(2) , biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic- and thermophilic anaerobic cultures were enriched to convert CO(2) to CH(4) by addition of H(2) . Enrichment at thermophilic temperature (55°C) resulted in CO(2) and H(2) bioconversion rate of 320 mL CH(4) /(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic- and thermophilic-enriched cultures, as revealed by PCR-DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH(4) content, around 95% at steady-state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH(4) content to around 90%. Further study showed that by decreasing the gas-liquid mass transfer by increasing the stirring speed of the mixture the CH(4) content was increased to around 95%. Finally, the CH(4) content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day).

  17. Phosphorus removal by a fixed-bed hybrid polymer nanocomposite biofilm reactor

    OpenAIRE

    Oliveira, M.; A.L. Rodrigues; Ribeiro, D.C.; Nogueira, R.; Machado, A. V.

    2014-01-01

    Eutrophication is one of the main challenges regarding the ecological quality of surface waters, phosphorus bioavailability being its main driver. In this context, a novel hybrid polymer nanocomposite (HPN-Pr) biofilm reactor aimed at integrated chemical phosphorus adsorption and biological removal was conceived. The assays pointed to removal of 1.2 mg P/g of reactive phosphorus and 1.01 mg P/g of total phosphorus under steady-state conditions. A mathematical adsorption–biological model was a...

  18. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Kolpen, Mette; Appeldorff, Cecilie F.; Brandt, Sarah;

    2016-01-01

    that production of OH˙may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (katA) and a colistin-resistant CF isolate cultured in microtiter plates...

  19. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Mette, Kolpen; Appeldorff, Cecilie F; Brandt, Sarah;

    2016-01-01

    that production of OH⋅ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wildtype PAO1, a catalase deficient mutant (ΔkatA) and a colistin resistant CF isolate cultured in microtiter plates...

  20. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  1. Biodegradation kinetics during different start up of the anaerobic tapered fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Rangasamy Parthiban

    2011-10-01

    Full Text Available Kinetic study for different start up conditions of the anaerobic digestion of wastewater derived from the sago processingfrom tubers of tapioca (Mannihot utillisema is discussed. The experiment is carried out with synthetic waste water usinga tapered fluidized bed reactor. Mesoporous granulated activated carbon is used as a bacterial support. The kinetic modelfollows half order kinetics for substrate utilization and for methane formation and it exhibits an order of 0.20 during thestart up of the reactor without acclimatization. For the remaining start up with acclimatized sludge, kinetic parameters areexpressed in terms of Langmuir-Hinshelwood kinetics for the substrate utilization. The methane formation kinetics followsan order of the reaction as 0.30. The values of the kinetic constants are in the range of 0.13–0.21.

  2. [Characteristics of anaerobic sequencing batch reactor for the treatment of high-solids-content waste].

    Science.gov (United States)

    Wang, Zhi-jun; Wang, Wei; Zhang, Xi-hui

    2006-06-01

    Based on the experiments of digestion of thermo-hydrolyzed sewage sludge in both mesophilic and thermophilic anaerobic sequencing batch reactors (ASBRs) with 20, 10, 7.5, 5d hydraulic retention time (HRT), operating characteristics of ASBR for treatment of high-solids-content waste were investigated. ASBR can efficiently accumulates suspended solids and keep high concentration solids, however there exists a "critical point" of ASBR, which means the maximum capability to accumulate suspended solids without negative effects on ASBR stability, and beyond which the performance deteriorates. Under steady condition, ASBR can sustains high solid retention time (SRT) and mean cell retention time (MCRT), the SRT and MCRT is 2.53 approximately 3.73 and 2.03 approximately 3.14 times of hydraulic retention time (HRT) when treating thermo-hydrolyzed sludge, respectively. Therefore, compared to traditional continuous-flow stirred tank reactor (CSTR), the efficiency of ASBR enhances about 7.13% approximately 34.68%.

  3. The effect of bubble plume on oxygen transfer for moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen; LIU Hu; WANG Meng; WANG Min

    2014-01-01

    The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration tank and also the oxygen transfer from the gas phase to the liquid phase. In this study, the velocity field is determined by a 4-frame PTV as well as the time-averaged and time- dependent velocity distributions. The velocity distribution of the bubble plume is analyzed to evaluate the operating efficiency of the MBBR. The results show that the aeration rate is one of the main factors that sway the velocity distribution of the bubble plumes and affect the operating efficiency of the reactor.

  4. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    Huiqiang Li; Hongjun Han; Maoan Du; Wei Wang

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater.Nitrification of the MBBR was inhibited almost completely during start-up period.Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition.Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery.Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days.Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water.The ratio of nitrification decreased to 25% when infiuent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70%for another 4 days.

  5. Inhibition and recovery of nitrification in treating real coal gasification wastewater with moving bed biofilm reactor.

    Science.gov (United States)

    Li, Huiqiang; Han, Hongjun; Du, Maoan; Wang, Wei

    2011-01-01

    Moving bed biofilm reactor (MBBR) was used to treat real coal gasification wastewater. Nitrification of the MBBR was inhibited almost completely during start-up period. Sudden increase of influent total NH3 concentration was the main factor inducing nitrification inhibition. Increasing DO concentration in the bulk liquid (from 2 to 3 mg/L) had little effect on nitrification recovery. Nitrification of the MBBR recovered partially by the addition of nitrifying sludge into the reactor and almost ceased within 5 days. Nitrification ratio of the MBBR achieved 65% within 12 days by increasing dilute ratio of the influent wastewater with tap water. The ratio of nitrification decreased to 25% when influent COD concentration increased from 650 to 1000 mg/L after nitrification recovery and recovered 70% for another 4 days.

  6. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C).

    Science.gov (United States)

    Zheng, Hang; Zeng, Raymond J; Angelidaki, Irini

    2008-08-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.

  7. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chungli 32023, Taiwan (China); Damodar, Rahul A. [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chungli 32023, Taiwan (China); Hou, Sheng-Chon [Department of Civil Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chungli 32023, Taiwan (China)

    2010-05-15

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO{sub 2} system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  8. Experiences with anaerobic treatment of fat-containing food waste liquids: two full scale studies with a novel anaerobic flotation reactor.

    Science.gov (United States)

    Frijters, C T M J; Jorna, T; Hesselink, G; Kruit, J; van Schaick, D; van der Arend, R

    2014-01-01

    Fat-containing food waste can be effectively treated in a new type of reactor, the so-called BIOPAQ-Anaerobic Flotation Reactor or BIOPAQ(®) anaerobic flotation reactor (AFR). In the reactor a flotation unit is integrated to retain the sludge. In this study results from two plants with a 430 and 511 m(3)-AFR, respectively, are presented. In one reactor, which is fed with water originating from different food liquid streams, over 99% of fat and oils were removed. Over 90% of the chemical oxygen demand (COD) was removed. When the last solids were removed from the effluent with a tilted plate settler, 98% COD removal was attained. The effluent concentrations of extractable hydrolysed and non-hydrolysed fats were less than 40 mg/l. Apparently the variations in the liquid streams deriving from the tank cleaning activities did not disturb the system. Only extremely high concentrations of fats could disturb the system, but the inhibition was reversible. In the reactor treating water from an ice-cream factory, which contained fats up to approximately 50% of influent COD, a COD removal efficiency of 90% was achieved. At volumetric loading rates varying from 1 to 8 kg COD/m(3)/d, biogas was produced at an average specific gas production of 0.69 m(3)/kg COD-removed.

  9. On-off and PI Control of Methane Gas Production of a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    Finn Haugen

    2013-07-01

    Full Text Available A proposed feedback control system for methane flow control of a real pilot anaerobic digestion reactor fed with dairy waste is designed and analyzed using the modified Hill model, which has previously been adapted to the reactor. Conditions for safe operation of the reactor are found using steady-state responses of dynamic simulations, taking into account the upper limit of the volatile fatty acids (VFA concentration recommended in the literature. The controllers used are standard process controllers, namely the on-off controller and the PI controller. Several PI controller tuning methods are evaluated using simulations. Two methods are favoured, namely the Skogestad method, which is an open loop method, and the Relaxed Ziegler-Nichols closed loop method. The two methods give approximately the same PI settings. Still, the Skogestad method is ranged first as it requires less tuning time, and because it is easier to change the PI settings at known changes in the process dynamics. Skogestad's method is successfully applied to a PI control system for the real reactor. Using simulations, the critical operating point to be used for safe controller tuning is identified.

  10. Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Liao Dexiang; Li Xiaoming; Yang Qi; Zeng Guangming; Guo Liang; Yue Xiu

    2008-01-01

    The present lab-scale research reveals the enrichment of anaerobic ammonium oxidation microorganism from methanogenic anaerobic granular sludge and the effect of inorganic carbon (sodium bicarbonate) on anaerobic ammonium oxidation. The enrichment of anammox bacteria was carried out in a 7.0-L SBR and the effect of bicarbonate on anammox was conducted in a 3.0-L SBR. Research results , especially the biomass, showed first signs of anammox activity after 54 d cultivation with synthetic wastewater, when the pH was controlled between 7.5 and 8.3, the temperature was 35℃. The anammox activity increased as the influent bicarbonate concentration increased from 1.0 to 1.5 g/L and then, was inhibited as the bicarbonate concentration approached 2.0 g/L. However, the activity could be restored by the reduction of bicarbonate concentration to 1.0 g/L, as shown by rapid conversion of ammonium, and nitrite and nitrate production with normal stoichiometry. The optimization of the bicarbonate concentration in the reactor could increase the anammox rate up to 66.4 mgN/(L·d).

  11. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor.

    Science.gov (United States)

    Zhai, Siyuan; Zhao, Yinxin; Ji, Min; Qi, Wenfang

    2017-05-01

    A spiral fiber based biofilm reactor was developed to remove nitrate and chromate simultaneously. The denitrification and Cr(VI) removal efficiency was evaluated with synthetic groundwater (NO3(-)-N=50mg/L) under different Cr(VI) concentrations (0-1.0mg/L), carbon nitrogen ratios (C/N) (0.8-1.2), hydraulic retention times (HRT) (2-16h) and initial pHs (4-10). Nitrate and Cr(VI) were completely removed without nitrite accumulation when the Cr(VI) concentration was lower than 0.4mg/L. As Cr(VI) up to 1.0mg/L, the system was obviously inhibited, but it recovered rapidly within 6days due to the strong adaption and domestication of microorganisms in the biofilm reactor. The results demonstrated that high removal efficiency of nitrate (≥99%) and Cr(VI) (≥95%) were achieved at lower C/N=0.9, HRT=8h, initial pH=7, and Cr(VI)=1.0mg/L. The technology proposed in present study can be alternative for simultaneous removal of co-contaminants in groundwater.

  12. Modelisation of Nitrification under Inhibited Environment by Moving Bed Bio-Film Reactor Technique

    Directory of Open Access Journals (Sweden)

    Pham T.H. Duc

    2010-01-01

    Full Text Available Problem statement: Nitrification by Moving Bed Biofilm Reactor (MBBR involves physical, chemical and biological processes to remove toxic ammonia for aquaculture that are governed by a variety of parameters, like substrate and dissolved oxygen concentrations, organic matters, temperature, pH, alkalinity and turbulence level, which impact negatively or positively on nitrification kinetics. Approach: The situation becomes more serious as the reaction rate is inhibited by low ammonium concentration and high salinity. That problems usually occur in treatment systems of aquatic breeding hatcheries. Results: In this study, experiments have been conducted to evaluate the impact of salinity on nitrification rate through kinetic constant (k and reaction order (n based on general equation v = kCn. Moving bed biofilm reactor was operated continuously at same initial amounts of nitrogen and Phosphorus very low (oligotrophic conditions. Firstly, over view the impact of salinity on kinetic rate to modeling that effect k and n to modelisation that affects and obtained the impact of salinity content in the reaction medium (X and the acclimatization phase (Y on the kinetic constant (k = 0.097 e (-0.0003Yƒ{0.0346X and on the kinetic order (n = (0.0002Y-0.0195 X-0.009Y + 1.2382. Conclusion/Recommendations: Results from kinetic analysis allowed the prediction of the reaction rate and reaction yield with rather high accuracy, helping the design and operation of a biofilter under practical conditions.

  13. Biological Phosphorus Release and Uptake Under Alternating Anaerobic and Anoxic Conditions In a Fixed-Film Reactor

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens; Strube, Rune

    1994-01-01

    Biological phosphorus removal was investigated in a fixed-film reactor with alternating anaerobic and anoxic conditions. The tests showed that biological phosphorus removal can be obtained in a fixed-film reactor with nitrate as oxidising agent. In the anaerobic period, 0.52 mg of PO4-P...... potassium taken up and phosphate taken up in the anoxic phase was determined to be 0.36 mg K/mg P. The phosphorus concentration in the sludge was determined at 8–10% of dry solids....

  14. Sulfamethoxazole and ciprofloxacin removal using a horizontal-flow anaerobic immobilized biomass reactor.

    Science.gov (United States)

    Chatila, Sami; Amparo, Maura R; Carvalho, Lucas S; Penteado, Eduardo D; Tomita, Inês N; Santos-Neto, Álvaro J; Lima Gomes, Paulo C F; Zaiat, Marcelo

    2016-01-01

    The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.

  15. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  16. Experimental study of hydrodynamic and operation start of a baffled anaerobic reactor treating sewage

    Directory of Open Access Journals (Sweden)

    Ana Carolina Silveira Perico

    2009-12-01

    Full Text Available It is important to provide individual sanitation systems for sewage peri-urban communities or rural areas to minimize impacts on the environment and human health caused by sewage discharge in natura into water resources. In this context, the anaerobic digestion of effluent has been one of the main considered technologies due to easy implementation, material minimization and reduction in waste production. The objective of this work was to study a Baffled Anaerobic Reactor (BAR including its hydrodynamic characteristics, percentile of inoculum to be applied and reactor operation start. It was concluded that the flow is dispersed with 3.84% of dead spaces and that 20% of the cow manure provided best results; however, due to the high fiber content of the manure, its use is not recommended as inoculum. The BAR system, composed of four chambers, presented good performance for sewage treatment of a rural community in terms of organic substance removal (COD, turbidity and solids meeting effluent disposal standards of these parameters considering the Federal and Minas Gerais State legislation, in Brazil, even in a transient phase of operation, at temperatures below 20°C. However, the effluents from the BAR can’t be released into water bodies without other parameters such as nitrogen, phosphorus, fecal coliforms, and others are investigated to be conforming to those standards.

  17. Natural genetic transformation in Acinetobacter sp. BD413 Biofilms: introducing natural genetic transformation as a tool for bioenhancement of biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, L.

    2002-07-01

    This study focussed on the localization and quantification of natural genetic transformation using neutral and disadvantageous genes in monoculture biofilms to investigate gene transfer and expression of the transferred genes in the absence of a selective advantage. Data obtained by this investigation were regarded as initial steps for evaluating the applicability of adding catabolic traits into the indigenous bacterial community of biofilm reactors by in situ natural genetic transformation. Because Acinetobacter spp. strains are readily found in waste water treatment plants and because Acinetobacter sp. BD413 possesses a high effective level of competence, natural genetic transformation was investigated in monoculture Acinetobacter sp. BD413 biofilms. The genes used for transformation encoded for the green fluorescent protein (GFP) and its variants. Monitoring of transformation events were performed with the use of automated confocal laser scanning microscopy (CLSM) and semi automated digital image processing and analysis. (orig.)

  18. Application of IC Anaerobic Reactor in Wastewater Treatment%内循环(IC)厌氧反应器在废水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    钟启俊

    2014-01-01

    The paper introduces the basic principle of inner circulating (IC) anaerobic reactor, analyzes the technology characteristic of IC anaerobic reactor, namely IC anaerobic reactor is an anaerobic reactor with new type and high efifciency, and explains the application development and prospect of the IC anaerobic reactor in wastewater treatment.%介绍了内循环(IC)厌氧反应器的基本原理,分析了IC厌氧反应器的工艺特点,即IC厌氧反应器是新型高效厌氧生物反应器,扼述了IC厌氧反应器在废水处理中的应用进展及前景。

  19. Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge

    OpenAIRE

    Yaqin Yu; Xiwu Lu; Yifeng Wu

    2014-01-01

    This study investigated the performance and stability of an anaerobic baffled filter reactor in the treatment of algae-laden water from Taihu Lake at several organic loading rates. The study also evaluated the capability of soft filler to train granule sludge and improve the anaerobic environment and sludge activity in the anaerobic baffled reactor (ABR), thereby enhancing the treatment efficiency. The ABR consisted of five rectangular compartments, each of which was 120 cm long, 80 cm wide, ...

  20. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  1. Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor.

    Science.gov (United States)

    Ribeiro, Fernanda Resende; Passos, Fabiana; Gurgel, Leandro Vinícius Alves; Baêta, Bruno Eduardo Lobo; de Aquino, Sérgio Francisco

    2017-04-15

    In the context of a sugarcane biorefinery, sugarcane bagasse produced may be pretreated generating a solid and liquid fraction. The solid fraction may be used for 2G bioethanol production, while the liquid fraction may be used to produce biogas through anaerobic digestion. The aim of this study consisted in evaluating the anaerobic digestion performance of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse. For this, hydrothermal pretreatment was assessed in a continuous upflow anaerobic sludge blanket (UASB) reactor operated at a hydraulic retention time (HRT) of 18.4h. Process performance was investigated by varying the dilution of sugarcane bagasse hydrolysate with a solution containing xylose and the inlet organic loading rate (OLR). Experimental data showed that an increase in the proportion of hydrolysate in the feed resulted in better process performance for steps using 50% and 100% of real substrate. The best performance condition was achieved when increasing the organic loading rate (OLR) from 1.2 to 2.4gCOD/L·d, with an organic matter removal of 85.7%. During this period, the methane yield estimated by the COD removal would be 270LCH4/kg COD. Nonetheless, when further increasing the OLR to 4.8gCOD/L·d, the COD removal decreased to 74%, together with an increase in effluent concentrations of VFA (0.80gCOD/L) and furans (115.3mg/L), which might have inhibited the process performance. On the whole, the results showed that anaerobic digestion of sugarcane bagasse hydrolysate was feasible and may improve the net energy generation in a bioethanol plant, while enabling utilization of the surplus sugarcane bagasse in a sustainable manner.

  2. Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Andrade Lima

    2005-09-01

    Full Text Available This work focused on a morphological study of the microorganisms attached to polyurethane foam matrices in a horizontal-flow anaerobic immobilized biomass (HAIB reactor treating domestic sewage. The experiments consisted of monitoring the biomass colonization process of foam matrices in terms of the amount of retained biomass and the morphological characteristics of the cells attached to the support during the start-up period. Non-fluorescent rods and cocci were found to predominate in the process of attachment to the polyurethane foam surface. From the 10th week of operation onwards, an increase was observed in the morphological diversity, mainly due to rods, cocci, and Methanosaeta-like archaeal cells. Hydrodynamic problems, such as bed clogging and channeling occurred in the fixed-bed reactor, mainly due to the production of extracellular polymeric substances and their accumulation in the interstices of the bed causing a gradual deterioration of its performance, which eventually led to the system's collapse. These results demonstrated the importance and usefulness of monitoring the dynamics of the formation of biofilm during the start-up period of HAIB reactors, since it allowed the identification of operational problems.Este trabalho apresenta um estudo morfológico de microrganismos aderidos à espuma de poliuretano em reator anaeróbio horizontal de leito fixo (RAHLF, aplicado ao tratamento de esgoto sanitário. O processo de colonização do suporte pela biomassa anaeróbia e as características morfológicas das células aderidas foram monitorados durante o período de partida do reator. Bacilos e cocos não fluorescentes foram predominantes no processo de aderência direta à espuma de poliuretano. Aumento na diversidade biológica foi observado a partir da 10ª semana de operação do reator, com predominância de bacilos, cocos e arqueas metanogênicas semelhantes a Methanosaeta. Problemas hidrodinâmicos, tais como formação de

  3. Nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria with C2/C3 fatty acid in upflow anaerobic sludge blanket reactors.

    Science.gov (United States)

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Yin; Zhang, Jie

    2015-10-01

    In anaerobic ammonium oxidation (Anammox) process, a harsh ratio of nitrite to ammonia in influent was demanded, and the max nitrogen removal efficiency could only achieve to 89%, both of which limited the development of Anammox. The aim of this work was to study the nitrate removal by organotrophic anaerobic ammonium oxidizing bacteria (AAOB) with C2/C3 fatty acid in upflow anaerobic sludge blanket (UASB) reactors. In this study, organotrophic AAOB was successfully enriched by adding acetate and propionate with the total organic carbon to nitrogen (TOC/N) ratio of 0.1. In the condition of low substrate, the TN removal efficiency reached 90%, with the effluent TN of around 11.8 mg L(-1). After the addition of acetate and propionate, the predominant species in Anammox granular sludge transformed to Candidatus Jettenia that belonging to organotrophic AAOB from the Candidatus Kuenenia relating to general AAOB.

  4. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

    NARCIS (Netherlands)

    Boelee, N.C.; Janssen, M.; Temmink, H.; Shrestha, R.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and p

  5. Kinetics of nitrate and perchlorate reduction in ion exchange brine using the membrane biofilm reactor (MBfR)

    Science.gov (United States)

    Several sources of bacterial inocula were tested for their ability to reduce nitrate and perchlorate in synthetic ion-exchange spent brine (3-4.5% salinity) using a hydrogen-based membrane biofilm reactor (MBfR). Nitrate and perchlorate removal fluxes reached as high as 5.4 g N ...

  6. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor.

    Science.gov (United States)

    Cheng, Kuan-Chen; Demirci, Ali; Catchmark, Jeffrey M

    2010-04-01

    Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as alpha-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.

  7. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality

    Institute of Scientific and Technical Information of China (English)

    Yaobin Zhang; Yiwen Liu; Yanwen Jing; Zhiqiang Zhao; Xie Quan

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment.Based on this idea,a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality.The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI.The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV.Iron ion dissolution from the ZVI could buffer acidity in the reactor,the amount of which was related to the COD concentration.Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one.Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  8. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality.

    Science.gov (United States)

    Zhang, Yaobin; Liu, Yiwen; Jing, Yanwen; Zhao, Zhiqiang; Quan, Xie

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  9. THE "CHEMICAL OXYGEN DEMAND / TOTAL VOLATILE ACIDS" RATIO AS AN ANAEROBIC TREATABILITY INDICATOR FOR LANDFILL LEACHATES

    OpenAIRE

    Contrera,R. C.; K. C. da Cruz Silva; G. H. Ribeiro Silva; D. M. Morita; Zaiat,M.; V. Schalch

    2015-01-01

    Abstract In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil) in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a ...

  10. Responses of biofilm characteristics to variations in temperature and NH4(+)-N loading in a moving-bed biofilm reactor treating micro-polluted raw water.

    Science.gov (United States)

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Wu, Min; Xing, Meiyan; Yang, Jian; Gao, Naiyun; Yin, Daqiang

    2013-03-01

    A pilot-scale moving-bed biofilm reactor (MBBR) for biological treatment of micro-polluted raw water was operated over 400days to investigate the responses of biofilm characteristics and nitrification performance to variations in temperature and NH4(+)-N loading. The mean removal efficiency of NH4(+)-N in the MBBR reached 71.4±26.9%, and batch experiments were performed to study nitrification kinetics for better process understanding. Seven physical-chemical parameters, including volatile solids (VS), polysaccharides (PS) and phospholipids (PL) increased firstly, and then rapidly decreased with increasing temperature and NH4(+)-N loading, and properly characterized the attached biomass during biofilm development and detachment in the MBBR. The biofilm compositions were described by six ratios, e.g., PS/VS and PL/VS ratios showed different variation trends, indicating different responses of PS and PL to the changes in temperature and NH4(+)-N loading. Furthermore, fluorescent in situ hybridization (FISH) analysis revealed that increased NH4(+)-N loadings caused an enrichment of the nitrifying biofilm.

  11. Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system.

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Wang, Ai-Jie; Cheng, Hao-Yi

    2017-02-01

    A hybrid anaerobic reactor with built-in bioelectrochemical system (BES) has been verified for efficiently treating mixed azo dye wastewater, yet still facing many challenges, such as uncertain reactor construction and insufficient electron donors. In this study, an up-flow hybrid anaerobic reactor with built-in BES was developed for acid orange 7 (AO7) containing wastewater treatment. Cathode and real domestic wastewater both served as electron donor for driving azo dye decolorization. The decolorization efficiency (DE) of AO7 (200 mg/L) in the hybrid reactor was 80.34 ± 2.11% with volume ratio between anaerobic sludge and cathode (VRslu:cat) of 0.5:1 and hydraulic retention time (HRT) of 6 h, which was 15.79% higher than that in BES without sludge zone. DE was improved to 86.02 ± 1.49% with VRslu:cat increased to 1:1. Further increase in the VRslu:cat to 1.5:1 and 2:1, chemical oxygen demand (COD) removal efficiency was continuously improved to 28.78 ± 1.96 and 32.19 ± 0.62%, but there was no obvious DE elevation (slightly increased to 87.62 ± 2.50 and 90.13 ± 3.10%). BES presented efficient electron utilization, the electron usage ratios (EURs) in which fluctuated between 11.02 and 13.06 mol e(-)/mol AO7. It was less than half of that in sludge zone of 24.73-32.06 mol e(-)/mol AO7. The present work optimized the volume ratio between anaerobic sludge and cathode that would be meaningful for the practical application of this hybrid system.

  12. Evaluation of reactor anaerobic sludge blanket in the treatment of wastewater slaughterhouse

    Directory of Open Access Journals (Sweden)

    Luciano dos Santos Rodrigues

    2014-10-01

    Full Text Available This study aimed to evaluate the efficiency of a full-scale treatment system effluent slaughterhouse. The full-scale Sewage Treatment Station was designed for a daily flow of 60 m³/d, corresponding to a slaughter of 60 cattle per day. The treatment system consists of a Parshall flume for flow measurement, followed by static sieve, gravimetric fat, sedimentation and anaerobic sludge blanket (UASB box and it was monitored weekly from January to August. The following parameters were analyzed: pH, alkalinity, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total solids (TS, total suspended solids (TSS, ammonia nitrogen, and total nitrogen kjedhall. The average pH, COD and TSS in the UASB reactor effluent values were 6.96, 660 mg/L and 188 mg/L , respectively. The system proved to be efficient, with average removal of 96.40% to 89.92% for COD and TSS. The UASB reactor showed high performance in removing solids and organic load. Thus, this reactor becomes a viable alternative for treating wastewater slaughterhouse, offering good removal results and low cost of deployment.

  13. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor.

  14. State Estimation and Model-Based Control of a Pilot Anaerobic Digestion Reactor

    Directory of Open Access Journals (Sweden)

    Finn Haugen

    2014-01-01

    Full Text Available A state estimator and various model-based control systems have been designed for a real anaerobic digestion (AD pilot reactor fed with dairy manure. The model used is a modified Hill model which is a relatively simple dynamical AD process model. The state estimator is an Unscented Kalman Filter (UKF which uses only methane gas flow measurement to update its states. The model and the state estimates are used in different control systems. One of the control systems aims at controlling the methane gas flow to a setpoint. Simulations indicate that the setpoint tracking performance of a predictive control system is considerably better comparing with PI control, while disturbance compensation is not much better. Consequently, assuming the setpoint is constant, the PI controller competes well with the predictive controller. A successful application of predictive control of the real reactor is presented. Also, three different control systems aiming at retaining the reactor at an operating point where the volatile fatty acids (VFA concentration has a maximum, safe value are designed. A simulation study indicates that the best control solution among the three alternatives is PI control based on feedback from estimated VFA.

  15. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  16. Simultaneous coproduction of hydrogen and ethanol in anaerobic packed-bed reactors.

    Science.gov (United States)

    dos Reis, Cristiane Marques; Silva, Edson Luiz

    2014-01-01

    This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT) (1-8 h). Two reactors filled with expanded clay and fed with glucose (3136-3875 mg L(-1)) were operated at different total upflow velocities: 0.30 cm s(-1) (R030) and 0.60 cm s(-1) (R060). The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h(-1) L(-1) in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol(-1) glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  17. The influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis

    OpenAIRE

    Machado, António; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV...

  18. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were sometim

  19. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  20. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were somet

  1. Degradation of Methanethiol by Methylotrophic Methanogenic Archaea in a Lab-Scale Upflow Anaerobic Sludge Blanket Reactor

    NARCIS (Netherlands)

    Bok, de F.A.M.; Leerdam, van R.C.; Lomans, B.P.; Smidt, H.; Lens, P.N.L.; Janssen, A.J.H.; Stams, A.J.M.

    2006-01-01

    In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30°C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6

  2. Stimulation of Methanol Degradation in UASB Reactors: In Situ Versus Pre-Loading Cobalt on Anaerobic Granular Sludge

    NARCIS (Netherlands)

    Zandvoort, M.H.; Gieteling, J.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The effect of pre-loading and in situ loading of cobalt onto a cobalt-limited granular sludge on the performance of methanol fed bioreactors was investigated. One upflow anaerobic sludge bed (UASB) reactor was inoculated with cobalt pre-loaded sludge (24h; 30degreesC; 1 mM CoCl2) and a second UASB w

  3. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.;

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor proces...

  4. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements.

    Science.gov (United States)

    Dieudé-Fauvel, E; Héritier, P; Chanet, M; Girault, R; Pastorelli, D; Guibelin, E; Baudez, J C

    2014-03-15

    Anaerobic digestion is a significant process leading to biogas production and waste management. Despite this double interest, professionals still face a lack of efficient tools to monitor and manage the whole procedure. This is especially true for rheological properties of the material inside the reactor, which are of major importance for anaerobic digestion management. However, rheological properties can hardly be determined in-situ and it would be very helpful to determine indicators of their evolution. To solve this problem, this paper investigates the evolution of sewage sludge rheological and electrical properties during the anaerobic digestion in a batch reactor. We especially focus on apparent viscosity and complex impedance, measured by electrical impedance spectroscopy. Both of them can be modelled by a linear combination of raw sludge and inoculum properties, weighted by time-dependent coefficients. Thus, by determining digested sludge electrical signature, it is possible to obtain those coefficients and model sludge apparent viscosity. This work offers many theoretical and practical prospects.

  5. Simultaneous Bioreduction of Multiple Oxidized Contaminants Using a Membrane Biofilm Reactor.

    Science.gov (United States)

    Li, Haixiang; Lin, Hua; Xu, Xiaoyin; Jiang, Minmin; Chang, Chein-Chi; Xia, Siqing

    2017-02-01

      This study tests a hydrogen-based membrane biofilm reactor (MBfR) to investigate simultaneous bioreduction of selected oxidized contaminants, including nitrate (-N), sulfate (), bromate (), chromate (Cr(VI)) and para-chloronitrobenzene (p-CNB). The experiments demonstrate that MBfR can achieve high performance for contaminants bioreduction to harmless or immobile forms in 240 days, with a maximum reduction fluxes of 0.901 g -N/m2·d, 1.573 g /m2·d, 0.009 g /m2·d, 0.022 g Cr(VI)/m2·d, and 0.043 g p-CNB/m2·d. Increasing H2 pressure and decreasing influent surface loading enhanced removal efficiency of the reactor. Flux analysis indicates that nitrate and sulfate reductions competed more strongly than , Cr(VI) and p-CNB reduction. The average H2 utilization rate, H2 flux, and H2 utilization efficiency of the reactor were 0.026 to 0.052 mg H2/cm3·d, 0.024 to 0.046 mg H2/cm2·d, and 97.5% to 99.3% (nearly 100%). Results show the hydrogen-based MBfR may be suitable for removing multiple oxidized contaminants in drinking water or groundwater.

  6. The application of moving bed biofilm reactor to denitrification process after trickling filters.

    Science.gov (United States)

    Kopec, Lukasz; Drewnowski, Jakub; Kopec, Adam

    2016-12-01

    The paper presents research of a prototype moving bed biofilm reactor (MBBR). The device was used for the post-denitrification process and was installed at the end of a technological system consisting of a septic tank and two trickling filters. The concentrations of suspended biomass and biomass attached on the EvU Perl moving bed surface were determined. The impact of the external organic carbon concentration on the denitrification rate and efficiency of total nitrogen removal was also examined. The study showed that the greater part of the biomass was in the suspended form and only 6% of the total biomass was attached to the surface of the moving bed. Abrasion forces between carriers of the moving bed caused the fast stripping of attached microorganisms and formation of flocs. Thanks to immobilization of a small amount of biomass, the MBBR was less prone to leaching of the biomass and the occurrence of scum and swelling sludge. It was revealed that the maximum rate of denitrification was an average of 0.73 gN-NO(3)/gDM·d (DM: dry matter), and was achieved when the reactor was maintained in external organic carbon concentration exceeding 300 mgO2/dm(3) chemical oxygen demand. The reactor proved to be an effective device enabling the increase of total nitrogen removal from 53.5% to 86.0%.

  7. Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions.

    Science.gov (United States)

    González, Oscar; Esplugas, Marc; Sans, Carme; Torres, Alicia; Esplugas, Santiago

    2009-05-01

    A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing exclusively 200 mg L(-1) of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was optimized at the minimum reagent doses in order to improve the biocompatibility of effluents with the subsequent biological reactor. Consequently, the pretreatment was performed with two different initial H(2)O(2) concentrations (300 and 400 mg L(-1)) and 10 mg L(-1) of Fe(2+). The pre-treated effluents with the antibiotic intermediates as sole carbon source were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon, and the Hydraulic Retention Time (HRT) was optimized down to 8h reaching a removal of 75.7% of the initial Total Organic Carbon (TOC). The total denitrification of the NO(3)(-) generated along the chemical-biological treatment was achieved by means of the inclusion of a 24-h anoxic stage in the SBBR strategy. In addition, the Activated Sludge Model No. 1 (ASM1) was successfully used to complete the N balance determining the N fate in the SBBR. The characterization and the good performance of the SBBR allow presenting the assessed combination as an efficient way for the treatment of wastewaters contaminated with biorecalcitrant pharmaceuticals as the SMX.

  8. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  9. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor.

    Science.gov (United States)

    Kouba, Vojtech; Catrysse, Michael; Stryjova, Hana; Jonatova, Ivana; Volcke, Eveline I P; Svehla, Pavel; Bartacek, Jan

    2014-01-01

    The application of nitrification-denitrification over nitrite (nitritation-denitritation) with municipal (i.e. diluted and cold (or low-temperature)) wastewater can substantially improve the energy balance of municipal wastewater treatment plants. For the accumulation of nitrite, it is crucial to inhibit nitrite-oxidizing bacteria (NOB) with simultaneous proliferation of ammonium-oxidizing bacteria (AOB). The present study describes the effect of the influent total ammonium nitrogen (TAN) concentration on AOB and NOB activity in two moving bed biofilm reactors operated as sequencing batch reactors (SBR) at 15 °C (SBR I) and 21 °C (SBR II). The reactors were fed with diluted reject water containing 600, 300, 150 and 75 mg TAN L(-1). The only factor limiting NOB activity in these reactors was the high concentrations of free ammonia and/or free nitrous acid (FNA) during the SBR cycles. Nitrite accumulation was observed with influents containing 600, 300 and 150 mg TAN L(-1) in SBR I and 600 and 300 in SBR II. Once nitrate production established in the reactors, the increase of influent TAN concentration up to the original 600 mg TAN L(-1) did not limit NOB activity. This was due to the massive development of NOB clusters throughout the biofilm that were able to cope with faster formation of FNA. The results of the fluorescence in situ hybridization analysis preliminarily showed the stratification of bacteria in the biofilm.

  10. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  11. ANAEROBIC-AEROBIC TREATMENT OF TEXTILE WASTEWATER IN A SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    IBTISSAM KANBOUCHI

    2014-04-01

    Full Text Available In this work, the treatment of synthetic textile wastewater using sequential batch reactor (SBR was studied. This in order to predict the effectiveness of biological treatment on wastewater containing dyes while minimizing the aeration cost. Laboratory tests were performed on synthetic wastewater containing filtered urban wastewater (source of bacteria and dyes solutions. This promotes the biomass development in the mixture, capable of degrading organic matter properly. The results indicate that the increasing of anaerobic phase (16 hours allows removal of 77 % and 80 % of COD and colour, respectively. The sludge age did not affect markedly dyes biodegradability. However, the biodegradability is strongly influenced by the dyes concentration. Indeed, for the lowest dyes contents, improved biodegradability was observed, while it decreases when the dyes concentration increases.

  12. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    Science.gov (United States)

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  13. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    Science.gov (United States)

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  14. Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater.

    Science.gov (United States)

    Ahmadi, Ehsan; Gholami, Mitra; Farzadkia, Mahdi; Nabizadeh, Ramin; Azari, Ali

    2015-05-01

    Phthalic acid esters have received significant attention over the last few years since they are considered as priority pollutants. In this study, effects of different operation conditions including hydraulic retention time, phthalates loading rates and aeration rate on process performance of moving bed biofilm reactor (MBBR) for removing diethyl phthalate (DEP) and diallyl phthalate (DAP) from synthetic wastewater was evaluated. In optimum conditions, 94.96% and 93.85% removal efficiency were achieved for DEP and DAP, respectively. Moreover, MBBR achieved to remove more than 92% of COD for both phthalates. The results showed that DEP had a higher biodegradation rate compared to DAP, according to the selected parameters such as half saturation constant, overall reaction rate and maximum specific growth rate. The Grau second order model found as the best model for predicting MBBR performance due to its high correlation coefficients and more conformity of its kinetic coefficients to the results.

  15. Modelling of moving bed biofilm membrane reactors (MBBMR) for on-site greywater treatment.

    Science.gov (United States)

    Jabornig, Simon; Rauch, Wolfgang

    2015-01-01

    The study evaluates with a mechanistic model the pilot plant results of a combined moving bed biofilm process and membrane filtration (MBBMR) treating single household greywater. It mainly includes the simulation of reactor hydraulics, degradation of pollutants, development of biomass and settlement of sludge. Iterative calibration was made with steady-state results of a 10-month pilot test. The model shows good predictions of readily biodegradable chemical oxygen demand and ammonium removal, as well as biomass concentration on carriers and in suspension. Also, a sensitivity analysis was made which calculates the relative significance factor of each model coefficient and by this provides comparability with other studies. Simulation data and actually measured parameters show that the suggested process was rather independent of ambient temperatures and short-term load fluctuations. Obtained datasets and model structure could be of use for future designers, as well as sellers and users of this process for on-site greywater reclamation.

  16. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.

    Science.gov (United States)

    Li, Hui-qiang; Han, Hong-jun; Du, Mao-an; Wang, Wei

    2011-04-01

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN(-) and NH(4)(+)-N, respectively. NO(2)(-)-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN(-) and NH(4)(+)-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  17. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Q.; Han, H.J.; Du, M.A.; Wang, W. [Harbin Institute of Technology, Harbin (China)

    2011-04-15

    A laboratory-scale moving bed biofilm reactor (MBBR) with a volume of 4 L was used to study the biodegradation of coal gasification wastewater. Maximum removal efficiencies of 81%, 89%, 94% and 93% were obtained for COD, phenols, SCN{sup -} and NH{sub 4}{sup +}-N, respectively. NO{sub 2}{sup -}-N accumulation induced increase of effluent COD concentration when the hydraulic residence time (HRT) decreased. Phenols removal was not affected when the HRT decreased from 48 to 32 h. Effluent SCN{sup -} and NH{sub 4}{sup +}-N concentration increased with the decrease of the HRT, and decreased gradually when the HRT returned to 48 h. Batch experiments were carried out to study performance of the suspended and attached growth biomass in the MBBR.

  18. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    Science.gov (United States)

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  19. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate.

    Science.gov (United States)

    Villemur, Richard; Juteau, Pierre; Bougie, Veronique; Ménard, Julie; Déziel, Eric

    2015-04-01

    Two trains (A and B) of four-stage moving bed biofilm reactors (MBBRs) were developed for the degradation of thiocyanate (SCN(-)), cyanate (OCN(-)) and ammonia (NH3). A pre-denitrification configuration was established in the first-stage reactor of the B train using SCN(-) and OCN(-) as the sole carbon source. SCN(-), OCN(-) and NH3 were completely removed in both trains. The highest removal of total nitrogen equivalent (total-N) occurred at a loading rate of 5.6 mg-N L(-1) h(-1). The pre-denitrification configuration resulted in increased total-N removal in the B train (62.6%) compared to the A train (38.5%). Thiobacillus spp. were the predominant bacteria in all MBBRs. Bacteria related to bioprocesses involving anaerobic ammonium oxidation were present in the B train, suggesting that part of nitrogen removal occurs via this pathway. Our results showed that the pre-denitrification configuration increases the efficiency of removal of total-N compounds in the SCN(-)/OCN(-)-degrading MBBR process.

  20. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino, T., E-mail: teresa.alvarino@usc.es; Suarez, S., E-mail: Sonia.suarez@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es

    2014-08-15

    Highlights: • Removals of 16 PPCPs under aerobic and anaerobic conditions were quantified. • Operation conditions (HRT, v{sub up}, biomass activity and conformation) influenced removal. • Highest removals associated to aerobic biodegradation. • Sorption was only relevant for lipophilic compounds in the UASB reactor. - Abstract: The removal of 16 Pharmaceutical and Personal Care Products (PPCPs) were studied in a conventional activated sludge (CAS) unit and an upflow anaerobic sludge blanket (UASB) reactor. Special attention was paid to each biomass conformation and activity as well as to operational conditions. Biodegradation was the main PPCP removal mechanism, being higher removals achieved under aerobic conditions, except in the case of sulfamethoxazole and trimetrophim. Under anaerobic conditions, PPCP biodegradation was correlated with the methanogenic rate, while in the aerobic reactor a relationship with nitrification was found. Sorption onto sludge was influenced by biomass conformation, being only significant for musk fragrances in the UASB reactor, in which an increase of the upward velocity and hydraulic retention time improved this removal. Additionally, PPCP sorption increased with time in the UASB reactor, due to the granular biomass structure which suggests the existence of intra-molecular diffusion.

  1. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    Science.gov (United States)

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.

  2. Biodegradation of high concentration phenol containing heavy metal ions by functional biofilm in bioelectro-reactor

    Institute of Scientific and Technical Information of China (English)

    LI Xin-gang; WANG Tao; SUN Jin-sheng; HUANG Xin; KONG Xiao-song

    2006-01-01

    Functional microorganisms to high concentration phenol containing Cr6+ and Pb2+ were cultured and biofilm was formed on polypropylene packings in bioelectro-reactor. It was found that the biodegradation capability of such biofilm to phenol changed with the applied voltage. Under the optimal electric field conditions (voltage of 3.0 V, electric field of strength 17.7 V/m and current density of 1.98 A/m2), biodegradation efficiency of phenol aof concentration of 1200 mg/L increased 33% compared to the instance without applying electric field. However, voltage had inverse effect on biodegradation, as microorganisms were killed under strong electric field. Voltage had little effect on heavy ions elimination. Higher absorption rate of Cr6+ and Pb2+ was observed when changing pH from acidic to neutral. The experiment results indicated that, after treatment, 10 L phenol of 2400 mg/L was biodegraded completely within 55 h and concentrations of Cr6+ and Pb2+ dropped to less than 1 mg/L within 12 h and 6 h, from initial values of 50 mg/L and 30 mg/L, respectively.

  3. Evaluation of Anaerobic Fluidized Bed Reactor for treating Sugar mill effluent - a Case Study

    Directory of Open Access Journals (Sweden)

    R. Mathiyazhagan

    2014-07-01

    Full Text Available Anaerobic treatment processes are credible options for providing sustainable treatment to biodegradable waste streams. The Anaerobic Fluidized Bed Reactor (AFBR is an evolving process that requires waste specific design methodologies based on kinetics of the specific process. The research was precisely an experimental study on AFBR having23.56 litres of effective volume to evaluate its treatment performance and gas recovery in terms of Chemical Oxygen Demand (COD, Hydraulic Retention Time(HRTand Organic Loading Rate (OLR. The synthetic sugar influent COD was variedfrom 1500 to 4000 mg/lit. The OLR for the operating flow rates were ranged from 1.36 to 28.8 Kg COD/m3 .day for HRT varied from 3.2 to 24 hrs. The maximum COD removal efficiency is 90.06 at an operating OLR of 3.42 Kg COD/m3 .day. The maximum biogas yield was observed at 0.28 m 3 /kg COD removed.

  4. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  5. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors.

    Science.gov (United States)

    Held, Christof; Wellacher, Martin; Robra, Karl-Heinz; Gübitz, Georg M

    2002-01-01

    The mechanically separated liquid fraction of organic waste from households was used as a substrate for anaerobic fermentation. A two-step system consisting of a 2001 continuously stirred tank reactor (CSTR) and a 501 upflow anaerobic filter filled with glass foam pearls was constructed. The CSTR was operated for 5 months with a loading rate of 9.8 kg CSB m(-3) day(-1). At a resulting hydraulic retention time (HRT) of 24 days, 68% COD was degraded and a gas productivity of 4.0 m3 m(-3) day(-1) was achieved. Further digestion of the CSTR output was separately optimised in a 20 l-UFAF and based on these results a 50 l-UFAF was connected to the CSTR. At a resulting hydraulic retention time (HRT) of 6 days 38% COD was degraded and a gas productivity of 1.8 m3 m(-3) day(-1) was achieved with the 50 l-UFAF. Thus, the overall degradation efficiency of the two-phase system was 80%. The methane content (61%) of the biogas produced in the 50 l-UF

  6. Monitoring anaerobic sequential batch reactors via fractal analysis of pH time series.

    Science.gov (United States)

    Méndez-Acosta, H O; Hernandez-Martinez, E; Jáuregui-Jáuregui, J A; Alvarez-Ramirez, J; Puebla, H

    2013-08-01

    Efficient monitoring and control schemes are mandatory in the current operation of biological wastewater treatment plants because they must accomplish more demanding environmental policies. This fact is of particular interest in anaerobic digestion processes where the availability of accurate, inexpensive, and suitable sensors for the on-line monitoring of key process variables remains an open problem nowadays. In particular, this problem is more challenging when dealing with batch processes where the monitoring strategy has to be performed in finite time, which limits the application of current advanced monitoring schemes as those based in the proposal of nonlinear observers (i.e., software sensors). In this article, a fractal time series analysis of pH fluctuations in an anaerobic sequential batch reactor (AnSBR) used for the treatment of tequila vinasses is presented. Results indicated that conventional on-line pH measurements can be correlated with off-line determined key process variables, such as COD, VFA and biogas production via some fractality indexes.

  7. Biofilm membrane reactor for the aerobic treatment of waste water; Reactores biomembrana para la depuracion biologica aerobia de las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Tejero, I.; Eguia, E.; Vidart, T.; Osa, J.; Lorda, I. [Universidad de Cantabria (Spain); Jacome, A. [Universidad de La Coruna (Spain)

    1998-04-01

    Various biofilm membranes reactors using flat membrane (Eguia, 1991 and Vidart, 1992), hollow fiber membrane (jacome, 1995), and tubular membrane (Osa, 1995), for wastewater treatment, developed by the Biofilm Group of the University of Cantabria, Spain, are herein described. All reactors worked with synthetic wastewater based on glucose, and aeration based on pure oxygen, pressurized air and air at atmospheric pressure. In this reactors, a membrane is used as substratum and aeration device at the same time. Several authors have studied this process, and have developed different configurations: Timberlake et al. (1988), Omishi et al. (1982), Abdel-Warith et al. (1990) and Wilderer (1995). The performance of the flat membrane reactor is very high, reaching organic load removal up to 180 g COD/m``2, d, showing removal kinetics according to Monod and Blackman type. The reactor has been operated under organic loadings up to 600 g COD/m``2, d, but at organic loads over 200 g COD/m``2, d, better performance is not reached. When using pressurized air and pure o{sub 2}, COD removal up to 75 and 90% can be reached respectively. This reactor has also achieved nitrification rates of 47 g NH4+m``2, d, While operating with pure oxygen, nitrification rates were observed at 11 g NH4+m``2, d. (Author) 21 refs.

  8. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  9. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    Science.gov (United States)

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-10-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification.

  10. Anaerobic digestion of kitchen wastes in a single-phased anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; HE Zheng-guang; ZHANG Li-li; XU Jian-bo; SHI Hong-zhuan; CAI Wei-min

    2005-01-01

    The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8,respectively. The operation of the reactor with gas-phased absorb of CO2 was stable in spite of the low pH (2.6-3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7-4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO2 became acidified when the total COD alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gasphased absorb of CO2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.

  11. Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications

    NARCIS (Netherlands)

    Jeison, D.A.

    2007-01-01

    Biomass retention is a necessary feature for the successful application of anaerobic digestion for wastewater treatment. Biofilms and granule formation are the traditional way to achieve such retention, enabling reactor operation at high biomass concentrations, and therefore at high organic loading

  12. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    Science.gov (United States)

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%.

  13. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-08-01

    Sulphate-reducing bacteria (SRB) are important members of the sulphur cycle in wastewater treatment plants (WWTPs). In this study, we investigate the diversity and activity of SRB within the developing and established biofilm of two moving bed biofilm reactor (MBBR) systems treating municipal wastewater in New Zealand. The larger of the two WWTPs (Moa Point) generates high levels of sulphide relative to the smaller Karori plant. Clone libraries of the dissimilatory (bi)sulphite reductase (dsrAB) genes and quantitative real-time PCR targeting dsrA transcripts were used to compare SRB communities between the two WWTPs. Desulfobulbus (35-53 % of total SRB sequences) and genera belonging to the family Desulfobacteraceae (27-41 %) dominated the SRB fraction of the developing biofilm on deployed plastic carriers at both sites, whereas Desulfovibrio and Desulfomicrobium were exclusively found at Moa Point. In contrast, the established biofilms from resident MBBR carriers were largely dominated by Desulfomonile tiedjei-like organisms (58-100 % of SRB sequences). The relative transcript abundance of dsrA genes (signifying active SRBs) increased with biofilm weight yet remained low overall, even in the mature biofilm stage. Our results indicate that although SRB are both present and active in the microbial community at both MBBR study sites, differences in the availability of sulphate may be contributing to the observed differences in sulphide production at these two plants.

  14. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  15. Anammox moving bed biofilm reactor pilot at the 26th Ward wastewater treatment plants in Brooklyn, New York: start-up, biofilm population diversity and performance optimization.

    Science.gov (United States)

    Mehrdad, M; Park, H; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; Chandran, K

    2014-01-01

    New York City Environmental Protection in conjunction with City College of New York assessed the application of the anammox process in the reject water treatment using a moving bed biofilm reactor (MBBR) located at the 26th Ward wastewater treatment plant, in Brooklyn, NY. The single-stage nitritation/anammox MBBR was seeded with activated sludge and consequently was enriched with its own 'homegrown' anammox bacteria (AMX). Objectives of this study included collection of additional process kinetic and operating data and assessment of the effect of nitrogen loading rates on process performance. The initial target total inorganic nitrogen removal of 70% was limited by the low alkalinity concentration available in the influent reject water. Higher removals were achieved after supplementing the alkalinity by adding sodium hydroxide. Throughout startup and process optimization, quantitative real-time polymerase chain reaction (qPCR) analyses were used for monitoring the relevant species enriched in the biofilm and in the suspension. Maximum nitrogen removal rate was achieved by stimulating the growth of a thick biofilm on the carriers, and controlling the concentration of dissolved oxygen in the bulk flow and the nitrogen loading rates per surface area; all three appear to have contributed in suppressing nitrite-oxidizing bacteria activity while enriching AMX density within the biofilm.

  16. Start-up of a thermophilic upflow anaerobic sludge bed (UASB) reactor with mesophilic granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lier, J.B. van; Grolle, K.C.F.; Lettinga, G. (Wageningen Agricultural Univ. (Netherlands). Dept. of Environmental Technology); Stams, A.J.M. (Wageningen Agricultural Univ. (Netherlands). Dept. of Microbiology); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research State Univ. of New York, Albany, NY (United States). School of Public Health)

    1992-04-01

    Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64deg C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane-production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64deg C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36deg C and the other predominant at 46deg C and above. (orig.).

  17. Effects of the antimicrobial tylosin on the microbial community structure of an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Shimada, Toshio; Li, Xu; Zilles, Julie L; Morgenroth, Eberhard; Raskin, Lutgarde

    2011-02-01

    The effects of the antimicrobial tylosin on a methanogenic microbial community were studied in a glucose-fed laboratory-scale anaerobic sequencing batch reactor (ASBR) exposed to stepwise increases of tylosin (0, 1.67, and 167 mg/L). The microbial community structure was determined using quantitative fluorescence in situ hybridization (FISH) and phylogenetic analyses of bacterial 16S ribosomal RNA (rRNA) gene clone libraries of biomass samples. During the periods without tylosin addition and with an influent tylosin concentration of 1.67 mg/L, 16S rRNA gene sequences related to Syntrophobacter were detected and the relative abundance of Methanosaeta species was high. During the highest tylosin dose of 167 mg/L, 16S rRNA gene sequences related to Syntrophobacter species were not detected and the relative abundance of Methanosaeta decreased considerably. Throughout the experimental period, Propionibacteriaceae and high GC Gram-positive bacteria were present, based on 16S rRNA gene sequences and FISH analyses, respectively. The accumulation of propionate and subsequent reactor failure after long-term exposure to tylosin are attributed to the direct inhibition of propionate-oxidizing syntrophic bacteria closely related to Syntrophobacter and the indirect inhibition of Methanosaeta by high propionate concentrations and low pH.

  18. Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure.

    Science.gov (United States)

    Panichnumsin, P; Ahring, B; Nopharatana, A; Chaiprasert, P

    2012-01-01

    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.

  19. Biohydrogen production from cassava wastewater in an anaerobic fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    N. C. S. Amorim

    2014-09-01

    Full Text Available The effect of hydraulic retention time (HRT and organic loading rate (OLR on biological hydrogen production was assessed using an anaerobic fluidized bed reactor fed with cassava wastewater. The HRT of this reactor ranged from 8 to 1 h (28 to 161 kg COD/m³-d. The inoculum was obtained from a facultative pond sludge derived from swine wastewater treatment. The effluent pH was approximately 5.00, while the influent chemical oxygen demand (COD measured 4000 mg COD/L. The hydrogen yield production increased from 0.13 to 1.91 mol H2/mol glucose as the HRT decreased from 8 to 2 h. The hydrogen production rate significantly increased from 0.20 to 2.04 L/h/L when the HRT decreased from 8 to 1 h. The main soluble metabolites were ethanol (1.87-100%, acetic acid (0.00-84.80%, butyric acid (0.00-66.78% and propionic acid (0.00-50.14%. Overall, we conclude that the best hydrogen yield production was obtained at an HRT of 2 h.

  20. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo;

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity on th...

  1. Efficiency of a Bed Biofilm Reactor Using a LECA Carrier to Treat Hospital Wastewater

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-03-01

    Full Text Available Hospital wastewater is of great environmental concern because it contains a variety of hazardous microbial and chemical substances. This study aims to investigate the efficiency of a moving bed biofilm reactor (MBBR with a light expanded clay aggregate (LECA carrier for treating hospital wastewater. This pilot study used a Plexiglas reactor that had a volume of 100 L, a continuous up-flow hydraulic regime, and a LECA carrier to test removal of chemical oxygen demand (COD from wastewater in a public hospital. To assess MBBR efficiency, the study used retention times of 8, 12, and 24 hours, filling percentages of 30% and 50%, and mixed liquor suspended solids (MLSSs of 1000, 3000, and 5000 mg/L. The results indicated that using a single LECA carrier in an MBBR system was not sufficient to remove organic materials from hospital wastewater, because the carrier could not be completely suspended. After some modifications, consisting mainly of returning activated sludge, the system was 83% efficient at removing COD using a LECA carrier at a retention time of 24 hours, with 50% filling, and 5000 mg/L of MLSS.

  2. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  3. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater.

  4. Adsorption effect on the dynamic response of a biochemical reaction in a biofilm reactor for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneda, S.; Inoue, Y.; Auresenia, J.; Hirata, A. [Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2003-09-01

    The dynamic behavior of a completely mixed, three-phase, fluidized bed biofilm reactor treating simulated domestic wastewater was studied with step changes in inlet concentration. It was found that the response curves showed second order characteristics, i.e., as the inlet concentration was increased, the outlet concentration also increased, reached a peak value and then decreased until it leveled to a new steady-state value corresponding to the new inlet concentration level. Nonlinear regression analysis was performed using Monod-type rate equations with and without an adsorption term. As a result, the theoretical curve of the kinetic model that incorporates the adsorption term has best fit to the actual response in most cases. Thus, it was concluded that the adsorption of a substrate onto the biofilm and carrier particles has a significant effect on the dynamic response in biofilm processes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors

    KAUST Repository

    Gonzalez-Gil, Graciela

    2015-09-22

    Anaerobic granular sludge is composed of multispecies microbial aggregates embedded in a matrix of extracellular polymeric substances (EPS). Here we characterized the chemical fingerprint of the polysaccharide fraction of EPS in anaerobic granules obtained from full-scale reactors treating different types of wastewater. Nuclear magnetic resonance (NMR) signals of the polysaccharide region from the granules were very complex, likely as a result of the diverse microbial population in the granules. Using nonmetric multidimensional scaling (NMDS), the 1H NMR signals of reference polysaccharides (gellan, xanthan, alginate) and those of the anaerobic granules revealed that there were similarities between the polysaccharides extracted from granules and the reference polysaccharide alginate. Further analysis of the exopolysaccharides from anaerobic granules, and reference polysaccharides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that exopolysaccharides from two of the anaerobic granular sludges studied exhibited spectra similar to that of alginate. The presence of sequences related to the synthesis of alginate was confirmed in the metagenomes of the granules. Collectively these results suggest that alginate-like exopolysaccharides are constituents of the EPS matrix in anaerobic granular sludge treating different industrial wastewater. This finding expands the engineered environments where alginate has been found as EPS constituent of microbial aggregates.

  6. Investigation of Anaerobic Fluidized Bed Reactor Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR System for Treatment of Currant Wastewater

    Directory of Open Access Journals (Sweden)

    Jalil Jafari

    2013-08-01

    Full Text Available Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR-Aerobic Moving Bed Bio Reactor (MBBR in series arrangement to treat Currant wastewater.Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2-2.3 mm, particle density of 1250 kg/m3.The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3.Results: When system operated at 35 ºC, chemical oxygen demand (COD removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively.Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewate

  7. Does reactor staging influence microbial structure and functions in biofilm systems? The case of pre-denitrifying MBBRs

    OpenAIRE

    Polesel, Fabio; Torresi, Elena; Jensen, Marlene Mark; Fowler, Jane; Escola Casas, Monica; Barth F. Smets; Christensson, Magnus; Bester, Kai; Plósz, Benedek G.

    2016-01-01

    To date, a number of treatment technologies and configurations have been tested to improve the elimination of conventional and trace (e.g., pharmaceutical residues) pollutants via biological wastewater treatment. Bioreactor staging and the moving bed biofilm reactor (MBBR) technology have emerged as promising bioengineered solutions (Plósz et al., 2010) for this purpose. In this study, we combined the two solutions and investigated microbial functions (heterotrophic denitrification, pharmaceu...

  8. Dynamical Analysis of a Continuous Stirred-Tank Reactor with the Formation of Biofilms for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Karen López Buriticá

    2015-01-01

    Full Text Available This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR when it is utilized for wastewater treatment. The growth rate of the microorganisms is modeled using two different kinetics, Monod and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through a stability analysis, and the bifurcations found are characterized.

  9. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Dabrowski, Slawomir; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion of cattle manure and a mixture of cattle manure with glycerol trioleate (GTO) was studied in lab-scale, continuously stirred tank reactors (CSTR) operated at 37degreesC. The reactor. codigesting manure and lipids exhibited a significantly higher specific methane yield...... and a higher removal of VS than the reactor treating manure. Microbial population analysis done by cultivation - most probable number (MPN) test and specific methanogenic activity (SMA) measurement, revealed higher MPN and increased SMA of methanogenic populations of biomass from the reactor codigesting manure...... and lipids. Spatial microbial distribution and activity was studied in digested materials fractionated into size of particles > 200 mum, 50-200 mum and 0.45-50 mum. With manure, the main pool of methanogenic activity from propionate, butyrate and hydrogen was associated with the particles > 200 mum, while...

  10. Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge: microbial community structure dynamics and reactor performance.

    Science.gov (United States)

    Razaviarani, Vahid; Buchanan, Ian D

    2015-04-01

    Two 10 L completely mixed reactors operating at 37°C and 20 days SRT were used to evaluate the relationships between reactor performance and microbial community dynamics during anaerobic co-digestion of biodiesel waste glycerin (BWG) with municipal wastewater sludge (MWS). The addition of up to 1.35% (v/v) BWG to reactor feeds yielded increased VS and COD removal together with enhanced the biogas production and methane yield. This represented 50% of the MWS feed COD. Pyrosequencing analysis showed Methanosaeta (acetoclastic) and Methanomicrobium (hydrogenotrophic) to be the methanogenic genera present in greatest diversity during stable reactor operation. Methanosaeta sequences predominated at the lowest BWG loading while those of Methanomicrobium were present in greatest abundance at the higher BWG loadings. Genus Candidatus cloacamonas was present in the greatest number of bacterial sequences at all loadings. Alkalinity, pH, biogas production and methane yield declined and VFA concentrations (especially propionate) increased during the highest BWG loading.

  11. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions.

    Science.gov (United States)

    Zhou, Chen; Ontiveros-Valencia, Aura; Wang, Zhaocheng; Maldonado, Juan; Zhao, He-Ping; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2016-03-01

    Recovering palladium (Pd) from waste streams opens up the possibility of augmenting the supply of this important catalyst. We evaluated Pd reduction and recovery as a novel application of a H2-based membrane biofilm reactor (MBfR). At steady states, over 99% of the input soluble Pd(II) was reduced through concomitant enzymatic and autocatalytic processes at acidic or near neutral pHs. Nanoparticulate Pd(0), at an average crystallite size of 10 nm, was recovered with minimal leaching and heterogeneously associated with microbial cells and extracellular polymeric substances in the biofilm. The dominant phylotypes potentially responsible for Pd(II) reduction at circumneutral pH were denitrifying β-proteobacteria mainly consisting of the family Rhodocyclaceae. Though greatly shifted by acidic pH, the biofilm microbial community largely bounced back when the pH was returned to 7 within 2 weeks. These discoveries infer that the biofilm was capable of rapid adaptive evolution to stressed environmental change, and facilitated Pd recovery in versatile ways. This study demonstrates the promise of effective microbially driven Pd recovery in a single MBfR system that could be applied for the treatment of the waste streams, and it documents the role of biofilms in this reduction and recovery process.

  12. Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-04-01

    The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L(-1) and 210 mg L(-1) in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L(-1). The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day(-1) and 48-50%, respectively) as the NB concentration was increased from 30 to 210 mg L(-1). In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L(-1) NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.

  13. Electrical conductivity as a state indicator for the start-up period of anaerobic fixed-bed reactors.

    Science.gov (United States)

    Robles, A; Latrille, E; Ribes, J; Bernet, N; Steyer, J P

    2016-01-01

    The aim of this work was to analyse the applicability of electrical conductivity sensors for on-line monitoring the start-up period of an anaerobic fixed-bed reactor. The evolution of bicarbonate concentration and methane production rate was analysed. Strong linear relationships between electrical conductivity and both bicarbonate concentration and methane production rate were observed. On-line estimations of the studied parameters were carried out in a new start-up period by applying simple linear regression models, which resulted in a good concordance between both observed and predicted values. Electrical conductivity sensors were therefore identified as an interesting method for monitoring the start-up period of anaerobic fixed-bed reactors due to its reliability, robustness, easy operation, low cost, and minimum maintenance compared with the currently used sensors.

  14. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7g-N/L during 30days, resulting in an average recovery rate of 80g-N/m2/d. Meanwhile, a maximum power density of 0.71±0.5W/m2 was generated at 2.85A/m2. Both current driven NH4+ migration...

  15. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    Science.gov (United States)

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  16. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  17. Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors.

    Science.gov (United States)

    Lima de Oliveira, Lorena; Silveira Duarte, Iolanda Cristina; Sakamoto, Isabel Kimiko; Amâncio Varesche, Maria Bernadete

    2009-02-01

    Two horizontal-flow anaerobic immobilized biomass reactors (HAIB) were used to study the degradation of the LAS surfactant: one filled with charcoal (HAIB1) and the other with a mixed bed of expanded clay and polyurethane foam (HAIB2). The reactors were fed with synthetic substrate supplemented with 14 mg l(-1)of LAS, kept at 30+/-2 degrees C and operated with a hydraulic retention time (HRT) of 12h. The surfactant was quantified by HPLC. Spatial variation analyses were done to quantify organic matter and LAS consumption along the reactor length. The presence of the surfactant in the load did not affect the removal of organic matter (COD), which was close to 90% in both reactors for an influent COD of 550 mg l(-1). The results of a mass balance indicated that 28% of all LAS added to HAIB1 was removed by degradation. HAIB2 presented 27% degradation. Molecular biology techniques revealed microorganisms belonging the uncultured Holophaga sp., uncultured delta Proteobacterium, uncultured Verrucomicrobium sp., Bacteroides sp. and uncultured gamma Proteobacterium sp. The reactor with biomass immobilized on charcoal presented lower adsorption and a higher kinetic degradation coefficient. So, it was the most suitable support for LAS anaerobic treatment.

  18. Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor

    Science.gov (United States)

    Li, Zhi-Ling; Nan, Jun; Huang, Cong; Liang, Bin; Liu, Wen-Zong; Cheng, Hao-Yi; Zhang, Chunfang; Zhang, Dongdong; Kong, Deyong; Kanamaru, Kyoko; Kobayashi, Tetsuo; Wang, Ai-Jie; Katayama, Arata

    2016-01-01

    Functional interplays of microbial activity, genetic diversity and contaminant transformation are poorly understood in reactors for mineralizing halogenated aromatics anaerobically. Here, we investigated abundance and distribution of potential microbes and functional genes associated with pentachlorophenol (PCP) anaerobic mineralization in a continuous-flow cylindrical reactor (15 cm in length). PCP dechlorination and the metabolite (phenol) were observed at segments 0–8 cm from inlet, where key microbes, including potential reductive dechlorinators (Dehalobacter, Sulfurospirillum, Desulfitobacterium and Desulfovibrio spp.) and phenol degraders (Cryptanaerobacter and Syntrophus spp.), as well as putative functional genes, including putative chlorophenol reductive dehalogenase (cprA) and benzoyl-CoA reductase (bamB), were highly enriched simultaneously. Five types of putative cprAs, three types of putative bamBs and seven types of putative nitrogenase reductase (nifHs) were determined, with their copy numbers decreased gradually from inlet to outlet. Distribution of chemicals, bacteria and putative genes confirmed PCP dechlorination and phenol degradation accomplished in segments 0–5 cm and 0–8 cm, respectively, contributing to a high PCP mineralization rate of 3.86 μM d‑1. Through long-term incubation, dechlorination, phenol degradation and nitrogen fixation bacteria coexisted and functioned simultaneously near inlet (0–8 cm), verified the feasibility of anaerobic mineralization of halogenated aromatics in the compact reactor containing multiple functional microbes.

  19. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.

    Science.gov (United States)

    Kim, S-H; Han, S-K; Shin, H-S

    2005-01-01

    This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.

  20. [Pilot-scale study on treatment of municipal sewage by moving-bed biofilm reactor with the hydrophobically modified polyurethane cubes as biofilm carriers].

    Science.gov (United States)

    Wang, Yu-Xiao; Kong, Xiu-Qin; Feng, Quan; Lu, Hai-Tao; Wang, De-Yuan; Tang, Li-Ming; Xing, Xin-Hui

    2012-10-01

    The carrier is the key influencers in moving bed biofilm reactor( MBBR), in this paper, a pilot scale apparatus was set up for treating municipal wastewater using modified cubic polyurethane carriers. For MBBR, the capacity of 3-3.5 t x d(-1), hydraulic residence time of 7-8 h, under the condition of continuous feed water (COD:140-280 mg x L(-1), NH4+ -N:30-50 mg x L(-1), TN: 45-65 mg x L(-1), TP:2.5-4.0 mg x L(-1)), the speed of biofilm formation and removal effects of COD, nitrogen and phosphorus were studied. After 140 days, the results showed that the formation of biofilm on the carrier was very quickly under 24-28 degrees C, and obtained stable treatment effect about 6 days. The COD, NH4+ -N, TN, TP average removal rates were 70%, 97%, 70%, 39%, respectively. As the temperature gradually decreased to about 12 degrees C, a high NH4+ -N removal rate (97%) could still be maintained, which indicating that the modified carrier can be achieved a high nitrification rate at low temperature.

  1. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Cerrillo, Míriam; Morey, Lluís; Viñas, Marc; Bonmatí, August

    2016-12-01

    Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.

  2. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  3. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  4. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste.

    Science.gov (United States)

    Tawfik, A; Salem, A; El-Qelish, M

    2011-09-01

    A two-step anaerobic baffled reactor (ABR-1 and ABR-2) for H2 production from municipal food waste (MFW) was investigated at a temperature of 26 °C. In ABR-1, the average yield of H2 at an HRT of 26 h and OLR of 58 kg COD/m3 d was 250 ml H2/g VS removed. As unexpected; the H2 production in the ABR-2 was further increased up to 370 ml H2/gVS removed at a HRT of 26 h and OLR of 35 kg COD/m3 d. The total H2 yield in the two-step process was estimated to be 4.9 mol H2/mol hexose. The major part of H2 production in the ABR-1 was due to the conversion of COD(particulate) (36%). In the ABR-2 the H2 yield was mainly due to the conversion of COD in the soluble form (76%). Based on these results MFW could be ideal substrate for H2 production in a two-step ABR processes.

  5. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors.

    Science.gov (United States)

    Lee, Chaeyoung; Lee, Sewook; Han, Sun-Kee; Hwang, Sunjin

    2014-01-01

    This study was performed to investigate the influence of operational pH on dark H(2) fermentation of food waste by employing anaerobic batch reactors. The highest maximum H(2) yield was 1.63 mol H(2)/mol hexoseadded at operational pH 5.3, whereas the lowest maximum H(2) yield was 0.88 mol H(2)/mol hexoseadded at operational pH 7.0. With decreasing operational pH values, the n-butyrate concentration tended to increase and the acetate concentration tended to decrease. The highest hydrogen conversion efficiency of 11.3% was obtained at operational pH 5.3, which was higher than that (8.3%) reported by a previous study (Kim et al. (2011) 'Effect of initial pH independent of operational pH on hydrogen fermentation of food waste', Bioresource Technology 102 (18), 8646-8652). The new result indicates that the dark fermentation of food waste was stable and efficient in this study. Fluorescence in situ hybridization (FISH) analysis showed that Clostridium species Cluster I accounted for 84.7 and 13.3% of total bacteria at operational pH 5.3 and pH 7.0, respectively, after 48 h operation.

  6. Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor.

    Science.gov (United States)

    Jaroszynski, L W; Cicek, N; Sparling, R; Oleszkiewicz, J A

    2012-06-01

    Using a bench scale moving bed bioreactor (MBBR), the effect of free ammonia (FA, NH(3), the un-ionized form of ammonium NH(4)(+)) concentration on anoxic ammonium oxidation (anammox) was evaluated based on the volumetric nitrogen removal rate (NRR). Although, a detailed microbial analysis was not conducted, the major NRR observed was assumed to be by anammox, based on the nitrogen conversion ratios of nitrite to ammonium and nitrate to ammonium. Since the concentration of free ammonia as a proportion of the total ammonia concentration is pH-dependent, the impact of changing the operating pH from 6.9 to 8.2, was investigated under constant nitrogen loading conditions during continuous reactor operation. Furthermore, the effect of sudden nitrogen load changes was investigated under constant pH conditions. Batch tests were conducted to determine the immediate response of the anammox consortium to shifts in pH and FA concentrations. It was found that FA was inhibiting NRR at concentrations exceeding 2 mg N L(-1). In the pH range 7-8, the decrease in anammox activity was independent of pH and related only to the concentration of FA. Nitrite concentrations of up to 120 mg N L(-1) did not negatively affect NRR for up to 3.5 h. It was concluded that a stable NRR in a moving bed biofilm reactor depended on maintaining FA concentrations below 2 mg N L(-1) when the pH was maintained between 7 and 8.

  7. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  8. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    Science.gov (United States)

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  9. Interactive effect of trivalent iron on activated sludge digestion and biofilm structure in attached growth reactor of waste tire rubber.

    Science.gov (United States)

    Sharafat, Iqra; Saeed, Dania Khalid; Yasmin, Sumera; Imran, Asma; Zafar, Zargona; Hameed, Abdul; Ali, Naeem

    2017-03-16

    Waste tire rubber (WTR) has been introduced as an alternative, novel media for biofilm development in several experimental systems including attached growth bioreactors. In this context, four laboratory-scale static batch bioreactors containing WTR as a support material for biofilm development were run under anoxic condition for 90 days using waste activated sludge as an inoculum under the influence of different concentrations (2.5, 6.5, 8.5 mg/l) of trivalent ferric iron (Fe(3+)). The data revealed that activated sludge with a Fe(3+) concentration of 8.5 mg/l supported the maximum bacterial biomass [4.73E + 10 CFU/ml cm(2)]; besides, it removed 38% more Chemical oxygen demand compared to Fe(3+) free condition from the reactor. Biochemical testing and 16S rDNA phylogenetic analysis of WTR-derived biofilm communities further suggested the role of varying concentrations of Fe(3+) on the density and diversity of members of Enterobacteria(ceae), ammonium (AOB) and nitrite oxidizing bacteria. Furthermore, Fluorescent in situ hybridization with phylogenetic oligonucleotide probes and confocal laser scanning microscopy of WTR biofilms indicated a significant increase in density of eubacteria (3.00E + 01 to.05E + 02 cells/cm(2)) and beta proteobacteria (8.10E + 01 to 1.42E + 02 cells/cm(2)), respectively, with an increase in Fe(3+) concentration in the reactors, whereas, the cell density of gamma proteobacteria in biofilms decreased.

  10. Demonstration study of biofilm reactor based rapid biochemical oxygen demand determination of surface water

    Directory of Open Access Journals (Sweden)

    Changyu Liu

    2016-05-01

    Full Text Available Application investigations of rapid biochemical oxygen demand (BOD online analyzer for surface water in Wuxi, China were carried out since 2013. The analyzer adopted a novel working principle, that is, the oxygen concentration of the sample to be tested was regarded as a reference, and the oxygen consumption by the biofilm reactor (BFR was calculated according to the difference between the reference and sample effluent from BFR. The BFR was fabricated via a cultivation process using naturally occurring microbial seeds from in site surface water. This analytical principle was first presented and clearly clarified, and the impact of microbial endogenous respiration to the measured values was also proposed and analyzed. The improved analyzers were equipped in three application sites with significant differences in BOD concentration, for the purpose of evaluating the feasibility and applicability of the proposed method. This study revealed that the online analyzer could continually operate over 30 days without human intervention and additional chemical reagent consumption. The obtained rapid BOD trend line showed that this analyzer could track the fluctuation of the biodegradable organic compound level timely and accurately. The innovative analytical method, as well as the outstanding adaptation and well accuracy rating, provided the highlights for wide applications in the future.

  11. Impact of worm predation on pseudo-steady-state of the circulating fluidized bed biofilm reactor.

    Science.gov (United States)

    Li, Ming; Nakhla, George; Zhu, Jesse

    2013-01-01

    This paper studies integrated simultaneous carbon and nitrogen removal as well as worm predation, in a circulating fluidized bed biofilm reactor (CFBBR) operated with an anoxic-aerobic bioparticle recirculation. A lab-scale CFBBR with a 8.5-liter reaction zone comprising 2L anoxic and 6.5L aerobic compartments was designed to evaluate the aquatic Oligochaete worm effect. Long-term (200 days) performance showed that stable and high-rate chemical oxygen demand (COD) with sodium acetate as the carbon source and total nitrogen (NH(4)Cl as nitrogen source) conversions were achieved simultaneously, with low sludge production of 0.082 g VSS (volatile suspended solids) g COD(-1) at pseudo-steady-state. Worm predation, which causes considerable sludge reduction of the bioparticle process, was studied. The results proved that the worm predation has a significant impact on the pseudo-steady-state performance of the CFBBR, decreasing biomass yield, decreasing oxygen concentration and increasing expanded bed height.

  12. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater.

    Science.gov (United States)

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Psoma, Aikaterini K; Thomaidis, Nikolaos S; Andersen, Henrik R

    2017-02-05

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers and a settling tank. The average removal of target compounds ranged between 41% (4-methyl-1H-benzotriazole; 4TTR) and 88% (2-hydroxybenzothiazole; OHBTH). Except for 4TTR, degradation mainly occurred in the first bioreactor. Calculation of biodegradation constants in batch experiments and application of a model for describing micropollutants removal in the examined system showed that AS is mainly involved in biodegradation of OHBTH, 1H-benzotriazole (BTR) and xylytriazole (XTR), carriers contribute significantly on 4TTR biodegradation, while both types of biomass participate on elimination of 5-chlorobenzotriazole (CBTR) and 5-methyl-1H-benzotriazole (5TTR). Comparison of the HMBBR system with MBBR or AS systems from literature showed that the HMBBR system was more efficient for the biodegradation of the investigated chemicals. Biotransformation products of target compounds were identified using ultra high-performance liquid chromatography, coupled with a quadrupole-time-of-flight high-resolution mass spectrometer (UHPLC-QToF-MS). Twenty two biotransformation products were tentatively identified, while retention time denoted the formation of more polar transformation products than the parent compounds.

  13. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    Science.gov (United States)

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.

  14. Field application of a biofilm reactor based BOD prototype in Taihu Lake, China.

    Science.gov (United States)

    Liu, Changyu; Dong, Shaojun

    2013-05-15

    A tubular biofilm reactor (BFR) based online biochemical oxygen demand prototype was applied in Taihu Lake, China. Municipal tap water was used instead of conventional phosphate buffer as blank solution to avoid phosphate pollution. The background organic compounds in municipal tap water were taken into account and they were validated to result in negative deviation to accuracy. The microbial endogenous respiration was experimentally validated to be sensitive to salt ionic strength, and municipal tap water as blank was thought to generate positive deviation to accuracy. The system was continuously operated over 2 months without man intervention, and the automated monitoring data agreed well with that of the conventional BOD5 methods. The BFR resisted the frequent measurements with samples of high turbidity, and the BOD monitoring data indicated the index of biodegradable organic compounds of Taihu Lake was accorded with the second class described in the environmental quality standard of surface water. Analyzed together with permanganate index on site, Taihu Lake was revealed to be of good capacity of self cleaning. Importantly, field application study of new BOD method made it more objective in evaluating its applicability, and could provide practical information and useful improvements in the process of commercializing.

  15. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor.

    Science.gov (United States)

    Zhang, Yanhao; Zhong, Fohua; Xia, Siqing; Wang, Xuejiang; Li, Jixiang

    2009-10-15

    A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m(3)d (1.50 g N/m(2)d) at an influent NO(3)(-)-N concentration of 10mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m(2)d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.

  16. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    Science.gov (United States)

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies.

  17. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater.

    Science.gov (United States)

    El-Kamah, Hala; Mahmoud, Mohamed; Tawfik, Ahmed

    2011-07-01

    In this study, a promising system consisting of up-flow anaerobic sludge blanket (UASB) reactor followed by down-flow hanging sponge (DHS) reactor was investigated for onion dehydration wastewater treatment. Laboratory experiments were conducted at two different phases, i.e., phase (1) at overall hydraulic retention time (HRT) of 11h (UASB reactor: 6h and DHS reactor: 5h) and phase (2) at overall HRT of 9.4h (UASB reactor: 5.2h and DHS reactor: 4.2h). Long-term operation results of the proposed system showed that its overall TCOD, TBOD, TSS, TKN and NH(4)-N removal efficiencies were 92 ± 5, 95 ± 2, 95 ± 2, 72 ± 6 and 99 ± 1.3%, respectively (phase 1). Corresponding values for the 2nd phase were 85.4 ± 5, 86 ± 3, 87 ± 6, 65 ± 8 and 95 ± 2.8%. Based on the available results, the proposed system could be more viable option for treatment of wastewater generated from onion dehydration industry in regions with tropical or sub-tropical climates and with stringent discharge standards.

  18. Kinetics, mass transfer and hydrodynamics in a packed bed aerobic reactor fed with anaerobically treated domestic sewage.

    Science.gov (United States)

    Fazolo, A; Pasotto, M B; Foresti, E; Zaiat, M

    2006-10-01

    This study presents an assessment of the kinetic, mass transfer and hydrodynamic parameters of a pilot-scale fixed bed reactor containing immobilized biomass in polyurethane matrices and fed with the effluent of a horizontal-flow fixed bed anaerobic reactor, which was used to treat domestic sewage. It was found that the liquid-solid and intra-particle mass transfer resistances significantly affected the overall oxygen consumption rate and that mechanical agitation could minimize such resistances. The volumetric oxygen transfer coefficient (kLa) values for superficial air velocities between 8.4 cm min(-1) and 57.0 cm min(-1) varied from 20.8 h(-1) to 58.8 h(-1) for tap water, and 16.8 h(-1) to 53.0 h(-1) for the anaerobic pre-treated effluent. The intrinsic oxygen uptake rate was estimated to be 19.9 mgO2 gVSS(-1) h(-1). A first-order kinetic model with residual concentration was considered to adequately represent the COD removal rate, whereas nitrogen conversion was considered to be well represented by a model of pseudo-first-order reaction in series. It was also found that the ammonium conversion to nitrite was the limiting step of the overall nitrogen conversion rate. The hydrodynamic behavior of the reactor was represented by three to four completely mixed reactors in series.

  19. Removal of benzene and toluene in horizontal-flow anaerobic immobilized biomass reactor (HAIBR) in the presence of sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cattony, E.B.M.; Chinalia, F.A.; Adorno, M.A.T.; Moraes, E.M.; Zaiat, M.; Foresti, E.; Varesche, M.B.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Biological Processes Laboratory

    2004-07-01

    The removal of toluene and benzene from organic waste by microorganisms was tested in two bioreactors. Two horizontal-flow anaerobic immobilized biomass (HAIB) reactors were fed with Zinder medium to stimulate anaerobic sulfate-reducing bacteria (SRB). The chemical oxygen demand (COD) and sulfate analysis were assessed and acetic acid, toluene and benzene were analyzed in gas chromatography. Microbial communities were characterized by fluorescence, optical electron microscopy and molecular biology analysis. The HAIB reactors achieved steady state within 2 weeks following hydrocarbon compound amendments. Depletion of sulfate was achieved after this time, along with removal of toluene and benzene. The inflow COD for both reactors was more than 95 per cent. The HAIB reactor operated under sulfidogenic conditions. It was concluded that the use of benzene and toluene is an efficient and cost-effective method for treating contaminated water, particularly for tropical developing countries. The study emphasized the importance of SRB populations in bioreactors to degrade organic aromatics under oxygen reduced conditions. 10 refs., 4 figs.

  20. Reactor performance of a 750 m(3) anaerobic digestion plant: varied substrate input conditions impacting methanogenic community.

    Science.gov (United States)

    Wagner, Andreas Otto; Malin, Cornelia; Lins, Philipp; Gstraunthaler, Gudrun; Illmer, Paul

    2014-10-01

    A 750 m(3) anaerobic digester was studied over a half year period including a shift from good reactor performance to a reduced one. Various abiotic parameters like volatile fatty acids (VFA) (formic-, acetic-, propionic-, (iso-)butyric-, (iso-)valeric-, lactic acid), total C, total N, NH4 -N, and total proteins, as well as the organic matter content and dry mass were determined. In addition several process parameters such as temperature, pH, retention time and input of substrate and the concentrations of CH4, H2, CO2 and H2S within the reactor were monitored continuously. The present study aimed at the investigation of the abundance of acetogens and total cell numbers and the microbial methanogenic community as derived from PCR-dHPLC analysis in order to put it into context with the determined abiotic parameters. An influence of substrate quantity on the efficiency of the anaerobic digestion process was found as well as a shift from a hydrogenotrophic in times of good reactor performance towards an acetoclastic dominated methanogenic community in times of reduced reactor performance. After the change in substrate conditions it took the methano-archaeal community about 5-6 weeks to be affected but then changes occurred quickly.

  1. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids.

  2. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor.

    Science.gov (United States)

    Winkler, Mari K H; Yang, Jingjing; Kleerebezem, Robbert; Plaza, Elzbieta; Trela, Jozef; Hultman, Bengt; van Loosdrecht, Mark C M

    2012-06-01

    The effects of volatile fatty acids (VFAs) on nitrogen removal and microbial community structure in nitritation/anammox process were compared within a granular sludge reactor and a moving bed biofilm reactor. Nitrate productions in both systems were lower by 40-68% in comparison with expected nitrate production. Expected sludge production on VFAs was estimated to be 67-77% higher if heterotrophs were the main acetate degraders suggesting that Anammox bacteria used its organotrophic capability and successfully competed with general heterotrophs for organic carbon, which led to a reduced sludge production. FISH measurements showed a population consisting of mainly Anammox and AOB in both reactors and oxygen uptake rate (OUR) tests also confirmed that flocculent biomass consisted of a minor proportion of heterotrophs with a large proportion of AOBs. The dominant Anammox bacterium was Candidatus "Brocadia fulgida" with a minor fraction of Candidatus "Anammoxoglobus propionicus", both known to be capable of oxidizing VFAs.

  3. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).

    Science.gov (United States)

    Delnavaz, M; Ayati, B; Ganjidoust, H

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  4. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Delnavaz, M. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ayati, B., E-mail: ayati_bi@modares.ac.ir [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of); Ganjidoust, H. [Tarbiat Modares University, Civil Engineering Department, Environmental Engineering Division, Tehran (Iran, Islamic Republic of)

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds.

  5. Bioaugmentation of an acetate-oxidising anaerobic consortium in up-flow sludge blanket reactor subjected to high ammonia loads

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    was tested. The co-cultivation in fed-batch of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis) with the SAO culture was also investigated. Results obtained clearly demonstrated that bioaugmentation of SAO culture in a UASB reactor was not possible most probably due to the slow....... in association with Methanoculleus spp. strain MAB1), is an acetate oxidising methanogenic consortium that can produce methane (CH4) at high ammonia levels. In the current study the bioaugmentation of the SAO culture in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads...... growth of the culture. The incubation period (duration of lag+exponential phase) of SAO culture was reduced more than 30% when it was cocultivated with Methanoculleus bourgensis, in fed-batch reactors. Therefore, the bioaugmentation of the SAO culture along with Methanoculleus bourgensis in a UASB...

  6. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    Directory of Open Access Journals (Sweden)

    L. H. P. Garbossa

    2005-12-01

    Full Text Available The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to its characteristics and the fixed polyurethane foam bed arrangement in concentric chambers. Partial denitrification of the liquid also took place in the RAAIB. The reactor achieved an organic matter removal efficiency of 84%, expressed as chemical oxygen demand (COD, and a total Kjeldahl nitrogen (TKN removal efficiency of 96%. Average COD, nitrite and nitrate values for the final effluent were 54 mg.L-1, 0.3 mg.L-1 and 22.1 mg.L-1, respectively.

  7. Effect of Mixing Driven by Siphon Flow: Parallel Experiments Using the Anaerobic Reactors with Different Mixing Modes

    Directory of Open Access Journals (Sweden)

    Kai-Qin Xu

    2013-08-01

    Full Text Available The effect of mixing by siphon flow on anaerobic digestion, sludge distribution and microbial community were examined in parallel experiments using a siphon-mixed reactor (SMR, an unmixed reactor (UMR and a continuously mixed reactor (CMR. The SMR performed well without the accumulation of fatty acids under COD loading rates varying from 3 to 18 kg/m3/day, while the UMR was totally acidified when the loading rate increased to 10 kg/m3/day. The methane yield of the SMR was at least 10% higher than that of the UMR, and comparable to that of the CMR. Furthermore, the SMR was found to markedly improve the dispersion of solids and reduce deposit formation compared to the UMR. Besides, during stable operation, the fatty acids level in the effluent of the SMR and UMR was lower than that in the CMR, and the archaeal community structure of the SMR was similar to that of the UMR.

  8. Simultaneous removal of phosphorus and nitrogen in a sequencing batch biofilm reactor with transgenic bacteria expressing polyphosphate kinase.

    Science.gov (United States)

    Du, Hongwei; Yang, Liuyan; Wu, Jun; Xiao, Lin; Wang, Xiaolin; Jiang, Lijuan

    2012-10-01

    To improve phosphorus removal from wastewater, we constructed a high-phosphate-accumulating microorganism, KTPPK, using Pseudomonas putida KT2440 as a host. The expression plasmid was constructed by inserting and expressing polyphosphate kinase gene (ppk) from Microcystis aeruginosa NIES-843 into broad-host-range plasmid, pBBR1MCS-2. KTPPK was then added to a sequencing batch biofilm reactor (SBBFR) using lava as a biological carrier. The results showed that SBBFR with KTPPK not only efficiently removed COD, NH(3)-N, and NO(3)(-)-N but also had a high removal capacity for PO(4)(3-)-P, resulting in a low phosphorus concentration remaining in the outflow of the SBBFR. The biofilm increased by 30-53% on the lava in the SBBFR that contained KTPPK after 11 days when compared with the reactor that contained P. putida KT2440. Real-time quantitative polymerase chain reaction confirmed that the copy of ppk was maintained at about 3.5 × 10(10) copies per μL general DNA in the biofilm after 20 days. Thus, the transgenic bacteria KTPPK could maintain a high density and promote phosphorus removal in the SBBFR. In summary, this study indicates that the use of SBBFR with transgenic bacteria has the potential to remove phosphorus and nitrogen from wastewater.

  9. High-rate hydrogenotrophic denitrification in a fluidized-bed biofilm reactor using solid-polymer-electrolyte membrane electrode (SPEME).

    Science.gov (United States)

    Komori, M; Sakakibara, Y

    2008-01-01

    A fluidized-bed biofilm reactor equipped with a Solid-Polymer-Electrolyte Membrane Electrode (SPEME) cell was developed in order to enhance hydrogenotrophic denitrification of groundwater. Porous cubes made of polyvinylalcohol (PVA) were used as a biofilm carrier and continuous treatments using synthetic groundwater were carried out for 105 days. Electric current was changed step-wise from 0.4 to 4.0 A. Experimental results showed that efficient production and dissolution of hydrogen were achieved by application of electric current as well as high-rate denitrification simultaneously. Denitrification rates of nitrite increased with the increase of electric current. Overall denitrification rates attained to about 90 mg-N/L/h, which was 3 to 9 times as high as those reported in former studies. Supplying electric current of about two times of stoichiometric equivalent to the cell considered necessary for complete denitrification. Water quality in effluent was very stable and electrolytic voltage was low around 3 V. In addition, simple and secure operation was demonstrated over the experiment. From these results, it was concluded that the present fluidized-bed biofilm reactor equipped with a SPEME cell could be very feasible for high-rate hydrogenotrophic denitrification of ground water.

  10. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment.

    Science.gov (United States)

    Qin, Ying-Ying; Zhang, Xiao-Wen; Ren, Hong-Qiang; Li, Dao-Tang; Yang, Hong

    2008-05-01

    Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 x 10(5) to 2.67 x 10(9) cells per gram of dry biofilm and corresponded to 0.23-1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).

  11. Domestic wastewater anaerobic treatment I : Performance of one-step UASB and HUSB reactors; Tratamiento anaerobio de aguas residuales urbanas I : Aplicacion de reactores UASB y HUSB de etapa unica

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Rodriguez, J. A.; Gomez Lopez, M.; Soto Castineira, M.

    2005-07-01

    Domestic wastewater treatment was carried out on a pilot scale anaerobic digester, with an active volume of 25.5 m''3. The digester operated at different conditions: (a) as an UASB reactor (up-flow anaerobic sludge blanket), with the aim of reaching a complete anaerobic treatment of domestic wastewater, and (b) as a HUSB (hydrolytic upflow sludge blanket) reactor, working in this case as a wastewater pre-treatment that removes suspended solid matter and increase the effluent biodegradability. The advantages of these treatment systems are its economic feasibility, no energy consumption and low excess sludge generation. (Author) 17 refs.

  12. Hydrodynamical modelling of upflow anaerobic sludge blanket reactors; Modelagem hidrodinamica de reatores anaerobios de escoamento ascendente e manta de lodo (UASB)

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Werner Siegfried

    1995-12-31

    The increasing need to treat wastewater consuming a minimum amount of energy is a clear indication of the appropriateness of anaerobic processes. One of them, the upflow anaerobic sludge blanket reactor (UASB), has shown to be a feasible option to treat industrial wastewater and domestic sewage. To improve this treatment system the knowledge if of its hydrodynamic behaviour is fundamental. In this work a mathematical model is proposed to describe physical simulations that were performed in bench scale UASB reactors. The results allow to conclude that the proposed mathematical model is adequate to describe the hydrodynamical behaviour of the above mentioned reactors 27 refs., 78 figs., 12 tabs.

  13. Temperature-based control of an anaerobic reactor using a multi-model observer-based estimator.

    Science.gov (United States)

    Morel, Emmanuel; Tartakovsky, Boris; Perrier, Michel; Guiot, Serge R

    2007-02-01

    This study presents a temperature-based control strategy for the stabilization of an anaerobic reactor during organic overloads. To prove feasibility of the proposed approach the rate of methane production was followed in batch activity tests and reactor runs during mesophilic-thermophilic transitions. Within the first 0.25-6 h of temperature augmentation, an increase in the rate of methane production was observed with higher rates measured under thermophilic (above 40 degrees C) conditions. However, 24 h after startup both in batch tests and reactor runs, the rate of methane production under thermophilic conditions was inferior to that under optimal mesophilic conditions (35 degrees C). Following these results, a control strategy based on short-term augmentation of the reactor temperature was proposed and tested in a 10 L UASB reactor. The control strategy employed a multi-model observer-based estimator to stabilize the effluent COD concentration during organic overloads. The temperature-based control resulted in an increased methanization rate and improved reactor stability overall.

  14. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen Sheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)]. E-mail: hitchensheng@126.com; Sun Dezhi [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chung, J.-S. [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2007-06-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe{sup 2+} concentration of 40 mmol/L and H{sub 2}O{sub 2} dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2 g/L Ca(OH){sub 2} was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD{sub 5}) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m{sup 2} carrier day)

  15. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment.

    Science.gov (United States)

    Chen, Sheng; Sun, Dezhi; Chung, Jong-Shik

    2007-06-01

    In order to treat pesticide wastewater having high chemical oxygen demand (COD) value and poor biodegradability, Fenton-coagulation process was first used to reduce COD and improve biodegradability and then was followed by biological treatment. Optimal experimental conditions for the Fenton process were determined to be Fe(2+) concentration of 40 mmol/L and H(2)O(2) dose of 97 mmol/L at initial pH 3. The interaction mechanism of organophosphorous pesticide and hydroxyl radicals was suggested to be the breakage of the P=S double bond and formation of sulfate ions and various organic intermediates, followed by formation of phosphate and consequent oxidation of intermediates. For the subsequent biological treatment, 3.2g/L Ca(OH)(2) was added to adjust the pH and further coagulate the pollutants. The COD value could be evidently decreased from 33,700 to 9300 mg/L and the ratio of biological oxygen demand (BOD(5)) to COD of the wastewater was enhanced to over 0.47 by Fenton oxidation and coagulation. The pre-treated wastewater was then subjected to biological oxidation by using moving-bed biofilm reactor (MBBR) inside which tube chip type bio-carriers were fluidized upon air bubbling. Higher than 85% of COD removal efficiency could be achieved when the bio-carrier volume fraction was kept more than 20% by feeding the pretreated wastewater containing 3000 mg/L of inlet COD at one day of hydraulic retention time (HRT), but a noticeable decrease in the COD removal efficiency when the carrier volume was decreased down to 10%, only 72% was observed. With the improvement of biodegradability by using Fenton pretreatment, also due to the high concentration of biomass and high biofilm activity using the fluidizing bio-carriers, high removal efficiency and stable operation could be achieved in the biological process even at a high COD loading of 37.5 gCOD/(m(2)carrierday).

  16. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition.

    Science.gov (United States)

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-17

    Anaerobic reactors with ferric iron addition have been experimentally demonstrated to be able to simultaneously improve sulfate reduction and organic matter degradation during sulfate-containing wastewater treatment. In this work, a mathematical model is developed to evaluate the impact of ferric iron addition on sulfate reduction and organic carbon removal as well as the volatile fatty acids (VFA) composition in anaerobic reactor. The model is successfully calibrated and validated using independent long-term experimental data sets from the anaerobic reactor with Fe (III) addition under different operational conditions. The model satisfactorily describes the sulfate reduction, organic carbon removal and VFA production. Results show Fe (III) addition induces the microbial reduction of Fe (III) by iron reducing bacteria (IRB), which significantly enhances sulfate reduction by sulfate reducing bacteria (SRB) and subsequently changes the VFA composition to acetate-dominating effluent. Simultaneously, the produced Fe (II) from IRB can alleviate the inhibition of undissociated H2S on microorganisms through iron sulfide precipitation, resulting in further improvement of the performance. In addition, the enhancement on reactor performance by Fe (III) is found to be more significantly favored at relatively low organic carbon/SO4(2-) ratio (e.g., 1.0) than at high organic carbon/SO4(2-) ratio (e.g., 4.5). The Fe (III)-based process of this work can be easily integrated with a commonly used strategy for phosphorus recovery, with the produced sulfide being recovered and then deposited into conventional chemical phosphorus removal sludge (FePO4) to achieve FeS precipitation for phosphorus recovery while the required Fe (III) being acquired from the waste ferric sludge of drinking water treatment process, to enable maximum resource recovery/reuse while achieving high-rate sulfate removal.

  17. Tolerance of the antibiotic tylosin on treatment performance of an up-flow anaerobic stage reactor (UASR).

    Science.gov (United States)

    Chelliapan, S; Wilby, T; Sallis, P J; Yuzir, A

    2011-01-01

    Tylosin has been considered inhibiting COD removal in anaerobic digestion. In this study it is proven that this is not always the case. Accordingly, elevated concentrations of Tylosin (100-800mgL-1) could be tolerated by the anaerobic system. The influence of Tylosin concentrations on an up-flow anaerobic stage reactor (UASR) was assessed using additions of Tylosin phosphate concentrate. Results showed high efficiency for COD removal (average 93%) when Tylosin was present at concentrations ranging from 0 to 400 mg L-1. However, at Tylosin concentrations of 600 and 800 mg L-1 treatment efficiency declined to 85% and 75% removal respectively. The impact of Tylosin concentrations on archaeal activity were investigated and the analysis revealed that archaeal cells dominated the reactor, confirming that there was no detectable inhibition of the methanogens at Tylosin levels between 100 and 400mg L-1. Nevertheless, the investigation showed a slight reduction in the number of methanogens at Tylosin levels of 600 and 800 mg L-1. These results demonstrated that the methanogens were well adapted to Tylosin. It would not be expected that the process performance of the UASR would be affected, not even at a level well in excess of those appearing in real wastewater from a Tylosin production site.

  18. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  19. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  20. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater.

    Science.gov (United States)

    Gu, Qiyuan; Sun, Tichang; Wu, Gen; Li, Mingyue; Qiu, Wei

    2014-08-01

    This study aims to evaluate the effect of carrier filling ratio on the performance of a moving bed biofilm reactor in degrading chemical oxygen demand, phenol, thiocyanate, and ammonia from coking wastewater at 20h of hydraulic retention time. The operational experiments under different carrier filling ratios ranging from 20% to 60% were investigated. The maximum removal efficiency of 89%, 99% and 99% for COD, phenol and thiocyanate, and minimum sensitivity to the increasing contaminants concentration in the influent were achieved at 50% carrier filling ratio. The Haldane competitive substrate inhibition kinetics model was used to describe the relationship between the oxygen uptake rate of ammonium oxidizers and the concentration of free ammonium. The highest biofilm microbial community functional diversity (Shannon's diversity index, H') and evenness (Shannon's evenness index, E') were obtained at 50% carrier filling ratio in all runs using a Biolog ECO microplate.

  1. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.

    Science.gov (United States)

    Zeng, Ming; Soric, Audrey; Roche, Nicolas

    2013-09-01

    In this study, total organic carbon (TOC) biodegradation was simulated by GPS-X software in biofilm reactors with carriers of plastic rings and glass beads under different hydraulic conditions. Hydrodynamic model by retention time distribution and biokinetic measurement by in-situ batch test served as two significant parts of model calibration. Experimental results showed that TOC removal efficiency was stable in both media due to the enough height of column, although the actual hydraulic volume changed during the variation of hydraulic condition. Simulated TOC removal efficiencies were close to experimental ones with low theil inequality coefficient values (below 0.15). Compared with glass beads, more TOC was removed in the filter with plastic rings due to the larger actual hydraulic volume and lower half saturation coefficient in spite of its lower maximum specific growth rate of biofilm, which highlighted the importance of calibrating hydrodynamic behavior and biokinetics.

  2. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment.

    Science.gov (United States)

    Saddoud, Ahlem; Sayadi, Sami

    2007-11-19

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCODm(-3)d(-1) with gradual increase to an average of 13.27 kg TCODm(-3)d(-1). At stable conditions, the treatment efficiency was high with an average COD and BOD(5) reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCODm(-3)d(-1). The removal efficiencies of SCOD and BOD(5) were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines.

  3. Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source

    Institute of Scientific and Technical Information of China (English)

    LIU Yanan; YU Shui-li; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM)combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.

  4. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  5. Acetate conversion in anaerobic biogas reactors: Traditional and molecular tools for studying this important group of anaerobic microorganisms

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Mladenovska, Zuzana; Lange, Marianne;

    2000-01-01

    Different methods were applied to study the role of aceticlastic methanogens in biogas reactors treating solid waste and wastewater. We used traditional microbiological methods, immunological and 16S rRNA ribosomal probes for detection of the methanogens. Using this approach we identified the met...

  6. Treatment of organic wastewater in anaerobic fixed bed reactor with porous mineral carriers%多孔矿物载体厌氧固定床处理有机废水研究

    Institute of Scientific and Technical Information of China (English)

    朱峰; 潘涌璋; 洪利明; 师波

    2011-01-01

    通过天然浮石和塑料多孔空心球而制成复合式多孔矿物载体应用于厌氧固定床反应器中,研究反应器挂膜性能,以及处理生活污水、啤酒废水效果,应用扫描电镜观察生物膜微生物相的形态结构.结果表明,反应器挂膜69 d后COD去除率稳定在70%以上,初次启动成功;处理生活污水中平均COD去除率为61.72%;处理啤酒废水中COD去除率高于88%,生物膜中微生物优势种群为杆菌和球菌.%A compound porous mineral carrier made from natural pumice and plastic porous hollow ball was applied in the anaerobic fixed bed reactor to study the performance of biofilm culturing, treat the domestic wastewater and beer-brewing wastewater, and observe the morphology and dominant species of microorganism in biofilm with scanning electron microscope (SEM). The research showed that the system started successfully. The removal rate of COD was stabilized above 70% after 69 days in the course of biofilm culturing. The average removal rate of COD for the treatment of domestic wastewater and beer-brewing wastewater was 61.72% and above 88% ,respectively. SEM pictures indicated that the dominant species in biofilm were bacillus and cocci.

  7. Microfauna communities as performance indicators for an A/O Shortcut Biological Nitrogen Removal moving-bed biofilm reactor.

    Science.gov (United States)

    Canals, O; Salvadó, H; Auset, M; Hernández, C; Malfeito, J J

    2013-06-01

    The microfauna communities present in the mixed liquor and biofilm of an Anoxic/Oxic Shortcut Biofilm Nitrogen Removal moving-bed biofilm process were characterised in order to optimise process control through the use of bioindicators. The system operated at high ammonium concentrations, with an average of 588 ± 220 mg N-NH4(+) L(-1) in the influent, 161 ± 80 mg L(-1) in the anoxic reactor and 74 ± 71.2 mg L(-1) in the aerobic reactor. Up to 20 different taxa were identified, including ciliates (4), flagellates (11), amoebae (4) and nematodes (1). Compared to conventional wastewater treatment processes (WWTPs), this process can be defined as a flagellates-predominant system with a low diversity of ciliates. Flagellates were mainly dominant in the mixed liquor, demonstrating high tolerance to ammonium and the capacity for survival over a long time under anoxic conditions. The data obtained provide interesting values of maximum and minimum tolerance ranges to ammonium, nitrates and nitrites for the ciliate species Cyclidium glaucoma, Colpoda ecaudata, Vorticella microstoma-complex and Epistylis cf. rotans. The last of these was the only ciliate species that presented a constant and abundant population, almost exclusively in the aerobic biofilm. Epistylis cf. rotans dynamics showed a high negative correlation with ammonium variations and a positive correlation with ammonium removal efficiency. Hence, the results indicate that Epistylis cf. rotans is a good bioindicator of the nitrification process in this system. The study of protozoan communities in unexplored WWTPs sheds light on species ecology and their role under conditions that have been little studied in WWTPs, and could offer new biological management tools.

  8. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    Science.gov (United States)

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD.

  9. Effect of HCO3- concentration on anammox nitrogen removal rate in a moving bed biofilm reactor.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Vabamäe, Priit; Kroon, Kristel; Loorits, Liis; Saluste, Alar; Tenno, Taavo

    2012-01-01

    Anammox biomass enriched in a moving bed biofilm reactor (MBBR) fed by actual sewage sludge reject water and synthetically added NO2- was used to study the total nitrogen (TN) removal rate of the anammox process depending on bicarbonate (HCO3-) concentration. MBBR performance resulted in the maximum TN removal rate of 1100 g N m(-3) d(-1) when the optimum HCO3- concentration (910 mg L(-1)) was used. The average reaction ratio of NO2- removal, NO3- production and NH4+ removal were 1.18/0.20/1. When the HCO3- concentration was increased to 1760mg L(-1) the TN removal rate diminished to 270 g N m(-3) d(-1). The process recovered from bicarbonate inhibition within 1 week. The batch tests performed with biomass taken from the MBBR showed that for the HCO3- concentration of 615 mg L(-1) the TN removal rate was 3.3 mg N L(-1) h(-1), whereas for both lower (120 mg L(-1)) and higher (5750 mg L(-1)) HCO3- concentrations the TN removal rates were 2.3 (+/- 0.15) and 1.6 (+/- 0.12) mg N L(-1) d(-1), respectively. PCR and DGGE analyses resulted in the detection of uncultured Planctomycetales bacterium clone P4 and, surprisingly, low-oxygen-tolerant aerobic ammonia oxidizers. The ability of anammox bacteria for mixotrophy was established by diminished amounts of nitrate produced when comparing the experiments with an organic carbon source and an inorganic carbon source.

  10. Effects of pH profiles on nisin production in biofilm reactor.

    Science.gov (United States)

    Pongtharangkul, Thunyarat; Demirci, Ali

    2006-08-01

    Apart from its widely accepted commercial applications as a food preservative, nisin emerges as a promising alternative in medical applications for bacterial infection in both humans and livestock. Improving nisin production through optimization of fermentation parameters would make nisin more cost-effective for various applications. Since nisin production by Lactococcus lactis NIZO 22186 was highly influenced by the pH profile employed during fermentation, three different pH profiles were evaluated in this study: (1) a constant pH profile at 6.8 (profile 1), (2) a constant pH profile with autoacidification at 4 h (profile 2), and (3) a stepwise pH profile with pH adjustment every 2 h (profile 3). The results demonstrated that the low-pH stress exerted during the first 4 h of fermentation in profile 3 detrimentally affected nisin production, resulting in a very low maximum nisin concentration (593 IU ml(-1)). On the other hand, growth and lactic acid production were only slightly delayed, indicating that the loss in nisin production was not a result of lower growth or shifting of metabolic activity toward lactic acid production. Profile 2, in which pH was allowed to drop freely via autoacidification after 4 h of fermentation, was found to yield almost 1.9 times higher nisin (3,553 IU ml(-1)) than profile 1 (1,898 IU ml(-1)), possibly as a result of less adsorption of nisin onto producer cells. Therefore, a combination of constant pH and autoacidification period (profile 2) was recommended as the pH profile during nisin production in a biofilm reactor.

  11. Nitrogen and carbon removal efficiency of a polyvinyl alcohol gel based moving bed biofilm reactor system.

    Science.gov (United States)

    Gani, Khalid Muzamil; Singh, Jasdeep; Singh, Nitin Kumar; Ali, Muntjeer; Rose, Vipin; Kazmi, A A

    2016-01-01

    In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22-1.22 kg N m(-3) d(-1) (total nitrogen (TN)), 1.48-7.82 kg chemical oxygen demand (COD) m(-3) d(-1) (organic) and 0.12-0.89 kg NH4(+)-N m(-3)d(-1) (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m(-3) d(-1) when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m(-3) d(-1). Ammonium removal rates ranged from 0.13 to 0.75 kg NH4(+)-N m(-3) d(-1) during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3-7.1 mg/L and 74-356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.

  12. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijetunga, Somasiri, E-mail: swije2001@yahoo.com [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Li Xiufen [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China); Jian Chen, E-mail: jchen@sytu.edu.cn [Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, 170 Huihe Road, Wuxi 214036 (China)

    2010-05-15

    Textile wastewater (TW) is one of the most hazardous wastewater for the environment when discharged without proper treatment. Biological treatment technologies have shown encouraging results over the treatment of recalcitrant compounds containing wastewaters. Upflow anaerobic sludge blanket reactor (UASB) was evaluated in terms of colour and the reduction of chemical oxygen demand (COD) with different organic loads using TW containing dyes belonging to different chemical groups. The study was performed using six different dye concentrations (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, 150 mg/L, 300 mg/L) with three COD levels ({approx}1000 mg/L, {approx}2000 mg/L, {approx}3000 mg/L). Decolourization, COD removal and reactor stability were monitored. Over 85% of colour removal was observed with all dye concentrations with three organic loads. Acid Red 131 and Acid Yellow 79 were decolourized through biodegradation while Acid Blue 204 was decolourized due to adsorption onto anaerobic granules. COD removal was high in all dye concentrations, regardless of co-substrate levels. The reactor did not show any instability during the study. The activity of granules was not affected by the dyes. Methanothrix like bacteria were the dominant group in granules before introducing TW, however, they were reduced and cocci-shape microorganism increased after the treatment of textile wastewater.

  13. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Li, Kun

    2015-09-01

    A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.0 and R of 3, the COD, total phenols, volatile phenol and NH4(+)-N removal efficiencies were remarkably increased to 10 ± 2%, 22 ± 5%, 18 ± 1%, and -1 ± 2%, respectively. Besides, increasing R resulted in more transformation from bound extracellular polymeric substances (EPS) to free EPS in the liquid and the particle size distribution of anaerobic granular sludge accumulated in the middle size range of 1.0-2.5mm. Results showed the genus Saccharofermentans dominanted in the ECAR and the bacterial community shift was observed at different external circulation ratio, influencing the pollutants removal profoundly.

  14. Simultaneous Organics and Nutrients Removal from Domestic Wastewater in a Combined Cylindrical Anoxic/Aerobic Moving Bed Biofilm Reactor

    Directory of Open Access Journals (Sweden)

    Husham T. Ibrahim

    2014-03-01

    Full Text Available The aim of present study was to design and construct an continuous up-flow pilot scale Moving Bed Biofilm Reactor (MBBR which is consists of combined cylindrical Anoxic/Aerobic MBBR in nested form with anoxic/aerobic volume ratio equal to 0.16 to treated 4 m3 /days of domestic wastewater in Chongqing city at Southwest China. The treatment must be satisfactory to meet with grade B of discharge standard of pollutants for municipal wastewater treatment plant in China (GB/T18918-2002. Kaldnes (K1 media was used as a carrier in both reactors at a media fill ratio equal to 50%. The reactors was operated under the Anoxic/Oxic (An/O process which must meet stringent TN limits without sludge returning into the system and only an internal recycling was performed from aerobic to anoxic reactor. After developing the biofilm on the media, reactor was operated at 3 different Hydraulic Residence Time (HRT ranging from 4.95 to 8.25 h. During operation the internal recycle ratio to eliminate nitrogen compounds were 100% of inflow rate and the average Dissolved Oxygen concentration (DO in aerobic and anoxic MBBRs were 4.49 and 0.16 mg/L, respectively. The obtained results showed that the HRT of 6.2 h was suitable for simultaneous removal of COD, NH4+-N, TN and TP. In this HRT the average removal efficiencies were 93.15, 98.06, 71.67 and 90.88% for COD, NH4+-N, TN and TP, respectively.

  15. Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge

    Directory of Open Access Journals (Sweden)

    Yaqin Yu

    2014-01-01

    Full Text Available This study investigated the performance and stability of an anaerobic baffled filter reactor in the treatment of algae-laden water from Taihu Lake at several organic loading rates. The study also evaluated the capability of soft filler to train granule sludge and improve the anaerobic environment and sludge activity in the anaerobic baffled reactor (ABR, thereby enhancing the treatment efficiency. The ABR consisted of five rectangular compartments, each of which was 120 cm long, 80 cm wide, 80 cm high, and packed with soft filler. The anaerobic baffled filter reactor was found to be an efficient reactor configuration for the treatment of algae-laden water. The reactor was operated at an organic loading rate of 1.5 kg chemical oxygen demand (COD/(m3d and an ambient temperature of 30 °C; under these conditions, the COD removal efficiency was 80% and the biogas production rate was 293 mL/(Ld. Moreover, the soft filler increased the biomass retention time and decreased the rate at which solids were washed out from the reactor, promoting an improved spatial distribution of the microbial communities within the compartments. Methanoregula, Methanobacteriaceae, Methanosaeta, Methanoculleu, and Thermogymnomonas were the dominant archaeal species in each compartment during an operational period of approximately 100 days. The protease activity in the reactor decreased longitudinally down the reactor from Compartments 1 to 5, whereas the activity of coenzyme F420 increased. The soft filler played a key role in successfully treating algae-laden water with the anaerobic baffled filter reactor.

  16. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Maria Octoviane Dyan

    2015-01-01

    Full Text Available Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor. The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7

  17. Application of Moving Bed Biofilm Process for Biological Organics and Nutrients Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    M. Kermani

    2008-01-01

    Full Text Available In this study, experiments have been conducted to evaluate the organics and nutrients removal from synthetic wastewater by a laboratory scale moving bed biofilm process. For nutrients removal, moving bed biofilm process has been applied in series with anaerobic, anoxic and aerobic units in four separate reactors. Moving bed biofilm reactors were operated continuously at different loading rates of nitrogen and Phosphorus. During optimum conditions, close to complete nitrification with average ammonium removal efficiency of 99.72% occurred in the aerobic reactor. In the aerobic reactor, the average specific nitrification rate was 1.8 g NOx-N kg VSS-1 h-1. The results of the average effluent soluble COD concentration from each reactor showed that denitrification process in the second anoxic reactor consumed most of the biodegradable organic matter. As seen from the results, denitrification rate has increased with increasing NOx-N loading in the second anoxic reactor. The aerobic phosphate removal rate showed a good correlation to the anaerobic phosphate release rate. Moreover, phosphate removal rate showed a strong correlation to the phosphate loading rate in the aerobic reactor. In optimum conditions, the average SCOD, total nitrogen and phosphorus removal efficiencies were 96.9, 84.6 and 95.8%, respectively. This study showed that the moving bed biofilm process could be used as an ideal and efficient option for the total nutrient removal from municipal wastewater.

  18. Modelling anaerobic digestion in a biogas reactor: ADM1 model development with lactate as an intermediate (Part I).

    Science.gov (United States)

    Satpathy, Preseela; Biernacki, Piotr; Uhlenhut, Frank; Cypionka, Heribert; Steinigeweg, Sven

    2016-12-05

    The Anaerobic Digestion Model No. 1 (ADM1) was extended to include lactate, a crucial metabolic product during sugar fermentation. This study tests the validity of the modified ADM1 model in improving the predictions of a standard biogas reactor. This reactor was prepared in the laboratory with simple organic substrates with an intention to represent an 'average biogas plant'. Kinetic parameters were determined from a lactic acid enriched steady-state reactor. The parameters were adjusted further in order to acquire satisfying simulation results systematically with the batch experiments and then against the standard biogas reactor. Arresting methanogenesis revealed that lactate degradation occurred majorly via acetate followed by propionate, and a non-negligible proportion of butyrate too was found, which were further updated in the model. The modified ADM1 provided a successful correlation with the experimental results for the batch and continuous experiments. We justified that inclusion of lactate in the model resulted in optimized simulation for both biogas and methane content in the standard biogas reactor.

  19. Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.

    2005-01-01

    Trace metals are essential for anaerobic microorganisms, because they are present as cofactor in many of their enzymes. Therefore anaerobic wastewater treatment systems using these microorganisms to perform biological conversions are dependent on these metals for their (optimal) performance. In prac

  20. Anaerobic digestion of olive oil mill effluents together with swine manure in UASB reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær; Deng, H.

    2002-01-01

    Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process...

  1. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors

    DEFF Research Database (Denmark)

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-01-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470mL-CH4/g......VS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380mL-CH4/gVS-added at the organic loading rate of 3.2gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240m...

  2. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor.

    Science.gov (United States)

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    In this study, the performance of a two-phase anaerobic digestion reactor treating food waste with the reutilization of acidogenic off-gas was investigated with the objective to improve the hydrogen availability for the methanogenic reactor. As a comparison a treatment without off-gas reutilization was also set up. Results showed that acidogenic off-gas utilization in the upflow anaerobic sludge blanket (UASB) reactor increased the methane recovery up to 38.6%. In addition, a 27% increase in the production of cumulative chemical oxygen demand (COD) together with an improved soluble microbial products recovery dominated by butyrate was observed in the acidogenic leach bed reactor (LBR) with off-gas reutilization. Of the increased methane recovery, ∼8% was contributed by the utilization of acidogenic off-gas in UASB. Results indicated that utilization of acidogenic off-gas in methanogenic reactor is a viable technique for improving overall methane recovery.

  3. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  4. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors.

  5. Winery and distillery wastewater treatment by anaerobic digestion.

    Science.gov (United States)

    Moletta, R

    2005-01-01

    Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.

  6. Biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater by activated sludge and moving bed biofilm reactor systems.

    Science.gov (United States)

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Pantazi, Ypapanti; Andersen, Henrik R

    2015-09-01

    Two laboratory scale fully aerated continuous flow wastewater treatment systems were used to compare the removal of five benzotriazoles and one benzothiazole by suspended and attached growth biomass. The activated sludge system was operated under low organic loading conditions. The moving bed biofilm reactor (MBBR) system consisted of two serially connected reactors filled with K3-biocarriers. It was either operated under low or high organic loading conditions. Target compounds were removed partially and with different rates in tested systems. For MBBR, increased loading resulted in significantly lower biodegradation for 4 out of 6 examined compounds. Calculation of specific removal rates (normalized to biomass) revealed that attached biomass had higher biodegradation potential for target compounds comparing to suspended biomass. Clear differences in the biodegradation ability of attached biomass grown in different bioreactors of MBBR systems were also observed. Batch experiments showed that micropollutants biodegradation by both types of biomass is co-metabolic.

  7. Reduction of Precursors of Chlorination By-products in Drinking Water Using Fluidized-bed Biofilm Reactor at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    SHU-GUANG XIE; DONG-HUI WEN; DONG-WEN SHI; XIAO-YAN TANG

    2006-01-01

    Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM)formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.

  8. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study.

    Science.gov (United States)

    Hassani, Amir Hessam; Borghei, Seyed Mehdi; Samadyar, Hassan; Ghanbari, Bastam

    2014-01-01

    One of the requirements for environmental engineering, which is currently being considered, is the removal of ethylene glycol (EG) as a hazardous environmental pollutant from industrial wastewater. Therefore, in a recent study, a moving bed biofilm reactor (MBBR) was applied at pilot scale to treat industrial effluents containing different concentrations of EG (600, 800, 1200, and 1800 mg L-1 ). The removal efficiency and kinetic analysis of the system were examined at different hydraulic retention times of 6, 8, 10, and 12 h as well as influent chemical oxygen demand (COD) ranged between values of 1000 and 3000mg L-1. In minimum and maximum COD Loadings, the MBBR showed 95.1% and 60.7% removal efficiencies, while 95.9% and 66.2% EG removal efficiencies were achieved in the lowest and highest EG concentrations. The results of the reactor modelling suggested compliance of the well-known modified Stover-Kincannon model with the system.

  9. A new low-cost biofilm carrier for the treatment of municipal wastewater in a moving bed reactor.

    Science.gov (United States)

    Orantes, J C; González-Martínez, S

    2003-01-01

    The Moving Bed Biofilm Reactor has proven to be an efficient system in wastewater treatment and has become a viable solution for small treatment plants. The main objective of this research was to analyse the performance of a moving bed reactor using low-cost local material when fed with municipal wastewater. A pilot reactor with a total volume of 900 litres was built and it was fed continuously with municipal wastewater. The operation of the system was adjusted to six different organic loading rates. The biofilm carrier was polyethylene tubing with internal diameter of 1.1 cm, cut into pieces of 1.2 cm. The tested material offered a specific surface area of 590 m2/m3. Air was provided with a fine-bubble diffuser. The main results show that the reactor performance was stable and predictable. The COD removal confidently behaves according to a general hyperbolic kinetic equation. The maximal total COD removal attained was 81%. Nitrification was observed only for organic loads with values under 5.7 gCOD/m2 x d. Good adherence of the microorganisms was observed for the applied organic loading rates. After several months of operation, the material showed no signs of abrasion or deformation. The sludge production behaved linearly with the organic load reaching 979 gTSS/d with the highest organic load of 35.7 gCOD/m2 x d. The amount of microorganisms attached to the carrier increased with the organic load tending to an asymptotical maximal value of 17.3 g/m2 (as dry solids). Mean cellular retention times from 2.0 to 23.1 days were determined.

  10. Degradation of phenol in an upflow anaerobic sludge blanket(UASB) reactor at ambient temperatureKE

    Institute of Scientific and Technical Information of China (English)

    KE Shui-zhou1; SHI Zhou; ZHANG Tong; Herbert H. P. FANG

    2004-01-01

    A synthetic wastewater containing phenol as sole substrate was treated in a 2.8 L upflow anaerobic sludge blanket(UASB) reactor at ambient temperature. The operation conditions and phenol removal efficiency were discussed, microbial population in the UASB sludge was identified based on DNA cloning, and pathway of anaerobic phenol degradation was proposed. Phenol in wastewater was degraded in an UASB reactor at loading rate up to 18 gCOD/(L·d), With a 1:1 recycle ratio, at 26(1℃, pH 7.0-7.5. An UASB reactor was able to remove 99% of phenol up to 1226 mg/L in wastewater with 24 h of hydraulic retention time(HRT). For HRT below 24 h, phenol degradation efficiency decreased with HRT, from 95.4% at 16 h to 93.8% at 12 h. It further deteriorated to 88.5% when HRT reached 8 h. When the concentration of influent phenol of the reactor was 1260 mg/L(corresponding COD 3000 mg/L), with the HRT decreasing(from 40 h to 4 h, corresponding COD loading increasing), the biomass yields tended to increase from 0.265 to 3.08 g/(L·d). While at 12 h of HRT, the biomass yield was lower. When HRT was 12 h, the methane yield was 0.308 L/(gCOD removed), which was the highest. Throughout the study, phenol was the sole organic substrate. The effluent contained only residual phenol without any detectable intermediates, such as benzoate, 4-hydrobenzoate or volatile fatty acids(VFAs). Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unsure.

  11. N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors.

    Science.gov (United States)

    Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta; Tjus, Kåre

    2013-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment are getting increased attention because their global warming potential is around 300 times that of carbon dioxide. The aim of the study was to measure nitrous oxide emissions from one stage partial nitrification/anammox (Anaerobic Ammonium Oxidation) reactors, where nitrogen is removed in a biological way. The first part of the experimental study was focused on the measurements of nitrous oxide emissions from two pilot scale reactors in the long term; one reactor with intermittent aeration at 25 °C and the other reactor with continuous aeration at 22-23 °C. The second part of the experiment was done to evaluate the influence of different nitrogen loads and aeration strategies, described by the ratio between the non-aerated and aerated phase and the dissolved oxygen concentrations, on nitrous oxide emissions from the process. The study showed that 0.4-2% of the nitrogen load was converted into nitrous oxide from two reactors. With higher nitrogen load, the amount of nitrous oxide emission was also higher. A larger fraction of nitrous oxide was emitted to the gas phase while less was emitted with the liquid effluent. It was also found that nitrous oxide emissions were similar under intermittent and continuous aeration.

  12. Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia.

    Science.gov (United States)

    Nakhli, Seyyed Ali Akbar; Ahmadizadeh, Kimia; Fereshtehnejad, Mahmood; Rostami, Mohammad Hossein; Safari, Mojtaba; Borghei, Seyyed Mehdi

    2014-01-01

    In this study, the performance of an aerobic moving bed biofilm reactor (MBBR) was assessed for the removal of phenol as the sole substrate from saline wastewater. The effect of several parameters namely inlet phenol concentration (200-1200 mg/L), hydraulic retention time (8-24 h), inlet salt content (10-70 g/L), phenol shock loading, hydraulic shock loading and salt shock loading on the performance of the 10 L MBBR inoculated with a mixed culture of active biomass gradually acclimated to phenol and salt were evaluated in terms of phenol and chemical oxygen demand (COD) removal efficiencies. The results indicated that phenol and COD removal efficiencies are affected by HRT, phenol and salt concentration in the bioreactor saline feed. The MBBR could remove up to 99% of phenol and COD from the feed saline wastewater at inlet phenol concentrations up to 800 mg/L, HRT of 18 h and inlet salt contents up to 40 g/L. The reactor could also resist strong shock loads. Furthermore, measuring biological quantitative parameters indicated that the biofilm plays a main role in phenol removal. Overall, the results of this investigation revealed that the developed MBBR system with high concentration of the active mixed biomass can play a prominent role in order to treat saline wastewaters containing phenol in industrial applications as a very efficient and flexible technology.

  13. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 degree C.

    Science.gov (United States)

    Almomani, Fares A; Delatolla, Robert; Ormeci, Banu

    2014-08-01

    The goal of this study was to investigate the potential use ofmoving bed biofilm reactor (MBBR) systems as ammonia removal post-treatment units for wastewater (WW) treatment lagoons that demonstrate large temperature changes throughout their operational year (1 - 20 degrees C). The study was carried out over a six-month period using laboratory-scale MBBR reactors fed with incoming effluent from a full-scale lagoon. The study shows that significant average ammonia removal rates of 0.26 and 0.11 kgN/m . d were achieved at 20 degrees C and 1C. The increase in the ammonia removal rates with increasing temperature from 1 degrees C to 20 degrees C showed a strong correlation to an applied temperature correction coefficient model. No significant accumulation of effluent nitrite was observed at 1 degrees C or after being fed with synthetic wastewater (SWW); indicating that cold temperatures and transitions from real WW to SWW did not stress the nitrifiers. Furthermore, the study demonstrates that changes in temperature or changes from real WW to SWW do not affect the mass of biofilm attached per MBBR carrier. Hence, based on the results of this study, it is concluded that MBBR is a promising technology for post-treatment ammonia removal of WW lagoon effluent.

  14. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water.

    Science.gov (United States)

    Xia, Siqing; Zhang, YanHao; Zhong, FoHua

    2009-12-01

    A continuous stirred hydrogen-based polyvinyl chloride (PVC) membrane biofilm reactor (MBfR) was investigated to remove nitrate from the drinking water. The reactor was operated over 100 days, and the result showed that the average nitrate denitrification rate of 1.2 g NO(3)(-)-N/m(2) d and the total nitrogen (TN) removal of 95.1% were achieved with the influent nitrate concentration of 50 mg NO(3)(-)-N/L and the hydrogen pressure of 0.05 MPa. Under the same conditions, the average rate of hydrogen utilization by biofilm was 0.031 mg H(2)/cm(2) d, which was sufficient to remove 50 mg NO(3)(-)-N/L from the contaminated water with the effluent nitrate and nitrite concentrations below drinking water limit values. The average hydrogen utilization efficiency was achieved as high as 99.5%. Flux analysis demonstrated that, compared to sulfate reduction, nitrate reduction competed more strongly for hydrogen electron, and obtained more electrons in high influent nitrate loading.

  15. Thermal hygienization of excess anaerobic sludge: a possible self-sustained application of biogas produced in UASB reactors.

    Science.gov (United States)

    Borges, E S M; Godinho, V M; Chernicharo, C A L

    2005-01-01

    The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.

  16. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    HUA-JUN FENG; LI-FANG HU; DAN SHAN; CHENG-RAN FANG; DONG-SHENG SHEN

    2008-01-01

    To examine the effect of hydraulic residence time (HRT) on the performance and stability,to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR),and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance,catabolic intermediate,and microcosmic alternation.Methods COD,VFAs,and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR.Results The removal efficiencies declined with the decreases of HRTs and temperatures.However,the COD removal load was still higher at short HRT than at long HRT.Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h.HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures,but the reasons differed from each other.Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃ to 28℃.

  17. Anaerobic Treatment of Agricultural Residues and Wastewater - Application of High-Rate Reactors

    OpenAIRE

    Parawira, Wilson

    2004-01-01

    The production of methane via anaerobic digestion of agricultural residues and industrial wastewater would benefit society by providing a clean fuel from renewable feedstocks. This would reduce the use of fossil-fuel-derived energy and reduce environmental impact, including global warming and pollution. Limitation of carbon dioxide and other emissions through emission regulations, carbon taxes, and subsidies on biomass energy is making anaerobic digestion a more attractive and competitive tec...